pci-acpi: add flag to indicate query had been done
[linux-2.6/mini2440.git] / fs / nfs / write.c
blob6d8ace3e3259d9f643fbf1e92fc3c4f1c4dc40f0
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
23 #include <asm/uaccess.h>
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
31 #define MIN_POOL_WRITE (32)
32 #define MIN_POOL_COMMIT (4)
35 * Local function declarations
37 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
38 struct page *,
39 unsigned int, unsigned int);
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
51 struct nfs_write_data *nfs_commitdata_alloc(void)
53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 if (p) {
56 memset(p, 0, sizeof(*p));
57 INIT_LIST_HEAD(&p->pages);
59 return p;
62 void nfs_commit_free(struct nfs_write_data *p)
64 if (p && (p->pagevec != &p->page_array[0]))
65 kfree(p->pagevec);
66 mempool_free(p, nfs_commit_mempool);
69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
73 if (p) {
74 memset(p, 0, sizeof(*p));
75 INIT_LIST_HEAD(&p->pages);
76 p->npages = pagecount;
77 if (pagecount <= ARRAY_SIZE(p->page_array))
78 p->pagevec = p->page_array;
79 else {
80 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
81 if (!p->pagevec) {
82 mempool_free(p, nfs_wdata_mempool);
83 p = NULL;
87 return p;
90 static void nfs_writedata_free(struct nfs_write_data *p)
92 if (p && (p->pagevec != &p->page_array[0]))
93 kfree(p->pagevec);
94 mempool_free(p, nfs_wdata_mempool);
97 void nfs_writedata_release(void *data)
99 struct nfs_write_data *wdata = data;
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
114 struct nfs_page *req = NULL;
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
121 return req;
124 static struct nfs_page *nfs_page_find_request(struct page *page)
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size = i_size_read(inode);
140 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
142 if (i_size > 0 && page->index < end_index)
143 return;
144 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
145 if (i_size >= end)
146 return;
147 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
148 i_size_write(inode, end);
151 /* A writeback failed: mark the page as bad, and invalidate the page cache */
152 static void nfs_set_pageerror(struct page *page)
154 SetPageError(page);
155 nfs_zap_mapping(page->mapping->host, page->mapping);
158 /* We can set the PG_uptodate flag if we see that a write request
159 * covers the full page.
161 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
163 if (PageUptodate(page))
164 return;
165 if (base != 0)
166 return;
167 if (count != nfs_page_length(page))
168 return;
169 SetPageUptodate(page);
172 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
173 unsigned int offset, unsigned int count)
175 struct nfs_page *req;
176 int ret;
178 for (;;) {
179 req = nfs_update_request(ctx, page, offset, count);
180 if (!IS_ERR(req))
181 break;
182 ret = PTR_ERR(req);
183 if (ret != -EBUSY)
184 return ret;
185 ret = nfs_wb_page(page->mapping->host, page);
186 if (ret != 0)
187 return ret;
189 /* Update file length */
190 nfs_grow_file(page, offset, count);
191 nfs_clear_page_tag_locked(req);
192 return 0;
195 static int wb_priority(struct writeback_control *wbc)
197 if (wbc->for_reclaim)
198 return FLUSH_HIGHPRI | FLUSH_STABLE;
199 if (wbc->for_kupdate)
200 return FLUSH_LOWPRI;
201 return 0;
205 * NFS congestion control
208 int nfs_congestion_kb;
210 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
211 #define NFS_CONGESTION_OFF_THRESH \
212 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
214 static int nfs_set_page_writeback(struct page *page)
216 int ret = test_set_page_writeback(page);
218 if (!ret) {
219 struct inode *inode = page->mapping->host;
220 struct nfs_server *nfss = NFS_SERVER(inode);
222 if (atomic_long_inc_return(&nfss->writeback) >
223 NFS_CONGESTION_ON_THRESH)
224 set_bdi_congested(&nfss->backing_dev_info, WRITE);
226 return ret;
229 static void nfs_end_page_writeback(struct page *page)
231 struct inode *inode = page->mapping->host;
232 struct nfs_server *nfss = NFS_SERVER(inode);
234 end_page_writeback(page);
235 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
236 clear_bdi_congested(&nfss->backing_dev_info, WRITE);
240 * Find an associated nfs write request, and prepare to flush it out
241 * May return an error if the user signalled nfs_wait_on_request().
243 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
244 struct page *page)
246 struct inode *inode = page->mapping->host;
247 struct nfs_page *req;
248 int ret;
250 spin_lock(&inode->i_lock);
251 for(;;) {
252 req = nfs_page_find_request_locked(page);
253 if (req == NULL) {
254 spin_unlock(&inode->i_lock);
255 return 0;
257 if (nfs_set_page_tag_locked(req))
258 break;
259 /* Note: If we hold the page lock, as is the case in nfs_writepage,
260 * then the call to nfs_set_page_tag_locked() will always
261 * succeed provided that someone hasn't already marked the
262 * request as dirty (in which case we don't care).
