vmscan: free swap space on swap-in/activation
[linux-2.6/mini2440.git] / mm / vmscan.c
blobe656035d34065d0bb0c857c770940c9acec73b71
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
46 #include <linux/swapops.h>
48 #include "internal.h"
50 struct scan_control {
51 /* Incremented by the number of inactive pages that were scanned */
52 unsigned long nr_scanned;
54 /* This context's GFP mask */
55 gfp_t gfp_mask;
57 int may_writepage;
59 /* Can pages be swapped as part of reclaim? */
60 int may_swap;
62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 * In this context, it doesn't matter that we scan the
65 * whole list at once. */
66 int swap_cluster_max;
68 int swappiness;
70 int all_unreclaimable;
72 int order;
74 /* Which cgroup do we reclaim from */
75 struct mem_cgroup *mem_cgroup;
77 /* Pluggable isolate pages callback */
78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 unsigned long *scanned, int order, int mode,
80 struct zone *z, struct mem_cgroup *mem_cont,
81 int active);
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
88 do { \
89 if ((_page)->lru.prev != _base) { \
90 struct page *prev; \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
94 } \
95 } while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
109 } while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
115 * From 0 .. 100. Higher means more swappy.
117 int vm_swappiness = 60;
118 long vm_total_pages; /* The total number of pages which the VM controls */
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc) (1)
127 #endif
130 * Add a shrinker callback to be called from the vm
132 void register_shrinker(struct shrinker *shrinker)
134 shrinker->nr = 0;
135 down_write(&shrinker_rwsem);
136 list_add_tail(&shrinker->list, &shrinker_list);
137 up_write(&shrinker_rwsem);
139 EXPORT_SYMBOL(register_shrinker);
142 * Remove one
144 void unregister_shrinker(struct shrinker *shrinker)
146 down_write(&shrinker_rwsem);
147 list_del(&shrinker->list);
148 up_write(&shrinker_rwsem);
150 EXPORT_SYMBOL(unregister_shrinker);
152 #define SHRINK_BATCH 128
154 * Call the shrink functions to age shrinkable caches
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
161 * If the vm encountered mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
170 * Returns the number of slab objects which we shrunk.
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 unsigned long lru_pages)
175 struct shrinker *shrinker;
176 unsigned long ret = 0;
178 if (scanned == 0)
179 scanned = SWAP_CLUSTER_MAX;
181 if (!down_read_trylock(&shrinker_rwsem))
182 return 1; /* Assume we'll be able to shrink next time */
184 list_for_each_entry(shrinker, &shrinker_list, list) {
185 unsigned long long delta;
186 unsigned long total_scan;
187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
189 delta = (4 * scanned) / shrinker->seeks;
190 delta *= max_pass;
191 do_div(delta, lru_pages + 1);
192 shrinker->nr += delta;
193 if (shrinker->nr < 0) {
194 printk(KERN_ERR "%s: nr=%ld\n",
195 __func__, shrinker->nr);
196 shrinker->nr = max_pass;
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
202 * freeable entries.
204 if (shrinker->nr > max_pass * 2)
205 shrinker->nr = max_pass * 2;
207 total_scan = shrinker->nr;
208 shrinker->nr = 0;
210 while (total_scan >= SHRINK_BATCH) {
211 long this_scan = SHRINK_BATCH;
212 int shrink_ret;
213 int nr_before;
215 nr_before = (*shrinker->shrink)(0, gfp_mask);
216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 if (shrink_ret == -1)
218 break;
219 if (shrink_ret < nr_before)
220 ret += nr_before - shrink_ret;
221 count_vm_events(SLABS_SCANNED, this_scan);
222 total_scan -= this_scan;
224 cond_resched();
227 shrinker->nr += total_scan;
229 up_read(&shrinker_rwsem);
230 return ret;
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
236 struct address_space *mapping;
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page))
240 return 1;
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page))
244 return 1;
246 mapping = page_mapping(page);
247 if (!mapping)
248 return 0;
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping);
254 static inline int is_page_cache_freeable(struct page *page)
256 return page_count(page) - !!PagePrivate(page) == 2;
259 static int may_write_to_queue(struct backing_dev_info *bdi)
261 if (current->flags & PF_SWAPWRITE)
262 return 1;
263 if (!bdi_write_congested(bdi))
264 return 1;
265 if (bdi == current->backing_dev_info)
266 return 1;
267 return 0;
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
279 * We're allowed to run sleeping lock_page() here because we know the caller has
280 * __GFP_FS.
282 static void handle_write_error(struct address_space *mapping,
283 struct page *page, int error)
285 lock_page(page);
286 if (page_mapping(page) == mapping)
287 mapping_set_error(mapping, error);
288 unlock_page(page);
291 /* Request for sync pageout. */
292 enum pageout_io {
293 PAGEOUT_IO_ASYNC,
294 PAGEOUT_IO_SYNC,
297 /* possible outcome of pageout() */
298 typedef enum {
299 /* failed to write page out, page is locked */
300 PAGE_KEEP,
301 /* move page to the active list, page is locked */
302 PAGE_ACTIVATE,
303 /* page has been sent to the disk successfully, page is unlocked */
304 PAGE_SUCCESS,
305 /* page is clean and locked */
306 PAGE_CLEAN,
307 } pageout_t;
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 enum pageout_io sync_writeback)
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
325 * will block.
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
333 if (!is_page_cache_freeable(page))
334 return PAGE_KEEP;
335 if (!mapping) {
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
340 if (PagePrivate(page)) {
341 if (try_to_free_buffers(page)) {
342 ClearPageDirty(page);
343 printk("%s: orphaned page\n", __func__);
344 return PAGE_CLEAN;
347 return PAGE_KEEP;
349 if (mapping->a_ops->writepage == NULL)
350 return PAGE_ACTIVATE;
351 if (!may_write_to_queue(mapping->backing_dev_info))
352 return PAGE_KEEP;
354 if (clear_page_dirty_for_io(page)) {
355 int res;
356 struct writeback_control wbc = {
357 .sync_mode = WB_SYNC_NONE,
358 .nr_to_write = SWAP_CLUSTER_MAX,
359 .range_start = 0,
360 .range_end = LLONG_MAX,
361 .nonblocking = 1,
362 .for_reclaim = 1,
365 SetPageReclaim(page);
366 res = mapping->a_ops->writepage(page, &wbc);
367 if (res < 0)
368 handle_write_error(mapping, page, res);
369 if (res == AOP_WRITEPAGE_ACTIVATE) {
370 ClearPageReclaim(page);
371 return PAGE_ACTIVATE;
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 wait_on_page_writeback(page);
382 if (!PageWriteback(page)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page);
386 inc_zone_page_state(page, NR_VMSCAN_WRITE);
387 return PAGE_SUCCESS;
390 return PAGE_CLEAN;
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
399 BUG_ON(!PageLocked(page));
400 BUG_ON(mapping != page_mapping(page));
402 spin_lock_irq(&mapping->tree_lock);
404 * The non racy check for a busy page.
