4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
46 #include <linux/swapops.h>
51 /* Incremented by the number of inactive pages that were scanned */
52 unsigned long nr_scanned
;
54 /* This context's GFP mask */
59 /* Can pages be swapped as part of reclaim? */
62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 * In this context, it doesn't matter that we scan the
65 * whole list at once. */
70 int all_unreclaimable
;
74 /* Which cgroup do we reclaim from */
75 struct mem_cgroup
*mem_cgroup
;
77 /* Pluggable isolate pages callback */
78 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
79 unsigned long *scanned
, int order
, int mode
,
80 struct zone
*z
, struct mem_cgroup
*mem_cont
,
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
89 if ((_page)->lru.prev != _base) { \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
103 if ((_page)->lru.prev != _base) { \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
115 * From 0 .. 100. Higher means more swappy.
117 int vm_swappiness
= 60;
118 long vm_total_pages
; /* The total number of pages which the VM controls */
120 static LIST_HEAD(shrinker_list
);
121 static DECLARE_RWSEM(shrinker_rwsem
);
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
126 #define scan_global_lru(sc) (1)
130 * Add a shrinker callback to be called from the vm
132 void register_shrinker(struct shrinker
*shrinker
)
135 down_write(&shrinker_rwsem
);
136 list_add_tail(&shrinker
->list
, &shrinker_list
);
137 up_write(&shrinker_rwsem
);
139 EXPORT_SYMBOL(register_shrinker
);
144 void unregister_shrinker(struct shrinker
*shrinker
)
146 down_write(&shrinker_rwsem
);
147 list_del(&shrinker
->list
);
148 up_write(&shrinker_rwsem
);
150 EXPORT_SYMBOL(unregister_shrinker
);
152 #define SHRINK_BATCH 128
154 * Call the shrink functions to age shrinkable caches
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
161 * If the vm encountered mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
170 * Returns the number of slab objects which we shrunk.
172 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
173 unsigned long lru_pages
)
175 struct shrinker
*shrinker
;
176 unsigned long ret
= 0;
179 scanned
= SWAP_CLUSTER_MAX
;
181 if (!down_read_trylock(&shrinker_rwsem
))
182 return 1; /* Assume we'll be able to shrink next time */
184 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
185 unsigned long long delta
;
186 unsigned long total_scan
;
187 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
189 delta
= (4 * scanned
) / shrinker
->seeks
;
191 do_div(delta
, lru_pages
+ 1);
192 shrinker
->nr
+= delta
;
193 if (shrinker
->nr
< 0) {
194 printk(KERN_ERR
"%s: nr=%ld\n",
195 __func__
, shrinker
->nr
);
196 shrinker
->nr
= max_pass
;
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
204 if (shrinker
->nr
> max_pass
* 2)
205 shrinker
->nr
= max_pass
* 2;
207 total_scan
= shrinker
->nr
;
210 while (total_scan
>= SHRINK_BATCH
) {
211 long this_scan
= SHRINK_BATCH
;
215 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
216 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
217 if (shrink_ret
== -1)
219 if (shrink_ret
< nr_before
)
220 ret
+= nr_before
- shrink_ret
;
221 count_vm_events(SLABS_SCANNED
, this_scan
);
222 total_scan
-= this_scan
;
227 shrinker
->nr
+= total_scan
;
229 up_read(&shrinker_rwsem
);
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page
*page
)
236 struct address_space
*mapping
;
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page
))
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page
))
246 mapping
= page_mapping(page
);
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping
);
254 static inline int is_page_cache_freeable(struct page
*page
)
256 return page_count(page
) - !!PagePrivate(page
) == 2;
259 static int may_write_to_queue(struct backing_dev_info
*bdi
)
261 if (current
->flags
& PF_SWAPWRITE
)
263 if (!bdi_write_congested(bdi
))
265 if (bdi
== current
->backing_dev_info
)
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
279 * We're allowed to run sleeping lock_page() here because we know the caller has
282 static void handle_write_error(struct address_space
*mapping
,
283 struct page
*page
, int error
)
286 if (page_mapping(page
) == mapping
)
287 mapping_set_error(mapping
, error
);
291 /* Request for sync pageout. */
297 /* possible outcome of pageout() */
299 /* failed to write page out, page is locked */
301 /* move page to the active list, page is locked */
303 /* page has been sent to the disk successfully, page is unlocked */
305 /* page is clean and locked */
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
313 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
314 enum pageout_io sync_writeback
)
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
333 if (!is_page_cache_freeable(page
))
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
340 if (PagePrivate(page
)) {
341 if (try_to_free_buffers(page
)) {
342 ClearPageDirty(page
);
343 printk("%s: orphaned page\n", __func__
);
349 if (mapping
->a_ops
->writepage
== NULL
)
350 return PAGE_ACTIVATE
;
351 if (!may_write_to_queue(mapping
->backing_dev_info
))
354 if (clear_page_dirty_for_io(page
)) {
356 struct writeback_control wbc
= {
357 .sync_mode
= WB_SYNC_NONE
,
358 .nr_to_write
= SWAP_CLUSTER_MAX
,
360 .range_end
= LLONG_MAX
,
365 SetPageReclaim(page
);
366 res
= mapping
->a_ops
->writepage(page
, &wbc
);
368 handle_write_error(mapping
, page
, res
);
369 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
370 ClearPageReclaim(page
);
371 return PAGE_ACTIVATE
;
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
379 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
380 wait_on_page_writeback(page
);
382 if (!PageWriteback(page
)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page
);
386 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
397 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
399 BUG_ON(!PageLocked(page
));
400 BUG_ON(mapping
!= page_mapping(page
));
402 spin_lock_irq(&mapping
->tree_lock
);
404 * The non racy check for a busy page.
406 * Must be careful with the order of the tests. When someone has
407 * a ref to the page, it may be possible that they dirty it then
408 * drop the reference. So if PageDirty is tested before page_count
409 * here, then the following race may occur:
411 * get_user_pages(&page);
412 * [user mapping goes away]
414 * !PageDirty(page) [good]
415 * SetPageDirty(page);
417 * !page_count(page) [good, discard it]
419 * [oops, our write_to data is lost]
421 * Reversing the order of the tests ensures such a situation cannot
422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 * load is not satisfied before that of page->_count.
