Ath5k: fix bintval setup
[linux-2.6/mini2440.git] / net / sctp / socket.c
blobafa952e726d7c9ab8b2c8951d5ffdcd87fe47aca
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel implementation
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
119 static void sctp_enter_memory_pressure(struct sock *sk)
121 sctp_memory_pressure = 1;
125 /* Get the sndbuf space available at the time on the association. */
126 static inline int sctp_wspace(struct sctp_association *asoc)
128 int amt;
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
146 return amt;
149 /* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
166 skb_set_owner_w(chunk->skb, sk);
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk->sk_wmem_queued += chunk->skb->truesize;
178 sk_mem_charge(sk, chunk->skb->truesize);
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 int len)
185 struct sctp_af *af;
187 /* Verify basic sockaddr. */
188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 if (!af)
190 return -EINVAL;
192 /* Is this a valid SCTP address? */
193 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 return -EINVAL;
196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 return -EINVAL;
199 return 0;
202 /* Look up the association by its id. If this is not a UDP-style
203 * socket, the ID field is always ignored.
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
207 struct sctp_association *asoc = NULL;
209 /* If this is not a UDP-style socket, assoc id should be ignored. */
210 if (!sctp_style(sk, UDP)) {
211 /* Return NULL if the socket state is not ESTABLISHED. It
212 * could be a TCP-style listening socket or a socket which
213 * hasn't yet called connect() to establish an association.
215 if (!sctp_sstate(sk, ESTABLISHED))
216 return NULL;
218 /* Get the first and the only association from the list. */
219 if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 struct sctp_association, asocs);
222 return asoc;
225 /* Otherwise this is a UDP-style socket. */
226 if (!id || (id == (sctp_assoc_t)-1))
227 return NULL;
229 spin_lock_bh(&sctp_assocs_id_lock);
230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 spin_unlock_bh(&sctp_assocs_id_lock);
233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 return NULL;
236 return asoc;
239 /* Look up the transport from an address and an assoc id. If both address and
240 * id are specified, the associations matching the address and the id should be
241 * the same.
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 struct sockaddr_storage *addr,
245 sctp_assoc_t id)
247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 struct sctp_transport *transport;
249 union sctp_addr *laddr = (union sctp_addr *)addr;
251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 laddr,
253 &transport);
255 if (!addr_asoc)
256 return NULL;
258 id_asoc = sctp_id2assoc(sk, id);
259 if (id_asoc && (id_asoc != addr_asoc))
260 return NULL;
262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 (union sctp_addr *)addr);
265 return transport;
268 /* API 3.1.2 bind() - UDP Style Syntax
269 * The syntax of bind() is,
271 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
273 * sd - the socket descriptor returned by socket().
274 * addr - the address structure (struct sockaddr_in or struct
275 * sockaddr_in6 [RFC 2553]),
276 * addr_len - the size of the address structure.
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
280 int retval = 0;
282 sctp_lock_sock(sk);
284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 sk, addr, addr_len);
287 /* Disallow binding twice. */
288 if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 addr_len);
291 else
292 retval = -EINVAL;
294 sctp_release_sock(sk);
296 return retval;
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 union sctp_addr *addr, int len)
305 struct sctp_af *af;
307 /* Check minimum size. */
308 if (len < sizeof (struct sockaddr))
309 return NULL;
311 /* V4 mapped address are really of AF_INET family */
312 if (addr->sa.sa_family == AF_INET6 &&
313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 if (!opt->pf->af_supported(AF_INET, opt))
315 return NULL;
316 } else {
317 /* Does this PF support this AF? */
318 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 return NULL;
322 /* If we get this far, af is valid. */
323 af = sctp_get_af_specific(addr->sa.sa_family);
325 if (len < af->sockaddr_len)
326 return NULL;
328 return af;
331 /* Bind a local address either to an endpoint or to an association. */
332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
334 struct sctp_sock *sp = sctp_sk(sk);
335 struct sctp_endpoint *ep = sp->ep;
336 struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 struct sctp_af *af;
338 unsigned short snum;
339 int ret = 0;
341 /* Common sockaddr verification. */
342 af = sctp_sockaddr_af(sp, addr, len);
343 if (!af) {
344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 sk, addr, len);
346 return -EINVAL;
349 snum = ntohs(addr->v4.sin_port);
351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 ", port: %d, new port: %d, len: %d)\n",
354 addr,
355 bp->port, snum,
356 len);
358 /* PF specific bind() address verification. */
359 if (!sp->pf->bind_verify(sp, addr))
360 return -EADDRNOTAVAIL;
362 /* We must either be unbound, or bind to the same port.
363 * It's OK to allow 0 ports if we are already bound.
364 * We'll just inhert an already bound port in this case
366 if (bp->port) {
367 if (!snum)
368 snum = bp->port;
369 else if (snum != bp->port) {
370 SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 " New port %d does not match existing port "
372 "%d.\n", snum, bp->port);
373 return -EINVAL;
377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 return -EACCES;
380 /* See if the address matches any of the addresses we may have
381 * already bound before checking against other endpoints.
383 if (sctp_bind_addr_match(bp, addr, sp))
384 return -EINVAL;
386 /* Make sure we are allowed to bind here.
387 * The function sctp_get_port_local() does duplicate address
388 * detection.
390 addr->v4.sin_port = htons(snum);
391 if ((ret = sctp_get_port_local(sk, addr))) {
392 return -EADDRINUSE;
395 /* Refresh ephemeral port. */
396 if (!bp->port)
397 bp->port = inet_sk(sk)->num;
399 /* Add the address to the bind address list.
400 * Use GFP_ATOMIC since BHs will be disabled.
402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
404 /* Copy back into socket for getsockname() use. */
405 if (!ret) {
406 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
407 af->to_sk_saddr(addr, sk);
410 return ret;
413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416 * at any one time. If a sender, after sending an ASCONF chunk, decides
417 * it needs to transfer another ASCONF Chunk, it MUST wait until the
418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419 * subsequent ASCONF. Note this restriction binds each side, so at any
420 * time two ASCONF may be in-transit on any given association (one sent
421 * from each endpoint).
423 static int sctp_send_asconf(struct sctp_association *asoc,
424 struct sctp_chunk *chunk)
426 int retval = 0;
428 /* If there is an outstanding ASCONF chunk, queue it for later
429 * transmission.
431 if (asoc->addip_last_asconf) {
432 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 goto out;
436 /* Hold the chunk until an ASCONF_ACK is received. */
437 sctp_chunk_hold(chunk);
438 retval = sctp_primitive_ASCONF(asoc, chunk);
439 if (retval)
440 sctp_chunk_free(chunk);
441 else
442 asoc->addip_last_asconf = chunk;
444 out:
445 return retval;
448 /* Add a list of addresses as bind addresses to local endpoint or
449 * association.
451 * Basically run through each address specified in the addrs/addrcnt
452 * array/length pair, determine if it is IPv6 or IPv4 and call
453 * sctp_do_bind() on it.
455 * If any of them fails, then the operation will be reversed and the
456 * ones that were added will be removed.
458 * Only sctp_setsockopt_bindx() is supposed to call this function.
460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
462 int cnt;
463 int retval = 0;
464 void *addr_buf;
465 struct sockaddr *sa_addr;
466 struct sctp_af *af;
468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 sk, addrs, addrcnt);
471 addr_buf = addrs;
472 for (cnt = 0; cnt < addrcnt; cnt++) {
473 /* The list may contain either IPv4 or IPv6 address;
474 * determine the address length for walking thru the list.
476 sa_addr = (struct sockaddr *)addr_buf;
477 af = sctp_get_af_specific(sa_addr->sa_family);
478 if (!af) {
479 retval = -EINVAL;
480 goto err_bindx_add;
483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 af->sockaddr_len);
486 addr_buf += af->sockaddr_len;
488 err_bindx_add:
489 if (retval < 0) {
490 /* Failed. Cleanup the ones that have been added */
491 if (cnt > 0)
492 sctp_bindx_rem(sk, addrs, cnt);
493 return retval;
497 return retval;
500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501 * associations that are part of the endpoint indicating that a list of local
502 * addresses are added to the endpoint.
504 * If any of the addresses is already in the bind address list of the
505 * association, we do not send the chunk for that association. But it will not
506 * affect other associations.
508 * Only sctp_setsockopt_bindx() is supposed to call this function.
510 static int sctp_send_asconf_add_ip(struct sock *sk,
511 struct sockaddr *addrs,
512 int addrcnt)
514 struct sctp_sock *sp;
515 struct sctp_endpoint *ep;
516 struct sctp_association *asoc;
517 struct sctp_bind_addr *bp;
518 struct sctp_chunk *chunk;
519 struct sctp_sockaddr_entry *laddr;
520 union sctp_addr *addr;
521 union sctp_addr saveaddr;
522 void *addr_buf;
523 struct sctp_af *af;
524 struct list_head *p;
525 int i;
526 int retval = 0;
528 if (!sctp_addip_enable)
529 return retval;
531 sp = sctp_sk(sk);
532 ep = sp->ep;
534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 __func__, sk, addrs, addrcnt);
537 list_for_each_entry(asoc, &ep->asocs, asocs) {
539 if (!asoc->peer.asconf_capable)
540 continue;
542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 continue;
545 if (!sctp_state(asoc, ESTABLISHED))
546 continue;
548 /* Check if any address in the packed array of addresses is
549 * in the bind address list of the association. If so,
550 * do not send the asconf chunk to its peer, but continue with
551 * other associations.
553 addr_buf = addrs;
554 for (i = 0; i < addrcnt; i++) {
555 addr = (union sctp_addr *)addr_buf;
556 af = sctp_get_af_specific(addr->v4.sin_family);
557 if (!af) {
558 retval = -EINVAL;
559 goto out;
562 if (sctp_assoc_lookup_laddr(asoc, addr))
563 break;
565 addr_buf += af->sockaddr_len;
567 if (i < addrcnt)
568 continue;
570 /* Use the first valid address in bind addr list of
571 * association as Address Parameter of ASCONF CHUNK.
573 bp = &asoc->base.bind_addr;
574 p = bp->address_list.next;
575 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 addrcnt, SCTP_PARAM_ADD_IP);
578 if (!chunk) {
579 retval = -ENOMEM;
580 goto out;
583 retval = sctp_send_asconf(asoc, chunk);
584 if (retval)
585 goto out;
587 /* Add the new addresses to the bind address list with
588 * use_as_src set to 0.
590 addr_buf = addrs;
591 for (i = 0; i < addrcnt; i++) {
592 addr = (union sctp_addr *)addr_buf;
593 af = sctp_get_af_specific(addr->v4.sin_family);
594 memcpy(&saveaddr, addr, af->sockaddr_len);
595 retval = sctp_add_bind_addr(bp, &saveaddr,
596 SCTP_ADDR_NEW, GFP_ATOMIC);
597 addr_buf += af->sockaddr_len;
601 out:
602 return retval;
605 /* Remove a list of addresses from bind addresses list. Do not remove the
606 * last address.
608 * Basically run through each address specified in the addrs/addrcnt
609 * array/length pair, determine if it is IPv6 or IPv4 and call
610 * sctp_del_bind() on it.
612 * If any of them fails, then the operation will be reversed and the
613 * ones that were removed will be added back.
615 * At least one address has to be left; if only one address is
616 * available, the operation will return -EBUSY.
618 * Only sctp_setsockopt_bindx() is supposed to call this function.
620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
622 struct sctp_sock *sp = sctp_sk(sk);
623 struct sctp_endpoint *ep = sp->ep;
624 int cnt;
625 struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 int retval = 0;
627 void *addr_buf;
628 union sctp_addr *sa_addr;
629 struct sctp_af *af;
631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 sk, addrs, addrcnt);
634 addr_buf = addrs;
635 for (cnt = 0; cnt < addrcnt; cnt++) {
636 /* If the bind address list is empty or if there is only one
637 * bind address, there is nothing more to be removed (we need
638 * at least one address here).
640 if (list_empty(&bp->address_list) ||
641 (sctp_list_single_entry(&bp->address_list))) {
642 retval = -EBUSY;
643 goto err_bindx_rem;
646 sa_addr = (union sctp_addr *)addr_buf;
647 af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 if (!af) {
649 retval = -EINVAL;
650 goto err_bindx_rem;
653 if (!af->addr_valid(sa_addr, sp, NULL)) {
654 retval = -EADDRNOTAVAIL;
655 goto err_bindx_rem;
658 if (sa_addr->v4.sin_port != htons(bp->port)) {
659 retval = -EINVAL;
660 goto err_bindx_rem;
663 /* FIXME - There is probably a need to check if sk->sk_saddr and
664 * sk->sk_rcv_addr are currently set to one of the addresses to
665 * be removed. This is something which needs to be looked into
666 * when we are fixing the outstanding issues with multi-homing
667 * socket routing and failover schemes. Refer to comments in
668 * sctp_do_bind(). -daisy
670 retval = sctp_del_bind_addr(bp, sa_addr);
672 addr_buf += af->sockaddr_len;
673 err_bindx_rem:
674 if (retval < 0) {
675 /* Failed. Add the ones that has been removed back */
676 if (cnt > 0)
677 sctp_bindx_add(sk, addrs, cnt);
678 return retval;
682 return retval;
685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686 * the associations that are part of the endpoint indicating that a list of
687 * local addresses are removed from the endpoint.
689 * If any of the addresses is already in the bind address list of the
690 * association, we do not send the chunk for that association. But it will not
691 * affect other associations.
693 * Only sctp_setsockopt_bindx() is supposed to call this function.
695 static int sctp_send_asconf_del_ip(struct sock *sk,
696 struct sockaddr *addrs,
697 int addrcnt)
699 struct sctp_sock *sp;
700 struct sctp_endpoint *ep;
701 struct sctp_association *asoc;
702 struct sctp_transport *transport;
703 struct sctp_bind_addr *bp;
704 struct sctp_chunk *chunk;
705 union sctp_addr *laddr;
706 void *addr_buf;
707 struct sctp_af *af;
708 struct sctp_sockaddr_entry *saddr;
709 int i;
710 int retval = 0;
712 if (!sctp_addip_enable)
713 return retval;
715 sp = sctp_sk(sk);
716 ep = sp->ep;
718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 __func__, sk, addrs, addrcnt);
721 list_for_each_entry(asoc, &ep->asocs, asocs) {
723 if (!asoc->peer.asconf_capable)
724 continue;
726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 continue;
729 if (!sctp_state(asoc, ESTABLISHED))
730 continue;
732 /* Check if any address in the packed array of addresses is
733 * not present in the bind address list of the association.
734 * If so, do not send the asconf chunk to its peer, but
735 * continue with other associations.
737 addr_buf = addrs;
738 for (i = 0; i < addrcnt; i++) {
739 laddr = (union sctp_addr *)addr_buf;
740 af = sctp_get_af_specific(laddr->v4.sin_family);
741 if (!af) {
742 retval = -EINVAL;
743 goto out;
746 if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 break;
749 addr_buf += af->sockaddr_len;
751 if (i < addrcnt)
752 continue;
754 /* Find one address in the association's bind address list
755 * that is not in the packed array of addresses. This is to
756 * make sure that we do not delete all the addresses in the
757 * association.
759 bp = &asoc->base.bind_addr;
760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 addrcnt, sp);
762 if (!laddr)
763 continue;
765 /* We do not need RCU protection throughout this loop
766 * because this is done under a socket lock from the
767 * setsockopt call.
769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 SCTP_PARAM_DEL_IP);
771 if (!chunk) {
772 retval = -ENOMEM;
773 goto out;
776 /* Reset use_as_src flag for the addresses in the bind address
777 * list that are to be deleted.
779 addr_buf = addrs;
780 for (i = 0; i < addrcnt; i++) {
781 laddr = (union sctp_addr *)addr_buf;
782 af = sctp_get_af_specific(laddr->v4.sin_family);
783 list_for_each_entry(saddr, &bp->address_list, list) {
784 if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 saddr->state = SCTP_ADDR_DEL;
787 addr_buf += af->sockaddr_len;
790 /* Update the route and saddr entries for all the transports
791 * as some of the addresses in the bind address list are
792 * about to be deleted and cannot be used as source addresses.