406 * Must be careful with the order of the tests. When someone has
407 * a ref to the page, it may be possible that they dirty it then
408 * drop the reference. So if PageDirty is tested before page_count
409 * here, then the following race may occur:
411 * get_user_pages(&page);
412 * [user mapping goes away]
413 * write_to(page);
414 * !PageDirty(page) [good]
415 * SetPageDirty(page);
416 * put_page(page);
417 * !page_count(page) [good, discard it]
419 * [oops, our write_to data is lost]
421 * Reversing the order of the tests ensures such a situation cannot
422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 * load is not satisfied before that of page->_count.
425 * Note that if SetPageDirty is always performed via set_page_dirty,
426 * and thus under tree_lock, then this ordering is not required.
428 if (!page_freeze_refs(page, 2))
429 goto cannot_free;
430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 if (unlikely(PageDirty(page))) {
432 page_unfreeze_refs(page, 2);
433 goto cannot_free;
436 if (PageSwapCache(page)) {
437 swp_entry_t swap = { .val = page_private(page) };
438 __delete_from_swap_cache(page);
439 spin_unlock_irq(&mapping->tree_lock);
440 swap_free(swap);
441 } else {
442 __remove_from_page_cache(page);
443 spin_unlock_irq(&mapping->tree_lock);
446 return 1;
448 cannot_free:
449 spin_unlock_irq(&mapping->tree_lock);
450 return 0;
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
457 * this page.
459 int remove_mapping(struct address_space *mapping, struct page *page)
461 if (__remove_mapping(mapping, page)) {
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
465 * atomic operation.
467 page_unfreeze_refs(page, 1);
468 return 1;
470 return 0;
474 * shrink_page_list() returns the number of reclaimed pages
476 static unsigned long shrink_page_list(struct list_head *page_list,
477 struct scan_control *sc,
478 enum pageout_io sync_writeback)
480 LIST_HEAD(ret_pages);
481 struct pagevec freed_pvec;
482 int pgactivate = 0;
483 unsigned long nr_reclaimed = 0;
485 cond_resched();
487 pagevec_init(&freed_pvec, 1);
488 while (!list_empty(page_list)) {
489 struct address_space *mapping;
490 struct page *page;
491 int may_enter_fs;
492 int referenced;
494 cond_resched();
496 page = lru_to_page(page_list);
497 list_del(&page->lru);
499 if (!trylock_page(page))
500 goto keep;
502 VM_BUG_ON(PageActive(page));
504 sc->nr_scanned++;
506 if (!sc->may_swap && page_mapped(page))
507 goto keep_locked;
509 /* Double the slab pressure for mapped and swapcache pages */
510 if (page_mapped(page) || PageSwapCache(page))
511 sc->nr_scanned++;
513 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
514 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
516 if (PageWriteback(page)) {
518 * Synchronous reclaim is performed in two passes,
519 * first an asynchronous pass over the list to
520 * start parallel writeback, and a second synchronous
521 * pass to wait for the IO to complete. Wait here
522 * for any page for which writeback has already
523 * started.
525 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
526 wait_on_page_writeback(page);
527 else
528 goto keep_locked;
531 referenced = page_referenced(page, 1, sc->mem_cgroup);
532 /* In active use or really unfreeable? Activate it. */
533 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
534 referenced && page_mapping_inuse(page))
535 goto activate_locked;
537 #ifdef CONFIG_SWAP
539 * Anonymous process memory has backing store?
540 * Try to allocate it some swap space here.
542 if (PageAnon(page) && !PageSwapCache(page))
543 if (!add_to_swap(page, GFP_ATOMIC))
544 goto activate_locked;
545 #endif /* CONFIG_SWAP */
547 mapping = page_mapping(page);
550 * The page is mapped into the page tables of one or more
551 * processes. Try to unmap it here.
553 if (page_mapped(page) && mapping) {
554 switch (try_to_unmap(page, 0)) {
555 case SWAP_FAIL:
556 goto activate_locked;
557 case SWAP_AGAIN:
558 goto keep_locked;
559 case SWAP_SUCCESS:
560 ; /* try to free the page below */
564 if (PageDirty(page)) {
565 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
566 goto keep_locked;
567 if (!may_enter_fs)
568 goto keep_locked;
569 if (!sc->may_writepage)
570 goto keep_locked;
572 /* Page is dirty, try to write it out here */
573 switch (pageout(page, mapping, sync_writeback)) {
574 case PAGE_KEEP:
575 goto keep_locked;
576 case PAGE_ACTIVATE:
577 goto activate_locked;
578 case PAGE_SUCCESS:
579 if (PageWriteback(page) || PageDirty(page))
580 goto keep;
582 * A synchronous write - probably a ramdisk. Go
583 * ahead and try to reclaim the page.
585 if (!trylock_page(page))
586 goto keep;
587 if (PageDirty(page) || PageWriteback(page))
588 goto keep_locked;
589 mapping = page_mapping(page);
590 case PAGE_CLEAN:
591 ; /* try to free the page below */
596 * If the page has buffers, try to free the buffer mappings
597 * associated with this page. If we succeed we try to free
598 * the page as well.
600 * We do this even if the page is PageDirty().
601 * try_to_release_page() does not perform I/O, but it is
602 * possible for a page to have PageDirty set, but it is actually
603 * clean (all its buffers are clean). This happens if the
604 * buffers were written out directly, with submit_bh(). ext3
605 * will do this, as well as the blockdev mapping.
606 * try_to_release_page() will discover that cleanness and will
607 * drop the buffers and mark the page clean - it can be freed.
609 * Rarely, pages can have buffers and no ->mapping. These are
610 * the pages which were not successfully invalidated in
611 * truncate_complete_page(). We try to drop those buffers here
612 * and if that worked, and the page is no longer mapped into
613 * process address space (page_count == 1) it can be freed.
614 * Otherwise, leave the page on the LRU so it is swappable.
616 if (PagePrivate(page)) {
617 if (!try_to_release_page(page, sc->gfp_mask))
618 goto activate_locked;
619 if (!mapping && page_count(page) == 1) {
620 unlock_page(page);
621 if (put_page_testzero(page))
622 goto free_it;
623 else {
625 * rare race with speculative reference.
626 * the speculative reference will free
627 * this page shortly, so we may
628 * increment nr_reclaimed here (and
629 * leave it off the LRU).
631 nr_reclaimed++;
632 continue;
637 if (!mapping || !__remove_mapping(mapping, page))
638 goto keep_locked;
640 unlock_page(page);
641 free_it:
642 nr_reclaimed++;
643 if (!pagevec_add(&freed_pvec, page)) {
644 __pagevec_free(&freed_pvec);
645 pagevec_reinit(&freed_pvec);
647 continue;
649 activate_locked:
650 /* Not a candidate for swapping, so reclaim swap space. */
651 if (PageSwapCache(page) && vm_swap_full())
652 remove_exclusive_swap_page_ref(page);
653 SetPageActive(page);
654 pgactivate++;
655 keep_locked:
656 unlock_page(page);
657 keep:
658 list_add(&page->lru, &ret_pages);
659 VM_BUG_ON(PageLRU(page));
661 list_splice(&ret_pages, page_list);
662 if (pagevec_count(&freed_pvec))
663 __pagevec_free(&freed_pvec);
664 count_vm_events(PGACTIVATE, pgactivate);
665 return nr_reclaimed;
668 /* LRU Isolation modes. */
669 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
670 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
671 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
674 * Attempt to remove the specified page from its LRU. Only take this page
675 * if it is of the appropriate PageActive status. Pages which are being
676 * freed elsewhere are also ignored.