264 spin_unlock(&inode->i_lock);
265 ret = nfs_wait_on_request(req);
266 nfs_release_request(req);
267 if (ret != 0)
268 return ret;
269 spin_lock(&inode->i_lock);
271 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
272 /* This request is marked for commit */
273 spin_unlock(&inode->i_lock);
274 nfs_clear_page_tag_locked(req);
275 nfs_pageio_complete(pgio);
276 return 0;
278 if (nfs_set_page_writeback(page) != 0) {
279 spin_unlock(&inode->i_lock);
280 BUG();
282 spin_unlock(&inode->i_lock);
283 if (!nfs_pageio_add_request(pgio, req)) {
284 nfs_redirty_request(req);
285 return pgio->pg_error;
287 return 0;
290 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
292 struct inode *inode = page->mapping->host;
294 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
295 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
297 nfs_pageio_cond_complete(pgio, page->index);
298 return nfs_page_async_flush(pgio, page);
302 * Write an mmapped page to the server.
304 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
306 struct nfs_pageio_descriptor pgio;
307 int err;
309 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
310 err = nfs_do_writepage(page, wbc, &pgio);
311 nfs_pageio_complete(&pgio);
312 if (err < 0)
313 return err;
314 if (pgio.pg_error < 0)
315 return pgio.pg_error;
316 return 0;
319 int nfs_writepage(struct page *page, struct writeback_control *wbc)
321 int ret;
323 ret = nfs_writepage_locked(page, wbc);
324 unlock_page(page);
325 return ret;
328 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
330 int ret;
332 ret = nfs_do_writepage(page, wbc, data);
333 unlock_page(page);
334 return ret;
337 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
339 struct inode *inode = mapping->host;
340 struct nfs_pageio_descriptor pgio;
341 int err;
343 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
345 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
346 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
347 nfs_pageio_complete(&pgio);
348 if (err < 0)
349 return err;
350 if (pgio.pg_error < 0)
351 return pgio.pg_error;
352 return 0;
356 * Insert a write request into an inode
358 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
360 struct nfs_inode *nfsi = NFS_I(inode);
361 int error;
363 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
364 BUG_ON(error);
365 if (!nfsi->npages) {
366 igrab(inode);
367 if (nfs_have_delegation(inode, FMODE_WRITE))
368 nfsi->change_attr++;
370 SetPagePrivate(req->wb_page);
371 set_page_private(req->wb_page, (unsigned long)req);
372 nfsi->npages++;
373 kref_get(&req->wb_kref);
374 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
375 NFS_PAGE_TAG_LOCKED);
379 * Remove a write request from an inode
381 static void nfs_inode_remove_request(struct nfs_page *req)
383 struct inode *inode = req->wb_context->path.dentry->d_inode;
384 struct nfs_inode *nfsi = NFS_I(inode);
386 BUG_ON (!NFS_WBACK_BUSY(req));
388 spin_lock(&inode->i_lock);
389 set_page_private(req->wb_page, 0);
390 ClearPagePrivate(req->wb_page);
391 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
392 nfsi->npages--;
393 if (!nfsi->npages) {
394 spin_unlock(&inode->i_lock);
395 iput(inode);
396 } else
397 spin_unlock(&inode->i_lock);
398 nfs_clear_request(req);
399 nfs_release_request(req);
402 static void
403 nfs_mark_request_dirty(struct nfs_page *req)
405 __set_page_dirty_nobuffers(req->wb_page);
409 * Check if a request is dirty
411 static inline int
412 nfs_dirty_request(struct nfs_page *req)
414 struct page *page = req->wb_page;
416 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags))
417 return 0;
418 return !PageWriteback(page);
421 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
423 * Add a request to the inode's commit list.
425 static void
426 nfs_mark_request_commit(struct nfs_page *req)
428 struct inode *inode = req->wb_context->path.dentry->d_inode;
429 struct nfs_inode *nfsi = NFS_I(inode);
431 spin_lock(&inode->i_lock);
432 nfsi->ncommit++;
433 set_bit(PG_NEED_COMMIT, &(req)->wb_flags);
434 radix_tree_tag_set(&nfsi->nfs_page_tree,
435 req->wb_index,
436 NFS_PAGE_TAG_COMMIT);
437 spin_unlock(&inode->i_lock);
438 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
439 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
440 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
443 static inline
444 int nfs_write_need_commit(struct nfs_write_data *data)
446 return data->verf.committed != NFS_FILE_SYNC;
449 static inline
450 int nfs_reschedule_unstable_write(struct nfs_page *req)
452 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
453 nfs_mark_request_commit(req);
454 return 1;
456 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
457 nfs_mark_request_dirty(req);
458 return 1;
460 return 0;
462 #else
463 static inline void
464 nfs_mark_request_commit(struct nfs_page *req)
468 static inline
469 int nfs_write_need_commit(struct nfs_write_data *data)
471 return 0;
474 static inline
475 int nfs_reschedule_unstable_write(struct nfs_page *req)
477 return 0;
479 #endif
482 * Wait for a request to complete.
484 * Interruptible by fatal signals only.