425 * Note that if SetPageDirty is always performed via set_page_dirty,
426 * and thus under tree_lock, then this ordering is not required.
428 if (!page_freeze_refs(page
, 2))
430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 if (unlikely(PageDirty(page
))) {
432 page_unfreeze_refs(page
, 2);
436 if (PageSwapCache(page
)) {
437 swp_entry_t swap
= { .val
= page_private(page
) };
438 __delete_from_swap_cache(page
);
439 spin_unlock_irq(&mapping
->tree_lock
);
442 __remove_from_page_cache(page
);
443 spin_unlock_irq(&mapping
->tree_lock
);
449 spin_unlock_irq(&mapping
->tree_lock
);
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
459 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
461 if (__remove_mapping(mapping
, page
)) {
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
467 page_unfreeze_refs(page
, 1);
474 * shrink_page_list() returns the number of reclaimed pages
476 static unsigned long shrink_page_list(struct list_head
*page_list
,
477 struct scan_control
*sc
,
478 enum pageout_io sync_writeback
)
480 LIST_HEAD(ret_pages
);
481 struct pagevec freed_pvec
;
483 unsigned long nr_reclaimed
= 0;
487 pagevec_init(&freed_pvec
, 1);
488 while (!list_empty(page_list
)) {
489 struct address_space
*mapping
;
496 page
= lru_to_page(page_list
);
497 list_del(&page
->lru
);
499 if (!trylock_page(page
))
502 VM_BUG_ON(PageActive(page
));
506 if (!sc
->may_swap
&& page_mapped(page
))
509 /* Double the slab pressure for mapped and swapcache pages */
510 if (page_mapped(page
) || PageSwapCache(page
))
513 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
514 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
516 if (PageWriteback(page
)) {
518 * Synchronous reclaim is performed in two passes,
519 * first an asynchronous pass over the list to
520 * start parallel writeback, and a second synchronous
521 * pass to wait for the IO to complete. Wait here
522 * for any page for which writeback has already
525 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
526 wait_on_page_writeback(page
);
531 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
532 /* In active use or really unfreeable? Activate it. */
533 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
534 referenced
&& page_mapping_inuse(page
))
535 goto activate_locked
;
539 * Anonymous process memory has backing store?
540 * Try to allocate it some swap space here.
542 if (PageAnon(page
) && !PageSwapCache(page
))
543 if (!add_to_swap(page
, GFP_ATOMIC
))
544 goto activate_locked
;
545 #endif /* CONFIG_SWAP */
547 mapping
= page_mapping(page
);
550 * The page is mapped into the page tables of one or more
551 * processes. Try to unmap it here.
553 if (page_mapped(page
) && mapping
) {
554 switch (try_to_unmap(page
, 0)) {
556 goto activate_locked
;
560 ; /* try to free the page below */
564 if (PageDirty(page
)) {
565 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
569 if (!sc
->may_writepage
)
572 /* Page is dirty, try to write it out here */
573 switch (pageout(page
, mapping
, sync_writeback
)) {
577 goto activate_locked
;
579 if (PageWriteback(page
) || PageDirty(page
))
582 * A synchronous write - probably a ramdisk. Go
583 * ahead and try to reclaim the page.
585 if (!trylock_page(page
))
587 if (PageDirty(page
) || PageWriteback(page
))
589 mapping
= page_mapping(page
);
591 ; /* try to free the page below */
596 * If the page has buffers, try to free the buffer mappings
597 * associated with this page. If we succeed we try to free
600 * We do this even if the page is PageDirty().
601 * try_to_release_page() does not perform I/O, but it is
602 * possible for a page to have PageDirty set, but it is actually
603 * clean (all its buffers are clean). This happens if the
604 * buffers were written out directly, with submit_bh(). ext3
605 * will do this, as well as the blockdev mapping.
606 * try_to_release_page() will discover that cleanness and will
607 * drop the buffers and mark the page clean - it can be freed.
609 * Rarely, pages can have buffers and no ->mapping. These are
610 * the pages which were not successfully invalidated in
611 * truncate_complete_page(). We try to drop those buffers here
612 * and if that worked, and the page is no longer mapped into
613 * process address space (page_count == 1) it can be freed.
614 * Otherwise, leave the page on the LRU so it is swappable.
616 if (PagePrivate(page
)) {
617 if (!try_to_release_page(page
, sc
->gfp_mask
))
618 goto activate_locked
;
619 if (!mapping
&& page_count(page
) == 1) {
621 if (put_page_testzero(page
))
625 * rare race with speculative reference.
626 * the speculative reference will free
627 * this page shortly, so we may
628 * increment nr_reclaimed here (and
629 * leave it off the LRU).
637 if (!mapping
|| !__remove_mapping(mapping
, page
))
643 if (!pagevec_add(&freed_pvec
, page
)) {
644 __pagevec_free(&freed_pvec
);
645 pagevec_reinit(&freed_pvec
);
650 /* Not a candidate for swapping, so reclaim swap space. */
651 if (PageSwapCache(page
) && vm_swap_full())
652 remove_exclusive_swap_page_ref(page
);
658 list_add(&page
->lru
, &ret_pages
);
659 VM_BUG_ON(PageLRU(page
));
661 list_splice(&ret_pages
, page_list
);
662 if (pagevec_count(&freed_pvec
))
663 __pagevec_free(&freed_pvec
);
664 count_vm_events(PGACTIVATE
, pgactivate
);
668 /* LRU Isolation modes. */
669 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
670 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
671 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
674 * Attempt to remove the specified page from its LRU. Only take this page
675 * if it is of the appropriate PageActive status. Pages which are being
676 * freed elsewhere are also ignored.
678 * page: page to consider
679 * mode: one of the LRU isolation modes defined above
681 * returns 0 on success, -ve errno on failure.
683 int __isolate_lru_page(struct page
*page
, int mode
)
687 /* Only take pages on the LRU. */
692 * When checking the active state, we need to be sure we are
693 * dealing with comparible boolean values. Take the logical not
696 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
700 if (likely(get_page_unless_zero(page
))) {
702 * Be careful not to clear PageLRU until after we're
703 * sure the page is not being freed elsewhere -- the
704 * page release code relies on it.