794 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 transports) {
796 dst_release(transport->dst);
797 sctp_transport_route(transport, NULL,
798 sctp_sk(asoc->base.sk));
801 retval = sctp_send_asconf(asoc, chunk);
803 out:
804 return retval;
807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
809 * API 8.1
810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811 * int flags);
813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815 * or IPv6 addresses.
817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818 * Section 3.1.2 for this usage.
820 * addrs is a pointer to an array of one or more socket addresses. Each
821 * address is contained in its appropriate structure (i.e. struct
822 * sockaddr_in or struct sockaddr_in6) the family of the address type
823 * must be used to distinguish the address length (note that this
824 * representation is termed a "packed array" of addresses). The caller
825 * specifies the number of addresses in the array with addrcnt.
827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828 * -1, and sets errno to the appropriate error code.
830 * For SCTP, the port given in each socket address must be the same, or
831 * sctp_bindx() will fail, setting errno to EINVAL.
833 * The flags parameter is formed from the bitwise OR of zero or more of
834 * the following currently defined flags:
836 * SCTP_BINDX_ADD_ADDR
838 * SCTP_BINDX_REM_ADDR
840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842 * addresses from the association. The two flags are mutually exclusive;
843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844 * not remove all addresses from an association; sctp_bindx() will
845 * reject such an attempt with EINVAL.
847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848 * additional addresses with an endpoint after calling bind(). Or use
849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850 * socket is associated with so that no new association accepted will be
851 * associated with those addresses. If the endpoint supports dynamic
852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853 * endpoint to send the appropriate message to the peer to change the
854 * peers address lists.
856 * Adding and removing addresses from a connected association is
857 * optional functionality. Implementations that do not support this
858 * functionality should return EOPNOTSUPP.
860 * Basically do nothing but copying the addresses from user to kernel
861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863 * from userspace.
865 * We don't use copy_from_user() for optimization: we first do the
866 * sanity checks (buffer size -fast- and access check-healthy
867 * pointer); if all of those succeed, then we can alloc the memory
868 * (expensive operation) needed to copy the data to kernel. Then we do
869 * the copying without checking the user space area
870 * (__copy_from_user()).
872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873 * it.
875 * sk The sk of the socket
876 * addrs The pointer to the addresses in user land
877 * addrssize Size of the addrs buffer
878 * op Operation to perform (add or remove, see the flags of
879 * sctp_bindx)
881 * Returns 0 if ok, <0 errno code on error.
883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 struct sockaddr __user *addrs,
885 int addrs_size, int op)
887 struct sockaddr *kaddrs;
888 int err;
889 int addrcnt = 0;
890 int walk_size = 0;
891 struct sockaddr *sa_addr;
892 void *addr_buf;
893 struct sctp_af *af;
895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
898 if (unlikely(addrs_size <= 0))
899 return -EINVAL;
901 /* Check the user passed a healthy pointer. */
902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 return -EFAULT;
905 /* Alloc space for the address array in kernel memory. */
906 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 if (unlikely(!kaddrs))
908 return -ENOMEM;
910 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 kfree(kaddrs);
912 return -EFAULT;
915 /* Walk through the addrs buffer and count the number of addresses. */
916 addr_buf = kaddrs;
917 while (walk_size < addrs_size) {
918 sa_addr = (struct sockaddr *)addr_buf;
919 af = sctp_get_af_specific(sa_addr->sa_family);
921 /* If the address family is not supported or if this address
922 * causes the address buffer to overflow return EINVAL.
924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 kfree(kaddrs);
926 return -EINVAL;
928 addrcnt++;
929 addr_buf += af->sockaddr_len;
930 walk_size += af->sockaddr_len;
933 /* Do the work. */
934 switch (op) {
935 case SCTP_BINDX_ADD_ADDR:
936 err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 if (err)
938 goto out;
939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 break;
942 case SCTP_BINDX_REM_ADDR:
943 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 if (err)
945 goto out;
946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 break;
949 default:
950 err = -EINVAL;
951 break;
954 out:
955 kfree(kaddrs);
957 return err;
960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
962 * Common routine for handling connect() and sctp_connectx().
963 * Connect will come in with just a single address.
965 static int __sctp_connect(struct sock* sk,
966 struct sockaddr *kaddrs,
967 int addrs_size,
968 sctp_assoc_t *assoc_id)
970 struct sctp_sock *sp;
971 struct sctp_endpoint *ep;
972 struct sctp_association *asoc = NULL;
973 struct sctp_association *asoc2;
974 struct sctp_transport *transport;
975 union sctp_addr to;
976 struct sctp_af *af;
977 sctp_scope_t scope;
978 long timeo;
979 int err = 0;
980 int addrcnt = 0;
981 int walk_size = 0;
982 union sctp_addr *sa_addr = NULL;
983 void *addr_buf;
984 unsigned short port;
985 unsigned int f_flags = 0;
987 sp = sctp_sk(sk);
988 ep = sp->ep;
990 /* connect() cannot be done on a socket that is already in ESTABLISHED
991 * state - UDP-style peeled off socket or a TCP-style socket that
992 * is already connected.
993 * It cannot be done even on a TCP-style listening socket.
995 if (sctp_sstate(sk, ESTABLISHED) ||
996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 err = -EISCONN;
998 goto out_free;
1001 /* Walk through the addrs buffer and count the number of addresses. */
1002 addr_buf = kaddrs;
1003 while (walk_size < addrs_size) {
1004 sa_addr = (union sctp_addr *)addr_buf;
1005 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 port = ntohs(sa_addr->v4.sin_port);
1008 /* If the address family is not supported or if this address
1009 * causes the address buffer to overflow return EINVAL.
1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 err = -EINVAL;
1013 goto out_free;
1016 /* Save current address so we can work with it */
1017 memcpy(&to, sa_addr, af->sockaddr_len);
1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 if (err)
1021 goto out_free;
1023 /* Make sure the destination port is correctly set
1024 * in all addresses.
1026 if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 goto out_free;
1030 /* Check if there already is a matching association on the
1031 * endpoint (other than the one created here).
1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 if (asoc2 && asoc2 != asoc) {
1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 err = -EISCONN;
1037 else
1038 err = -EALREADY;
1039 goto out_free;
1042 /* If we could not find a matching association on the endpoint,
1043 * make sure that there is no peeled-off association matching
1044 * the peer address even on another socket.
1046 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 err = -EADDRNOTAVAIL;
1048 goto out_free;
1051 if (!asoc) {
1052 /* If a bind() or sctp_bindx() is not called prior to
1053 * an sctp_connectx() call, the system picks an
1054 * ephemeral port and will choose an address set
1055 * equivalent to binding with a wildcard address.
1057 if (!ep->base.bind_addr.port) {
1058 if (sctp_autobind(sk)) {
1059 err = -EAGAIN;
1060 goto out_free;
1062 } else {
1064 * If an unprivileged user inherits a 1-many
1065 * style socket with open associations on a
1066 * privileged port, it MAY be permitted to
1067 * accept new associations, but it SHOULD NOT
1068 * be permitted to open new associations.
1070 if (ep->base.bind_addr.port < PROT_SOCK &&
1071 !capable(CAP_NET_BIND_SERVICE)) {
1072 err = -EACCES;
1073 goto out_free;
1077 scope = sctp_scope(&to);
1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 if (!asoc) {
1080 err = -ENOMEM;
1081 goto out_free;
1085 /* Prime the peer's transport structures. */
1086 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1087 SCTP_UNKNOWN);
1088 if (!transport) {
1089 err = -ENOMEM;
1090 goto out_free;
1093 addrcnt++;
1094 addr_buf += af->sockaddr_len;
1095 walk_size += af->sockaddr_len;
1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1099 if (err < 0) {
1100 goto out_free;
1103 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1104 if (err < 0) {
1105 goto out_free;
1108 /* Initialize sk's dport and daddr for getpeername() */
1109 inet_sk(sk)->dport = htons(asoc->peer.port);
1110 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1111 af->to_sk_daddr(sa_addr, sk);
1112 sk->sk_err = 0;
1114 /* in-kernel sockets don't generally have a file allocated to them
1115 * if all they do is call sock_create_kern().
1117 if (sk->sk_socket->file)
1118 f_flags = sk->sk_socket->file->f_flags;
1120 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1122 err = sctp_wait_for_connect(asoc, &timeo);
1123 if (!err && assoc_id)
1124 *assoc_id = asoc->assoc_id;
1126 /* Don't free association on exit. */
1127 asoc = NULL;
1129 out_free:
1131 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1132 " kaddrs: %p err: %d\n",
1133 asoc, kaddrs, err);
1134 if (asoc)
1135 sctp_association_free(asoc);
1136 return err;
1139 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1141 * API 8.9
1142 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1143 * sctp_assoc_t *asoc);
1145 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1146 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1147 * or IPv6 addresses.
1149 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1150 * Section 3.1.2 for this usage.
1152 * addrs is a pointer to an array of one or more socket addresses. Each
1153 * address is contained in its appropriate structure (i.e. struct
1154 * sockaddr_in or struct sockaddr_in6) the family of the address type
1155 * must be used to distengish the address length (note that this
1156 * representation is termed a "packed array" of addresses). The caller
1157 * specifies the number of addresses in the array with addrcnt.
1159 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1160 * the association id of the new association. On failure, sctp_connectx()
1161 * returns -1, and sets errno to the appropriate error code. The assoc_id
1162 * is not touched by the kernel.
1164 * For SCTP, the port given in each socket address must be the same, or
1165 * sctp_connectx() will fail, setting errno to EINVAL.
1167 * An application can use sctp_connectx to initiate an association with
1168 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1169 * allows a caller to specify multiple addresses at which a peer can be
1170 * reached. The way the SCTP stack uses the list of addresses to set up
1171 * the association is implementation dependant. This function only
1172 * specifies that the stack will try to make use of all the addresses in
1173 * the list when needed.
1175 * Note that the list of addresses passed in is only used for setting up
1176 * the association. It does not necessarily equal the set of addresses
1177 * the peer uses for the resulting association. If the caller wants to
1178 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1179 * retrieve them after the association has been set up.
1181 * Basically do nothing but copying the addresses from user to kernel
1182 * land and invoking either sctp_connectx(). This is used for tunneling
1183 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1185 * We don't use copy_from_user() for optimization: we first do the
1186 * sanity checks (buffer size -fast- and access check-healthy
1187 * pointer); if all of those succeed, then we can alloc the memory
1188 * (expensive operation) needed to copy the data to kernel. Then we do
1189 * the copying without checking the user space area
1190 * (__copy_from_user()).
1192 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1193 * it.
1195 * sk The sk of the socket
1196 * addrs The pointer to the addresses in user land
1197 * addrssize Size of the addrs buffer
1199 * Returns >=0 if ok, <0 errno code on error.
1201 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1202 struct sockaddr __user *addrs,
1203 int addrs_size,
1204 sctp_assoc_t *assoc_id)
1206 int err = 0;
1207 struct sockaddr *kaddrs;
1209 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1210 __func__, sk, addrs, addrs_size);
1212 if (unlikely(addrs_size <= 0))
1213 return -EINVAL;
1215 /* Check the user passed a healthy pointer. */
1216 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1217 return -EFAULT;
1219 /* Alloc space for the address array in kernel memory. */
1220 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1221 if (unlikely(!kaddrs))
1222 return -ENOMEM;
1224 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1225 err = -EFAULT;
1226 } else {
1227 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1230 kfree(kaddrs);
1232 return err;
1236 * This is an older interface. It's kept for backward compatibility
1237 * to the option that doesn't provide association id.
1239 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1240 struct sockaddr __user *addrs,
1241 int addrs_size)
1243 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1247 * New interface for the API. The since the API is done with a socket
1248 * option, to make it simple we feed back the association id is as a return
1249 * indication to the call. Error is always negative and association id is
1250 * always positive.
1252 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1253 struct sockaddr __user *addrs,
1254 int addrs_size)
1256 sctp_assoc_t assoc_id = 0;
1257 int err = 0;
1259 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1261 if (err)
1262 return err;
1263 else
1264 return assoc_id;
1267 /* API 3.1.4 close() - UDP Style Syntax
1268 * Applications use close() to perform graceful shutdown (as described in
1269 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1270 * by a UDP-style socket.
1272 * The syntax is
1274 * ret = close(int sd);
1276 * sd - the socket descriptor of the associations to be closed.
1278 * To gracefully shutdown a specific association represented by the
1279 * UDP-style socket, an application should use the sendmsg() call,
1280 * passing no user data, but including the appropriate flag in the
1281 * ancillary data (see Section xxxx).
1283 * If sd in the close() call is a branched-off socket representing only
1284 * one association, the shutdown is performed on that association only.
1286 * 4.1.6 close() - TCP Style Syntax
1288 * Applications use close() to gracefully close down an association.
1290 * The syntax is:
1292 * int close(int sd);
1294 * sd - the socket descriptor of the association to be closed.
1296 * After an application calls close() on a socket descriptor, no further
1297 * socket operations will succeed on that descriptor.
1299 * API 7.1.4 SO_LINGER
1301 * An application using the TCP-style socket can use this option to
1302 * perform the SCTP ABORT primitive. The linger option structure is:
1304 * struct linger {
1305 * int l_onoff; // option on/off
1306 * int l_linger; // linger time
1307 * };
1309 * To enable the option, set l_onoff to 1. If the l_linger value is set
1310 * to 0, calling close() is the same as the ABORT primitive. If the
1311 * value is set to a negative value, the setsockopt() call will return
1312 * an error. If the value is set to a positive value linger_time, the
1313 * close() can be blocked for at most linger_time ms. If the graceful
1314 * shutdown phase does not finish during this period, close() will
1315 * return but the graceful shutdown phase continues in the system.
1317 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1319 struct sctp_endpoint *ep;
1320 struct sctp_association *asoc;
1321 struct list_head *pos, *temp;
1323 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1325 sctp_lock_sock(sk);
1326 sk->sk_shutdown = SHUTDOWN_MASK;
1328 ep = sctp_sk(sk)->ep;
1330 /* Walk all associations on an endpoint. */
1331 list_for_each_safe(pos, temp, &ep->asocs) {
1332 asoc = list_entry(pos, struct sctp_association, asocs);
1334 if (sctp_style(sk, TCP)) {
1335 /* A closed association can still be in the list if
1336 * it belongs to a TCP-style listening socket that is
1337 * not yet accepted. If so, free it. If not, send an
1338 * ABORT or SHUTDOWN based on the linger options.
1340 if (sctp_state(asoc, CLOSED)) {
1341 sctp_unhash_established(asoc);
1342 sctp_association_free(asoc);
1343 continue;
1347 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1348 struct sctp_chunk *chunk;
1350 chunk = sctp_make_abort_user(asoc, NULL, 0);
1351 if (chunk)
1352 sctp_primitive_ABORT(asoc, chunk);
1353 } else
1354 sctp_primitive_SHUTDOWN(asoc, NULL);
1357 /* Clean up any skbs sitting on the receive queue. */
1358 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1359 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1361 /* On a TCP-style socket, block for at most linger_time if set. */
1362 if (sctp_style(sk, TCP) && timeout)
1363 sctp_wait_for_close(sk, timeout);
1365 /* This will run the backlog queue. */
1366 sctp_release_sock(sk);
1368 /* Supposedly, no process has access to the socket, but
1369 * the net layers still may.
1371 sctp_local_bh_disable();
1372 sctp_bh_lock_sock(sk);
1374 /* Hold the sock, since sk_common_release() will put sock_put()
1375 * and we have just a little more cleanup.
1377 sock_hold(sk);
1378 sk_common_release(sk);
1380 sctp_bh_unlock_sock(sk);
1381 sctp_local_bh_enable();
1383 sock_put(sk);
1385 SCTP_DBG_OBJCNT_DEC(sock);
1388 /* Handle EPIPE error. */
1389 static int sctp_error(struct sock *sk, int flags, int err)
1391 if (err == -EPIPE)
1392 err = sock_error(sk) ? : -EPIPE;
1393 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1394 send_sig(SIGPIPE, current, 0);
1395 return err;
1398 /* API 3.1.3 sendmsg() - UDP Style Syntax
1400 * An application uses sendmsg() and recvmsg() calls to transmit data to
1401 * and receive data from its peer.
1403 * ssize_t sendmsg(int socket, const struct msghdr *message,
1404 * int flags);
1406 * socket - the socket descriptor of the endpoint.