486 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
488 struct nfs_inode *nfsi = NFS_I(inode);
489 struct nfs_page *req;
490 pgoff_t idx_end, next;
491 unsigned int res = 0;
492 int error;
494 if (npages == 0)
495 idx_end = ~0;
496 else
497 idx_end = idx_start + npages - 1;
499 next = idx_start;
500 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
501 if (req->wb_index > idx_end)
502 break;
504 next = req->wb_index + 1;
505 BUG_ON(!NFS_WBACK_BUSY(req));
507 kref_get(&req->wb_kref);
508 spin_unlock(&inode->i_lock);
509 error = nfs_wait_on_request(req);
510 nfs_release_request(req);
511 spin_lock(&inode->i_lock);
512 if (error < 0)
513 return error;
514 res++;
516 return res;
519 static void nfs_cancel_commit_list(struct list_head *head)
521 struct nfs_page *req;
523 while(!list_empty(head)) {
524 req = nfs_list_entry(head->next);
525 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
526 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
527 BDI_RECLAIMABLE);
528 nfs_list_remove_request(req);
529 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
530 nfs_inode_remove_request(req);
531 nfs_unlock_request(req);
535 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
537 * nfs_scan_commit - Scan an inode for commit requests
538 * @inode: NFS inode to scan
539 * @dst: destination list
540 * @idx_start: lower bound of page->index to scan.
541 * @npages: idx_start + npages sets the upper bound to scan.
543 * Moves requests from the inode's 'commit' request list.
544 * The requests are *not* checked to ensure that they form a contiguous set.
546 static int
547 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
549 struct nfs_inode *nfsi = NFS_I(inode);
550 int res = 0;
552 if (nfsi->ncommit != 0) {
553 res = nfs_scan_list(nfsi, dst, idx_start, npages,
554 NFS_PAGE_TAG_COMMIT);
555 nfsi->ncommit -= res;
557 return res;
559 #else
560 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
562 return 0;
564 #endif
567 * Try to update any existing write request, or create one if there is none.
568 * In order to match, the request's credentials must match those of
569 * the calling process.
571 * Note: Should always be called with the Page Lock held!
573 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
574 struct page *page, unsigned int offset, unsigned int bytes)
576 struct address_space *mapping = page->mapping;
577 struct inode *inode = mapping->host;
578 struct nfs_page *req, *new = NULL;
579 pgoff_t rqend, end;
581 end = offset + bytes;
583 for (;;) {
584 /* Loop over all inode entries and see if we find
585 * A request for the page we wish to update
587 if (new) {
588 if (radix_tree_preload(GFP_NOFS)) {
589 nfs_release_request(new);
590 return ERR_PTR(-ENOMEM);
594 spin_lock(&inode->i_lock);
595 req = nfs_page_find_request_locked(page);
596 if (req) {
597 if (!nfs_set_page_tag_locked(req)) {
598 int error;
600 spin_unlock(&inode->i_lock);
601 error = nfs_wait_on_request(req);
602 nfs_release_request(req);
603 if (error < 0) {
604 if (new) {
605 radix_tree_preload_end();
606 nfs_release_request(new);
608 return ERR_PTR(error);
610 continue;
612 spin_unlock(&inode->i_lock);
613 if (new) {
614 radix_tree_preload_end();
615 nfs_release_request(new);
617 break;
620 if (new) {
621 nfs_lock_request_dontget(new);
622 nfs_inode_add_request(inode, new);
623 spin_unlock(&inode->i_lock);
624 radix_tree_preload_end();
625 req = new;
626 goto zero_page;
628 spin_unlock(&inode->i_lock);
630 new = nfs_create_request(ctx, inode, page, offset, bytes);
631 if (IS_ERR(new))
632 return new;
635 /* We have a request for our page.
636 * If the creds don't match, or the
637 * page addresses don't match,
638 * tell the caller to wait on the conflicting
639 * request.
641 rqend = req->wb_offset + req->wb_bytes;
642 if (req->wb_context != ctx
643 || req->wb_page != page
644 || !nfs_dirty_request(req)
645 || offset > rqend || end < req->wb_offset) {
646 nfs_clear_page_tag_locked(req);
647 return ERR_PTR(-EBUSY);
650 /* Okay, the request matches. Update the region */
651 if (offset < req->wb_offset) {
652 req->wb_offset = offset;
653 req->wb_pgbase = offset;
654 req->wb_bytes = max(end, rqend) - req->wb_offset;
655 goto zero_page;
658 if (end > rqend)
659 req->wb_bytes = end - req->wb_offset;
661 return req;
662 zero_page:
663 /* If this page might potentially be marked as up to date,
664 * then we need to zero any uninitalised data. */
665 if (req->wb_pgbase == 0 && req->wb_bytes != PAGE_CACHE_SIZE
666 && !PageUptodate(req->wb_page))
667 zero_user_segment(req->wb_page, req->wb_bytes, PAGE_CACHE_SIZE);
668 return req;
671 int nfs_flush_incompatible(struct file *file, struct page *page)
673 struct nfs_open_context *ctx = nfs_file_open_context(file);
674 struct nfs_page *req;
675 int do_flush, status;
677 * Look for a request corresponding to this page. If there
678 * is one, and it belongs to another file, we flush it out
679 * before we try to copy anything into the page. Do this
680 * due to the lack of an ACCESS-type call in NFSv2.
681 * Also do the same if we find a request from an existing
682 * dropped page.
