2 * Generic waiting primitives.
4 * (C) 2004 William Irwin, Oracle
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
13 void init_waitqueue_head(wait_queue_head_t
*q
)
15 spin_lock_init(&q
->lock
);
16 INIT_LIST_HEAD(&q
->task_list
);
19 EXPORT_SYMBOL(init_waitqueue_head
);
21 void fastcall
add_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
25 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
26 spin_lock_irqsave(&q
->lock
, flags
);
27 __add_wait_queue(q
, wait
);
28 spin_unlock_irqrestore(&q
->lock
, flags
);
30 EXPORT_SYMBOL(add_wait_queue
);
32 void fastcall
add_wait_queue_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
)
36 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
37 spin_lock_irqsave(&q
->lock
, flags
);
38 __add_wait_queue_tail(q
, wait
);
39 spin_unlock_irqrestore(&q
->lock
, flags
);
41 EXPORT_SYMBOL(add_wait_queue_exclusive
);
43 void fastcall
remove_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
47 spin_lock_irqsave(&q
->lock
, flags
);
48 __remove_wait_queue(q
, wait
);
49 spin_unlock_irqrestore(&q
->lock
, flags
);
51 EXPORT_SYMBOL(remove_wait_queue
);
55 * Note: we use "set_current_state()" _after_ the wait-queue add,
56 * because we need a memory barrier there on SMP, so that any
57 * wake-function that tests for the wait-queue being active
58 * will be guaranteed to see waitqueue addition _or_ subsequent
59 * tests in this thread will see the wakeup having taken place.
61 * The spin_unlock() itself is semi-permeable and only protects
62 * one way (it only protects stuff inside the critical region and
63 * stops them from bleeding out - it would still allow subsequent
64 * loads to move into the critical region).
67 prepare_to_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
71 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
72 spin_lock_irqsave(&q
->lock
, flags
);
73 if (list_empty(&wait
->task_list
))
74 __add_wait_queue(q
, wait
);
76 * don't alter the task state if this is just going to
77 * queue an async wait queue callback
79 if (is_sync_wait(wait
))
80 set_current_state(state
);
81 spin_unlock_irqrestore(&q
->lock
, flags
);
83 EXPORT_SYMBOL(prepare_to_wait
);
86 prepare_to_wait_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
90 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
91 spin_lock_irqsave(&q
->lock
, flags
);
92 if (list_empty(&wait
->task_list
))
93 __add_wait_queue_tail(q
, wait
);
95 * don't alter the task state if this is just going to
96 * queue an async wait queue callback
98 if (is_sync_wait(wait
))
99 set_current_state(state
);
100 spin_unlock_irqrestore(&q
->lock
, flags
);
102 EXPORT_SYMBOL(prepare_to_wait_exclusive
);
104 void fastcall
finish_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
)
108 __set_current_state(TASK_RUNNING
);
110 * We can check for list emptiness outside the lock
112 * - we use the "careful" check that verifies both
113 * the next and prev pointers, so that there cannot
114 * be any half-pending updates in progress on other
115 * CPU's that we haven't seen yet (and that might
116 * still change the stack area.
118 * - all other users take the lock (ie we can only
119 * have _one_ other CPU that looks at or modifies
122 if (!list_empty_careful(&wait
->task_list
)) {
123 spin_lock_irqsave(&q
->lock
, flags
);
124 list_del_init(&wait
->task_list
);
125 spin_unlock_irqrestore(&q
->lock
, flags
);
128 EXPORT_SYMBOL(finish_wait
);
130 int autoremove_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
132 int ret
= default_wake_function(wait
, mode
, sync
, key
);
135 list_del_init(&wait
->task_list
);
138 EXPORT_SYMBOL(autoremove_wake_function
);
140 int wake_bit_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *arg
)
142 struct wait_bit_key
*key
= arg
;
143 struct wait_bit_queue
*wait_bit
144 = container_of(wait
, struct wait_bit_queue
, wait
);
146 if (wait_bit
->key
.flags
!= key
->flags
||
147 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
148 test_bit(key
->bit_nr
, key
->flags
))
151 return autoremove_wake_function(wait
, mode
, sync
, key
);
153 EXPORT_SYMBOL(wake_bit_function
);
156 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
157 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
158 * permitted return codes. Nonzero return codes halt waiting and return.