1407 * message - pointer to the msghdr structure which contains a single
1408 * user message and possibly some ancillary data.
1410 * See Section 5 for complete description of the data
1411 * structures.
1413 * flags - flags sent or received with the user message, see Section
1414 * 5 for complete description of the flags.
1416 * Note: This function could use a rewrite especially when explicit
1417 * connect support comes in.
1419 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1421 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1423 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1424 struct msghdr *msg, size_t msg_len)
1426 struct sctp_sock *sp;
1427 struct sctp_endpoint *ep;
1428 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1429 struct sctp_transport *transport, *chunk_tp;
1430 struct sctp_chunk *chunk;
1431 union sctp_addr to;
1432 struct sockaddr *msg_name = NULL;
1433 struct sctp_sndrcvinfo default_sinfo = { 0 };
1434 struct sctp_sndrcvinfo *sinfo;
1435 struct sctp_initmsg *sinit;
1436 sctp_assoc_t associd = 0;
1437 sctp_cmsgs_t cmsgs = { NULL };
1438 int err;
1439 sctp_scope_t scope;
1440 long timeo;
1441 __u16 sinfo_flags = 0;
1442 struct sctp_datamsg *datamsg;
1443 int msg_flags = msg->msg_flags;
1445 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1446 sk, msg, msg_len);
1448 err = 0;
1449 sp = sctp_sk(sk);
1450 ep = sp->ep;
1452 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1454 /* We cannot send a message over a TCP-style listening socket. */
1455 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1456 err = -EPIPE;
1457 goto out_nounlock;
1460 /* Parse out the SCTP CMSGs. */
1461 err = sctp_msghdr_parse(msg, &cmsgs);
1463 if (err) {
1464 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1465 goto out_nounlock;
1468 /* Fetch the destination address for this packet. This
1469 * address only selects the association--it is not necessarily
1470 * the address we will send to.
1471 * For a peeled-off socket, msg_name is ignored.
1473 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1474 int msg_namelen = msg->msg_namelen;
1476 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1477 msg_namelen);
1478 if (err)
1479 return err;
1481 if (msg_namelen > sizeof(to))
1482 msg_namelen = sizeof(to);
1483 memcpy(&to, msg->msg_name, msg_namelen);
1484 msg_name = msg->msg_name;
1487 sinfo = cmsgs.info;
1488 sinit = cmsgs.init;
1490 /* Did the user specify SNDRCVINFO? */
1491 if (sinfo) {
1492 sinfo_flags = sinfo->sinfo_flags;
1493 associd = sinfo->sinfo_assoc_id;
1496 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1497 msg_len, sinfo_flags);
1499 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1500 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1501 err = -EINVAL;
1502 goto out_nounlock;
1505 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1506 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1507 * If SCTP_ABORT is set, the message length could be non zero with
1508 * the msg_iov set to the user abort reason.
1510 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1511 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1512 err = -EINVAL;
1513 goto out_nounlock;
1516 /* If SCTP_ADDR_OVER is set, there must be an address
1517 * specified in msg_name.
1519 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1520 err = -EINVAL;
1521 goto out_nounlock;
1524 transport = NULL;
1526 SCTP_DEBUG_PRINTK("About to look up association.\n");
1528 sctp_lock_sock(sk);
1530 /* If a msg_name has been specified, assume this is to be used. */
1531 if (msg_name) {
1532 /* Look for a matching association on the endpoint. */
1533 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1534 if (!asoc) {
1535 /* If we could not find a matching association on the
1536 * endpoint, make sure that it is not a TCP-style
1537 * socket that already has an association or there is
1538 * no peeled-off association on another socket.
1540 if ((sctp_style(sk, TCP) &&
1541 sctp_sstate(sk, ESTABLISHED)) ||
1542 sctp_endpoint_is_peeled_off(ep, &to)) {
1543 err = -EADDRNOTAVAIL;
1544 goto out_unlock;
1547 } else {
1548 asoc = sctp_id2assoc(sk, associd);
1549 if (!asoc) {
1550 err = -EPIPE;
1551 goto out_unlock;
1555 if (asoc) {
1556 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1558 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1559 * socket that has an association in CLOSED state. This can
1560 * happen when an accepted socket has an association that is
1561 * already CLOSED.
1563 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1564 err = -EPIPE;
1565 goto out_unlock;
1568 if (sinfo_flags & SCTP_EOF) {
1569 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1570 asoc);
1571 sctp_primitive_SHUTDOWN(asoc, NULL);
1572 err = 0;
1573 goto out_unlock;
1575 if (sinfo_flags & SCTP_ABORT) {
1577 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1578 if (!chunk) {
1579 err = -ENOMEM;
1580 goto out_unlock;
1583 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1584 sctp_primitive_ABORT(asoc, chunk);
1585 err = 0;
1586 goto out_unlock;
1590 /* Do we need to create the association? */
1591 if (!asoc) {
1592 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1594 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1595 err = -EINVAL;
1596 goto out_unlock;
1599 /* Check for invalid stream against the stream counts,
1600 * either the default or the user specified stream counts.
1602 if (sinfo) {
1603 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1604 /* Check against the defaults. */
1605 if (sinfo->sinfo_stream >=
1606 sp->initmsg.sinit_num_ostreams) {
1607 err = -EINVAL;
1608 goto out_unlock;
1610 } else {
1611 /* Check against the requested. */
1612 if (sinfo->sinfo_stream >=
1613 sinit->sinit_num_ostreams) {
1614 err = -EINVAL;
1615 goto out_unlock;
1621 * API 3.1.2 bind() - UDP Style Syntax
1622 * If a bind() or sctp_bindx() is not called prior to a
1623 * sendmsg() call that initiates a new association, the
1624 * system picks an ephemeral port and will choose an address
1625 * set equivalent to binding with a wildcard address.
1627 if (!ep->base.bind_addr.port) {
1628 if (sctp_autobind(sk)) {
1629 err = -EAGAIN;
1630 goto out_unlock;
1632 } else {
1634 * If an unprivileged user inherits a one-to-many
1635 * style socket with open associations on a privileged
1636 * port, it MAY be permitted to accept new associations,
1637 * but it SHOULD NOT be permitted to open new
1638 * associations.
1640 if (ep->base.bind_addr.port < PROT_SOCK &&
1641 !capable(CAP_NET_BIND_SERVICE)) {
1642 err = -EACCES;
1643 goto out_unlock;
1647 scope = sctp_scope(&to);
1648 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1649 if (!new_asoc) {
1650 err = -ENOMEM;
1651 goto out_unlock;
1653 asoc = new_asoc;
1655 /* If the SCTP_INIT ancillary data is specified, set all
1656 * the association init values accordingly.
1658 if (sinit) {
1659 if (sinit->sinit_num_ostreams) {
1660 asoc->c.sinit_num_ostreams =
1661 sinit->sinit_num_ostreams;
1663 if (sinit->sinit_max_instreams) {
1664 asoc->c.sinit_max_instreams =
1665 sinit->sinit_max_instreams;
1667 if (sinit->sinit_max_attempts) {
1668 asoc->max_init_attempts
1669 = sinit->sinit_max_attempts;
1671 if (sinit->sinit_max_init_timeo) {
1672 asoc->max_init_timeo =
1673 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1677 /* Prime the peer's transport structures. */
1678 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1679 if (!transport) {
1680 err = -ENOMEM;
1681 goto out_free;
1683 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1684 if (err < 0) {
1685 err = -ENOMEM;
1686 goto out_free;
1690 /* ASSERT: we have a valid association at this point. */
1691 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1693 if (!sinfo) {
1694 /* If the user didn't specify SNDRCVINFO, make up one with
1695 * some defaults.
1697 default_sinfo.sinfo_stream = asoc->default_stream;
1698 default_sinfo.sinfo_flags = asoc->default_flags;
1699 default_sinfo.sinfo_ppid = asoc->default_ppid;
1700 default_sinfo.sinfo_context = asoc->default_context;
1701 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1702 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1703 sinfo = &default_sinfo;
1706 /* API 7.1.7, the sndbuf size per association bounds the
1707 * maximum size of data that can be sent in a single send call.
1709 if (msg_len > sk->sk_sndbuf) {
1710 err = -EMSGSIZE;
1711 goto out_free;
1714 if (asoc->pmtu_pending)
1715 sctp_assoc_pending_pmtu(asoc);
1717 /* If fragmentation is disabled and the message length exceeds the
1718 * association fragmentation point, return EMSGSIZE. The I-D
1719 * does not specify what this error is, but this looks like
1720 * a great fit.
1722 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1723 err = -EMSGSIZE;
1724 goto out_free;
1727 if (sinfo) {
1728 /* Check for invalid stream. */
1729 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1730 err = -EINVAL;
1731 goto out_free;
1735 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1736 if (!sctp_wspace(asoc)) {
1737 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1738 if (err)
1739 goto out_free;
1742 /* If an address is passed with the sendto/sendmsg call, it is used
1743 * to override the primary destination address in the TCP model, or
1744 * when SCTP_ADDR_OVER flag is set in the UDP model.
1746 if ((sctp_style(sk, TCP) && msg_name) ||
1747 (sinfo_flags & SCTP_ADDR_OVER)) {
1748 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1749 if (!chunk_tp) {
1750 err = -EINVAL;
1751 goto out_free;
1753 } else
1754 chunk_tp = NULL;
1756 /* Auto-connect, if we aren't connected already. */
1757 if (sctp_state(asoc, CLOSED)) {
1758 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1759 if (err < 0)
1760 goto out_free;
1761 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1764 /* Break the message into multiple chunks of maximum size. */
1765 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1766 if (!datamsg) {
1767 err = -ENOMEM;
1768 goto out_free;
1771 /* Now send the (possibly) fragmented message. */
1772 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1773 sctp_chunk_hold(chunk);
1775 /* Do accounting for the write space. */
1776 sctp_set_owner_w(chunk);
1778 chunk->transport = chunk_tp;
1780 /* Send it to the lower layers. Note: all chunks
1781 * must either fail or succeed. The lower layer
1782 * works that way today. Keep it that way or this
1783 * breaks.
1785 err = sctp_primitive_SEND(asoc, chunk);
1786 /* Did the lower layer accept the chunk? */
1787 if (err)
1788 sctp_chunk_free(chunk);
1789 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1792 sctp_datamsg_put(datamsg);
1793 if (err)
1794 goto out_free;
1795 else
1796 err = msg_len;
1798 /* If we are already past ASSOCIATE, the lower
1799 * layers are responsible for association cleanup.
1801 goto out_unlock;
1803 out_free:
1804 if (new_asoc)
1805 sctp_association_free(asoc);
1806 out_unlock:
1807 sctp_release_sock(sk);
1809 out_nounlock:
1810 return sctp_error(sk, msg_flags, err);
1812 #if 0
1813 do_sock_err:
1814 if (msg_len)
1815 err = msg_len;
1816 else
1817 err = sock_error(sk);
1818 goto out;
1820 do_interrupted:
1821 if (msg_len)
1822 err = msg_len;
1823 goto out;
1824 #endif /* 0 */
1827 /* This is an extended version of skb_pull() that removes the data from the
1828 * start of a skb even when data is spread across the list of skb's in the
1829 * frag_list. len specifies the total amount of data that needs to be removed.
1830 * when 'len' bytes could be removed from the skb, it returns 0.
1831 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1832 * could not be removed.
1834 static int sctp_skb_pull(struct sk_buff *skb, int len)
1836 struct sk_buff *list;
1837 int skb_len = skb_headlen(skb);
1838 int rlen;
1840 if (len <= skb_len) {
1841 __skb_pull(skb, len);
1842 return 0;
1844 len -= skb_len;
1845 __skb_pull(skb, skb_len);
1847 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1848 rlen = sctp_skb_pull(list, len);
1849 skb->len -= (len-rlen);
1850 skb->data_len -= (len-rlen);
1852 if (!rlen)
1853 return 0;
1855 len = rlen;
1858 return len;
1861 /* API 3.1.3 recvmsg() - UDP Style Syntax
1863 * ssize_t recvmsg(int socket, struct msghdr *message,
1864 * int flags);
1866 * socket - the socket descriptor of the endpoint.
1867 * message - pointer to the msghdr structure which contains a single
1868 * user message and possibly some ancillary data.
1870 * See Section 5 for complete description of the data
1871 * structures.
1873 * flags - flags sent or received with the user message, see Section
1874 * 5 for complete description of the flags.
1876 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1878 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1879 struct msghdr *msg, size_t len, int noblock,
1880 int flags, int *addr_len)
1882 struct sctp_ulpevent *event = NULL;
1883 struct sctp_sock *sp = sctp_sk(sk);
1884 struct sk_buff *skb;
1885 int copied;
1886 int err = 0;
1887 int skb_len;
1889 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1890 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1891 "len", len, "knoblauch", noblock,
1892 "flags", flags, "addr_len", addr_len);
1894 sctp_lock_sock(sk);
1896 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1897 err = -ENOTCONN;
1898 goto out;
1901 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1902 if (!skb)
1903 goto out;
1905 /* Get the total length of the skb including any skb's in the
1906 * frag_list.
1908 skb_len = skb->len;
1910 copied = skb_len;
1911 if (copied > len)
1912 copied = len;
1914 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1916 event = sctp_skb2event(skb);
1918 if (err)
1919 goto out_free;
1921 sock_recv_timestamp(msg, sk, skb);
1922 if (sctp_ulpevent_is_notification(event)) {
1923 msg->msg_flags |= MSG_NOTIFICATION;
1924 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1925 } else {
1926 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1929 /* Check if we allow SCTP_SNDRCVINFO. */
1930 if (sp->subscribe.sctp_data_io_event)
1931 sctp_ulpevent_read_sndrcvinfo(event, msg);
1932 #if 0
1933 /* FIXME: we should be calling IP/IPv6 layers. */
1934 if (sk->sk_protinfo.af_inet.cmsg_flags)
1935 ip_cmsg_recv(msg, skb);
1936 #endif
1938 err = copied;
1940 /* If skb's length exceeds the user's buffer, update the skb and
1941 * push it back to the receive_queue so that the next call to
1942 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1944 if (skb_len > copied) {
1945 msg->msg_flags &= ~MSG_EOR;
1946 if (flags & MSG_PEEK)
1947 goto out_free;
1948 sctp_skb_pull(skb, copied);
1949 skb_queue_head(&sk->sk_receive_queue, skb);
1951 /* When only partial message is copied to the user, increase
1952 * rwnd by that amount. If all the data in the skb is read,
1953 * rwnd is updated when the event is freed.
1955 if (!sctp_ulpevent_is_notification(event))
1956 sctp_assoc_rwnd_increase(event->asoc, copied);
1957 goto out;
1958 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1959 (event->msg_flags & MSG_EOR))
1960 msg->msg_flags |= MSG_EOR;
1961 else
1962 msg->msg_flags &= ~MSG_EOR;
1964 out_free:
1965 if (flags & MSG_PEEK) {
1966 /* Release the skb reference acquired after peeking the skb in
1967 * sctp_skb_recv_datagram().
1969 kfree_skb(skb);
1970 } else {
1971 /* Free the event which includes releasing the reference to
1972 * the owner of the skb, freeing the skb and updating the
1973 * rwnd.
1975 sctp_ulpevent_free(event);
1977 out:
1978 sctp_release_sock(sk);
1979 return err;
1982 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1984 * This option is a on/off flag. If enabled no SCTP message
1985 * fragmentation will be performed. Instead if a message being sent
1986 * exceeds the current PMTU size, the message will NOT be sent and
1987 * instead a error will be indicated to the user.
1989 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1990 char __user *optval, int optlen)
1992 int val;
1994 if (optlen < sizeof(int))
1995 return -EINVAL;
1997 if (get_user(val, (int __user *)optval))
1998 return -EFAULT;
2000 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2002 return 0;
2005 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2006 int optlen)
2008 if (optlen > sizeof(struct sctp_event_subscribe))
2009 return -EINVAL;
2010 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2011 return -EFAULT;
2012 return 0;
2015 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2017 * This socket option is applicable to the UDP-style socket only. When
2018 * set it will cause associations that are idle for more than the
2019 * specified number of seconds to automatically close. An association
2020 * being idle is defined an association that has NOT sent or received
2021 * user data. The special value of '0' indicates that no automatic
2022 * close of any associations should be performed. The option expects an
2023 * integer defining the number of seconds of idle time before an
2024 * association is closed.