684 do {
685 req = nfs_page_find_request(page);
686 if (req == NULL)
687 return 0;
688 do_flush = req->wb_page != page || req->wb_context != ctx
689 || !nfs_dirty_request(req);
690 nfs_release_request(req);
691 if (!do_flush)
692 return 0;
693 status = nfs_wb_page(page->mapping->host, page);
694 } while (status == 0);
695 return status;
699 * If the page cache is marked as unsafe or invalid, then we can't rely on
700 * the PageUptodate() flag. In this case, we will need to turn off
701 * write optimisations that depend on the page contents being correct.
703 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
705 return PageUptodate(page) &&
706 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
710 * Update and possibly write a cached page of an NFS file.
712 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
713 * things with a page scheduled for an RPC call (e.g. invalidate it).
715 int nfs_updatepage(struct file *file, struct page *page,
716 unsigned int offset, unsigned int count)
718 struct nfs_open_context *ctx = nfs_file_open_context(file);
719 struct inode *inode = page->mapping->host;
720 int status = 0;
722 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
724 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n",
725 file->f_path.dentry->d_parent->d_name.name,
726 file->f_path.dentry->d_name.name, count,
727 (long long)(page_offset(page) +offset));
729 /* If we're not using byte range locks, and we know the page
730 * is up to date, it may be more efficient to extend the write
731 * to cover the entire page in order to avoid fragmentation
732 * inefficiencies.
734 if (nfs_write_pageuptodate(page, inode) &&
735 inode->i_flock == NULL &&
736 !(file->f_flags & O_SYNC)) {
737 count = max(count + offset, nfs_page_length(page));
738 offset = 0;
741 status = nfs_writepage_setup(ctx, page, offset, count);
742 __set_page_dirty_nobuffers(page);
744 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n",
745 status, (long long)i_size_read(inode));
746 if (status < 0)
747 nfs_set_pageerror(page);
748 return status;
751 static void nfs_writepage_release(struct nfs_page *req)
754 if (PageError(req->wb_page)) {
755 nfs_end_page_writeback(req->wb_page);
756 nfs_inode_remove_request(req);
757 } else if (!nfs_reschedule_unstable_write(req)) {
758 /* Set the PG_uptodate flag */
759 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes);
760 nfs_end_page_writeback(req->wb_page);
761 nfs_inode_remove_request(req);
762 } else
763 nfs_end_page_writeback(req->wb_page);
764 nfs_clear_page_tag_locked(req);
767 static int flush_task_priority(int how)
769 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
770 case FLUSH_HIGHPRI:
771 return RPC_PRIORITY_HIGH;
772 case FLUSH_LOWPRI:
773 return RPC_PRIORITY_LOW;
775 return RPC_PRIORITY_NORMAL;
779 * Set up the argument/result storage required for the RPC call.
781 static int nfs_write_rpcsetup(struct nfs_page *req,
782 struct nfs_write_data *data,
783 const struct rpc_call_ops *call_ops,
784 unsigned int count, unsigned int offset,
785 int how)
787 struct inode *inode = req->wb_context->path.dentry->d_inode;
788 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
789 int priority = flush_task_priority(how);
790 struct rpc_task *task;
791 struct rpc_message msg = {
792 .rpc_argp = &data->args,
793 .rpc_resp = &data->res,
794 .rpc_cred = req->wb_context->cred,
796 struct rpc_task_setup task_setup_data = {
797 .rpc_client = NFS_CLIENT(inode),
798 .task = &data->task,
799 .rpc_message = &msg,
800 .callback_ops = call_ops,
801 .callback_data = data,
802 .workqueue = nfsiod_workqueue,
803 .flags = flags,
804 .priority = priority,
807 /* Set up the RPC argument and reply structs
808 * NB: take care not to mess about with data->commit et al. */
810 data->req = req;
811 data->inode = inode = req->wb_context->path.dentry->d_inode;
812 data->cred = msg.rpc_cred;
814 data->args.fh = NFS_FH(inode);
815 data->args.offset = req_offset(req) + offset;
816 data->args.pgbase = req->wb_pgbase + offset;
817 data->args.pages = data->pagevec;
818 data->args.count = count;
819 data->args.context = get_nfs_open_context(req->wb_context);
820 data->args.stable = NFS_UNSTABLE;
821 if (how & FLUSH_STABLE) {
822 data->args.stable = NFS_DATA_SYNC;
823 if (!NFS_I(inode)->ncommit)
824 data->args.stable = NFS_FILE_SYNC;
827 data->res.fattr = &data->fattr;
828 data->res.count = count;
829 data->res.verf = &data->verf;
830 nfs_fattr_init(&data->fattr);
832 /* Set up the initial task struct. */
833 NFS_PROTO(inode)->write_setup(data, &msg);
835 dprintk("NFS: %5u initiated write call "
836 "(req %s/%Ld, %u bytes @ offset %Lu)\n",
837 data->task.tk_pid,
838 inode->i_sb->s_id,
839 (long long)NFS_FILEID(inode),
840 count,
841 (unsigned long long)data->args.offset);
843 task = rpc_run_task(&task_setup_data);
844 if (IS_ERR(task))
845 return PTR_ERR(task);
846 rpc_put_task(task);
847 return 0;
850 /* If a nfs_flush_* function fails, it should remove reqs from @head and
851 * call this on each, which will prepare them to be retried on next
852 * writeback using standard nfs.