678 * page: page to consider
679 * mode: one of the LRU isolation modes defined above
681 * returns 0 on success, -ve errno on failure.
683 int __isolate_lru_page(struct page *page, int mode)
685 int ret = -EINVAL;
687 /* Only take pages on the LRU. */
688 if (!PageLRU(page))
689 return ret;
692 * When checking the active state, we need to be sure we are
693 * dealing with comparible boolean values. Take the logical not
694 * of each.
696 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
697 return ret;
699 ret = -EBUSY;
700 if (likely(get_page_unless_zero(page))) {
702 * Be careful not to clear PageLRU until after we're
703 * sure the page is not being freed elsewhere -- the
704 * page release code relies on it.
706 ClearPageLRU(page);
707 ret = 0;
710 return ret;
714 * zone->lru_lock is heavily contended. Some of the functions that
715 * shrink the lists perform better by taking out a batch of pages
716 * and working on them outside the LRU lock.
718 * For pagecache intensive workloads, this function is the hottest
719 * spot in the kernel (apart from copy_*_user functions).
721 * Appropriate locks must be held before calling this function.
723 * @nr_to_scan: The number of pages to look through on the list.
724 * @src: The LRU list to pull pages off.
725 * @dst: The temp list to put pages on to.
726 * @scanned: The number of pages that were scanned.
727 * @order: The caller's attempted allocation order
728 * @mode: One of the LRU isolation modes
730 * returns how many pages were moved onto *@dst.
732 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
733 struct list_head *src, struct list_head *dst,
734 unsigned long *scanned, int order, int mode)
736 unsigned long nr_taken = 0;
737 unsigned long scan;
739 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
740 struct page *page;
741 unsigned long pfn;
742 unsigned long end_pfn;
743 unsigned long page_pfn;
744 int zone_id;
746 page = lru_to_page(src);
747 prefetchw_prev_lru_page(page, src, flags);
749 VM_BUG_ON(!PageLRU(page));
751 switch (__isolate_lru_page(page, mode)) {
752 case 0:
753 list_move(&page->lru, dst);
754 nr_taken++;
755 break;
757 case -EBUSY:
758 /* else it is being freed elsewhere */
759 list_move(&page->lru, src);
760 continue;
762 default:
763 BUG();
766 if (!order)
767 continue;
770 * Attempt to take all pages in the order aligned region
771 * surrounding the tag page. Only take those pages of
772 * the same active state as that tag page. We may safely
773 * round the target page pfn down to the requested order
774 * as the mem_map is guarenteed valid out to MAX_ORDER,
775 * where that page is in a different zone we will detect
776 * it from its zone id and abort this block scan.
778 zone_id = page_zone_id(page);
779 page_pfn = page_to_pfn(page);
780 pfn = page_pfn & ~((1 << order) - 1);
781 end_pfn = pfn + (1 << order);
782 for (; pfn < end_pfn; pfn++) {
783 struct page *cursor_page;
785 /* The target page is in the block, ignore it. */
786 if (unlikely(pfn == page_pfn))
787 continue;
789 /* Avoid holes within the zone. */
790 if (unlikely(!pfn_valid_within(pfn)))
791 break;
793 cursor_page = pfn_to_page(pfn);
794 /* Check that we have not crossed a zone boundary. */
795 if (unlikely(page_zone_id(cursor_page) != zone_id))
796 continue;
797 switch (__isolate_lru_page(cursor_page, mode)) {
798 case 0:
799 list_move(&cursor_page->lru, dst);
800 nr_taken++;
801 scan++;
802 break;
804 case -EBUSY:
805 /* else it is being freed elsewhere */
806 list_move(&cursor_page->lru, src);
807 default:
808 break;
813 *scanned = scan;
814 return nr_taken;
817 static unsigned long isolate_pages_global(unsigned long nr,
818 struct list_head *dst,
819 unsigned long *scanned, int order,
820 int mode, struct zone *z,
821 struct mem_cgroup *mem_cont,
822 int active)
824 if (active)
825 return isolate_lru_pages(nr, &z->lru[LRU_ACTIVE].list, dst,
826 scanned, order, mode);
827 else
828 return isolate_lru_pages(nr, &z->lru[LRU_INACTIVE].list, dst,
829 scanned, order, mode);
833 * clear_active_flags() is a helper for shrink_active_list(), clearing
834 * any active bits from the pages in the list.
836 static unsigned long clear_active_flags(struct list_head *page_list)
838 int nr_active = 0;
839 struct page *page;
841 list_for_each_entry(page, page_list, lru)
842 if (PageActive(page)) {
843 ClearPageActive(page);
844 nr_active++;
847 return nr_active;
851 * isolate_lru_page - tries to isolate a page from its LRU list
852 * @page: page to isolate from its LRU list
854 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
855 * vmstat statistic corresponding to whatever LRU list the page was on.
857 * Returns 0 if the page was removed from an LRU list.
858 * Returns -EBUSY if the page was not on an LRU list.
860 * The returned page will have PageLRU() cleared. If it was found on
861 * the active list, it will have PageActive set. That flag may need
862 * to be cleared by the caller before letting the page go.
864 * The vmstat statistic corresponding to the list on which the page was
865 * found will be decremented.
867 * Restrictions:
868 * (1) Must be called with an elevated refcount on the page. This is a
869 * fundamentnal difference from isolate_lru_pages (which is called
870 * without a stable reference).
871 * (2) the lru_lock must not be held.
872 * (3) interrupts must be enabled.
874 int isolate_lru_page(struct page *page)
876 int ret = -EBUSY;
878 if (PageLRU(page)) {
879 struct zone *zone = page_zone(page);
881 spin_lock_irq(&zone->lru_lock);
882 if (PageLRU(page) && get_page_unless_zero(page)) {
883 ret = 0;
884 ClearPageLRU(page);
885 if (PageActive(page))
886 del_page_from_active_list(zone, page);
887 else
888 del_page_from_inactive_list(zone, page);
890 spin_unlock_irq(&zone->lru_lock);
892 return ret;
896 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
897 * of reclaimed pages
899 static unsigned long shrink_inactive_list(unsigned long max_scan,
900 struct zone *zone, struct scan_control *sc)
902 LIST_HEAD(page_list);
903 struct pagevec pvec;
904 unsigned long nr_scanned = 0;
905 unsigned long nr_reclaimed = 0;
907 pagevec_init(&pvec, 1);
909 lru_add_drain();
910 spin_lock_irq(&zone->lru_lock);
911 do {
912 struct page *page;
913 unsigned long nr_taken;
914 unsigned long nr_scan;
915 unsigned long nr_freed;
916 unsigned long nr_active;
918 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
919 &page_list, &nr_scan, sc->order,
920 (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
921 ISOLATE_BOTH : ISOLATE_INACTIVE,
922 zone, sc->mem_cgroup, 0);
923 nr_active = clear_active_flags(&page_list);
924 __count_vm_events(PGDEACTIVATE, nr_active);
926 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
927 __mod_zone_page_state(zone, NR_INACTIVE,
928 -(nr_taken - nr_active));
929 if (scan_global_lru(sc))
930 zone->pages_scanned += nr_scan;
931 spin_unlock_irq(&zone->lru_lock);
933 nr_scanned += nr_scan;
934 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
937 * If we are direct reclaiming for contiguous pages and we do
938 * not reclaim everything in the list, try again and wait
939 * for IO to complete. This will stall high-order allocations
940 * but that should be acceptable to the caller
942 if (nr_freed < nr_taken && !current_is_kswapd() &&
943 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
944 congestion_wait(WRITE, HZ/10);
947 * The attempt at page out may have made some
948 * of the pages active, mark them inactive again.