2026 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2027 int optlen)
2029 struct sctp_sock *sp = sctp_sk(sk);
2031 /* Applicable to UDP-style socket only */
2032 if (sctp_style(sk, TCP))
2033 return -EOPNOTSUPP;
2034 if (optlen != sizeof(int))
2035 return -EINVAL;
2036 if (copy_from_user(&sp->autoclose, optval, optlen))
2037 return -EFAULT;
2039 return 0;
2042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2044 * Applications can enable or disable heartbeats for any peer address of
2045 * an association, modify an address's heartbeat interval, force a
2046 * heartbeat to be sent immediately, and adjust the address's maximum
2047 * number of retransmissions sent before an address is considered
2048 * unreachable. The following structure is used to access and modify an
2049 * address's parameters:
2051 * struct sctp_paddrparams {
2052 * sctp_assoc_t spp_assoc_id;
2053 * struct sockaddr_storage spp_address;
2054 * uint32_t spp_hbinterval;
2055 * uint16_t spp_pathmaxrxt;
2056 * uint32_t spp_pathmtu;
2057 * uint32_t spp_sackdelay;
2058 * uint32_t spp_flags;
2059 * };
2061 * spp_assoc_id - (one-to-many style socket) This is filled in the
2062 * application, and identifies the association for
2063 * this query.
2064 * spp_address - This specifies which address is of interest.
2065 * spp_hbinterval - This contains the value of the heartbeat interval,
2066 * in milliseconds. If a value of zero
2067 * is present in this field then no changes are to
2068 * be made to this parameter.
2069 * spp_pathmaxrxt - This contains the maximum number of
2070 * retransmissions before this address shall be
2071 * considered unreachable. If a value of zero
2072 * is present in this field then no changes are to
2073 * be made to this parameter.
2074 * spp_pathmtu - When Path MTU discovery is disabled the value
2075 * specified here will be the "fixed" path mtu.
2076 * Note that if the spp_address field is empty
2077 * then all associations on this address will
2078 * have this fixed path mtu set upon them.
2080 * spp_sackdelay - When delayed sack is enabled, this value specifies
2081 * the number of milliseconds that sacks will be delayed
2082 * for. This value will apply to all addresses of an
2083 * association if the spp_address field is empty. Note
2084 * also, that if delayed sack is enabled and this
2085 * value is set to 0, no change is made to the last
2086 * recorded delayed sack timer value.
2088 * spp_flags - These flags are used to control various features
2089 * on an association. The flag field may contain
2090 * zero or more of the following options.
2092 * SPP_HB_ENABLE - Enable heartbeats on the
2093 * specified address. Note that if the address
2094 * field is empty all addresses for the association
2095 * have heartbeats enabled upon them.
2097 * SPP_HB_DISABLE - Disable heartbeats on the
2098 * speicifed address. Note that if the address
2099 * field is empty all addresses for the association
2100 * will have their heartbeats disabled. Note also
2101 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2102 * mutually exclusive, only one of these two should
2103 * be specified. Enabling both fields will have
2104 * undetermined results.
2106 * SPP_HB_DEMAND - Request a user initiated heartbeat
2107 * to be made immediately.
2109 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2110 * heartbeat delayis to be set to the value of 0
2111 * milliseconds.
2113 * SPP_PMTUD_ENABLE - This field will enable PMTU
2114 * discovery upon the specified address. Note that
2115 * if the address feild is empty then all addresses
2116 * on the association are effected.
2118 * SPP_PMTUD_DISABLE - This field will disable PMTU
2119 * discovery upon the specified address. Note that
2120 * if the address feild is empty then all addresses
2121 * on the association are effected. Not also that
2122 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2123 * exclusive. Enabling both will have undetermined
2124 * results.
2126 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2127 * on delayed sack. The time specified in spp_sackdelay
2128 * is used to specify the sack delay for this address. Note
2129 * that if spp_address is empty then all addresses will
2130 * enable delayed sack and take on the sack delay
2131 * value specified in spp_sackdelay.
2132 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2133 * off delayed sack. If the spp_address field is blank then
2134 * delayed sack is disabled for the entire association. Note
2135 * also that this field is mutually exclusive to
2136 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2137 * results.
2139 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2140 struct sctp_transport *trans,
2141 struct sctp_association *asoc,
2142 struct sctp_sock *sp,
2143 int hb_change,
2144 int pmtud_change,
2145 int sackdelay_change)
2147 int error;
2149 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2150 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2151 if (error)
2152 return error;
2155 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2156 * this field is ignored. Note also that a value of zero indicates
2157 * the current setting should be left unchanged.
2159 if (params->spp_flags & SPP_HB_ENABLE) {
2161 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2162 * set. This lets us use 0 value when this flag
2163 * is set.
2165 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2166 params->spp_hbinterval = 0;
2168 if (params->spp_hbinterval ||
2169 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2170 if (trans) {
2171 trans->hbinterval =
2172 msecs_to_jiffies(params->spp_hbinterval);
2173 } else if (asoc) {
2174 asoc->hbinterval =
2175 msecs_to_jiffies(params->spp_hbinterval);
2176 } else {
2177 sp->hbinterval = params->spp_hbinterval;
2182 if (hb_change) {
2183 if (trans) {
2184 trans->param_flags =
2185 (trans->param_flags & ~SPP_HB) | hb_change;
2186 } else if (asoc) {
2187 asoc->param_flags =
2188 (asoc->param_flags & ~SPP_HB) | hb_change;
2189 } else {
2190 sp->param_flags =
2191 (sp->param_flags & ~SPP_HB) | hb_change;
2195 /* When Path MTU discovery is disabled the value specified here will
2196 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2197 * include the flag SPP_PMTUD_DISABLE for this field to have any
2198 * effect).
2200 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2201 if (trans) {
2202 trans->pathmtu = params->spp_pathmtu;
2203 sctp_assoc_sync_pmtu(asoc);
2204 } else if (asoc) {
2205 asoc->pathmtu = params->spp_pathmtu;
2206 sctp_frag_point(sp, params->spp_pathmtu);
2207 } else {
2208 sp->pathmtu = params->spp_pathmtu;
2212 if (pmtud_change) {
2213 if (trans) {
2214 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2215 (params->spp_flags & SPP_PMTUD_ENABLE);
2216 trans->param_flags =
2217 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2218 if (update) {
2219 sctp_transport_pmtu(trans);
2220 sctp_assoc_sync_pmtu(asoc);
2222 } else if (asoc) {
2223 asoc->param_flags =
2224 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2225 } else {
2226 sp->param_flags =
2227 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2231 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2232 * value of this field is ignored. Note also that a value of zero
2233 * indicates the current setting should be left unchanged.
2235 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2236 if (trans) {
2237 trans->sackdelay =
2238 msecs_to_jiffies(params->spp_sackdelay);
2239 } else if (asoc) {
2240 asoc->sackdelay =
2241 msecs_to_jiffies(params->spp_sackdelay);
2242 } else {
2243 sp->sackdelay = params->spp_sackdelay;
2247 if (sackdelay_change) {
2248 if (trans) {
2249 trans->param_flags =
2250 (trans->param_flags & ~SPP_SACKDELAY) |
2251 sackdelay_change;
2252 } else if (asoc) {
2253 asoc->param_flags =
2254 (asoc->param_flags & ~SPP_SACKDELAY) |
2255 sackdelay_change;
2256 } else {
2257 sp->param_flags =
2258 (sp->param_flags & ~SPP_SACKDELAY) |
2259 sackdelay_change;
2263 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2264 * of this field is ignored. Note also that a value of zero
2265 * indicates the current setting should be left unchanged.
2267 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2268 if (trans) {
2269 trans->pathmaxrxt = params->spp_pathmaxrxt;
2270 } else if (asoc) {
2271 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2272 } else {
2273 sp->pathmaxrxt = params->spp_pathmaxrxt;
2277 return 0;
2280 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2281 char __user *optval, int optlen)
2283 struct sctp_paddrparams params;
2284 struct sctp_transport *trans = NULL;
2285 struct sctp_association *asoc = NULL;
2286 struct sctp_sock *sp = sctp_sk(sk);
2287 int error;
2288 int hb_change, pmtud_change, sackdelay_change;
2290 if (optlen != sizeof(struct sctp_paddrparams))
2291 return - EINVAL;
2293 if (copy_from_user(&params, optval, optlen))
2294 return -EFAULT;
2296 /* Validate flags and value parameters. */
2297 hb_change = params.spp_flags & SPP_HB;
2298 pmtud_change = params.spp_flags & SPP_PMTUD;
2299 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2301 if (hb_change == SPP_HB ||
2302 pmtud_change == SPP_PMTUD ||
2303 sackdelay_change == SPP_SACKDELAY ||
2304 params.spp_sackdelay > 500 ||
2305 (params.spp_pathmtu
2306 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2307 return -EINVAL;
2309 /* If an address other than INADDR_ANY is specified, and
2310 * no transport is found, then the request is invalid.
2312 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2313 trans = sctp_addr_id2transport(sk, &params.spp_address,
2314 params.spp_assoc_id);
2315 if (!trans)
2316 return -EINVAL;
2319 /* Get association, if assoc_id != 0 and the socket is a one
2320 * to many style socket, and an association was not found, then
2321 * the id was invalid.
2323 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2324 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2325 return -EINVAL;
2327 /* Heartbeat demand can only be sent on a transport or
2328 * association, but not a socket.
2330 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2331 return -EINVAL;
2333 /* Process parameters. */
2334 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2335 hb_change, pmtud_change,
2336 sackdelay_change);
2338 if (error)
2339 return error;
2341 /* If changes are for association, also apply parameters to each
2342 * transport.
2344 if (!trans && asoc) {
2345 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2346 transports) {
2347 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2348 hb_change, pmtud_change,
2349 sackdelay_change);
2353 return 0;
2357 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2359 * This option will effect the way delayed acks are performed. This
2360 * option allows you to get or set the delayed ack time, in
2361 * milliseconds. It also allows changing the delayed ack frequency.
2362 * Changing the frequency to 1 disables the delayed sack algorithm. If
2363 * the assoc_id is 0, then this sets or gets the endpoints default
2364 * values. If the assoc_id field is non-zero, then the set or get
2365 * effects the specified association for the one to many model (the
2366 * assoc_id field is ignored by the one to one model). Note that if
2367 * sack_delay or sack_freq are 0 when setting this option, then the
2368 * current values will remain unchanged.
2370 * struct sctp_sack_info {
2371 * sctp_assoc_t sack_assoc_id;
2372 * uint32_t sack_delay;
2373 * uint32_t sack_freq;
2374 * };
2376 * sack_assoc_id - This parameter, indicates which association the user
2377 * is performing an action upon. Note that if this field's value is
2378 * zero then the endpoints default value is changed (effecting future
2379 * associations only).
2381 * sack_delay - This parameter contains the number of milliseconds that
2382 * the user is requesting the delayed ACK timer be set to. Note that
2383 * this value is defined in the standard to be between 200 and 500
2384 * milliseconds.
2386 * sack_freq - This parameter contains the number of packets that must
2387 * be received before a sack is sent without waiting for the delay
2388 * timer to expire. The default value for this is 2, setting this
2389 * value to 1 will disable the delayed sack algorithm.
2392 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2393 char __user *optval, int optlen)
2395 struct sctp_sack_info params;
2396 struct sctp_transport *trans = NULL;
2397 struct sctp_association *asoc = NULL;
2398 struct sctp_sock *sp = sctp_sk(sk);
2400 if (optlen == sizeof(struct sctp_sack_info)) {
2401 if (copy_from_user(&params, optval, optlen))
2402 return -EFAULT;
2404 if (params.sack_delay == 0 && params.sack_freq == 0)
2405 return 0;
2406 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2407 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
2408 "in delayed_ack socket option deprecated\n");
2409 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
2410 if (copy_from_user(&params, optval, optlen))
2411 return -EFAULT;
2413 if (params.sack_delay == 0)
2414 params.sack_freq = 1;
2415 else
2416 params.sack_freq = 0;
2417 } else
2418 return - EINVAL;
2420 /* Validate value parameter. */
2421 if (params.sack_delay > 500)
2422 return -EINVAL;
2424 /* Get association, if sack_assoc_id != 0 and the socket is a one
2425 * to many style socket, and an association was not found, then
2426 * the id was invalid.
2428 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2429 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2430 return -EINVAL;
2432 if (params.sack_delay) {
2433 if (asoc) {
2434 asoc->sackdelay =
2435 msecs_to_jiffies(params.sack_delay);
2436 asoc->param_flags =
2437 (asoc->param_flags & ~SPP_SACKDELAY) |
2438 SPP_SACKDELAY_ENABLE;
2439 } else {
2440 sp->sackdelay = params.sack_delay;
2441 sp->param_flags =
2442 (sp->param_flags & ~SPP_SACKDELAY) |
2443 SPP_SACKDELAY_ENABLE;
2447 if (params.sack_freq == 1) {
2448 if (asoc) {
2449 asoc->param_flags =
2450 (asoc->param_flags & ~SPP_SACKDELAY) |
2451 SPP_SACKDELAY_DISABLE;
2452 } else {
2453 sp->param_flags =
2454 (sp->param_flags & ~SPP_SACKDELAY) |
2455 SPP_SACKDELAY_DISABLE;
2457 } else if (params.sack_freq > 1) {
2458 if (asoc) {
2459 asoc->sackfreq = params.sack_freq;
2460 asoc->param_flags =
2461 (asoc->param_flags & ~SPP_SACKDELAY) |
2462 SPP_SACKDELAY_ENABLE;
2463 } else {
2464 sp->sackfreq = params.sack_freq;
2465 sp->param_flags =
2466 (sp->param_flags & ~SPP_SACKDELAY) |
2467 SPP_SACKDELAY_ENABLE;
2471 /* If change is for association, also apply to each transport. */
2472 if (asoc) {
2473 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2474 transports) {
2475 if (params.sack_delay) {
2476 trans->sackdelay =
2477 msecs_to_jiffies(params.sack_delay);
2478 trans->param_flags =
2479 (trans->param_flags & ~SPP_SACKDELAY) |
2480 SPP_SACKDELAY_ENABLE;
2482 if (params.sack_freq == 1) {
2483 trans->param_flags =
2484 (trans->param_flags & ~SPP_SACKDELAY) |
2485 SPP_SACKDELAY_DISABLE;
2486 } else if (params.sack_freq > 1) {
2487 trans->sackfreq = params.sack_freq;
2488 trans->param_flags =
2489 (trans->param_flags & ~SPP_SACKDELAY) |
2490 SPP_SACKDELAY_ENABLE;
2495 return 0;
2498 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2500 * Applications can specify protocol parameters for the default association
2501 * initialization. The option name argument to setsockopt() and getsockopt()
2502 * is SCTP_INITMSG.
2504 * Setting initialization parameters is effective only on an unconnected
2505 * socket (for UDP-style sockets only future associations are effected
2506 * by the change). With TCP-style sockets, this option is inherited by
2507 * sockets derived from a listener socket.
2509 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2511 struct sctp_initmsg sinit;
2512 struct sctp_sock *sp = sctp_sk(sk);
2514 if (optlen != sizeof(struct sctp_initmsg))
2515 return -EINVAL;
2516 if (copy_from_user(&sinit, optval, optlen))
2517 return -EFAULT;
2519 if (sinit.sinit_num_ostreams)
2520 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2521 if (sinit.sinit_max_instreams)
2522 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2523 if (sinit.sinit_max_attempts)
2524 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2525 if (sinit.sinit_max_init_timeo)
2526 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2528 return 0;
2532 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2534 * Applications that wish to use the sendto() system call may wish to
2535 * specify a default set of parameters that would normally be supplied
2536 * through the inclusion of ancillary data. This socket option allows
2537 * such an application to set the default sctp_sndrcvinfo structure.
2538 * The application that wishes to use this socket option simply passes
2539 * in to this call the sctp_sndrcvinfo structure defined in Section
2540 * 5.2.2) The input parameters accepted by this call include
2541 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2542 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2543 * to this call if the caller is using the UDP model.