714 * zone->lru_lock is heavily contended. Some of the functions that
715 * shrink the lists perform better by taking out a batch of pages
716 * and working on them outside the LRU lock.
718 * For pagecache intensive workloads, this function is the hottest
719 * spot in the kernel (apart from copy_*_user functions).
721 * Appropriate locks must be held before calling this function.
723 * @nr_to_scan: The number of pages to look through on the list.
724 * @src: The LRU list to pull pages off.
725 * @dst: The temp list to put pages on to.
726 * @scanned: The number of pages that were scanned.
727 * @order: The caller's attempted allocation order
728 * @mode: One of the LRU isolation modes
730 * returns how many pages were moved onto *@dst.
732 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
733 struct list_head
*src
, struct list_head
*dst
,
734 unsigned long *scanned
, int order
, int mode
)
736 unsigned long nr_taken
= 0;
739 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
742 unsigned long end_pfn
;
743 unsigned long page_pfn
;
746 page
= lru_to_page(src
);
747 prefetchw_prev_lru_page(page
, src
, flags
);
749 VM_BUG_ON(!PageLRU(page
));
751 switch (__isolate_lru_page(page
, mode
)) {
753 list_move(&page
->lru
, dst
);
758 /* else it is being freed elsewhere */
759 list_move(&page
->lru
, src
);
770 * Attempt to take all pages in the order aligned region
771 * surrounding the tag page. Only take those pages of
772 * the same active state as that tag page. We may safely
773 * round the target page pfn down to the requested order
774 * as the mem_map is guarenteed valid out to MAX_ORDER,
775 * where that page is in a different zone we will detect
776 * it from its zone id and abort this block scan.
778 zone_id
= page_zone_id(page
);
779 page_pfn
= page_to_pfn(page
);
780 pfn
= page_pfn
& ~((1 << order
) - 1);
781 end_pfn
= pfn
+ (1 << order
);
782 for (; pfn
< end_pfn
; pfn
++) {
783 struct page
*cursor_page
;
785 /* The target page is in the block, ignore it. */
786 if (unlikely(pfn
== page_pfn
))
789 /* Avoid holes within the zone. */
790 if (unlikely(!pfn_valid_within(pfn
)))
793 cursor_page
= pfn_to_page(pfn
);
794 /* Check that we have not crossed a zone boundary. */
795 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
797 switch (__isolate_lru_page(cursor_page
, mode
)) {
799 list_move(&cursor_page
->lru
, dst
);
805 /* else it is being freed elsewhere */
806 list_move(&cursor_page
->lru
, src
);
817 static unsigned long isolate_pages_global(unsigned long nr
,
818 struct list_head
*dst
,
819 unsigned long *scanned
, int order
,
820 int mode
, struct zone
*z
,
821 struct mem_cgroup
*mem_cont
,
825 return isolate_lru_pages(nr
, &z
->lru
[LRU_ACTIVE
].list
, dst
,
826 scanned
, order
, mode
);
828 return isolate_lru_pages(nr
, &z
->lru
[LRU_INACTIVE
].list
, dst
,
829 scanned
, order
, mode
);
833 * clear_active_flags() is a helper for shrink_active_list(), clearing
834 * any active bits from the pages in the list.
836 static unsigned long clear_active_flags(struct list_head
*page_list
)
841 list_for_each_entry(page
, page_list
, lru
)
842 if (PageActive(page
)) {
843 ClearPageActive(page
);
851 * isolate_lru_page - tries to isolate a page from its LRU list
852 * @page: page to isolate from its LRU list
854 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
855 * vmstat statistic corresponding to whatever LRU list the page was on.
857 * Returns 0 if the page was removed from an LRU list.
858 * Returns -EBUSY if the page was not on an LRU list.
860 * The returned page will have PageLRU() cleared. If it was found on
861 * the active list, it will have PageActive set. That flag may need
862 * to be cleared by the caller before letting the page go.
864 * The vmstat statistic corresponding to the list on which the page was
865 * found will be decremented.
868 * (1) Must be called with an elevated refcount on the page. This is a
869 * fundamentnal difference from isolate_lru_pages (which is called
870 * without a stable reference).
871 * (2) the lru_lock must not be held.
872 * (3) interrupts must be enabled.
874 int isolate_lru_page(struct page
*page
)
879 struct zone
*zone
= page_zone(page
);
881 spin_lock_irq(&zone
->lru_lock
);
882 if (PageLRU(page
) && get_page_unless_zero(page
)) {
885 if (PageActive(page
))
886 del_page_from_active_list(zone
, page
);
888 del_page_from_inactive_list(zone
, page
);
890 spin_unlock_irq(&zone
->lru_lock
);
896 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
899 static unsigned long shrink_inactive_list(unsigned long max_scan
,
900 struct zone
*zone
, struct scan_control
*sc
)
902 LIST_HEAD(page_list
);
904 unsigned long nr_scanned
= 0;
905 unsigned long nr_reclaimed
= 0;
907 pagevec_init(&pvec
, 1);
910 spin_lock_irq(&zone
->lru_lock
);
913 unsigned long nr_taken
;
914 unsigned long nr_scan
;
915 unsigned long nr_freed
;
916 unsigned long nr_active
;
918 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
919 &page_list
, &nr_scan
, sc
->order
,
920 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)?
921 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
922 zone
, sc
->mem_cgroup
, 0);
923 nr_active
= clear_active_flags(&page_list
);
924 __count_vm_events(PGDEACTIVATE
, nr_active
);
926 __mod_zone_page_state(zone
, NR_ACTIVE
, -nr_active
);
927 __mod_zone_page_state(zone
, NR_INACTIVE
,
928 -(nr_taken
- nr_active
));
929 if (scan_global_lru(sc
))
930 zone
->pages_scanned
+= nr_scan
;
931 spin_unlock_irq(&zone
->lru_lock
);
933 nr_scanned
+= nr_scan
;
934 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
937 * If we are direct reclaiming for contiguous pages and we do
938 * not reclaim everything in the list, try again and wait
939 * for IO to complete. This will stall high-order allocations
940 * but that should be acceptable to the caller
942 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
943 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
944 congestion_wait(WRITE
, HZ
/10);
947 * The attempt at page out may have made some
948 * of the pages active, mark them inactive again.