950 nr_active = clear_active_flags(&page_list);
951 count_vm_events(PGDEACTIVATE, nr_active);
953 nr_freed += shrink_page_list(&page_list, sc,
954 PAGEOUT_IO_SYNC);
957 nr_reclaimed += nr_freed;
958 local_irq_disable();
959 if (current_is_kswapd()) {
960 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
961 __count_vm_events(KSWAPD_STEAL, nr_freed);
962 } else if (scan_global_lru(sc))
963 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
965 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
967 if (nr_taken == 0)
968 goto done;
970 spin_lock(&zone->lru_lock);
972 * Put back any unfreeable pages.
974 while (!list_empty(&page_list)) {
975 page = lru_to_page(&page_list);
976 VM_BUG_ON(PageLRU(page));
977 SetPageLRU(page);
978 list_del(&page->lru);
979 add_page_to_lru_list(zone, page, page_lru(page));
980 if (!pagevec_add(&pvec, page)) {
981 spin_unlock_irq(&zone->lru_lock);
982 __pagevec_release(&pvec);
983 spin_lock_irq(&zone->lru_lock);
986 } while (nr_scanned < max_scan);
987 spin_unlock(&zone->lru_lock);
988 done:
989 local_irq_enable();
990 pagevec_release(&pvec);
991 return nr_reclaimed;
995 * We are about to scan this zone at a certain priority level. If that priority
996 * level is smaller (ie: more urgent) than the previous priority, then note
997 * that priority level within the zone. This is done so that when the next
998 * process comes in to scan this zone, it will immediately start out at this
999 * priority level rather than having to build up its own scanning priority.
1000 * Here, this priority affects only the reclaim-mapped threshold.
1002 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1004 if (priority < zone->prev_priority)
1005 zone->prev_priority = priority;
1008 static inline int zone_is_near_oom(struct zone *zone)
1010 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
1011 + zone_page_state(zone, NR_INACTIVE))*3;
1015 * Determine we should try to reclaim mapped pages.
1016 * This is called only when sc->mem_cgroup is NULL.
1018 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
1019 int priority)
1021 long mapped_ratio;
1022 long distress;
1023 long swap_tendency;
1024 long imbalance;
1025 int reclaim_mapped = 0;
1026 int prev_priority;
1028 if (scan_global_lru(sc) && zone_is_near_oom(zone))
1029 return 1;
1031 * `distress' is a measure of how much trouble we're having
1032 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
1034 if (scan_global_lru(sc))
1035 prev_priority = zone->prev_priority;
1036 else
1037 prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
1039 distress = 100 >> min(prev_priority, priority);
1042 * The point of this algorithm is to decide when to start
1043 * reclaiming mapped memory instead of just pagecache. Work out
1044 * how much memory
1045 * is mapped.
1047 if (scan_global_lru(sc))
1048 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
1049 global_page_state(NR_ANON_PAGES)) * 100) /
1050 vm_total_pages;
1051 else
1052 mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
1055 * Now decide how much we really want to unmap some pages. The
1056 * mapped ratio is downgraded - just because there's a lot of
1057 * mapped memory doesn't necessarily mean that page reclaim
1058 * isn't succeeding.
1060 * The distress ratio is important - we don't want to start
1061 * going oom.
1063 * A 100% value of vm_swappiness overrides this algorithm
1064 * altogether.
1066 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
1069 * If there's huge imbalance between active and inactive
1070 * (think active 100 times larger than inactive) we should
1071 * become more permissive, or the system will take too much
1072 * cpu before it start swapping during memory pressure.
1073 * Distress is about avoiding early-oom, this is about
1074 * making swappiness graceful despite setting it to low
1075 * values.
1077 * Avoid div by zero with nr_inactive+1, and max resulting
1078 * value is vm_total_pages.
1080 if (scan_global_lru(sc)) {
1081 imbalance = zone_page_state(zone, NR_ACTIVE);
1082 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1083 } else
1084 imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1087 * Reduce the effect of imbalance if swappiness is low,
1088 * this means for a swappiness very low, the imbalance
1089 * must be much higher than 100 for this logic to make
1090 * the difference.
1092 * Max temporary value is vm_total_pages*100.
1094 imbalance *= (vm_swappiness + 1);
1095 imbalance /= 100;
1098 * If not much of the ram is mapped, makes the imbalance
1099 * less relevant, it's high priority we refill the inactive
1100 * list with mapped pages only in presence of high ratio of
1101 * mapped pages.
1103 * Max temporary value is vm_total_pages*100.
1105 imbalance *= mapped_ratio;
1106 imbalance /= 100;
1108 /* apply imbalance feedback to swap_tendency */
1109 swap_tendency += imbalance;
1112 * Now use this metric to decide whether to start moving mapped
1113 * memory onto the inactive list.
1115 if (swap_tendency >= 100)
1116 reclaim_mapped = 1;
1118 return reclaim_mapped;
1122 * This moves pages from the active list to the inactive list.
1124 * We move them the other way if the page is referenced by one or more
1125 * processes, from rmap.
1127 * If the pages are mostly unmapped, the processing is fast and it is
1128 * appropriate to hold zone->lru_lock across the whole operation. But if
1129 * the pages are mapped, the processing is slow (page_referenced()) so we
1130 * should drop zone->lru_lock around each page. It's impossible to balance
1131 * this, so instead we remove the pages from the LRU while processing them.
1132 * It is safe to rely on PG_active against the non-LRU pages in here because
1133 * nobody will play with that bit on a non-LRU page.
1135 * The downside is that we have to touch page->_count against each page.
1136 * But we had to alter page->flags anyway.
1140 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1141 struct scan_control *sc, int priority)
1143 unsigned long pgmoved;
1144 int pgdeactivate = 0;
1145 unsigned long pgscanned;
1146 LIST_HEAD(l_hold); /* The pages which were snipped off */
1147 LIST_HEAD(l_active);
1148 LIST_HEAD(l_inactive);
1149 struct page *page;
1150 struct pagevec pvec;
1151 int reclaim_mapped = 0;
1153 if (sc->may_swap)
1154 reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1156 lru_add_drain();
1157 spin_lock_irq(&zone->lru_lock);
1158 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1159 ISOLATE_ACTIVE, zone,
1160 sc->mem_cgroup, 1);
1162 * zone->pages_scanned is used for detect zone's oom
1163 * mem_cgroup remembers nr_scan by itself.