2545 static int sctp_setsockopt_default_send_param(struct sock *sk,
2546 char __user *optval, int optlen)
2548 struct sctp_sndrcvinfo info;
2549 struct sctp_association *asoc;
2550 struct sctp_sock *sp = sctp_sk(sk);
2552 if (optlen != sizeof(struct sctp_sndrcvinfo))
2553 return -EINVAL;
2554 if (copy_from_user(&info, optval, optlen))
2555 return -EFAULT;
2557 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2558 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2559 return -EINVAL;
2561 if (asoc) {
2562 asoc->default_stream = info.sinfo_stream;
2563 asoc->default_flags = info.sinfo_flags;
2564 asoc->default_ppid = info.sinfo_ppid;
2565 asoc->default_context = info.sinfo_context;
2566 asoc->default_timetolive = info.sinfo_timetolive;
2567 } else {
2568 sp->default_stream = info.sinfo_stream;
2569 sp->default_flags = info.sinfo_flags;
2570 sp->default_ppid = info.sinfo_ppid;
2571 sp->default_context = info.sinfo_context;
2572 sp->default_timetolive = info.sinfo_timetolive;
2575 return 0;
2578 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2580 * Requests that the local SCTP stack use the enclosed peer address as
2581 * the association primary. The enclosed address must be one of the
2582 * association peer's addresses.
2584 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2585 int optlen)
2587 struct sctp_prim prim;
2588 struct sctp_transport *trans;
2590 if (optlen != sizeof(struct sctp_prim))
2591 return -EINVAL;
2593 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2594 return -EFAULT;
2596 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2597 if (!trans)
2598 return -EINVAL;
2600 sctp_assoc_set_primary(trans->asoc, trans);
2602 return 0;
2606 * 7.1.5 SCTP_NODELAY
2608 * Turn on/off any Nagle-like algorithm. This means that packets are
2609 * generally sent as soon as possible and no unnecessary delays are
2610 * introduced, at the cost of more packets in the network. Expects an
2611 * integer boolean flag.
2613 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2614 int optlen)
2616 int val;
2618 if (optlen < sizeof(int))
2619 return -EINVAL;
2620 if (get_user(val, (int __user *)optval))
2621 return -EFAULT;
2623 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2624 return 0;
2629 * 7.1.1 SCTP_RTOINFO
2631 * The protocol parameters used to initialize and bound retransmission
2632 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2633 * and modify these parameters.
2634 * All parameters are time values, in milliseconds. A value of 0, when
2635 * modifying the parameters, indicates that the current value should not
2636 * be changed.
2639 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2640 struct sctp_rtoinfo rtoinfo;
2641 struct sctp_association *asoc;
2643 if (optlen != sizeof (struct sctp_rtoinfo))
2644 return -EINVAL;
2646 if (copy_from_user(&rtoinfo, optval, optlen))
2647 return -EFAULT;
2649 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2651 /* Set the values to the specific association */
2652 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2653 return -EINVAL;
2655 if (asoc) {
2656 if (rtoinfo.srto_initial != 0)
2657 asoc->rto_initial =
2658 msecs_to_jiffies(rtoinfo.srto_initial);
2659 if (rtoinfo.srto_max != 0)
2660 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2661 if (rtoinfo.srto_min != 0)
2662 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2663 } else {
2664 /* If there is no association or the association-id = 0
2665 * set the values to the endpoint.
2667 struct sctp_sock *sp = sctp_sk(sk);
2669 if (rtoinfo.srto_initial != 0)
2670 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2671 if (rtoinfo.srto_max != 0)
2672 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2673 if (rtoinfo.srto_min != 0)
2674 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2677 return 0;
2682 * 7.1.2 SCTP_ASSOCINFO
2684 * This option is used to tune the maximum retransmission attempts
2685 * of the association.
2686 * Returns an error if the new association retransmission value is
2687 * greater than the sum of the retransmission value of the peer.
2688 * See [SCTP] for more information.
2691 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2694 struct sctp_assocparams assocparams;
2695 struct sctp_association *asoc;
2697 if (optlen != sizeof(struct sctp_assocparams))
2698 return -EINVAL;
2699 if (copy_from_user(&assocparams, optval, optlen))
2700 return -EFAULT;
2702 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2704 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2705 return -EINVAL;
2707 /* Set the values to the specific association */
2708 if (asoc) {
2709 if (assocparams.sasoc_asocmaxrxt != 0) {
2710 __u32 path_sum = 0;
2711 int paths = 0;
2712 struct sctp_transport *peer_addr;
2714 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2715 transports) {
2716 path_sum += peer_addr->pathmaxrxt;
2717 paths++;
2720 /* Only validate asocmaxrxt if we have more then
2721 * one path/transport. We do this because path
2722 * retransmissions are only counted when we have more
2723 * then one path.
2725 if (paths > 1 &&
2726 assocparams.sasoc_asocmaxrxt > path_sum)
2727 return -EINVAL;
2729 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2732 if (assocparams.sasoc_cookie_life != 0) {
2733 asoc->cookie_life.tv_sec =
2734 assocparams.sasoc_cookie_life / 1000;
2735 asoc->cookie_life.tv_usec =
2736 (assocparams.sasoc_cookie_life % 1000)
2737 * 1000;
2739 } else {
2740 /* Set the values to the endpoint */
2741 struct sctp_sock *sp = sctp_sk(sk);
2743 if (assocparams.sasoc_asocmaxrxt != 0)
2744 sp->assocparams.sasoc_asocmaxrxt =
2745 assocparams.sasoc_asocmaxrxt;
2746 if (assocparams.sasoc_cookie_life != 0)
2747 sp->assocparams.sasoc_cookie_life =
2748 assocparams.sasoc_cookie_life;
2750 return 0;
2754 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2756 * This socket option is a boolean flag which turns on or off mapped V4
2757 * addresses. If this option is turned on and the socket is type
2758 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2759 * If this option is turned off, then no mapping will be done of V4
2760 * addresses and a user will receive both PF_INET6 and PF_INET type
2761 * addresses on the socket.
2763 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2765 int val;
2766 struct sctp_sock *sp = sctp_sk(sk);
2768 if (optlen < sizeof(int))
2769 return -EINVAL;
2770 if (get_user(val, (int __user *)optval))
2771 return -EFAULT;
2772 if (val)
2773 sp->v4mapped = 1;
2774 else
2775 sp->v4mapped = 0;
2777 return 0;
2781 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2783 * This socket option specifies the maximum size to put in any outgoing
2784 * SCTP chunk. If a message is larger than this size it will be
2785 * fragmented by SCTP into the specified size. Note that the underlying
2786 * SCTP implementation may fragment into smaller sized chunks when the
2787 * PMTU of the underlying association is smaller than the value set by
2788 * the user.
2790 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2792 struct sctp_association *asoc;
2793 struct sctp_sock *sp = sctp_sk(sk);
2794 int val;
2796 if (optlen < sizeof(int))
2797 return -EINVAL;
2798 if (get_user(val, (int __user *)optval))
2799 return -EFAULT;
2800 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2801 return -EINVAL;
2802 sp->user_frag = val;
2804 /* Update the frag_point of the existing associations. */
2805 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2806 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2809 return 0;
2814 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2816 * Requests that the peer mark the enclosed address as the association
2817 * primary. The enclosed address must be one of the association's
2818 * locally bound addresses. The following structure is used to make a
2819 * set primary request:
2821 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2822 int optlen)
2824 struct sctp_sock *sp;
2825 struct sctp_endpoint *ep;
2826 struct sctp_association *asoc = NULL;
2827 struct sctp_setpeerprim prim;
2828 struct sctp_chunk *chunk;
2829 int err;
2831 sp = sctp_sk(sk);
2832 ep = sp->ep;
2834 if (!sctp_addip_enable)
2835 return -EPERM;
2837 if (optlen != sizeof(struct sctp_setpeerprim))
2838 return -EINVAL;
2840 if (copy_from_user(&prim, optval, optlen))
2841 return -EFAULT;
2843 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2844 if (!asoc)
2845 return -EINVAL;
2847 if (!asoc->peer.asconf_capable)
2848 return -EPERM;
2850 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2851 return -EPERM;
2853 if (!sctp_state(asoc, ESTABLISHED))
2854 return -ENOTCONN;
2856 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2857 return -EADDRNOTAVAIL;
2859 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2860 chunk = sctp_make_asconf_set_prim(asoc,
2861 (union sctp_addr *)&prim.sspp_addr);
2862 if (!chunk)
2863 return -ENOMEM;
2865 err = sctp_send_asconf(asoc, chunk);
2867 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2869 return err;
2872 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2873 int optlen)
2875 struct sctp_setadaptation adaptation;
2877 if (optlen != sizeof(struct sctp_setadaptation))
2878 return -EINVAL;
2879 if (copy_from_user(&adaptation, optval, optlen))
2880 return -EFAULT;
2882 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2884 return 0;
2888 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2890 * The context field in the sctp_sndrcvinfo structure is normally only
2891 * used when a failed message is retrieved holding the value that was
2892 * sent down on the actual send call. This option allows the setting of
2893 * a default context on an association basis that will be received on
2894 * reading messages from the peer. This is especially helpful in the
2895 * one-2-many model for an application to keep some reference to an
2896 * internal state machine that is processing messages on the
2897 * association. Note that the setting of this value only effects
2898 * received messages from the peer and does not effect the value that is
2899 * saved with outbound messages.
2901 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2902 int optlen)
2904 struct sctp_assoc_value params;
2905 struct sctp_sock *sp;
2906 struct sctp_association *asoc;
2908 if (optlen != sizeof(struct sctp_assoc_value))
2909 return -EINVAL;
2910 if (copy_from_user(&params, optval, optlen))
2911 return -EFAULT;
2913 sp = sctp_sk(sk);
2915 if (params.assoc_id != 0) {
2916 asoc = sctp_id2assoc(sk, params.assoc_id);
2917 if (!asoc)
2918 return -EINVAL;
2919 asoc->default_rcv_context = params.assoc_value;
2920 } else {
2921 sp->default_rcv_context = params.assoc_value;
2924 return 0;
2928 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2930 * This options will at a minimum specify if the implementation is doing
2931 * fragmented interleave. Fragmented interleave, for a one to many
2932 * socket, is when subsequent calls to receive a message may return
2933 * parts of messages from different associations. Some implementations
2934 * may allow you to turn this value on or off. If so, when turned off,
2935 * no fragment interleave will occur (which will cause a head of line
2936 * blocking amongst multiple associations sharing the same one to many
2937 * socket). When this option is turned on, then each receive call may
2938 * come from a different association (thus the user must receive data
2939 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2940 * association each receive belongs to.
2942 * This option takes a boolean value. A non-zero value indicates that
2943 * fragmented interleave is on. A value of zero indicates that
2944 * fragmented interleave is off.
2946 * Note that it is important that an implementation that allows this
2947 * option to be turned on, have it off by default. Otherwise an unaware
2948 * application using the one to many model may become confused and act
2949 * incorrectly.
2951 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2952 char __user *optval,
2953 int optlen)
2955 int val;
2957 if (optlen != sizeof(int))
2958 return -EINVAL;
2959 if (get_user(val, (int __user *)optval))
2960 return -EFAULT;
2962 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2964 return 0;
2968 * 7.1.25. Set or Get the sctp partial delivery point
2969 * (SCTP_PARTIAL_DELIVERY_POINT)
2970 * This option will set or get the SCTP partial delivery point. This
2971 * point is the size of a message where the partial delivery API will be
2972 * invoked to help free up rwnd space for the peer. Setting this to a
2973 * lower value will cause partial delivery's to happen more often. The
2974 * calls argument is an integer that sets or gets the partial delivery
2975 * point.
2977 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2978 char __user *optval,
2979 int optlen)
2981 u32 val;
2983 if (optlen != sizeof(u32))
2984 return -EINVAL;
2985 if (get_user(val, (int __user *)optval))
2986 return -EFAULT;
2988 sctp_sk(sk)->pd_point = val;
2990 return 0; /* is this the right error code? */
2994 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2996 * This option will allow a user to change the maximum burst of packets
2997 * that can be emitted by this association. Note that the default value
2998 * is 4, and some implementations may restrict this setting so that it
2999 * can only be lowered.
3001 * NOTE: This text doesn't seem right. Do this on a socket basis with
3002 * future associations inheriting the socket value.
3004 static int sctp_setsockopt_maxburst(struct sock *sk,
3005 char __user *optval,
3006 int optlen)
3008 struct sctp_assoc_value params;
3009 struct sctp_sock *sp;
3010 struct sctp_association *asoc;
3011 int val;
3012 int assoc_id = 0;
3014 if (optlen < sizeof(int))
3015 return -EINVAL;
3017 if (optlen == sizeof(int)) {
3018 printk(KERN_WARNING
3019 "SCTP: Use of int in max_burst socket option deprecated\n");
3020 printk(KERN_WARNING
3021 "SCTP: Use struct sctp_assoc_value instead\n");
3022 if (copy_from_user(&val, optval, optlen))
3023 return -EFAULT;
3024 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3025 if (copy_from_user(&params, optval, optlen))
3026 return -EFAULT;
3027 val = params.assoc_value;
3028 assoc_id = params.assoc_id;
3029 } else
3030 return -EINVAL;
3032 sp = sctp_sk(sk);
3034 if (assoc_id != 0) {
3035 asoc = sctp_id2assoc(sk, assoc_id);
3036 if (!asoc)
3037 return -EINVAL;
3038 asoc->max_burst = val;
3039 } else
3040 sp->max_burst = val;
3042 return 0;
3046 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3048 * This set option adds a chunk type that the user is requesting to be
3049 * received only in an authenticated way. Changes to the list of chunks
3050 * will only effect future associations on the socket.
3052 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3053 char __user *optval,
3054 int optlen)
3056 struct sctp_authchunk val;
3058 if (!sctp_auth_enable)
3059 return -EACCES;
3061 if (optlen != sizeof(struct sctp_authchunk))
3062 return -EINVAL;
3063 if (copy_from_user(&val, optval, optlen))
3064 return -EFAULT;
3066 switch (val.sauth_chunk) {
3067 case SCTP_CID_INIT:
3068 case SCTP_CID_INIT_ACK:
3069 case SCTP_CID_SHUTDOWN_COMPLETE:
3070 case SCTP_CID_AUTH:
3071 return -EINVAL;
3074 /* add this chunk id to the endpoint */
3075 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3079 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3081 * This option gets or sets the list of HMAC algorithms that the local
3082 * endpoint requires the peer to use.
3084 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3085 char __user *optval,
3086 int optlen)
3088 struct sctp_hmacalgo *hmacs;
3089 int err;
3091 if (!sctp_auth_enable)
3092 return -EACCES;
3094 if (optlen < sizeof(struct sctp_hmacalgo))
3095 return -EINVAL;
3097 hmacs = kmalloc(optlen, GFP_KERNEL);
3098 if (!hmacs)
3099 return -ENOMEM;
3101 if (copy_from_user(hmacs, optval, optlen)) {
3102 err = -EFAULT;
3103 goto out;
3106 if (hmacs->shmac_num_idents == 0 ||
3107 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
3108 err = -EINVAL;
3109 goto out;
3112 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3113 out:
3114 kfree(hmacs);
3115 return err;
3119 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3121 * This option will set a shared secret key which is used to build an
3122 * association shared key.
3124 static int sctp_setsockopt_auth_key(struct sock *sk,
3125 char __user *optval,
3126 int optlen)
3128 struct sctp_authkey *authkey;
3129 struct sctp_association *asoc;
3130 int ret;
3132 if (!sctp_auth_enable)
3133 return -EACCES;
3135 if (optlen <= sizeof(struct sctp_authkey))
3136 return -EINVAL;
3138 authkey = kmalloc(optlen, GFP_KERNEL);
3139 if (!authkey)
3140 return -ENOMEM;
3142 if (copy_from_user(authkey, optval, optlen)) {
3143 ret = -EFAULT;
3144 goto out;
3147 if (authkey->sca_keylength > optlen) {
3148 ret = -EINVAL;
3149 goto out;
3152 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3153 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3154 ret = -EINVAL;
3155 goto out;
3158 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3159 out:
3160 kfree(authkey);
3161 return ret;
3165 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3167 * This option will get or set the active shared key to be used to build
3168 * the association shared key.