950 nr_active
= clear_active_flags(&page_list
);
951 count_vm_events(PGDEACTIVATE
, nr_active
);
953 nr_freed
+= shrink_page_list(&page_list
, sc
,
957 nr_reclaimed
+= nr_freed
;
959 if (current_is_kswapd()) {
960 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
961 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
962 } else if (scan_global_lru(sc
))
963 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
965 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
970 spin_lock(&zone
->lru_lock
);
972 * Put back any unfreeable pages.
974 while (!list_empty(&page_list
)) {
975 page
= lru_to_page(&page_list
);
976 VM_BUG_ON(PageLRU(page
));
978 list_del(&page
->lru
);
979 add_page_to_lru_list(zone
, page
, page_lru(page
));
980 if (!pagevec_add(&pvec
, page
)) {
981 spin_unlock_irq(&zone
->lru_lock
);
982 __pagevec_release(&pvec
);
983 spin_lock_irq(&zone
->lru_lock
);
986 } while (nr_scanned
< max_scan
);
987 spin_unlock(&zone
->lru_lock
);
990 pagevec_release(&pvec
);
995 * We are about to scan this zone at a certain priority level. If that priority
996 * level is smaller (ie: more urgent) than the previous priority, then note
997 * that priority level within the zone. This is done so that when the next
998 * process comes in to scan this zone, it will immediately start out at this
999 * priority level rather than having to build up its own scanning priority.
1000 * Here, this priority affects only the reclaim-mapped threshold.
1002 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1004 if (priority
< zone
->prev_priority
)
1005 zone
->prev_priority
= priority
;
1008 static inline int zone_is_near_oom(struct zone
*zone
)
1010 return zone
->pages_scanned
>= (zone_page_state(zone
, NR_ACTIVE
)
1011 + zone_page_state(zone
, NR_INACTIVE
))*3;
1015 * Determine we should try to reclaim mapped pages.
1016 * This is called only when sc->mem_cgroup is NULL.
1018 static int calc_reclaim_mapped(struct scan_control
*sc
, struct zone
*zone
,
1025 int reclaim_mapped
= 0;
1028 if (scan_global_lru(sc
) && zone_is_near_oom(zone
))
1031 * `distress' is a measure of how much trouble we're having
1032 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
1034 if (scan_global_lru(sc
))
1035 prev_priority
= zone
->prev_priority
;
1037 prev_priority
= mem_cgroup_get_reclaim_priority(sc
->mem_cgroup
);
1039 distress
= 100 >> min(prev_priority
, priority
);
1042 * The point of this algorithm is to decide when to start
1043 * reclaiming mapped memory instead of just pagecache. Work out
1047 if (scan_global_lru(sc
))
1048 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
1049 global_page_state(NR_ANON_PAGES
)) * 100) /
1052 mapped_ratio
= mem_cgroup_calc_mapped_ratio(sc
->mem_cgroup
);
1055 * Now decide how much we really want to unmap some pages. The
1056 * mapped ratio is downgraded - just because there's a lot of
1057 * mapped memory doesn't necessarily mean that page reclaim
1060 * The distress ratio is important - we don't want to start
1063 * A 100% value of vm_swappiness overrides this algorithm
1066 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
1069 * If there's huge imbalance between active and inactive
1070 * (think active 100 times larger than inactive) we should
1071 * become more permissive, or the system will take too much
1072 * cpu before it start swapping during memory pressure.
1073 * Distress is about avoiding early-oom, this is about
1074 * making swappiness graceful despite setting it to low
1077 * Avoid div by zero with nr_inactive+1, and max resulting
1078 * value is vm_total_pages.
1080 if (scan_global_lru(sc
)) {
1081 imbalance
= zone_page_state(zone
, NR_ACTIVE
);
1082 imbalance
/= zone_page_state(zone
, NR_INACTIVE
) + 1;
1084 imbalance
= mem_cgroup_reclaim_imbalance(sc
->mem_cgroup
);
1087 * Reduce the effect of imbalance if swappiness is low,
1088 * this means for a swappiness very low, the imbalance
1089 * must be much higher than 100 for this logic to make
1092 * Max temporary value is vm_total_pages*100.
1094 imbalance
*= (vm_swappiness
+ 1);
1098 * If not much of the ram is mapped, makes the imbalance
1099 * less relevant, it's high priority we refill the inactive
1100 * list with mapped pages only in presence of high ratio of
1103 * Max temporary value is vm_total_pages*100.
1105 imbalance
*= mapped_ratio
;
1108 /* apply imbalance feedback to swap_tendency */
1109 swap_tendency
+= imbalance
;
1112 * Now use this metric to decide whether to start moving mapped
1113 * memory onto the inactive list.
1115 if (swap_tendency
>= 100)
1118 return reclaim_mapped
;
1122 * This moves pages from the active list to the inactive list.
1124 * We move them the other way if the page is referenced by one or more
1125 * processes, from rmap.
1127 * If the pages are mostly unmapped, the processing is fast and it is
1128 * appropriate to hold zone->lru_lock across the whole operation. But if
1129 * the pages are mapped, the processing is slow (page_referenced()) so we
1130 * should drop zone->lru_lock around each page. It's impossible to balance
1131 * this, so instead we remove the pages from the LRU while processing them.
1132 * It is safe to rely on PG_active against the non-LRU pages in here because
1133 * nobody will play with that bit on a non-LRU page.
1135 * The downside is that we have to touch page->_count against each page.
1136 * But we had to alter page->flags anyway.
1140 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1141 struct scan_control
*sc
, int priority
)
1143 unsigned long pgmoved
;
1144 int pgdeactivate
= 0;
1145 unsigned long pgscanned
;
1146 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1147 LIST_HEAD(l_active
);
1148 LIST_HEAD(l_inactive
);
1150 struct pagevec pvec
;
1151 int reclaim_mapped
= 0;
1154 reclaim_mapped
= calc_reclaim_mapped(sc
, zone
, priority
);
1157 spin_lock_irq(&zone
->lru_lock
);
1158 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1159 ISOLATE_ACTIVE
, zone
,
1162 * zone->pages_scanned is used for detect zone's oom
1163 * mem_cgroup remembers nr_scan by itself.