1165 if (scan_global_lru(sc))
1166 zone->pages_scanned += pgscanned;
1168 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1169 spin_unlock_irq(&zone->lru_lock);
1171 while (!list_empty(&l_hold)) {
1172 cond_resched();
1173 page = lru_to_page(&l_hold);
1174 list_del(&page->lru);
1175 if (page_mapped(page)) {
1176 if (!reclaim_mapped ||
1177 (total_swap_pages == 0 && PageAnon(page)) ||
1178 page_referenced(page, 0, sc->mem_cgroup)) {
1179 list_add(&page->lru, &l_active);
1180 continue;
1183 list_add(&page->lru, &l_inactive);
1186 pagevec_init(&pvec, 1);
1187 pgmoved = 0;
1188 spin_lock_irq(&zone->lru_lock);
1189 while (!list_empty(&l_inactive)) {
1190 page = lru_to_page(&l_inactive);
1191 prefetchw_prev_lru_page(page, &l_inactive, flags);
1192 VM_BUG_ON(PageLRU(page));
1193 SetPageLRU(page);
1194 VM_BUG_ON(!PageActive(page));
1195 ClearPageActive(page);
1197 list_move(&page->lru, &zone->lru[LRU_INACTIVE].list);
1198 mem_cgroup_move_lists(page, false);
1199 pgmoved++;
1200 if (!pagevec_add(&pvec, page)) {
1201 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1202 spin_unlock_irq(&zone->lru_lock);
1203 pgdeactivate += pgmoved;
1204 pgmoved = 0;
1205 if (buffer_heads_over_limit)
1206 pagevec_strip(&pvec);
1207 __pagevec_release(&pvec);
1208 spin_lock_irq(&zone->lru_lock);
1211 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1212 pgdeactivate += pgmoved;
1213 if (buffer_heads_over_limit) {
1214 spin_unlock_irq(&zone->lru_lock);
1215 pagevec_strip(&pvec);
1216 spin_lock_irq(&zone->lru_lock);
1219 pgmoved = 0;
1220 while (!list_empty(&l_active)) {
1221 page = lru_to_page(&l_active);
1222 prefetchw_prev_lru_page(page, &l_active, flags);
1223 VM_BUG_ON(PageLRU(page));
1224 SetPageLRU(page);
1225 VM_BUG_ON(!PageActive(page));
1227 list_move(&page->lru, &zone->lru[LRU_ACTIVE].list);
1228 mem_cgroup_move_lists(page, true);
1229 pgmoved++;
1230 if (!pagevec_add(&pvec, page)) {
1231 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1232 pgmoved = 0;
1233 spin_unlock_irq(&zone->lru_lock);
1234 if (vm_swap_full())
1235 pagevec_swap_free(&pvec);
1236 __pagevec_release(&pvec);
1237 spin_lock_irq(&zone->lru_lock);
1240 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1242 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1243 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1244 spin_unlock_irq(&zone->lru_lock);
1245 if (vm_swap_full())
1246 pagevec_swap_free(&pvec);
1248 pagevec_release(&pvec);
1251 static unsigned long shrink_list(enum lru_list l, unsigned long nr_to_scan,
1252 struct zone *zone, struct scan_control *sc, int priority)
1254 if (l == LRU_ACTIVE) {
1255 shrink_active_list(nr_to_scan, zone, sc, priority);
1256 return 0;
1258 return shrink_inactive_list(nr_to_scan, zone, sc);
1262 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1264 static unsigned long shrink_zone(int priority, struct zone *zone,
1265 struct scan_control *sc)
1267 unsigned long nr[NR_LRU_LISTS];
1268 unsigned long nr_to_scan;
1269 unsigned long nr_reclaimed = 0;
1270 enum lru_list l;
1272 if (scan_global_lru(sc)) {
1274 * Add one to nr_to_scan just to make sure that the kernel
1275 * will slowly sift through the active list.
1277 for_each_lru(l) {
1278 zone->lru[l].nr_scan += (zone_page_state(zone,
1279 NR_LRU_BASE + l) >> priority) + 1;
1280 nr[l] = zone->lru[l].nr_scan;
1281 if (nr[l] >= sc->swap_cluster_max)
1282 zone->lru[l].nr_scan = 0;
1283 else
1284 nr[l] = 0;
1286 } else {
1288 * This reclaim occurs not because zone memory shortage but
1289 * because memory controller hits its limit.
1290 * Then, don't modify zone reclaim related data.
1292 nr[LRU_ACTIVE] = mem_cgroup_calc_reclaim(sc->mem_cgroup,
1293 zone, priority, LRU_ACTIVE);
1295 nr[LRU_INACTIVE] = mem_cgroup_calc_reclaim(sc->mem_cgroup,
1296 zone, priority, LRU_INACTIVE);
1299 while (nr[LRU_ACTIVE] || nr[LRU_INACTIVE]) {
1300 for_each_lru(l) {
1301 if (nr[l]) {
1302 nr_to_scan = min(nr[l],
1303 (unsigned long)sc->swap_cluster_max);
1304 nr[l] -= nr_to_scan;
1306 nr_reclaimed += shrink_list(l, nr_to_scan,
1307 zone, sc, priority);
1312 throttle_vm_writeout(sc->gfp_mask);
1313 return nr_reclaimed;
1317 * This is the direct reclaim path, for page-allocating processes. We only
1318 * try to reclaim pages from zones which will satisfy the caller's allocation
1319 * request.
1321 * We reclaim from a zone even if that zone is over pages_high. Because:
1322 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1323 * allocation or
1324 * b) The zones may be over pages_high but they must go *over* pages_high to
1325 * satisfy the `incremental min' zone defense algorithm.
1327 * Returns the number of reclaimed pages.
1329 * If a zone is deemed to be full of pinned pages then just give it a light
1330 * scan then give up on it.
1332 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1333 struct scan_control *sc)
1335 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1336 unsigned long nr_reclaimed = 0;
1337 struct zoneref *z;
1338 struct zone *zone;
1340 sc->all_unreclaimable = 1;
1341 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1342 if (!populated_zone(zone))
1343 continue;
1345 * Take care memory controller reclaiming has small influence
1346 * to global LRU.
1348 if (scan_global_lru(sc)) {
1349 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1350 continue;
1351 note_zone_scanning_priority(zone, priority);
1353 if (zone_is_all_unreclaimable(zone) &&
1354 priority != DEF_PRIORITY)
1355 continue; /* Let kswapd poll it */
1356 sc->all_unreclaimable = 0;
1357 } else {
1359 * Ignore cpuset limitation here. We just want to reduce
1360 * # of used pages by us regardless of memory shortage.
1362 sc->all_unreclaimable = 0;
1363 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1364 priority);
1367 nr_reclaimed += shrink_zone(priority, zone, sc);
1370 return nr_reclaimed;
1374 * This is the main entry point to direct page reclaim.
1376 * If a full scan of the inactive list fails to free enough memory then we
1377 * are "out of memory" and something needs to be killed.
1379 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1380 * high - the zone may be full of dirty or under-writeback pages, which this
1381 * caller can't do much about. We kick pdflush and take explicit naps in the
1382 * hope that some of these pages can be written. But if the allocating task
1383 * holds filesystem locks which prevent writeout this might not work, and the
1384 * allocation attempt will fail.
1386 * returns: 0, if no pages reclaimed
1387 * else, the number of pages reclaimed
1389 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1390 struct scan_control *sc)
1392 int priority;
1393 unsigned long ret = 0;
1394 unsigned long total_scanned = 0;
1395 unsigned long nr_reclaimed = 0;
1396 struct reclaim_state *reclaim_state = current->reclaim_state;
1397 unsigned long lru_pages = 0;
1398 struct zoneref *z;
1399 struct zone *zone;
1400 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1402 delayacct_freepages_start();
1404 if (scan_global_lru(sc))
1405 count_vm_event(ALLOCSTALL);
1407 * mem_cgroup will not do shrink_slab.