3170 static int sctp_setsockopt_active_key(struct sock *sk,
3171 char __user *optval,
3172 int optlen)
3174 struct sctp_authkeyid val;
3175 struct sctp_association *asoc;
3177 if (!sctp_auth_enable)
3178 return -EACCES;
3180 if (optlen != sizeof(struct sctp_authkeyid))
3181 return -EINVAL;
3182 if (copy_from_user(&val, optval, optlen))
3183 return -EFAULT;
3185 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3186 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3187 return -EINVAL;
3189 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3190 val.scact_keynumber);
3194 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3196 * This set option will delete a shared secret key from use.
3198 static int sctp_setsockopt_del_key(struct sock *sk,
3199 char __user *optval,
3200 int optlen)
3202 struct sctp_authkeyid val;
3203 struct sctp_association *asoc;
3205 if (!sctp_auth_enable)
3206 return -EACCES;
3208 if (optlen != sizeof(struct sctp_authkeyid))
3209 return -EINVAL;
3210 if (copy_from_user(&val, optval, optlen))
3211 return -EFAULT;
3213 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3214 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3215 return -EINVAL;
3217 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3218 val.scact_keynumber);
3223 /* API 6.2 setsockopt(), getsockopt()
3225 * Applications use setsockopt() and getsockopt() to set or retrieve
3226 * socket options. Socket options are used to change the default
3227 * behavior of sockets calls. They are described in Section 7.
3229 * The syntax is:
3231 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3232 * int __user *optlen);
3233 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3234 * int optlen);
3236 * sd - the socket descript.
3237 * level - set to IPPROTO_SCTP for all SCTP options.
3238 * optname - the option name.
3239 * optval - the buffer to store the value of the option.
3240 * optlen - the size of the buffer.
3242 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3243 char __user *optval, int optlen)
3245 int retval = 0;
3247 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3248 sk, optname);
3250 /* I can hardly begin to describe how wrong this is. This is
3251 * so broken as to be worse than useless. The API draft
3252 * REALLY is NOT helpful here... I am not convinced that the
3253 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3254 * are at all well-founded.
3256 if (level != SOL_SCTP) {
3257 struct sctp_af *af = sctp_sk(sk)->pf->af;
3258 retval = af->setsockopt(sk, level, optname, optval, optlen);
3259 goto out_nounlock;
3262 sctp_lock_sock(sk);
3264 switch (optname) {
3265 case SCTP_SOCKOPT_BINDX_ADD:
3266 /* 'optlen' is the size of the addresses buffer. */
3267 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3268 optlen, SCTP_BINDX_ADD_ADDR);
3269 break;
3271 case SCTP_SOCKOPT_BINDX_REM:
3272 /* 'optlen' is the size of the addresses buffer. */
3273 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3274 optlen, SCTP_BINDX_REM_ADDR);
3275 break;
3277 case SCTP_SOCKOPT_CONNECTX_OLD:
3278 /* 'optlen' is the size of the addresses buffer. */
3279 retval = sctp_setsockopt_connectx_old(sk,
3280 (struct sockaddr __user *)optval,
3281 optlen);
3282 break;
3284 case SCTP_SOCKOPT_CONNECTX:
3285 /* 'optlen' is the size of the addresses buffer. */
3286 retval = sctp_setsockopt_connectx(sk,
3287 (struct sockaddr __user *)optval,
3288 optlen);
3289 break;
3291 case SCTP_DISABLE_FRAGMENTS:
3292 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3293 break;
3295 case SCTP_EVENTS:
3296 retval = sctp_setsockopt_events(sk, optval, optlen);
3297 break;
3299 case SCTP_AUTOCLOSE:
3300 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3301 break;
3303 case SCTP_PEER_ADDR_PARAMS:
3304 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3305 break;
3307 case SCTP_DELAYED_ACK:
3308 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3309 break;
3310 case SCTP_PARTIAL_DELIVERY_POINT:
3311 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3312 break;
3314 case SCTP_INITMSG:
3315 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3316 break;
3317 case SCTP_DEFAULT_SEND_PARAM:
3318 retval = sctp_setsockopt_default_send_param(sk, optval,
3319 optlen);
3320 break;
3321 case SCTP_PRIMARY_ADDR:
3322 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3323 break;
3324 case SCTP_SET_PEER_PRIMARY_ADDR:
3325 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3326 break;
3327 case SCTP_NODELAY:
3328 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3329 break;
3330 case SCTP_RTOINFO:
3331 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3332 break;
3333 case SCTP_ASSOCINFO:
3334 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3335 break;
3336 case SCTP_I_WANT_MAPPED_V4_ADDR:
3337 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3338 break;
3339 case SCTP_MAXSEG:
3340 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3341 break;
3342 case SCTP_ADAPTATION_LAYER:
3343 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3344 break;
3345 case SCTP_CONTEXT:
3346 retval = sctp_setsockopt_context(sk, optval, optlen);
3347 break;
3348 case SCTP_FRAGMENT_INTERLEAVE:
3349 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3350 break;
3351 case SCTP_MAX_BURST:
3352 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3353 break;
3354 case SCTP_AUTH_CHUNK:
3355 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3356 break;
3357 case SCTP_HMAC_IDENT:
3358 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3359 break;
3360 case SCTP_AUTH_KEY:
3361 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3362 break;
3363 case SCTP_AUTH_ACTIVE_KEY:
3364 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3365 break;
3366 case SCTP_AUTH_DELETE_KEY:
3367 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3368 break;
3369 default:
3370 retval = -ENOPROTOOPT;
3371 break;
3374 sctp_release_sock(sk);
3376 out_nounlock:
3377 return retval;
3380 /* API 3.1.6 connect() - UDP Style Syntax
3382 * An application may use the connect() call in the UDP model to initiate an
3383 * association without sending data.
3385 * The syntax is:
3387 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3389 * sd: the socket descriptor to have a new association added to.
3391 * nam: the address structure (either struct sockaddr_in or struct
3392 * sockaddr_in6 defined in RFC2553 [7]).
3394 * len: the size of the address.
3396 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3397 int addr_len)
3399 int err = 0;
3400 struct sctp_af *af;
3402 sctp_lock_sock(sk);
3404 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3405 __func__, sk, addr, addr_len);
3407 /* Validate addr_len before calling common connect/connectx routine. */
3408 af = sctp_get_af_specific(addr->sa_family);
3409 if (!af || addr_len < af->sockaddr_len) {
3410 err = -EINVAL;
3411 } else {
3412 /* Pass correct addr len to common routine (so it knows there
3413 * is only one address being passed.
3415 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3418 sctp_release_sock(sk);
3419 return err;
3422 /* FIXME: Write comments. */
3423 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3425 return -EOPNOTSUPP; /* STUB */
3428 /* 4.1.4 accept() - TCP Style Syntax
3430 * Applications use accept() call to remove an established SCTP
3431 * association from the accept queue of the endpoint. A new socket
3432 * descriptor will be returned from accept() to represent the newly
3433 * formed association.
3435 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3437 struct sctp_sock *sp;
3438 struct sctp_endpoint *ep;
3439 struct sock *newsk = NULL;
3440 struct sctp_association *asoc;
3441 long timeo;
3442 int error = 0;
3444 sctp_lock_sock(sk);
3446 sp = sctp_sk(sk);
3447 ep = sp->ep;
3449 if (!sctp_style(sk, TCP)) {
3450 error = -EOPNOTSUPP;
3451 goto out;
3454 if (!sctp_sstate(sk, LISTENING)) {
3455 error = -EINVAL;
3456 goto out;
3459 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3461 error = sctp_wait_for_accept(sk, timeo);
3462 if (error)
3463 goto out;
3465 /* We treat the list of associations on the endpoint as the accept
3466 * queue and pick the first association on the list.
3468 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3470 newsk = sp->pf->create_accept_sk(sk, asoc);
3471 if (!newsk) {
3472 error = -ENOMEM;
3473 goto out;
3476 /* Populate the fields of the newsk from the oldsk and migrate the
3477 * asoc to the newsk.
3479 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3481 out:
3482 sctp_release_sock(sk);
3483 *err = error;
3484 return newsk;
3487 /* The SCTP ioctl handler. */
3488 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3490 return -ENOIOCTLCMD;
3493 /* This is the function which gets called during socket creation to
3494 * initialized the SCTP-specific portion of the sock.
3495 * The sock structure should already be zero-filled memory.
3497 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3499 struct sctp_endpoint *ep;
3500 struct sctp_sock *sp;
3502 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3504 sp = sctp_sk(sk);
3506 /* Initialize the SCTP per socket area. */
3507 switch (sk->sk_type) {
3508 case SOCK_SEQPACKET:
3509 sp->type = SCTP_SOCKET_UDP;
3510 break;
3511 case SOCK_STREAM:
3512 sp->type = SCTP_SOCKET_TCP;
3513 break;
3514 default:
3515 return -ESOCKTNOSUPPORT;
3518 /* Initialize default send parameters. These parameters can be
3519 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3521 sp->default_stream = 0;
3522 sp->default_ppid = 0;
3523 sp->default_flags = 0;
3524 sp->default_context = 0;
3525 sp->default_timetolive = 0;
3527 sp->default_rcv_context = 0;
3528 sp->max_burst = sctp_max_burst;
3530 /* Initialize default setup parameters. These parameters
3531 * can be modified with the SCTP_INITMSG socket option or
3532 * overridden by the SCTP_INIT CMSG.
3534 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3535 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3536 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3537 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3539 /* Initialize default RTO related parameters. These parameters can
3540 * be modified for with the SCTP_RTOINFO socket option.
3542 sp->rtoinfo.srto_initial = sctp_rto_initial;
3543 sp->rtoinfo.srto_max = sctp_rto_max;
3544 sp->rtoinfo.srto_min = sctp_rto_min;
3546 /* Initialize default association related parameters. These parameters
3547 * can be modified with the SCTP_ASSOCINFO socket option.
3549 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3550 sp->assocparams.sasoc_number_peer_destinations = 0;
3551 sp->assocparams.sasoc_peer_rwnd = 0;
3552 sp->assocparams.sasoc_local_rwnd = 0;
3553 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3555 /* Initialize default event subscriptions. By default, all the
3556 * options are off.
3558 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3560 /* Default Peer Address Parameters. These defaults can
3561 * be modified via SCTP_PEER_ADDR_PARAMS
3563 sp->hbinterval = sctp_hb_interval;
3564 sp->pathmaxrxt = sctp_max_retrans_path;
3565 sp->pathmtu = 0; // allow default discovery
3566 sp->sackdelay = sctp_sack_timeout;
3567 sp->sackfreq = 2;
3568 sp->param_flags = SPP_HB_ENABLE |
3569 SPP_PMTUD_ENABLE |
3570 SPP_SACKDELAY_ENABLE;
3572 /* If enabled no SCTP message fragmentation will be performed.
3573 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3575 sp->disable_fragments = 0;
3577 /* Enable Nagle algorithm by default. */
3578 sp->nodelay = 0;
3580 /* Enable by default. */
3581 sp->v4mapped = 1;
3583 /* Auto-close idle associations after the configured
3584 * number of seconds. A value of 0 disables this
3585 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3586 * for UDP-style sockets only.
3588 sp->autoclose = 0;
3590 /* User specified fragmentation limit. */
3591 sp->user_frag = 0;
3593 sp->adaptation_ind = 0;
3595 sp->pf = sctp_get_pf_specific(sk->sk_family);
3597 /* Control variables for partial data delivery. */
3598 atomic_set(&sp->pd_mode, 0);
3599 skb_queue_head_init(&sp->pd_lobby);
3600 sp->frag_interleave = 0;
3602 /* Create a per socket endpoint structure. Even if we
3603 * change the data structure relationships, this may still
3604 * be useful for storing pre-connect address information.
3606 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3607 if (!ep)
3608 return -ENOMEM;
3610 sp->ep = ep;
3611 sp->hmac = NULL;
3613 SCTP_DBG_OBJCNT_INC(sock);
3614 atomic_inc(&sctp_sockets_allocated);
3615 return 0;
3618 /* Cleanup any SCTP per socket resources. */
3619 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3621 struct sctp_endpoint *ep;
3623 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3625 /* Release our hold on the endpoint. */
3626 ep = sctp_sk(sk)->ep;
3627 sctp_endpoint_free(ep);
3628 atomic_dec(&sctp_sockets_allocated);
3631 /* API 4.1.7 shutdown() - TCP Style Syntax
3632 * int shutdown(int socket, int how);
3634 * sd - the socket descriptor of the association to be closed.
3635 * how - Specifies the type of shutdown. The values are
3636 * as follows:
3637 * SHUT_RD
3638 * Disables further receive operations. No SCTP
3639 * protocol action is taken.
3640 * SHUT_WR
3641 * Disables further send operations, and initiates
3642 * the SCTP shutdown sequence.
3643 * SHUT_RDWR
3644 * Disables further send and receive operations
3645 * and initiates the SCTP shutdown sequence.
3647 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3649 struct sctp_endpoint *ep;
3650 struct sctp_association *asoc;
3652 if (!sctp_style(sk, TCP))
3653 return;
3655 if (how & SEND_SHUTDOWN) {
3656 ep = sctp_sk(sk)->ep;
3657 if (!list_empty(&ep->asocs)) {
3658 asoc = list_entry(ep->asocs.next,
3659 struct sctp_association, asocs);
3660 sctp_primitive_SHUTDOWN(asoc, NULL);
3665 /* 7.2.1 Association Status (SCTP_STATUS)
3667 * Applications can retrieve current status information about an
3668 * association, including association state, peer receiver window size,
3669 * number of unacked data chunks, and number of data chunks pending
3670 * receipt. This information is read-only.
3672 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3673 char __user *optval,
3674 int __user *optlen)
3676 struct sctp_status status;
3677 struct sctp_association *asoc = NULL;
3678 struct sctp_transport *transport;
3679 sctp_assoc_t associd;
3680 int retval = 0;
3682 if (len < sizeof(status)) {
3683 retval = -EINVAL;
3684 goto out;
3687 len = sizeof(status);
3688 if (copy_from_user(&status, optval, len)) {
3689 retval = -EFAULT;
3690 goto out;
3693 associd = status.sstat_assoc_id;
3694 asoc = sctp_id2assoc(sk, associd);
3695 if (!asoc) {
3696 retval = -EINVAL;
3697 goto out;
3700 transport = asoc->peer.primary_path;
3702 status.sstat_assoc_id = sctp_assoc2id(asoc);
3703 status.sstat_state = asoc->state;
3704 status.sstat_rwnd = asoc->peer.rwnd;
3705 status.sstat_unackdata = asoc->unack_data;
3707 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3708 status.sstat_instrms = asoc->c.sinit_max_instreams;
3709 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3710 status.sstat_fragmentation_point = asoc->frag_point;
3711 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3712 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3713 transport->af_specific->sockaddr_len);
3714 /* Map ipv4 address into v4-mapped-on-v6 address. */
3715 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3716 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3717 status.sstat_primary.spinfo_state = transport->state;
3718 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3719 status.sstat_primary.spinfo_srtt = transport->srtt;
3720 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3721 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3723 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3724 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3726 if (put_user(len, optlen)) {
3727 retval = -EFAULT;
3728 goto out;
3731 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3732 len, status.sstat_state, status.sstat_rwnd,
3733 status.sstat_assoc_id);
3735 if (copy_to_user(optval, &status, len)) {
3736 retval = -EFAULT;
3737 goto out;
3740 out:
3741 return (retval);
3745 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3747 * Applications can retrieve information about a specific peer address
3748 * of an association, including its reachability state, congestion
3749 * window, and retransmission timer values. This information is
3750 * read-only.