1165 if (scan_global_lru(sc
))
1166 zone
->pages_scanned
+= pgscanned
;
1168 __mod_zone_page_state(zone
, NR_ACTIVE
, -pgmoved
);
1169 spin_unlock_irq(&zone
->lru_lock
);
1171 while (!list_empty(&l_hold
)) {
1173 page
= lru_to_page(&l_hold
);
1174 list_del(&page
->lru
);
1175 if (page_mapped(page
)) {
1176 if (!reclaim_mapped
||
1177 (total_swap_pages
== 0 && PageAnon(page
)) ||
1178 page_referenced(page
, 0, sc
->mem_cgroup
)) {
1179 list_add(&page
->lru
, &l_active
);
1183 list_add(&page
->lru
, &l_inactive
);
1186 pagevec_init(&pvec
, 1);
1188 spin_lock_irq(&zone
->lru_lock
);
1189 while (!list_empty(&l_inactive
)) {
1190 page
= lru_to_page(&l_inactive
);
1191 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1192 VM_BUG_ON(PageLRU(page
));
1194 VM_BUG_ON(!PageActive(page
));
1195 ClearPageActive(page
);
1197 list_move(&page
->lru
, &zone
->lru
[LRU_INACTIVE
].list
);
1198 mem_cgroup_move_lists(page
, false);
1200 if (!pagevec_add(&pvec
, page
)) {
1201 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1202 spin_unlock_irq(&zone
->lru_lock
);
1203 pgdeactivate
+= pgmoved
;
1205 if (buffer_heads_over_limit
)
1206 pagevec_strip(&pvec
);
1207 __pagevec_release(&pvec
);
1208 spin_lock_irq(&zone
->lru_lock
);
1211 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1212 pgdeactivate
+= pgmoved
;
1213 if (buffer_heads_over_limit
) {
1214 spin_unlock_irq(&zone
->lru_lock
);
1215 pagevec_strip(&pvec
);
1216 spin_lock_irq(&zone
->lru_lock
);
1220 while (!list_empty(&l_active
)) {
1221 page
= lru_to_page(&l_active
);
1222 prefetchw_prev_lru_page(page
, &l_active
, flags
);
1223 VM_BUG_ON(PageLRU(page
));
1225 VM_BUG_ON(!PageActive(page
));
1227 list_move(&page
->lru
, &zone
->lru
[LRU_ACTIVE
].list
);
1228 mem_cgroup_move_lists(page
, true);
1230 if (!pagevec_add(&pvec
, page
)) {
1231 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1233 spin_unlock_irq(&zone
->lru_lock
);
1235 pagevec_swap_free(&pvec
);
1236 __pagevec_release(&pvec
);
1237 spin_lock_irq(&zone
->lru_lock
);
1240 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1242 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1243 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1244 spin_unlock_irq(&zone
->lru_lock
);
1246 pagevec_swap_free(&pvec
);
1248 pagevec_release(&pvec
);
1251 static unsigned long shrink_list(enum lru_list l
, unsigned long nr_to_scan
,
1252 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1254 if (l
== LRU_ACTIVE
) {
1255 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
1258 return shrink_inactive_list(nr_to_scan
, zone
, sc
);
1262 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1264 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
1265 struct scan_control
*sc
)
1267 unsigned long nr
[NR_LRU_LISTS
];
1268 unsigned long nr_to_scan
;
1269 unsigned long nr_reclaimed
= 0;
1272 if (scan_global_lru(sc
)) {
1274 * Add one to nr_to_scan just to make sure that the kernel
1275 * will slowly sift through the active list.
1278 zone
->lru
[l
].nr_scan
+= (zone_page_state(zone
,
1279 NR_LRU_BASE
+ l
) >> priority
) + 1;
1280 nr
[l
] = zone
->lru
[l
].nr_scan
;
1281 if (nr
[l
] >= sc
->swap_cluster_max
)
1282 zone
->lru
[l
].nr_scan
= 0;
1288 * This reclaim occurs not because zone memory shortage but
1289 * because memory controller hits its limit.
1290 * Then, don't modify zone reclaim related data.
1292 nr
[LRU_ACTIVE
] = mem_cgroup_calc_reclaim(sc
->mem_cgroup
,
1293 zone
, priority
, LRU_ACTIVE
);
1295 nr
[LRU_INACTIVE
] = mem_cgroup_calc_reclaim(sc
->mem_cgroup
,
1296 zone
, priority
, LRU_INACTIVE
);
1299 while (nr
[LRU_ACTIVE
] || nr
[LRU_INACTIVE
]) {
1302 nr_to_scan
= min(nr
[l
],
1303 (unsigned long)sc
->swap_cluster_max
);
1304 nr
[l
] -= nr_to_scan
;
1306 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1307 zone
, sc
, priority
);
1312 throttle_vm_writeout(sc
->gfp_mask
);
1313 return nr_reclaimed
;
1317 * This is the direct reclaim path, for page-allocating processes. We only
1318 * try to reclaim pages from zones which will satisfy the caller's allocation
1321 * We reclaim from a zone even if that zone is over pages_high. Because:
1322 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1324 * b) The zones may be over pages_high but they must go *over* pages_high to
1325 * satisfy the `incremental min' zone defense algorithm.
1327 * Returns the number of reclaimed pages.
1329 * If a zone is deemed to be full of pinned pages then just give it a light
1330 * scan then give up on it.
1332 static unsigned long shrink_zones(int priority
, struct zonelist
*zonelist
,
1333 struct scan_control
*sc
)
1335 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1336 unsigned long nr_reclaimed
= 0;
1340 sc
->all_unreclaimable
= 1;
1341 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1342 if (!populated_zone(zone
))
1345 * Take care memory controller reclaiming has small influence
1348 if (scan_global_lru(sc
)) {
1349 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1351 note_zone_scanning_priority(zone
, priority
);
1353 if (zone_is_all_unreclaimable(zone
) &&
1354 priority
!= DEF_PRIORITY
)
1355 continue; /* Let kswapd poll it */
1356 sc
->all_unreclaimable
= 0;
1359 * Ignore cpuset limitation here. We just want to reduce
1360 * # of used pages by us regardless of memory shortage.
1362 sc
->all_unreclaimable
= 0;
1363 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1367 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1370 return nr_reclaimed
;
1374 * This is the main entry point to direct page reclaim.
1376 * If a full scan of the inactive list fails to free enough memory then we
1377 * are "out of memory" and something needs to be killed.