854 static void nfs_redirty_request(struct nfs_page *req)
856 nfs_mark_request_dirty(req);
857 nfs_end_page_writeback(req->wb_page);
858 nfs_clear_page_tag_locked(req);
862 * Generate multiple small requests to write out a single
863 * contiguous dirty area on one page.
865 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
867 struct nfs_page *req = nfs_list_entry(head->next);
868 struct page *page = req->wb_page;
869 struct nfs_write_data *data;
870 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
871 unsigned int offset;
872 int requests = 0;
873 int ret = 0;
874 LIST_HEAD(list);
876 nfs_list_remove_request(req);
878 nbytes = count;
879 do {
880 size_t len = min(nbytes, wsize);
882 data = nfs_writedata_alloc(1);
883 if (!data)
884 goto out_bad;
885 list_add(&data->pages, &list);
886 requests++;
887 nbytes -= len;
888 } while (nbytes != 0);
889 atomic_set(&req->wb_complete, requests);
891 ClearPageError(page);
892 offset = 0;
893 nbytes = count;
894 do {
895 int ret2;
897 data = list_entry(list.next, struct nfs_write_data, pages);
898 list_del_init(&data->pages);
900 data->pagevec[0] = page;
902 if (nbytes < wsize)
903 wsize = nbytes;
904 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
905 wsize, offset, how);
906 if (ret == 0)
907 ret = ret2;
908 offset += wsize;
909 nbytes -= wsize;
910 } while (nbytes != 0);
912 return ret;
914 out_bad:
915 while (!list_empty(&list)) {
916 data = list_entry(list.next, struct nfs_write_data, pages);
917 list_del(&data->pages);
918 nfs_writedata_release(data);
920 nfs_redirty_request(req);
921 return -ENOMEM;
925 * Create an RPC task for the given write request and kick it.
926 * The page must have been locked by the caller.
928 * It may happen that the page we're passed is not marked dirty.
929 * This is the case if nfs_updatepage detects a conflicting request
930 * that has been written but not committed.
932 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
934 struct nfs_page *req;
935 struct page **pages;
936 struct nfs_write_data *data;
938 data = nfs_writedata_alloc(npages);
939 if (!data)
940 goto out_bad;
942 pages = data->pagevec;
943 while (!list_empty(head)) {
944 req = nfs_list_entry(head->next);
945 nfs_list_remove_request(req);
946 nfs_list_add_request(req, &data->pages);
947 ClearPageError(req->wb_page);
948 *pages++ = req->wb_page;
950 req = nfs_list_entry(data->pages.next);
952 /* Set up the argument struct */
953 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
954 out_bad:
955 while (!list_empty(head)) {
956 req = nfs_list_entry(head->next);
957 nfs_list_remove_request(req);
958 nfs_redirty_request(req);
960 return -ENOMEM;
963 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
964 struct inode *inode, int ioflags)
966 size_t wsize = NFS_SERVER(inode)->wsize;
968 if (wsize < PAGE_CACHE_SIZE)
969 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
970 else
971 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
975 * Handle a write reply that flushed part of a page.
977 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
979 struct nfs_write_data *data = calldata;
980 struct nfs_page *req = data->req;
982 dprintk("NFS: write (%s/%Ld %d@%Ld)",
983 req->wb_context->path.dentry->d_inode->i_sb->s_id,
984 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
985 req->wb_bytes,
986 (long long)req_offset(req));
988 nfs_writeback_done(task, data);
991 static void nfs_writeback_release_partial(void *calldata)
993 struct nfs_write_data *data = calldata;
994 struct nfs_page *req = data->req;
995 struct page *page = req->wb_page;
996 int status = data->task.tk_status;
998 if (status < 0) {
999 nfs_set_pageerror(page);
1000 nfs_context_set_write_error(req->wb_context, status);
1001 dprintk(", error = %d\n", status);
1002 goto out;
1005 if (nfs_write_need_commit(data)) {
1006 struct inode *inode = page->mapping->host;
1008 spin_lock(&inode->i_lock);
1009 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1010 /* Do nothing we need to resend the writes */
1011 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1012 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1013 dprintk(" defer commit\n");
1014 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1015 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1016 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1017 dprintk(" server reboot detected\n");
1019 spin_unlock(&inode->i_lock);
1020 } else
1021 dprintk(" OK\n");
1023 out:
1024 if (atomic_dec_and_test(&req->wb_complete))
1025 nfs_writepage_release(req);
1026 nfs_writedata_release(calldata);
1029 static const struct rpc_call_ops nfs_write_partial_ops = {
1030 .rpc_call_done = nfs_writeback_done_partial,
1031 .rpc_release = nfs_writeback_release_partial,
1035 * Handle a write reply that flushes a whole page.
1037 * FIXME: There is an inherent race with invalidate_inode_pages and
1038 * writebacks since the page->count is kept > 1 for as long
1039 * as the page has a write request pending.