161 __wait_on_bit(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
162 int (*action
)(void *), unsigned mode
)
167 prepare_to_wait(wq
, &q
->wait
, mode
);
168 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
))
169 ret
= (*action
)(q
->key
.flags
);
170 } while (test_bit(q
->key
.bit_nr
, q
->key
.flags
) && !ret
);
171 finish_wait(wq
, &q
->wait
);
174 EXPORT_SYMBOL(__wait_on_bit
);
176 int __sched fastcall
out_of_line_wait_on_bit(void *word
, int bit
,
177 int (*action
)(void *), unsigned mode
)
179 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
180 DEFINE_WAIT_BIT(wait
, word
, bit
);
182 return __wait_on_bit(wq
, &wait
, action
, mode
);
184 EXPORT_SYMBOL(out_of_line_wait_on_bit
);
187 __wait_on_bit_lock(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
188 int (*action
)(void *), unsigned mode
)
193 prepare_to_wait_exclusive(wq
, &q
->wait
, mode
);
194 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
)) {
195 if ((ret
= (*action
)(q
->key
.flags
)))
198 } while (test_and_set_bit(q
->key
.bit_nr
, q
->key
.flags
));
199 finish_wait(wq
, &q
->wait
);
202 EXPORT_SYMBOL(__wait_on_bit_lock
);
204 int __sched fastcall
out_of_line_wait_on_bit_lock(void *word
, int bit
,
205 int (*action
)(void *), unsigned mode
)
207 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
208 DEFINE_WAIT_BIT(wait
, word
, bit
);
210 return __wait_on_bit_lock(wq
, &wait
, action
, mode
);
212 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock
);
214 void fastcall
__wake_up_bit(wait_queue_head_t
*wq
, void *word
, int bit
)
216 struct wait_bit_key key
= __WAIT_BIT_KEY_INITIALIZER(word
, bit
);
217 if (waitqueue_active(wq
))
218 __wake_up(wq
, TASK_NORMAL
, 1, &key
);
220 EXPORT_SYMBOL(__wake_up_bit
);
223 * wake_up_bit - wake up a waiter on a bit
224 * @word: the word being waited on, a kernel virtual address
225 * @bit: the bit of the word being waited on
227 * There is a standard hashed waitqueue table for generic use. This
228 * is the part of the hashtable's accessor API that wakes up waiters
229 * on a bit. For instance, if one were to have waiters on a bitflag,
230 * one would call wake_up_bit() after clearing the bit.
232 * In order for this to function properly, as it uses waitqueue_active()
233 * internally, some kind of memory barrier must be done prior to calling
234 * this. Typically, this will be smp_mb__after_clear_bit(), but in some
235 * cases where bitflags are manipulated non-atomically under a lock, one
236 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
237 * because spin_unlock() does not guarantee a memory barrier.
239 void fastcall
wake_up_bit(void *word
, int bit
)
241 __wake_up_bit(bit_waitqueue(word
, bit
), word
, bit
);
243 EXPORT_SYMBOL(wake_up_bit
);
245 fastcall wait_queue_head_t
*bit_waitqueue(void *word
, int bit
)
247 const int shift
= BITS_PER_LONG
== 32 ? 5 : 6;
248 const struct zone
*zone
= page_zone(virt_to_page(word
));
249 unsigned long val
= (unsigned long)word
<< shift
| bit
;
251 return &zone
->wait_table
[hash_long(val
, zone
->wait_table_bits
)];
253 EXPORT_SYMBOL(bit_waitqueue
);