1379 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1380 * high - the zone may be full of dirty or under-writeback pages, which this
1381 * caller can't do much about. We kick pdflush and take explicit naps in the
1382 * hope that some of these pages can be written. But if the allocating task
1383 * holds filesystem locks which prevent writeout this might not work, and the
1384 * allocation attempt will fail.
1386 * returns: 0, if no pages reclaimed
1387 * else, the number of pages reclaimed
1389 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1390 struct scan_control
*sc
)
1393 unsigned long ret
= 0;
1394 unsigned long total_scanned
= 0;
1395 unsigned long nr_reclaimed
= 0;
1396 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1397 unsigned long lru_pages
= 0;
1400 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1402 delayacct_freepages_start();
1404 if (scan_global_lru(sc
))
1405 count_vm_event(ALLOCSTALL
);
1407 * mem_cgroup will not do shrink_slab.
1409 if (scan_global_lru(sc
)) {
1410 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1412 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1415 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1416 + zone_page_state(zone
, NR_INACTIVE
);
1420 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1423 disable_swap_token();
1424 nr_reclaimed
+= shrink_zones(priority
, zonelist
, sc
);
1426 * Don't shrink slabs when reclaiming memory from
1427 * over limit cgroups
1429 if (scan_global_lru(sc
)) {
1430 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1431 if (reclaim_state
) {
1432 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1433 reclaim_state
->reclaimed_slab
= 0;
1436 total_scanned
+= sc
->nr_scanned
;
1437 if (nr_reclaimed
>= sc
->swap_cluster_max
) {
1443 * Try to write back as many pages as we just scanned. This
1444 * tends to cause slow streaming writers to write data to the
1445 * disk smoothly, at the dirtying rate, which is nice. But
1446 * that's undesirable in laptop mode, where we *want* lumpy
1447 * writeout. So in laptop mode, write out the whole world.
1449 if (total_scanned
> sc
->swap_cluster_max
+
1450 sc
->swap_cluster_max
/ 2) {
1451 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1452 sc
->may_writepage
= 1;
1455 /* Take a nap, wait for some writeback to complete */
1456 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1457 congestion_wait(WRITE
, HZ
/10);
1459 /* top priority shrink_zones still had more to do? don't OOM, then */
1460 if (!sc
->all_unreclaimable
&& scan_global_lru(sc
))
1464 * Now that we've scanned all the zones at this priority level, note
1465 * that level within the zone so that the next thread which performs
1466 * scanning of this zone will immediately start out at this priority
1467 * level. This affects only the decision whether or not to bring
1468 * mapped pages onto the inactive list.
1473 if (scan_global_lru(sc
)) {
1474 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1476 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1479 zone
->prev_priority
= priority
;
1482 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1484 delayacct_freepages_end();
1489 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1492 struct scan_control sc
= {
1493 .gfp_mask
= gfp_mask
,
1494 .may_writepage
= !laptop_mode
,
1495 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1497 .swappiness
= vm_swappiness
,
1500 .isolate_pages
= isolate_pages_global
,
1503 return do_try_to_free_pages(zonelist
, &sc
);
1506 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1508 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1511 struct scan_control sc
= {
1512 .may_writepage
= !laptop_mode
,
1514 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1515 .swappiness
= vm_swappiness
,
1517 .mem_cgroup
= mem_cont
,
1518 .isolate_pages
= mem_cgroup_isolate_pages
,
1520 struct zonelist
*zonelist
;
1522 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1523 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1524 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1525 return do_try_to_free_pages(zonelist
, &sc
);
1530 * For kswapd, balance_pgdat() will work across all this node's zones until
1531 * they are all at pages_high.
1533 * Returns the number of pages which were actually freed.
1535 * There is special handling here for zones which are full of pinned pages.
1536 * This can happen if the pages are all mlocked, or if they are all used by
1537 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1538 * What we do is to detect the case where all pages in the zone have been
1539 * scanned twice and there has been zero successful reclaim. Mark the zone as
1540 * dead and from now on, only perform a short scan. Basically we're polling
1541 * the zone for when the problem goes away.
1543 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1544 * zones which have free_pages > pages_high, but once a zone is found to have
1545 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1546 * of the number of free pages in the lower zones. This interoperates with
1547 * the page allocator fallback scheme to ensure that aging of pages is balanced
1550 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1555 unsigned long total_scanned
;
1556 unsigned long nr_reclaimed
;
1557 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1558 struct scan_control sc
= {
1559 .gfp_mask
= GFP_KERNEL
,
1561 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1562 .swappiness
= vm_swappiness
,
1565 .isolate_pages
= isolate_pages_global
,
1568 * temp_priority is used to remember the scanning priority at which
1569 * this zone was successfully refilled to free_pages == pages_high.
1571 int temp_priority
[MAX_NR_ZONES
];
1576 sc
.may_writepage
= !laptop_mode
;
1577 count_vm_event(PAGEOUTRUN
);
1579 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1580 temp_priority
[i
] = DEF_PRIORITY
;
1582 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1583 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1584 unsigned long lru_pages
= 0;
1586 /* The swap token gets in the way of swapout... */
1588 disable_swap_token();
1593 * Scan in the highmem->dma direction for the highest
1594 * zone which needs scanning
1596 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1597 struct zone
*zone
= pgdat
->node_zones
+ i
;
1599 if (!populated_zone(zone
))
1602 if (zone_is_all_unreclaimable(zone
) &&
1603 priority
!= DEF_PRIORITY
)
1606 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1615 for (i
= 0; i
<= end_zone
; i
++) {
1616 struct zone
*zone
= pgdat
->node_zones
+ i
;
1618 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1619 + zone_page_state(zone
, NR_INACTIVE
);
1623 * Now scan the zone in the dma->highmem direction, stopping
1624 * at the last zone which needs scanning.
1626 * We do this because the page allocator works in the opposite
1627 * direction. This prevents the page allocator from allocating
1628 * pages behind kswapd's direction of progress, which would
1629 * cause too much scanning of the lower zones.