1409 if (scan_global_lru(sc)) {
1410 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1412 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1413 continue;
1415 lru_pages += zone_page_state(zone, NR_ACTIVE)
1416 + zone_page_state(zone, NR_INACTIVE);
1420 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1421 sc->nr_scanned = 0;
1422 if (!priority)
1423 disable_swap_token();
1424 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1426 * Don't shrink slabs when reclaiming memory from
1427 * over limit cgroups
1429 if (scan_global_lru(sc)) {
1430 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1431 if (reclaim_state) {
1432 nr_reclaimed += reclaim_state->reclaimed_slab;
1433 reclaim_state->reclaimed_slab = 0;
1436 total_scanned += sc->nr_scanned;
1437 if (nr_reclaimed >= sc->swap_cluster_max) {
1438 ret = nr_reclaimed;
1439 goto out;
1443 * Try to write back as many pages as we just scanned. This
1444 * tends to cause slow streaming writers to write data to the
1445 * disk smoothly, at the dirtying rate, which is nice. But
1446 * that's undesirable in laptop mode, where we *want* lumpy
1447 * writeout. So in laptop mode, write out the whole world.
1449 if (total_scanned > sc->swap_cluster_max +
1450 sc->swap_cluster_max / 2) {
1451 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1452 sc->may_writepage = 1;
1455 /* Take a nap, wait for some writeback to complete */
1456 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1457 congestion_wait(WRITE, HZ/10);
1459 /* top priority shrink_zones still had more to do? don't OOM, then */
1460 if (!sc->all_unreclaimable && scan_global_lru(sc))
1461 ret = nr_reclaimed;
1462 out:
1464 * Now that we've scanned all the zones at this priority level, note
1465 * that level within the zone so that the next thread which performs
1466 * scanning of this zone will immediately start out at this priority
1467 * level. This affects only the decision whether or not to bring
1468 * mapped pages onto the inactive list.
1470 if (priority < 0)
1471 priority = 0;
1473 if (scan_global_lru(sc)) {
1474 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1476 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1477 continue;
1479 zone->prev_priority = priority;
1481 } else
1482 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1484 delayacct_freepages_end();
1486 return ret;
1489 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1490 gfp_t gfp_mask)
1492 struct scan_control sc = {
1493 .gfp_mask = gfp_mask,
1494 .may_writepage = !laptop_mode,
1495 .swap_cluster_max = SWAP_CLUSTER_MAX,
1496 .may_swap = 1,
1497 .swappiness = vm_swappiness,
1498 .order = order,
1499 .mem_cgroup = NULL,
1500 .isolate_pages = isolate_pages_global,
1503 return do_try_to_free_pages(zonelist, &sc);
1506 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1508 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1509 gfp_t gfp_mask)
1511 struct scan_control sc = {
1512 .may_writepage = !laptop_mode,
1513 .may_swap = 1,
1514 .swap_cluster_max = SWAP_CLUSTER_MAX,
1515 .swappiness = vm_swappiness,
1516 .order = 0,
1517 .mem_cgroup = mem_cont,
1518 .isolate_pages = mem_cgroup_isolate_pages,
1520 struct zonelist *zonelist;
1522 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1523 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1524 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1525 return do_try_to_free_pages(zonelist, &sc);
1527 #endif
1530 * For kswapd, balance_pgdat() will work across all this node's zones until
1531 * they are all at pages_high.
1533 * Returns the number of pages which were actually freed.
1535 * There is special handling here for zones which are full of pinned pages.
1536 * This can happen if the pages are all mlocked, or if they are all used by
1537 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1538 * What we do is to detect the case where all pages in the zone have been
1539 * scanned twice and there has been zero successful reclaim. Mark the zone as
1540 * dead and from now on, only perform a short scan. Basically we're polling
1541 * the zone for when the problem goes away.
1543 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1544 * zones which have free_pages > pages_high, but once a zone is found to have
1545 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1546 * of the number of free pages in the lower zones. This interoperates with
1547 * the page allocator fallback scheme to ensure that aging of pages is balanced
1548 * across the zones.
1550 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1552 int all_zones_ok;
1553 int priority;
1554 int i;
1555 unsigned long total_scanned;
1556 unsigned long nr_reclaimed;
1557 struct reclaim_state *reclaim_state = current->reclaim_state;
1558 struct scan_control sc = {
1559 .gfp_mask = GFP_KERNEL,
1560 .may_swap = 1,
1561 .swap_cluster_max = SWAP_CLUSTER_MAX,
1562 .swappiness = vm_swappiness,
1563 .order = order,
1564 .mem_cgroup = NULL,
1565 .isolate_pages = isolate_pages_global,
1568 * temp_priority is used to remember the scanning priority at which
1569 * this zone was successfully refilled to free_pages == pages_high.
1571 int temp_priority[MAX_NR_ZONES];
1573 loop_again:
1574 total_scanned = 0;
1575 nr_reclaimed = 0;
1576 sc.may_writepage = !laptop_mode;
1577 count_vm_event(PAGEOUTRUN);
1579 for (i = 0; i < pgdat->nr_zones; i++)
1580 temp_priority[i] = DEF_PRIORITY;
1582 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1583 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1584 unsigned long lru_pages = 0;
1586 /* The swap token gets in the way of swapout... */
1587 if (!priority)
1588 disable_swap_token();
1590 all_zones_ok = 1;
1593 * Scan in the highmem->dma direction for the highest
1594 * zone which needs scanning
1596 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1597 struct zone *zone = pgdat->node_zones + i;
1599 if (!populated_zone(zone))
1600 continue;
1602 if (zone_is_all_unreclaimable(zone) &&
1603 priority != DEF_PRIORITY)
1604 continue;
1606 if (!zone_watermark_ok(zone, order, zone->pages_high,
1607 0, 0)) {
1608 end_zone = i;
1609 break;
1612 if (i < 0)
1613 goto out;
1615 for (i = 0; i <= end_zone; i++) {
1616 struct zone *zone = pgdat->node_zones + i;
1618 lru_pages += zone_page_state(zone, NR_ACTIVE)
1619 + zone_page_state(zone, NR_INACTIVE);
1623 * Now scan the zone in the dma->highmem direction, stopping
1624 * at the last zone which needs scanning.
1626 * We do this because the page allocator works in the opposite
1627 * direction. This prevents the page allocator from allocating
1628 * pages behind kswapd's direction of progress, which would
1629 * cause too much scanning of the lower zones.
1631 for (i = 0; i <= end_zone; i++) {
1632 struct zone *zone = pgdat->node_zones + i;
1633 int nr_slab;
1635 if (!populated_zone(zone))
1636 continue;
1638 if (zone_is_all_unreclaimable(zone) &&
1639 priority != DEF_PRIORITY)
1640 continue;
1642 if (!zone_watermark_ok(zone, order, zone->pages_high,
1643 end_zone, 0))
1644 all_zones_ok = 0;
1645 temp_priority[i] = priority;
1646 sc.nr_scanned = 0;
1647 note_zone_scanning_priority(zone, priority);
1649 * We put equal pressure on every zone, unless one
1650 * zone has way too many pages free already.