3752 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3753 char __user *optval,
3754 int __user *optlen)
3756 struct sctp_paddrinfo pinfo;
3757 struct sctp_transport *transport;
3758 int retval = 0;
3760 if (len < sizeof(pinfo)) {
3761 retval = -EINVAL;
3762 goto out;
3765 len = sizeof(pinfo);
3766 if (copy_from_user(&pinfo, optval, len)) {
3767 retval = -EFAULT;
3768 goto out;
3771 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3772 pinfo.spinfo_assoc_id);
3773 if (!transport)
3774 return -EINVAL;
3776 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3777 pinfo.spinfo_state = transport->state;
3778 pinfo.spinfo_cwnd = transport->cwnd;
3779 pinfo.spinfo_srtt = transport->srtt;
3780 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3781 pinfo.spinfo_mtu = transport->pathmtu;
3783 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3784 pinfo.spinfo_state = SCTP_ACTIVE;
3786 if (put_user(len, optlen)) {
3787 retval = -EFAULT;
3788 goto out;
3791 if (copy_to_user(optval, &pinfo, len)) {
3792 retval = -EFAULT;
3793 goto out;
3796 out:
3797 return (retval);
3800 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3802 * This option is a on/off flag. If enabled no SCTP message
3803 * fragmentation will be performed. Instead if a message being sent
3804 * exceeds the current PMTU size, the message will NOT be sent and
3805 * instead a error will be indicated to the user.
3807 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3808 char __user *optval, int __user *optlen)
3810 int val;
3812 if (len < sizeof(int))
3813 return -EINVAL;
3815 len = sizeof(int);
3816 val = (sctp_sk(sk)->disable_fragments == 1);
3817 if (put_user(len, optlen))
3818 return -EFAULT;
3819 if (copy_to_user(optval, &val, len))
3820 return -EFAULT;
3821 return 0;
3824 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3826 * This socket option is used to specify various notifications and
3827 * ancillary data the user wishes to receive.
3829 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3830 int __user *optlen)
3832 if (len < sizeof(struct sctp_event_subscribe))
3833 return -EINVAL;
3834 len = sizeof(struct sctp_event_subscribe);
3835 if (put_user(len, optlen))
3836 return -EFAULT;
3837 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3838 return -EFAULT;
3839 return 0;
3842 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3844 * This socket option is applicable to the UDP-style socket only. When
3845 * set it will cause associations that are idle for more than the
3846 * specified number of seconds to automatically close. An association
3847 * being idle is defined an association that has NOT sent or received
3848 * user data. The special value of '0' indicates that no automatic
3849 * close of any associations should be performed. The option expects an
3850 * integer defining the number of seconds of idle time before an
3851 * association is closed.
3853 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3855 /* Applicable to UDP-style socket only */
3856 if (sctp_style(sk, TCP))
3857 return -EOPNOTSUPP;
3858 if (len < sizeof(int))
3859 return -EINVAL;
3860 len = sizeof(int);
3861 if (put_user(len, optlen))
3862 return -EFAULT;
3863 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3864 return -EFAULT;
3865 return 0;
3868 /* Helper routine to branch off an association to a new socket. */
3869 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3870 struct socket **sockp)
3872 struct sock *sk = asoc->base.sk;
3873 struct socket *sock;
3874 struct inet_sock *inetsk;
3875 struct sctp_af *af;
3876 int err = 0;
3878 /* An association cannot be branched off from an already peeled-off
3879 * socket, nor is this supported for tcp style sockets.
3881 if (!sctp_style(sk, UDP))
3882 return -EINVAL;
3884 /* Create a new socket. */
3885 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3886 if (err < 0)
3887 return err;
3889 /* Populate the fields of the newsk from the oldsk and migrate the
3890 * asoc to the newsk.
3892 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3894 /* Make peeled-off sockets more like 1-1 accepted sockets.
3895 * Set the daddr and initialize id to something more random
3897 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3898 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3899 inetsk = inet_sk(sock->sk);
3900 inetsk->id = asoc->next_tsn ^ jiffies;
3902 *sockp = sock;
3904 return err;
3907 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3909 sctp_peeloff_arg_t peeloff;
3910 struct socket *newsock;
3911 int retval = 0;
3912 struct sctp_association *asoc;
3914 if (len < sizeof(sctp_peeloff_arg_t))
3915 return -EINVAL;
3916 len = sizeof(sctp_peeloff_arg_t);
3917 if (copy_from_user(&peeloff, optval, len))
3918 return -EFAULT;
3920 asoc = sctp_id2assoc(sk, peeloff.associd);
3921 if (!asoc) {
3922 retval = -EINVAL;
3923 goto out;
3926 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3928 retval = sctp_do_peeloff(asoc, &newsock);
3929 if (retval < 0)
3930 goto out;
3932 /* Map the socket to an unused fd that can be returned to the user. */
3933 retval = sock_map_fd(newsock, 0);
3934 if (retval < 0) {
3935 sock_release(newsock);
3936 goto out;
3939 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3940 __func__, sk, asoc, newsock->sk, retval);
3942 /* Return the fd mapped to the new socket. */
3943 peeloff.sd = retval;
3944 if (put_user(len, optlen))
3945 return -EFAULT;
3946 if (copy_to_user(optval, &peeloff, len))
3947 retval = -EFAULT;
3949 out:
3950 return retval;
3953 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3955 * Applications can enable or disable heartbeats for any peer address of
3956 * an association, modify an address's heartbeat interval, force a
3957 * heartbeat to be sent immediately, and adjust the address's maximum
3958 * number of retransmissions sent before an address is considered
3959 * unreachable. The following structure is used to access and modify an
3960 * address's parameters:
3962 * struct sctp_paddrparams {
3963 * sctp_assoc_t spp_assoc_id;
3964 * struct sockaddr_storage spp_address;
3965 * uint32_t spp_hbinterval;
3966 * uint16_t spp_pathmaxrxt;
3967 * uint32_t spp_pathmtu;
3968 * uint32_t spp_sackdelay;
3969 * uint32_t spp_flags;
3970 * };
3972 * spp_assoc_id - (one-to-many style socket) This is filled in the
3973 * application, and identifies the association for
3974 * this query.
3975 * spp_address - This specifies which address is of interest.
3976 * spp_hbinterval - This contains the value of the heartbeat interval,
3977 * in milliseconds. If a value of zero
3978 * is present in this field then no changes are to
3979 * be made to this parameter.
3980 * spp_pathmaxrxt - This contains the maximum number of
3981 * retransmissions before this address shall be
3982 * considered unreachable. If a value of zero
3983 * is present in this field then no changes are to
3984 * be made to this parameter.
3985 * spp_pathmtu - When Path MTU discovery is disabled the value
3986 * specified here will be the "fixed" path mtu.
3987 * Note that if the spp_address field is empty
3988 * then all associations on this address will
3989 * have this fixed path mtu set upon them.
3991 * spp_sackdelay - When delayed sack is enabled, this value specifies
3992 * the number of milliseconds that sacks will be delayed
3993 * for. This value will apply to all addresses of an
3994 * association if the spp_address field is empty. Note
3995 * also, that if delayed sack is enabled and this
3996 * value is set to 0, no change is made to the last
3997 * recorded delayed sack timer value.
3999 * spp_flags - These flags are used to control various features
4000 * on an association. The flag field may contain
4001 * zero or more of the following options.
4003 * SPP_HB_ENABLE - Enable heartbeats on the
4004 * specified address. Note that if the address
4005 * field is empty all addresses for the association
4006 * have heartbeats enabled upon them.
4008 * SPP_HB_DISABLE - Disable heartbeats on the
4009 * speicifed address. Note that if the address
4010 * field is empty all addresses for the association
4011 * will have their heartbeats disabled. Note also
4012 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4013 * mutually exclusive, only one of these two should
4014 * be specified. Enabling both fields will have
4015 * undetermined results.
4017 * SPP_HB_DEMAND - Request a user initiated heartbeat
4018 * to be made immediately.
4020 * SPP_PMTUD_ENABLE - This field will enable PMTU
4021 * discovery upon the specified address. Note that
4022 * if the address feild is empty then all addresses
4023 * on the association are effected.
4025 * SPP_PMTUD_DISABLE - This field will disable PMTU
4026 * discovery upon the specified address. Note that
4027 * if the address feild is empty then all addresses
4028 * on the association are effected. Not also that
4029 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4030 * exclusive. Enabling both will have undetermined
4031 * results.
4033 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4034 * on delayed sack. The time specified in spp_sackdelay
4035 * is used to specify the sack delay for this address. Note
4036 * that if spp_address is empty then all addresses will
4037 * enable delayed sack and take on the sack delay
4038 * value specified in spp_sackdelay.
4039 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4040 * off delayed sack. If the spp_address field is blank then
4041 * delayed sack is disabled for the entire association. Note
4042 * also that this field is mutually exclusive to
4043 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4044 * results.
4046 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4047 char __user *optval, int __user *optlen)
4049 struct sctp_paddrparams params;
4050 struct sctp_transport *trans = NULL;
4051 struct sctp_association *asoc = NULL;
4052 struct sctp_sock *sp = sctp_sk(sk);
4054 if (len < sizeof(struct sctp_paddrparams))
4055 return -EINVAL;
4056 len = sizeof(struct sctp_paddrparams);
4057 if (copy_from_user(&params, optval, len))
4058 return -EFAULT;
4060 /* If an address other than INADDR_ANY is specified, and
4061 * no transport is found, then the request is invalid.
4063 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
4064 trans = sctp_addr_id2transport(sk, &params.spp_address,
4065 params.spp_assoc_id);
4066 if (!trans) {
4067 SCTP_DEBUG_PRINTK("Failed no transport\n");
4068 return -EINVAL;
4072 /* Get association, if assoc_id != 0 and the socket is a one
4073 * to many style socket, and an association was not found, then
4074 * the id was invalid.
4076 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4077 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4078 SCTP_DEBUG_PRINTK("Failed no association\n");
4079 return -EINVAL;
4082 if (trans) {
4083 /* Fetch transport values. */
4084 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4085 params.spp_pathmtu = trans->pathmtu;
4086 params.spp_pathmaxrxt = trans->pathmaxrxt;
4087 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4089 /*draft-11 doesn't say what to return in spp_flags*/
4090 params.spp_flags = trans->param_flags;
4091 } else if (asoc) {
4092 /* Fetch association values. */
4093 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4094 params.spp_pathmtu = asoc->pathmtu;
4095 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4096 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4098 /*draft-11 doesn't say what to return in spp_flags*/
4099 params.spp_flags = asoc->param_flags;
4100 } else {
4101 /* Fetch socket values. */
4102 params.spp_hbinterval = sp->hbinterval;
4103 params.spp_pathmtu = sp->pathmtu;
4104 params.spp_sackdelay = sp->sackdelay;
4105 params.spp_pathmaxrxt = sp->pathmaxrxt;
4107 /*draft-11 doesn't say what to return in spp_flags*/
4108 params.spp_flags = sp->param_flags;
4111 if (copy_to_user(optval, &params, len))
4112 return -EFAULT;
4114 if (put_user(len, optlen))
4115 return -EFAULT;
4117 return 0;
4121 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4123 * This option will effect the way delayed acks are performed. This
4124 * option allows you to get or set the delayed ack time, in
4125 * milliseconds. It also allows changing the delayed ack frequency.
4126 * Changing the frequency to 1 disables the delayed sack algorithm. If
4127 * the assoc_id is 0, then this sets or gets the endpoints default
4128 * values. If the assoc_id field is non-zero, then the set or get
4129 * effects the specified association for the one to many model (the
4130 * assoc_id field is ignored by the one to one model). Note that if
4131 * sack_delay or sack_freq are 0 when setting this option, then the
4132 * current values will remain unchanged.
4134 * struct sctp_sack_info {
4135 * sctp_assoc_t sack_assoc_id;
4136 * uint32_t sack_delay;
4137 * uint32_t sack_freq;
4138 * };
4140 * sack_assoc_id - This parameter, indicates which association the user
4141 * is performing an action upon. Note that if this field's value is
4142 * zero then the endpoints default value is changed (effecting future
4143 * associations only).
4145 * sack_delay - This parameter contains the number of milliseconds that
4146 * the user is requesting the delayed ACK timer be set to. Note that
4147 * this value is defined in the standard to be between 200 and 500
4148 * milliseconds.
4150 * sack_freq - This parameter contains the number of packets that must
4151 * be received before a sack is sent without waiting for the delay
4152 * timer to expire. The default value for this is 2, setting this
4153 * value to 1 will disable the delayed sack algorithm.
4155 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4156 char __user *optval,
4157 int __user *optlen)
4159 struct sctp_sack_info params;
4160 struct sctp_association *asoc = NULL;
4161 struct sctp_sock *sp = sctp_sk(sk);
4163 if (len >= sizeof(struct sctp_sack_info)) {
4164 len = sizeof(struct sctp_sack_info);
4166 if (copy_from_user(&params, optval, len))
4167 return -EFAULT;
4168 } else if (len == sizeof(struct sctp_assoc_value)) {
4169 printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
4170 "in delayed_ack socket option deprecated\n");
4171 printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
4172 if (copy_from_user(&params, optval, len))
4173 return -EFAULT;
4174 } else
4175 return - EINVAL;
4177 /* Get association, if sack_assoc_id != 0 and the socket is a one
4178 * to many style socket, and an association was not found, then
4179 * the id was invalid.
4181 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4182 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4183 return -EINVAL;
4185 if (asoc) {
4186 /* Fetch association values. */
4187 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4188 params.sack_delay = jiffies_to_msecs(
4189 asoc->sackdelay);
4190 params.sack_freq = asoc->sackfreq;
4192 } else {
4193 params.sack_delay = 0;
4194 params.sack_freq = 1;
4196 } else {
4197 /* Fetch socket values. */
4198 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4199 params.sack_delay = sp->sackdelay;
4200 params.sack_freq = sp->sackfreq;
4201 } else {
4202 params.sack_delay = 0;
4203 params.sack_freq = 1;
4207 if (copy_to_user(optval, &params, len))
4208 return -EFAULT;
4210 if (put_user(len, optlen))
4211 return -EFAULT;
4213 return 0;
4216 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4218 * Applications can specify protocol parameters for the default association
4219 * initialization. The option name argument to setsockopt() and getsockopt()
4220 * is SCTP_INITMSG.
4222 * Setting initialization parameters is effective only on an unconnected
4223 * socket (for UDP-style sockets only future associations are effected
4224 * by the change). With TCP-style sockets, this option is inherited by
4225 * sockets derived from a listener socket.
4227 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4229 if (len < sizeof(struct sctp_initmsg))
4230 return -EINVAL;
4231 len = sizeof(struct sctp_initmsg);
4232 if (put_user(len, optlen))
4233 return -EFAULT;
4234 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4235 return -EFAULT;
4236 return 0;
4239 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4240 char __user *optval,
4241 int __user *optlen)
4243 sctp_assoc_t id;
4244 struct sctp_association *asoc;
4245 struct list_head *pos;
4246 int cnt = 0;
4248 if (len < sizeof(sctp_assoc_t))
4249 return -EINVAL;
4251 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4252 return -EFAULT;
4254 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD "
4255 "socket option deprecated\n");
4256 /* For UDP-style sockets, id specifies the association to query. */
4257 asoc = sctp_id2assoc(sk, id);
4258 if (!asoc)
4259 return -EINVAL;
4261 list_for_each(pos, &asoc->peer.transport_addr_list) {
4262 cnt ++;
4265 return cnt;
4269 * Old API for getting list of peer addresses. Does not work for 32-bit
4270 * programs running on a 64-bit kernel
4272 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4273 char __user *optval,
4274 int __user *optlen)
4276 struct sctp_association *asoc;
4277 int cnt = 0;
4278 struct sctp_getaddrs_old getaddrs;
4279 struct sctp_transport *from;
4280 void __user *to;
4281 union sctp_addr temp;
4282 struct sctp_sock *sp = sctp_sk(sk);
4283 int addrlen;
4285 if (len < sizeof(struct sctp_getaddrs_old))
4286 return -EINVAL;
4288 len = sizeof(struct sctp_getaddrs_old);
4290 if (copy_from_user(&getaddrs, optval, len))
4291 return -EFAULT;
4293 if (getaddrs.addr_num <= 0) return -EINVAL;
4295 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD "
4296 "socket option deprecated\n");
4298 /* For UDP-style sockets, id specifies the association to query. */
4299 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4300 if (!asoc)
4301 return -EINVAL;
4303 to = (void __user *)getaddrs.addrs;
4304 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4305 transports) {
4306 memcpy(&temp, &from->ipaddr, sizeof(temp));
4307 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4308 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4309 if (copy_to_user(to, &temp, addrlen))
4310 return -EFAULT;
4311 to += addrlen ;
4312 cnt ++;
4313 if (cnt >= getaddrs.addr_num) break;
4315 getaddrs.addr_num = cnt;
4316 if (put_user(len, optlen))
4317 return -EFAULT;
4318 if (copy_to_user(optval, &getaddrs, len))
4319 return -EFAULT;
4321 return 0;
4324 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4325 char __user *optval, int __user *optlen)
4327 struct sctp_association *asoc;
4328 int cnt = 0;
4329 struct sctp_getaddrs getaddrs;
4330 struct sctp_transport *from;
4331 void __user *to;
4332 union sctp_addr temp;
4333 struct sctp_sock *sp = sctp_sk(sk);
4334 int addrlen;
4335 size_t space_left;
4336 int bytes_copied;
4338 if (len < sizeof(struct sctp_getaddrs))
4339 return -EINVAL;
4341 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4342 return -EFAULT;
4344 /* For UDP-style sockets, id specifies the association to query. */
4345 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4346 if (!asoc)
4347 return -EINVAL;
4349 to = optval + offsetof(struct sctp_getaddrs,addrs);
4350 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4352 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4353 transports) {
4354 memcpy(&temp, &from->ipaddr, sizeof(temp));
4355 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4356 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4357 if (space_left < addrlen)
4358 return -ENOMEM;
4359 if (copy_to_user(to, &temp, addrlen))
4360 return -EFAULT;
4361 to += addrlen;
4362 cnt++;
4363 space_left -= addrlen;
4366 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4367 return -EFAULT;
4368 bytes_copied = ((char __user *)to) - optval;
4369 if (put_user(bytes_copied, optlen))
4370 return -EFAULT;
4372 return 0;
4375 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4376 char __user *optval,
4377 int __user *optlen)
4379 sctp_assoc_t id;
4380 struct sctp_bind_addr *bp;
4381 struct sctp_association *asoc;
4382 struct sctp_sockaddr_entry *addr;
4383 int cnt = 0;
4385 if (len < sizeof(sctp_assoc_t))
4386 return -EINVAL;
4388 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4389 return -EFAULT;
4391 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD "
4392 "socket option deprecated\n");
4395 * For UDP-style sockets, id specifies the association to query.