1631 for (i
= 0; i
<= end_zone
; i
++) {
1632 struct zone
*zone
= pgdat
->node_zones
+ i
;
1635 if (!populated_zone(zone
))
1638 if (zone_is_all_unreclaimable(zone
) &&
1639 priority
!= DEF_PRIORITY
)
1642 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1645 temp_priority
[i
] = priority
;
1647 note_zone_scanning_priority(zone
, priority
);
1649 * We put equal pressure on every zone, unless one
1650 * zone has way too many pages free already.
1652 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1654 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1655 reclaim_state
->reclaimed_slab
= 0;
1656 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1658 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1659 total_scanned
+= sc
.nr_scanned
;
1660 if (zone_is_all_unreclaimable(zone
))
1662 if (nr_slab
== 0 && zone
->pages_scanned
>=
1663 (zone_page_state(zone
, NR_ACTIVE
)
1664 + zone_page_state(zone
, NR_INACTIVE
)) * 6)
1666 ZONE_ALL_UNRECLAIMABLE
);
1668 * If we've done a decent amount of scanning and
1669 * the reclaim ratio is low, start doing writepage
1670 * even in laptop mode
1672 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1673 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1674 sc
.may_writepage
= 1;
1677 break; /* kswapd: all done */
1679 * OK, kswapd is getting into trouble. Take a nap, then take
1680 * another pass across the zones.
1682 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1683 congestion_wait(WRITE
, HZ
/10);
1686 * We do this so kswapd doesn't build up large priorities for
1687 * example when it is freeing in parallel with allocators. It
1688 * matches the direct reclaim path behaviour in terms of impact
1689 * on zone->*_priority.
1691 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1696 * Note within each zone the priority level at which this zone was
1697 * brought into a happy state. So that the next thread which scans this
1698 * zone will start out at that priority level.
1700 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1701 struct zone
*zone
= pgdat
->node_zones
+ i
;
1703 zone
->prev_priority
= temp_priority
[i
];
1705 if (!all_zones_ok
) {
1713 return nr_reclaimed
;
1717 * The background pageout daemon, started as a kernel thread
1718 * from the init process.
1720 * This basically trickles out pages so that we have _some_
1721 * free memory available even if there is no other activity
1722 * that frees anything up. This is needed for things like routing
1723 * etc, where we otherwise might have all activity going on in
1724 * asynchronous contexts that cannot page things out.
1726 * If there are applications that are active memory-allocators
1727 * (most normal use), this basically shouldn't matter.
1729 static int kswapd(void *p
)
1731 unsigned long order
;
1732 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1733 struct task_struct
*tsk
= current
;
1735 struct reclaim_state reclaim_state
= {
1736 .reclaimed_slab
= 0,
1738 node_to_cpumask_ptr(cpumask
, pgdat
->node_id
);
1740 if (!cpus_empty(*cpumask
))
1741 set_cpus_allowed_ptr(tsk
, cpumask
);
1742 current
->reclaim_state
= &reclaim_state
;
1745 * Tell the memory management that we're a "memory allocator",
1746 * and that if we need more memory we should get access to it
1747 * regardless (see "__alloc_pages()"). "kswapd" should
1748 * never get caught in the normal page freeing logic.
1750 * (Kswapd normally doesn't need memory anyway, but sometimes
1751 * you need a small amount of memory in order to be able to
1752 * page out something else, and this flag essentially protects
1753 * us from recursively trying to free more memory as we're
1754 * trying to free the first piece of memory in the first place).
1756 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1761 unsigned long new_order
;
1763 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1764 new_order
= pgdat
->kswapd_max_order
;
1765 pgdat
->kswapd_max_order
= 0;
1766 if (order
< new_order
) {
1768 * Don't sleep if someone wants a larger 'order'
1773 if (!freezing(current
))
1776 order
= pgdat
->kswapd_max_order
;
1778 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1780 if (!try_to_freeze()) {
1781 /* We can speed up thawing tasks if we don't call
1782 * balance_pgdat after returning from the refrigerator
1784 balance_pgdat(pgdat
, order
);
1791 * A zone is low on free memory, so wake its kswapd task to service it.
1793 void wakeup_kswapd(struct zone
*zone
, int order
)
1797 if (!populated_zone(zone
))
1800 pgdat
= zone
->zone_pgdat
;
1801 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1803 if (pgdat
->kswapd_max_order
< order
)
1804 pgdat
->kswapd_max_order
= order
;
1805 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1807 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1809 wake_up_interruptible(&pgdat
->kswapd_wait
);
1814 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1815 * from LRU lists system-wide, for given pass and priority, and returns the
1816 * number of reclaimed pages
1818 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1820 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1821 int pass
, struct scan_control
*sc
)
1824 unsigned long nr_to_scan
, ret
= 0;
1827 for_each_zone(zone
) {
1829 if (!populated_zone(zone
))
1832 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
1836 /* For pass = 0 we don't shrink the active list */
1837 if (pass
== 0 && l
== LRU_ACTIVE
)
1840 zone
->lru
[l
].nr_scan
+=
1841 (zone_page_state(zone
, NR_LRU_BASE
+ l
)
1843 if (zone
->lru
[l
].nr_scan
>= nr_pages
|| pass
> 3) {
1844 zone
->lru
[l
].nr_scan
= 0;
1845 nr_to_scan
= min(nr_pages
,
1846 zone_page_state(zone
,
1848 ret
+= shrink_list(l
, nr_to_scan
, zone
,
1850 if (ret
>= nr_pages
)
1859 static unsigned long count_lru_pages(void)
1861 return global_page_state(NR_ACTIVE
) + global_page_state(NR_INACTIVE
);
1865 * Try to free `nr_pages' of memory, system-wide, and return the number of
1868 * Rather than trying to age LRUs the aim is to preserve the overall
1869 * LRU order by reclaiming preferentially
1870 * inactive > active > active referenced > active mapped
1872 unsigned long shrink_all_memory(unsigned long nr_pages
)
1874 unsigned long lru_pages
, nr_slab
;
1875 unsigned long ret
= 0;
1877 struct reclaim_state reclaim_state
;
1878 struct scan_control sc
= {
1879 .gfp_mask
= GFP_KERNEL
,
1881 .swap_cluster_max
= nr_pages
,
1883 .swappiness
= vm_swappiness
,
1884 .isolate_pages
= isolate_pages_global
,
1887 current
->reclaim_state
= &reclaim_state
;
1889 lru_pages
= count_lru_pages();
1890 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1891 /* If slab caches are huge, it's better to hit them first */
1892 while (nr_slab
>= lru_pages
) {
1893 reclaim_state
.reclaimed_slab
= 0;
1894 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1895 if (!reclaim_state
.reclaimed_slab
)
1898 ret
+= reclaim_state
.reclaimed_slab
;
1899 if (ret