1041 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1043 struct nfs_write_data *data = calldata;
1045 nfs_writeback_done(task, data);
1048 static void nfs_writeback_release_full(void *calldata)
1050 struct nfs_write_data *data = calldata;
1051 int status = data->task.tk_status;
1053 /* Update attributes as result of writeback. */
1054 while (!list_empty(&data->pages)) {
1055 struct nfs_page *req = nfs_list_entry(data->pages.next);
1056 struct page *page = req->wb_page;
1058 nfs_list_remove_request(req);
1060 dprintk("NFS: write (%s/%Ld %d@%Ld)",
1061 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1062 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1063 req->wb_bytes,
1064 (long long)req_offset(req));
1066 if (status < 0) {
1067 nfs_set_pageerror(page);
1068 nfs_context_set_write_error(req->wb_context, status);
1069 dprintk(", error = %d\n", status);
1070 goto remove_request;
1073 if (nfs_write_need_commit(data)) {
1074 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1075 nfs_mark_request_commit(req);
1076 nfs_end_page_writeback(page);
1077 dprintk(" marked for commit\n");
1078 goto next;
1080 /* Set the PG_uptodate flag? */
1081 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
1082 dprintk(" OK\n");
1083 remove_request:
1084 nfs_end_page_writeback(page);
1085 nfs_inode_remove_request(req);
1086 next:
1087 nfs_clear_page_tag_locked(req);
1089 nfs_writedata_release(calldata);
1092 static const struct rpc_call_ops nfs_write_full_ops = {
1093 .rpc_call_done = nfs_writeback_done_full,
1094 .rpc_release = nfs_writeback_release_full,
1099 * This function is called when the WRITE call is complete.
1101 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1103 struct nfs_writeargs *argp = &data->args;
1104 struct nfs_writeres *resp = &data->res;
1105 int status;
1107 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1108 task->tk_pid, task->tk_status);
1111 * ->write_done will attempt to use post-op attributes to detect
1112 * conflicting writes by other clients. A strict interpretation
1113 * of close-to-open would allow us to continue caching even if
1114 * another writer had changed the file, but some applications
1115 * depend on tighter cache coherency when writing.
1117 status = NFS_PROTO(data->inode)->write_done(task, data);
1118 if (status != 0)
1119 return status;
1120 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1122 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1123 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1124 /* We tried a write call, but the server did not
1125 * commit data to stable storage even though we
1126 * requested it.
1127 * Note: There is a known bug in Tru64 < 5.0 in which
1128 * the server reports NFS_DATA_SYNC, but performs
1129 * NFS_FILE_SYNC. We therefore implement this checking
1130 * as a dprintk() in order to avoid filling syslog.
1132 static unsigned long complain;
1134 if (time_before(complain, jiffies)) {
1135 dprintk("NFS: faulty NFS server %s:"
1136 " (committed = %d) != (stable = %d)\n",
1137 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1138 resp->verf->committed, argp->stable);
1139 complain = jiffies + 300 * HZ;
1142 #endif
1143 /* Is this a short write? */
1144 if (task->tk_status >= 0 && resp->count < argp->count) {
1145 static unsigned long complain;
1147 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1149 /* Has the server at least made some progress? */
1150 if (resp->count != 0) {
1151 /* Was this an NFSv2 write or an NFSv3 stable write? */
1152 if (resp->verf->committed != NFS_UNSTABLE) {
1153 /* Resend from where the server left off */
1154 argp->offset += resp->count;
1155 argp->pgbase += resp->count;
1156 argp->count -= resp->count;
1157 } else {
1158 /* Resend as a stable write in order to avoid
1159 * headaches in the case of a server crash.
1161 argp->stable = NFS_FILE_SYNC;
1163 rpc_restart_call(task);
1164 return -EAGAIN;
1166 if (time_before(complain, jiffies)) {
1167 printk(KERN_WARNING
1168 "NFS: Server wrote zero bytes, expected %u.\n",
1169 argp->count);
1170 complain = jiffies + 300 * HZ;
1172 /* Can't do anything about it except throw an error. */
1173 task->tk_status = -EIO;
1175 return 0;
1179 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1180 void nfs_commitdata_release(void *data)
1182 struct nfs_write_data *wdata = data;
1184 put_nfs_open_context(wdata->args.context);
1185 nfs_commit_free(wdata);
1189 * Set up the argument/result storage required for the RPC call.