1652 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1653 end_zone, 0))
1654 nr_reclaimed += shrink_zone(priority, zone, &sc);
1655 reclaim_state->reclaimed_slab = 0;
1656 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1657 lru_pages);
1658 nr_reclaimed += reclaim_state->reclaimed_slab;
1659 total_scanned += sc.nr_scanned;
1660 if (zone_is_all_unreclaimable(zone))
1661 continue;
1662 if (nr_slab == 0 && zone->pages_scanned >=
1663 (zone_page_state(zone, NR_ACTIVE)
1664 + zone_page_state(zone, NR_INACTIVE)) * 6)
1665 zone_set_flag(zone,
1666 ZONE_ALL_UNRECLAIMABLE);
1668 * If we've done a decent amount of scanning and
1669 * the reclaim ratio is low, start doing writepage
1670 * even in laptop mode
1672 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1673 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1674 sc.may_writepage = 1;
1676 if (all_zones_ok)
1677 break; /* kswapd: all done */
1679 * OK, kswapd is getting into trouble. Take a nap, then take
1680 * another pass across the zones.
1682 if (total_scanned && priority < DEF_PRIORITY - 2)
1683 congestion_wait(WRITE, HZ/10);
1686 * We do this so kswapd doesn't build up large priorities for
1687 * example when it is freeing in parallel with allocators. It
1688 * matches the direct reclaim path behaviour in terms of impact
1689 * on zone->*_priority.
1691 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1692 break;
1694 out:
1696 * Note within each zone the priority level at which this zone was
1697 * brought into a happy state. So that the next thread which scans this
1698 * zone will start out at that priority level.
1700 for (i = 0; i < pgdat->nr_zones; i++) {
1701 struct zone *zone = pgdat->node_zones + i;
1703 zone->prev_priority = temp_priority[i];
1705 if (!all_zones_ok) {
1706 cond_resched();
1708 try_to_freeze();
1710 goto loop_again;
1713 return nr_reclaimed;
1717 * The background pageout daemon, started as a kernel thread
1718 * from the init process.
1720 * This basically trickles out pages so that we have _some_
1721 * free memory available even if there is no other activity
1722 * that frees anything up. This is needed for things like routing
1723 * etc, where we otherwise might have all activity going on in
1724 * asynchronous contexts that cannot page things out.
1726 * If there are applications that are active memory-allocators
1727 * (most normal use), this basically shouldn't matter.
1729 static int kswapd(void *p)
1731 unsigned long order;
1732 pg_data_t *pgdat = (pg_data_t*)p;
1733 struct task_struct *tsk = current;
1734 DEFINE_WAIT(wait);
1735 struct reclaim_state reclaim_state = {
1736 .reclaimed_slab = 0,
1738 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1740 if (!cpus_empty(*cpumask))
1741 set_cpus_allowed_ptr(tsk, cpumask);
1742 current->reclaim_state = &reclaim_state;
1745 * Tell the memory management that we're a "memory allocator",
1746 * and that if we need more memory we should get access to it
1747 * regardless (see "__alloc_pages()"). "kswapd" should
1748 * never get caught in the normal page freeing logic.
1750 * (Kswapd normally doesn't need memory anyway, but sometimes
1751 * you need a small amount of memory in order to be able to
1752 * page out something else, and this flag essentially protects
1753 * us from recursively trying to free more memory as we're
1754 * trying to free the first piece of memory in the first place).
1756 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1757 set_freezable();
1759 order = 0;
1760 for ( ; ; ) {
1761 unsigned long new_order;
1763 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1764 new_order = pgdat->kswapd_max_order;
1765 pgdat->kswapd_max_order = 0;
1766 if (order < new_order) {
1768 * Don't sleep if someone wants a larger 'order'
1769 * allocation
1771 order = new_order;
1772 } else {
1773 if (!freezing(current))
1774 schedule();
1776 order = pgdat->kswapd_max_order;
1778 finish_wait(&pgdat->kswapd_wait, &wait);
1780 if (!try_to_freeze()) {
1781 /* We can speed up thawing tasks if we don't call
1782 * balance_pgdat after returning from the refrigerator
1784 balance_pgdat(pgdat, order);
1787 return 0;
1791 * A zone is low on free memory, so wake its kswapd task to service it.
1793 void wakeup_kswapd(struct zone *zone, int order)
1795 pg_data_t *pgdat;
1797 if (!populated_zone(zone))
1798 return;
1800 pgdat = zone->zone_pgdat;
1801 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1802 return;
1803 if (pgdat->kswapd_max_order < order)
1804 pgdat->kswapd_max_order = order;
1805 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1806 return;
1807 if (!waitqueue_active(&pgdat->kswapd_wait))
1808 return;
1809 wake_up_interruptible(&pgdat->kswapd_wait);
1812 #ifdef CONFIG_PM
1814 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1815 * from LRU lists system-wide, for given pass and priority, and returns the
1816 * number of reclaimed pages
1818 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1820 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1821 int pass, struct scan_control *sc)
1823 struct zone *zone;
1824 unsigned long nr_to_scan, ret = 0;
1825 enum lru_list l;
1827 for_each_zone(zone) {
1829 if (!populated_zone(zone))
1830 continue;
1832 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1833 continue;
1835 for_each_lru(l) {
1836 /* For pass = 0 we don't shrink the active list */
1837 if (pass == 0 && l == LRU_ACTIVE)
1838 continue;
1840 zone->lru[l].nr_scan +=
1841 (zone_page_state(zone, NR_LRU_BASE + l)
1842 >> prio) + 1;
1843 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1844 zone->lru[l].nr_scan = 0;
1845 nr_to_scan = min(nr_pages,
1846 zone_page_state(zone,
1847 NR_LRU_BASE + l));
1848 ret += shrink_list(l, nr_to_scan, zone,
1849 sc, prio);
1850 if (ret >= nr_pages)
1851 return ret;
1856 return ret;
1859 static unsigned long count_lru_pages(void)
1861 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1865 * Try to free `nr_pages' of memory, system-wide, and return the number of
1866 * freed pages.