>= nr_pages
)
1902 nr_slab
-= reclaim_state
.reclaimed_slab
;
1906 * We try to shrink LRUs in 5 passes:
1907 * 0 = Reclaim from inactive_list only
1908 * 1 = Reclaim from active list but don't reclaim mapped
1909 * 2 = 2nd pass of type 1
1910 * 3 = Reclaim mapped (normal reclaim)
1911 * 4 = 2nd pass of type 3
1913 for (pass
= 0; pass
< 5; pass
++) {
1916 /* Force reclaiming mapped pages in the passes #3 and #4 */
1919 sc
.swappiness
= 100;
1922 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1923 unsigned long nr_to_scan
= nr_pages
- ret
;
1926 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1927 if (ret
>= nr_pages
)
1930 reclaim_state
.reclaimed_slab
= 0;
1931 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
1933 ret
+= reclaim_state
.reclaimed_slab
;
1934 if (ret
>= nr_pages
)
1937 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1938 congestion_wait(WRITE
, HZ
/ 10);
1943 * If ret = 0, we could not shrink LRUs, but there may be something
1948 reclaim_state
.reclaimed_slab
= 0;
1949 shrink_slab(nr_pages
, sc
.gfp_mask
, count_lru_pages());
1950 ret
+= reclaim_state
.reclaimed_slab
;
1951 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1955 current
->reclaim_state
= NULL
;
1961 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1962 not required for correctness. So if the last cpu in a node goes
1963 away, we get changed to run anywhere: as the first one comes back,
1964 restore their cpu bindings. */
1965 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1966 unsigned long action
, void *hcpu
)
1970 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
1971 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1972 pg_data_t
*pgdat
= NODE_DATA(nid
);
1973 node_to_cpumask_ptr(mask
, pgdat
->node_id
);
1975 if (any_online_cpu(*mask
) < nr_cpu_ids
)
1976 /* One of our CPUs online: restore mask */
1977 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
1984 * This kswapd start function will be called by init and node-hot-add.
1985 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1987 int kswapd_run(int nid
)
1989 pg_data_t
*pgdat
= NODE_DATA(nid
);
1995 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1996 if (IS_ERR(pgdat
->kswapd
)) {
1997 /* failure at boot is fatal */
1998 BUG_ON(system_state
== SYSTEM_BOOTING
);
1999 printk("Failed to start kswapd on node %d\n",nid
);
2005 static int __init
kswapd_init(void)
2010 for_each_node_state(nid
, N_HIGH_MEMORY
)
2012 hotcpu_notifier(cpu_callback
, 0);
2016 module_init(kswapd_init
)
2022 * If non-zero call zone_reclaim when the number of free pages falls below
2025 int zone_reclaim_mode __read_mostly
;
2027 #define RECLAIM_OFF 0
2028 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2029 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2030 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2033 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2037 #define ZONE_RECLAIM_PRIORITY 4
2040 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2043 int sysctl_min_unmapped_ratio
= 1;
2046 * If the number of slab pages in a zone grows beyond this percentage then
2047 * slab reclaim needs to occur.
2049 int sysctl_min_slab_ratio
= 5;
2052 * Try to free up some pages from this zone through reclaim.
2054 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2056 /* Minimum pages needed in order to stay on node */
2057 const unsigned long nr_pages
= 1 << order
;
2058 struct task_struct
*p
= current
;
2059 struct reclaim_state reclaim_state
;
2061 unsigned long nr_reclaimed
= 0;
2062 struct scan_control sc
= {
2063 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2064 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2065 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2067 .gfp_mask
= gfp_mask
,
2068 .swappiness
= vm_swappiness
,
2069 .isolate_pages
= isolate_pages_global
,
2071 unsigned long slab_reclaimable
;
2073 disable_swap_token();
2076 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2077 * and we also need to be able to write out pages for RECLAIM_WRITE
2080 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2081 reclaim_state
.reclaimed_slab
= 0;
2082 p
->reclaim_state
= &reclaim_state
;
2084 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2085 zone_page_state(zone
, NR_FILE_MAPPED
) >
2086 zone
->min_unmapped_pages
) {
2088 * Free memory by calling shrink zone with increasing
2089 * priorities until we have enough memory freed.
2091 priority
= ZONE_RECLAIM_PRIORITY
;
2093 note_zone_scanning_priority(zone
, priority
);
2094 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
2096 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
2099 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2100 if (slab_reclaimable
> zone
->min_slab_pages
) {
2102 * shrink_slab() does not currently allow us to determine how
2103 * many pages were freed in this zone. So we take the current
2104 * number of slab pages and shake the slab until it is reduced
2105 * by the same nr_pages that we used for reclaiming unmapped
2108 * Note that shrink_slab will free memory on all zones and may
2111 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2112 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2113 slab_reclaimable
- nr_pages
)
2117 * Update nr_reclaimed by the number of slab pages we
2118 * reclaimed from this zone.
2120 nr_reclaimed
+= slab_reclaimable
-
2121 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2124 p
->reclaim_state
= NULL
;
2125 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2126 return nr_reclaimed
>= nr_pages
;
2129 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2135 * Zone reclaim reclaims unmapped file backed pages and
2136 * slab pages if we are over the defined limits.
2138 * A small portion of unmapped file backed pages is needed for
2139 * file I/O otherwise pages read by file I/O will be immediately
2140 * thrown out if the zone is overallocated. So we do not reclaim
2141 * if less than a specified percentage of the zone is used by
2142 * unmapped file backed pages.
2144 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2145 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2146 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2147 <= zone
->min_slab_pages
)
2150 if (zone_is_all_unreclaimable(zone
))
2154 * Do not scan if the allocation should not be delayed.
2156 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2160 * Only run zone reclaim on the local zone or on zones that do not
2161 * have associated processors. This will favor the local processor
2162 * over remote processors and spread off node memory allocations
2163 * as wide as possible.
2165 node_id
= zone_to_nid(zone
);
2166 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2169 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2171 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2172 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);