1191 static int nfs_commit_rpcsetup(struct list_head *head,
1192 struct nfs_write_data *data,
1193 int how)
1195 struct nfs_page *first = nfs_list_entry(head->next);
1196 struct inode *inode = first->wb_context->path.dentry->d_inode;
1197 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1198 int priority = flush_task_priority(how);
1199 struct rpc_task *task;
1200 struct rpc_message msg = {
1201 .rpc_argp = &data->args,
1202 .rpc_resp = &data->res,
1203 .rpc_cred = first->wb_context->cred,
1205 struct rpc_task_setup task_setup_data = {
1206 .task = &data->task,
1207 .rpc_client = NFS_CLIENT(inode),
1208 .rpc_message = &msg,
1209 .callback_ops = &nfs_commit_ops,
1210 .callback_data = data,
1211 .workqueue = nfsiod_workqueue,
1212 .flags = flags,
1213 .priority = priority,
1216 /* Set up the RPC argument and reply structs
1217 * NB: take care not to mess about with data->commit et al. */
1219 list_splice_init(head, &data->pages);
1221 data->inode = inode;
1222 data->cred = msg.rpc_cred;
1224 data->args.fh = NFS_FH(data->inode);
1225 /* Note: we always request a commit of the entire inode */
1226 data->args.offset = 0;
1227 data->args.count = 0;
1228 data->args.context = get_nfs_open_context(first->wb_context);
1229 data->res.count = 0;
1230 data->res.fattr = &data->fattr;
1231 data->res.verf = &data->verf;
1232 nfs_fattr_init(&data->fattr);
1234 /* Set up the initial task struct. */
1235 NFS_PROTO(inode)->commit_setup(data, &msg);
1237 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1239 task = rpc_run_task(&task_setup_data);
1240 if (IS_ERR(task))
1241 return PTR_ERR(task);
1242 rpc_put_task(task);
1243 return 0;
1247 * Commit dirty pages
1249 static int
1250 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1252 struct nfs_write_data *data;
1253 struct nfs_page *req;
1255 data = nfs_commitdata_alloc();
1257 if (!data)
1258 goto out_bad;
1260 /* Set up the argument struct */
1261 return nfs_commit_rpcsetup(head, data, how);
1262 out_bad:
1263 while (!list_empty(head)) {
1264 req = nfs_list_entry(head->next);
1265 nfs_list_remove_request(req);
1266 nfs_mark_request_commit(req);
1267 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1268 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1269 BDI_RECLAIMABLE);
1270 nfs_clear_page_tag_locked(req);
1272 return -ENOMEM;
1276 * COMMIT call returned
1278 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1280 struct nfs_write_data *data = calldata;
1282 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1283 task->tk_pid, task->tk_status);
1285 /* Call the NFS version-specific code */
1286 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1287 return;
1290 static void nfs_commit_release(void *calldata)
1292 struct nfs_write_data *data = calldata;
1293 struct nfs_page *req;
1294 int status = data->task.tk_status;
1296 while (!list_empty(&data->pages)) {
1297 req = nfs_list_entry(data->pages.next);
1298 nfs_list_remove_request(req);
1299 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
1300 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1301 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1302 BDI_RECLAIMABLE);
1304 dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1305 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1306 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1307 req->wb_bytes,
1308 (long long)req_offset(req));
1309 if (status < 0) {
1310 nfs_context_set_write_error(req->wb_context, status);
1311 nfs_inode_remove_request(req);
1312 dprintk(", error = %d\n", status);
1313 goto next;
1316 /* Okay, COMMIT succeeded, apparently. Check the verifier
1317 * returned by the server against all stored verfs. */
1318 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1319 /* We have a match */
1320 /* Set the PG_uptodate flag */
1321 nfs_mark_uptodate(req->wb_page, req->wb_pgbase,
1322 req->wb_bytes);
1323 nfs_inode_remove_request(req);
1324 dprintk(" OK\n");
1325 goto next;
1327 /* We have a mismatch. Write the page again */
1328 dprintk(" mismatch\n");
1329 nfs_mark_request_dirty(req);
1330 next:
1331 nfs_clear_page_tag_locked(req);
1333 nfs_commitdata_release(calldata);
1336 static const struct rpc_call_ops nfs_commit_ops = {
1337 .rpc_call_done = nfs_commit_done,
1338 .rpc_release = nfs_commit_release,
1341 int nfs_commit_inode(struct inode *inode, int how)
1343 LIST_HEAD(head);
1344 int res;
1346 spin_lock(&inode->i_lock);
1347 res = nfs_scan_commit(inode, &head, 0, 0);
1348 spin_unlock(&inode->i_lock);
1349 if (res) {
1350 int error = nfs_commit_list(inode, &head, how);
1351 if (error < 0)
1352 return error;
1354 return res;
1356 #else
1357 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1359 return 0;
1361 #endif
1363 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1365 struct inode *inode = mapping->host;
1366 pgoff_t idx_start, idx_end;
1367 unsigned int npages = 0;
1368 LIST_HEAD(head);
1369 int nocommit = how & FLUSH_NOCOMMIT;
1370 long pages, ret;
1372 /* FIXME */
1373 if (wbc->range_cyclic)
1374 idx_start = 0;
1375 else {
1376 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1377 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1378 if (idx_end > idx_start) {
1379 pgoff_t l_npages = 1 + idx_end - idx_start;
1380 npages = l_npages;
1381 if (sizeof(npages) != sizeof(l_npages) &&
1382 (pgoff_t)npages != l_npages)
1383 npages = 0;
1386 how &= ~FLUSH_NOCOMMIT;
1387 spin_lock(&inode->i_lock);
1388 do {
1389 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1390 if (ret != 0)
1391 continue;
1392 if (nocommit)
1393 break;
1394 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1395 if (pages == 0)
1396 break;
1397 if (how & FLUSH_INVALIDATE) {
1398 spin_unlock(&inode->i_lock);
1399 nfs_cancel_commit_list(&head);
1400 ret = pages;
1401 spin_lock(&inode->i_lock);
1402 continue;
1404 pages += nfs_scan_commit(inode, &head, 0, 0);
1405 spin_unlock(&inode->i_lock);
1406 ret = nfs_commit_list(inode, &head, how);
1407 spin_lock(&inode->i_lock);
1409 } while (ret >= 0);
1410 spin_unlock(&inode->i_lock);
1411 return ret;
1414 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1416 int ret;
1418 ret = nfs_writepages(mapping, wbc);
1419 if (ret < 0)
1420 goto out;
1421 ret = nfs_sync_mapping_wait(mapping, wbc, how);
1422 if (ret < 0)
1423 goto out;
1424 return 0;
1425 out:
1426 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1427 return ret;
1430 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1431 static int nfs_write_mapping(struct address_space *mapping, int how)
1433 struct writeback_control wbc = {
1434 .bdi = mapping->backing_dev_info,
1435 .sync_mode = WB_SYNC_NONE,
1436 .nr_to_write = LONG_MAX,
1437 .for_writepages = 1,
1438 .range_cyclic = 1,
1440 int ret;
1442 ret = __nfs_write_mapping(mapping, &wbc, how);
1443 if (ret < 0)
1444 return ret;
1445 wbc.sync_mode = WB_SYNC_ALL;
1446 return __nfs_write_mapping(mapping, &wbc, how);
1450 * flush the inode to disk.