1868 * Rather than trying to age LRUs the aim is to preserve the overall
1869 * LRU order by reclaiming preferentially
1870 * inactive > active > active referenced > active mapped
1872 unsigned long shrink_all_memory(unsigned long nr_pages)
1874 unsigned long lru_pages, nr_slab;
1875 unsigned long ret = 0;
1876 int pass;
1877 struct reclaim_state reclaim_state;
1878 struct scan_control sc = {
1879 .gfp_mask = GFP_KERNEL,
1880 .may_swap = 0,
1881 .swap_cluster_max = nr_pages,
1882 .may_writepage = 1,
1883 .swappiness = vm_swappiness,
1884 .isolate_pages = isolate_pages_global,
1887 current->reclaim_state = &reclaim_state;
1889 lru_pages = count_lru_pages();
1890 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1891 /* If slab caches are huge, it's better to hit them first */
1892 while (nr_slab >= lru_pages) {
1893 reclaim_state.reclaimed_slab = 0;
1894 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1895 if (!reclaim_state.reclaimed_slab)
1896 break;
1898 ret += reclaim_state.reclaimed_slab;
1899 if (ret >= nr_pages)
1900 goto out;
1902 nr_slab -= reclaim_state.reclaimed_slab;
1906 * We try to shrink LRUs in 5 passes:
1907 * 0 = Reclaim from inactive_list only
1908 * 1 = Reclaim from active list but don't reclaim mapped
1909 * 2 = 2nd pass of type 1
1910 * 3 = Reclaim mapped (normal reclaim)
1911 * 4 = 2nd pass of type 3
1913 for (pass = 0; pass < 5; pass++) {
1914 int prio;
1916 /* Force reclaiming mapped pages in the passes #3 and #4 */
1917 if (pass > 2) {
1918 sc.may_swap = 1;
1919 sc.swappiness = 100;
1922 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1923 unsigned long nr_to_scan = nr_pages - ret;
1925 sc.nr_scanned = 0;
1926 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1927 if (ret >= nr_pages)
1928 goto out;
1930 reclaim_state.reclaimed_slab = 0;
1931 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1932 count_lru_pages());
1933 ret += reclaim_state.reclaimed_slab;
1934 if (ret >= nr_pages)
1935 goto out;
1937 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1938 congestion_wait(WRITE, HZ / 10);
1943 * If ret = 0, we could not shrink LRUs, but there may be something
1944 * in slab caches
1946 if (!ret) {
1947 do {
1948 reclaim_state.reclaimed_slab = 0;
1949 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1950 ret += reclaim_state.reclaimed_slab;
1951 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1954 out:
1955 current->reclaim_state = NULL;
1957 return ret;
1959 #endif
1961 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1962 not required for correctness. So if the last cpu in a node goes
1963 away, we get changed to run anywhere: as the first one comes back,
1964 restore their cpu bindings. */
1965 static int __devinit cpu_callback(struct notifier_block *nfb,
1966 unsigned long action, void *hcpu)
1968 int nid;
1970 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1971 for_each_node_state(nid, N_HIGH_MEMORY) {
1972 pg_data_t *pgdat = NODE_DATA(nid);
1973 node_to_cpumask_ptr(mask, pgdat->node_id);
1975 if (any_online_cpu(*mask) < nr_cpu_ids)
1976 /* One of our CPUs online: restore mask */
1977 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1980 return NOTIFY_OK;
1984 * This kswapd start function will be called by init and node-hot-add.
1985 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1987 int kswapd_run(int nid)
1989 pg_data_t *pgdat = NODE_DATA(nid);
1990 int ret = 0;
1992 if (pgdat->kswapd)
1993 return 0;
1995 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1996 if (IS_ERR(pgdat->kswapd)) {
1997 /* failure at boot is fatal */
1998 BUG_ON(system_state == SYSTEM_BOOTING);
1999 printk("Failed to start kswapd on node %d\n",nid);
2000 ret = -1;
2002 return ret;
2005 static int __init kswapd_init(void)
2007 int nid;
2009 swap_setup();
2010 for_each_node_state(nid, N_HIGH_MEMORY)
2011 kswapd_run(nid);
2012 hotcpu_notifier(cpu_callback, 0);
2013 return 0;
2016 module_init(kswapd_init)
2018 #ifdef CONFIG_NUMA
2020 * Zone reclaim mode
2022 * If non-zero call zone_reclaim when the number of free pages falls below
2023 * the watermarks.
2025 int zone_reclaim_mode __read_mostly;
2027 #define RECLAIM_OFF 0
2028 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2029 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2030 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2033 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2035 * a zone.
2037 #define ZONE_RECLAIM_PRIORITY 4
2040 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2041 * occur.
2043 int sysctl_min_unmapped_ratio = 1;
2046 * If the number of slab pages in a zone grows beyond this percentage then
2047 * slab reclaim needs to occur.
2049 int sysctl_min_slab_ratio = 5;
2052 * Try to free up some pages from this zone through reclaim.
2054 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2056 /* Minimum pages needed in order to stay on node */
2057 const unsigned long nr_pages = 1 << order;
2058 struct task_struct *p = current;
2059 struct reclaim_state reclaim_state;
2060 int priority;
2061 unsigned long nr_reclaimed = 0;
2062 struct scan_control sc = {
2063 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2064 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2065 .swap_cluster_max = max_t(unsigned long, nr_pages,
2066 SWAP_CLUSTER_MAX),
2067 .gfp_mask = gfp_mask,
2068 .swappiness = vm_swappiness,
2069 .isolate_pages = isolate_pages_global,
2071 unsigned long slab_reclaimable;
2073 disable_swap_token();
2074 cond_resched();
2076 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2077 * and we also need to be able to write out pages for RECLAIM_WRITE
2078 * and RECLAIM_SWAP.
2080 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2081 reclaim_state.reclaimed_slab = 0;
2082 p->reclaim_state = &reclaim_state;
2084 if (zone_page_state(zone, NR_FILE_PAGES) -
2085 zone_page_state(zone, NR_FILE_MAPPED) >
2086 zone->min_unmapped_pages) {
2088 * Free memory by calling shrink zone with increasing
2089 * priorities until we have enough memory freed.
2091 priority = ZONE_RECLAIM_PRIORITY;
2092 do {
2093 note_zone_scanning_priority(zone, priority);
2094 nr_reclaimed += shrink_zone(priority, zone, &sc);
2095 priority--;
2096 } while (priority >= 0 && nr_reclaimed < nr_pages);
2099 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2100 if (slab_reclaimable > zone->min_slab_pages) {
2102 * shrink_slab() does not currently allow us to determine how
2103 * many pages were freed in this zone. So we take the current
2104 * number of slab pages and shake the slab until it is reduced
2105 * by the same nr_pages that we used for reclaiming unmapped
2106 * pages.
2108 * Note that shrink_slab will free memory on all zones and may
2109 * take a long time.
2111 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2112 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2113 slab_reclaimable - nr_pages)
2117 * Update nr_reclaimed by the number of slab pages we
2118 * reclaimed from this zone.
2120 nr_reclaimed += slab_reclaimable -
2121 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2124 p->reclaim_state = NULL;
2125 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2126 return nr_reclaimed >= nr_pages;
2129 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2131 int node_id;
2132 int ret;
2135 * Zone reclaim reclaims unmapped file backed pages and
2136 * slab pages if we are over the defined limits.
2138 * A small portion of unmapped file backed pages is needed for
2139 * file I/O otherwise pages read by file I/O will be immediately
2140 * thrown out if the zone is overallocated. So we do not reclaim
2141 * if less than a specified percentage of the zone is used by
2142 * unmapped file backed pages.
2144 if (zone_page_state(zone, NR_FILE_PAGES) -
2145 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2146 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2147 <= zone->min_slab_pages)
2148 return 0;
2150 if (zone_is_all_unreclaimable(zone))
2151 return 0;
2154 * Do not scan if the allocation should not be delayed.
2156 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2157 return 0;
2160 * Only run zone reclaim on the local zone or on zones that do not
2161 * have associated processors. This will favor the local processor
2162 * over remote processors and spread off node memory allocations
2163 * as wide as possible.
2165 node_id = zone_to_nid(zone);
2166 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2167 return 0;
2169 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2170 return 0;
2171 ret = __zone_reclaim(zone, gfp_mask, order);
2172 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2174 return ret;
2176 #endif