1452 int nfs_wb_all(struct inode *inode)
1454 return nfs_write_mapping(inode->i_mapping, 0);
1457 int nfs_wb_nocommit(struct inode *inode)
1459 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1462 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1464 struct nfs_page *req;
1465 loff_t range_start = page_offset(page);
1466 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1467 struct writeback_control wbc = {
1468 .bdi = page->mapping->backing_dev_info,
1469 .sync_mode = WB_SYNC_ALL,
1470 .nr_to_write = LONG_MAX,
1471 .range_start = range_start,
1472 .range_end = range_end,
1474 int ret = 0;
1476 BUG_ON(!PageLocked(page));
1477 for (;;) {
1478 req = nfs_page_find_request(page);
1479 if (req == NULL)
1480 goto out;
1481 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1482 nfs_release_request(req);
1483 break;
1485 if (nfs_lock_request_dontget(req)) {
1486 nfs_inode_remove_request(req);
1488 * In case nfs_inode_remove_request has marked the
1489 * page as being dirty
1491 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1492 nfs_unlock_request(req);
1493 break;
1495 ret = nfs_wait_on_request(req);
1496 if (ret < 0)
1497 goto out;
1499 if (!PagePrivate(page))
1500 return 0;
1501 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1502 out:
1503 return ret;
1506 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1507 int how)
1509 loff_t range_start = page_offset(page);
1510 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1511 struct writeback_control wbc = {
1512 .bdi = page->mapping->backing_dev_info,
1513 .sync_mode = WB_SYNC_ALL,
1514 .nr_to_write = LONG_MAX,
1515 .range_start = range_start,
1516 .range_end = range_end,
1518 int ret;
1520 do {
1521 if (clear_page_dirty_for_io(page)) {
1522 ret = nfs_writepage_locked(page, &wbc);
1523 if (ret < 0)
1524 goto out_error;
1525 } else if (!PagePrivate(page))
1526 break;
1527 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1528 if (ret < 0)
1529 goto out_error;
1530 } while (PagePrivate(page));
1531 return 0;
1532 out_error:
1533 __mark_inode_dirty(inode, I_DIRTY_PAGES);
1534 return ret;
1538 * Write back all requests on one page - we do this before reading it.
1540 int nfs_wb_page(struct inode *inode, struct page* page)
1542 return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1545 int __init nfs_init_writepagecache(void)
1547 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1548 sizeof(struct nfs_write_data),
1549 0, SLAB_HWCACHE_ALIGN,
1550 NULL);
1551 if (nfs_wdata_cachep == NULL)
1552 return -ENOMEM;
1554 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1555 nfs_wdata_cachep);
1556 if (nfs_wdata_mempool == NULL)
1557 return -ENOMEM;
1559 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1560 nfs_wdata_cachep);
1561 if (nfs_commit_mempool == NULL)
1562 return -ENOMEM;
1565 * NFS congestion size, scale with available memory.
1567 * 64MB: 8192k
1568 * 128MB: 11585k
1569 * 256MB: 16384k
1570 * 512MB: 23170k
1571 * 1GB: 32768k
1572 * 2GB: 46340k
1573 * 4GB: 65536k
1574 * 8GB: 92681k
1575 * 16GB: 131072k
1577 * This allows larger machines to have larger/more transfers.
1578 * Limit the default to 256M
1580 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1581 if (nfs_congestion_kb > 256*1024)
1582 nfs_congestion_kb = 256*1024;
1584 return 0;
1587 void nfs_destroy_writepagecache(void)
1589 mempool_destroy(nfs_commit_mempool);
1590 mempool_destroy(nfs_wdata_mempool);
1591 kmem_cache_destroy(nfs_wdata_cachep);