4396 * If the id field is set to the value '0' then the locally bound
4397 * addresses are returned without regard to any particular
4398 * association.
4400 if (0 == id) {
4401 bp = &sctp_sk(sk)->ep->base.bind_addr;
4402 } else {
4403 asoc = sctp_id2assoc(sk, id);
4404 if (!asoc)
4405 return -EINVAL;
4406 bp = &asoc->base.bind_addr;
4409 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4410 * addresses from the global local address list.
4412 if (sctp_list_single_entry(&bp->address_list)) {
4413 addr = list_entry(bp->address_list.next,
4414 struct sctp_sockaddr_entry, list);
4415 if (sctp_is_any(&addr->a)) {
4416 rcu_read_lock();
4417 list_for_each_entry_rcu(addr,
4418 &sctp_local_addr_list, list) {
4419 if (!addr->valid)
4420 continue;
4422 if ((PF_INET == sk->sk_family) &&
4423 (AF_INET6 == addr->a.sa.sa_family))
4424 continue;
4426 if ((PF_INET6 == sk->sk_family) &&
4427 inet_v6_ipv6only(sk) &&
4428 (AF_INET == addr->a.sa.sa_family))
4429 continue;
4431 cnt++;
4433 rcu_read_unlock();
4434 } else {
4435 cnt = 1;
4437 goto done;
4440 /* Protection on the bound address list is not needed,
4441 * since in the socket option context we hold the socket lock,
4442 * so there is no way that the bound address list can change.
4444 list_for_each_entry(addr, &bp->address_list, list) {
4445 cnt ++;
4447 done:
4448 return cnt;
4451 /* Helper function that copies local addresses to user and returns the number
4452 * of addresses copied.
4454 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4455 int max_addrs, void *to,
4456 int *bytes_copied)
4458 struct sctp_sockaddr_entry *addr;
4459 union sctp_addr temp;
4460 int cnt = 0;
4461 int addrlen;
4463 rcu_read_lock();
4464 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4465 if (!addr->valid)
4466 continue;
4468 if ((PF_INET == sk->sk_family) &&
4469 (AF_INET6 == addr->a.sa.sa_family))
4470 continue;
4471 if ((PF_INET6 == sk->sk_family) &&
4472 inet_v6_ipv6only(sk) &&
4473 (AF_INET == addr->a.sa.sa_family))
4474 continue;
4475 memcpy(&temp, &addr->a, sizeof(temp));
4476 if (!temp.v4.sin_port)
4477 temp.v4.sin_port = htons(port);
4479 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4480 &temp);
4481 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4482 memcpy(to, &temp, addrlen);
4484 to += addrlen;
4485 *bytes_copied += addrlen;
4486 cnt ++;
4487 if (cnt >= max_addrs) break;
4489 rcu_read_unlock();
4491 return cnt;
4494 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4495 size_t space_left, int *bytes_copied)
4497 struct sctp_sockaddr_entry *addr;
4498 union sctp_addr temp;
4499 int cnt = 0;
4500 int addrlen;
4502 rcu_read_lock();
4503 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4504 if (!addr->valid)
4505 continue;
4507 if ((PF_INET == sk->sk_family) &&
4508 (AF_INET6 == addr->a.sa.sa_family))
4509 continue;
4510 if ((PF_INET6 == sk->sk_family) &&
4511 inet_v6_ipv6only(sk) &&
4512 (AF_INET == addr->a.sa.sa_family))
4513 continue;
4514 memcpy(&temp, &addr->a, sizeof(temp));
4515 if (!temp.v4.sin_port)
4516 temp.v4.sin_port = htons(port);
4518 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4519 &temp);
4520 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4521 if (space_left < addrlen) {
4522 cnt = -ENOMEM;
4523 break;
4525 memcpy(to, &temp, addrlen);
4527 to += addrlen;
4528 cnt ++;
4529 space_left -= addrlen;
4530 *bytes_copied += addrlen;
4532 rcu_read_unlock();
4534 return cnt;
4537 /* Old API for getting list of local addresses. Does not work for 32-bit
4538 * programs running on a 64-bit kernel
4540 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4541 char __user *optval, int __user *optlen)
4543 struct sctp_bind_addr *bp;
4544 struct sctp_association *asoc;
4545 int cnt = 0;
4546 struct sctp_getaddrs_old getaddrs;
4547 struct sctp_sockaddr_entry *addr;
4548 void __user *to;
4549 union sctp_addr temp;
4550 struct sctp_sock *sp = sctp_sk(sk);
4551 int addrlen;
4552 int err = 0;
4553 void *addrs;
4554 void *buf;
4555 int bytes_copied = 0;
4557 if (len < sizeof(struct sctp_getaddrs_old))
4558 return -EINVAL;
4560 len = sizeof(struct sctp_getaddrs_old);
4561 if (copy_from_user(&getaddrs, optval, len))
4562 return -EFAULT;
4564 if (getaddrs.addr_num <= 0 ||
4565 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4566 return -EINVAL;
4568 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD "
4569 "socket option deprecated\n");
4572 * For UDP-style sockets, id specifies the association to query.
4573 * If the id field is set to the value '0' then the locally bound
4574 * addresses are returned without regard to any particular
4575 * association.
4577 if (0 == getaddrs.assoc_id) {
4578 bp = &sctp_sk(sk)->ep->base.bind_addr;
4579 } else {
4580 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4581 if (!asoc)
4582 return -EINVAL;
4583 bp = &asoc->base.bind_addr;
4586 to = getaddrs.addrs;
4588 /* Allocate space for a local instance of packed array to hold all
4589 * the data. We store addresses here first and then put write them
4590 * to the user in one shot.
4592 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4593 GFP_KERNEL);
4594 if (!addrs)
4595 return -ENOMEM;
4597 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4598 * addresses from the global local address list.
4600 if (sctp_list_single_entry(&bp->address_list)) {
4601 addr = list_entry(bp->address_list.next,
4602 struct sctp_sockaddr_entry, list);
4603 if (sctp_is_any(&addr->a)) {
4604 cnt = sctp_copy_laddrs_old(sk, bp->port,
4605 getaddrs.addr_num,
4606 addrs, &bytes_copied);
4607 goto copy_getaddrs;
4611 buf = addrs;
4612 /* Protection on the bound address list is not needed since
4613 * in the socket option context we hold a socket lock and
4614 * thus the bound address list can't change.
4616 list_for_each_entry(addr, &bp->address_list, list) {
4617 memcpy(&temp, &addr->a, sizeof(temp));
4618 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4619 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4620 memcpy(buf, &temp, addrlen);
4621 buf += addrlen;
4622 bytes_copied += addrlen;
4623 cnt ++;
4624 if (cnt >= getaddrs.addr_num) break;
4627 copy_getaddrs:
4628 /* copy the entire address list into the user provided space */
4629 if (copy_to_user(to, addrs, bytes_copied)) {
4630 err = -EFAULT;
4631 goto error;
4634 /* copy the leading structure back to user */
4635 getaddrs.addr_num = cnt;
4636 if (copy_to_user(optval, &getaddrs, len))
4637 err = -EFAULT;
4639 error:
4640 kfree(addrs);
4641 return err;
4644 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4645 char __user *optval, int __user *optlen)
4647 struct sctp_bind_addr *bp;
4648 struct sctp_association *asoc;
4649 int cnt = 0;
4650 struct sctp_getaddrs getaddrs;
4651 struct sctp_sockaddr_entry *addr;
4652 void __user *to;
4653 union sctp_addr temp;
4654 struct sctp_sock *sp = sctp_sk(sk);
4655 int addrlen;
4656 int err = 0;
4657 size_t space_left;
4658 int bytes_copied = 0;
4659 void *addrs;
4660 void *buf;
4662 if (len < sizeof(struct sctp_getaddrs))
4663 return -EINVAL;
4665 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4666 return -EFAULT;
4669 * For UDP-style sockets, id specifies the association to query.
4670 * If the id field is set to the value '0' then the locally bound
4671 * addresses are returned without regard to any particular
4672 * association.
4674 if (0 == getaddrs.assoc_id) {
4675 bp = &sctp_sk(sk)->ep->base.bind_addr;
4676 } else {
4677 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4678 if (!asoc)
4679 return -EINVAL;
4680 bp = &asoc->base.bind_addr;
4683 to = optval + offsetof(struct sctp_getaddrs,addrs);
4684 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4686 addrs = kmalloc(space_left, GFP_KERNEL);
4687 if (!addrs)
4688 return -ENOMEM;
4690 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4691 * addresses from the global local address list.
4693 if (sctp_list_single_entry(&bp->address_list)) {
4694 addr = list_entry(bp->address_list.next,
4695 struct sctp_sockaddr_entry, list);
4696 if (sctp_is_any(&addr->a)) {
4697 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4698 space_left, &bytes_copied);
4699 if (cnt < 0) {
4700 err = cnt;
4701 goto out;
4703 goto copy_getaddrs;
4707 buf = addrs;
4708 /* Protection on the bound address list is not needed since
4709 * in the socket option context we hold a socket lock and
4710 * thus the bound address list can't change.
4712 list_for_each_entry(addr, &bp->address_list, list) {
4713 memcpy(&temp, &addr->a, sizeof(temp));
4714 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4715 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4716 if (space_left < addrlen) {
4717 err = -ENOMEM; /*fixme: right error?*/
4718 goto out;
4720 memcpy(buf, &temp, addrlen);
4721 buf += addrlen;
4722 bytes_copied += addrlen;
4723 cnt ++;
4724 space_left -= addrlen;
4727 copy_getaddrs:
4728 if (copy_to_user(to, addrs, bytes_copied)) {
4729 err = -EFAULT;
4730 goto out;
4732 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4733 err = -EFAULT;
4734 goto out;
4736 if (put_user(bytes_copied, optlen))
4737 err = -EFAULT;
4738 out:
4739 kfree(addrs);
4740 return err;
4743 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4745 * Requests that the local SCTP stack use the enclosed peer address as
4746 * the association primary. The enclosed address must be one of the
4747 * association peer's addresses.
4749 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4750 char __user *optval, int __user *optlen)
4752 struct sctp_prim prim;
4753 struct sctp_association *asoc;
4754 struct sctp_sock *sp = sctp_sk(sk);
4756 if (len < sizeof(struct sctp_prim))
4757 return -EINVAL;
4759 len = sizeof(struct sctp_prim);
4761 if (copy_from_user(&prim, optval, len))
4762 return -EFAULT;
4764 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4765 if (!asoc)
4766 return -EINVAL;
4768 if (!asoc->peer.primary_path)
4769 return -ENOTCONN;
4771 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4772 asoc->peer.primary_path->af_specific->sockaddr_len);
4774 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4775 (union sctp_addr *)&prim.ssp_addr);
4777 if (put_user(len, optlen))
4778 return -EFAULT;
4779 if (copy_to_user(optval, &prim, len))
4780 return -EFAULT;
4782 return 0;
4786 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4788 * Requests that the local endpoint set the specified Adaptation Layer
4789 * Indication parameter for all future INIT and INIT-ACK exchanges.
4791 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4792 char __user *optval, int __user *optlen)
4794 struct sctp_setadaptation adaptation;
4796 if (len < sizeof(struct sctp_setadaptation))
4797 return -EINVAL;
4799 len = sizeof(struct sctp_setadaptation);
4801 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4803 if (put_user(len, optlen))
4804 return -EFAULT;
4805 if (copy_to_user(optval, &adaptation, len))
4806 return -EFAULT;
4808 return 0;
4813 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4815 * Applications that wish to use the sendto() system call may wish to
4816 * specify a default set of parameters that would normally be supplied
4817 * through the inclusion of ancillary data. This socket option allows
4818 * such an application to set the default sctp_sndrcvinfo structure.
4821 * The application that wishes to use this socket option simply passes
4822 * in to this call the sctp_sndrcvinfo structure defined in Section
4823 * 5.2.2) The input parameters accepted by this call include
4824 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4825 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4826 * to this call if the caller is using the UDP model.
4828 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4830 static int sctp_getsockopt_default_send_param(struct sock *sk,
4831 int len, char __user *optval,
4832 int __user *optlen)
4834 struct sctp_sndrcvinfo info;
4835 struct sctp_association *asoc;
4836 struct sctp_sock *sp = sctp_sk(sk);
4838 if (len < sizeof(struct sctp_sndrcvinfo))
4839 return -EINVAL;
4841 len = sizeof(struct sctp_sndrcvinfo);
4843 if (copy_from_user(&info, optval, len))
4844 return -EFAULT;
4846 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4847 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4848 return -EINVAL;
4850 if (asoc) {
4851 info.sinfo_stream = asoc->default_stream;
4852 info.sinfo_flags = asoc->default_flags;
4853 info.sinfo_ppid = asoc->default_ppid;
4854 info.sinfo_context = asoc->default_context;
4855 info.sinfo_timetolive = asoc->default_timetolive;
4856 } else {
4857 info.sinfo_stream = sp->default_stream;
4858 info.sinfo_flags = sp->default_flags;
4859 info.sinfo_ppid = sp->default_ppid;
4860 info.sinfo_context = sp->default_context;
4861 info.sinfo_timetolive = sp->default_timetolive;
4864 if (put_user(len, optlen))
4865 return -EFAULT;
4866 if (copy_to_user(optval, &info, len))
4867 return -EFAULT;
4869 return 0;
4874 * 7.1.5 SCTP_NODELAY
4876 * Turn on/off any Nagle-like algorithm. This means that packets are
4877 * generally sent as soon as possible and no unnecessary delays are
4878 * introduced, at the cost of more packets in the network. Expects an
4879 * integer boolean flag.
4882 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4883 char __user *optval, int __user *optlen)
4885 int val;
4887 if (len < sizeof(int))
4888 return -EINVAL;
4890 len = sizeof(int);
4891 val = (sctp_sk(sk)->nodelay == 1);
4892 if (put_user(len, optlen))
4893 return -EFAULT;
4894 if (copy_to_user(optval, &val, len))
4895 return -EFAULT;
4896 return 0;
4901 * 7.1.1 SCTP_RTOINFO
4903 * The protocol parameters used to initialize and bound retransmission
4904 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4905 * and modify these parameters.
4906 * All parameters are time values, in milliseconds. A value of 0, when
4907 * modifying the parameters, indicates that the current value should not
4908 * be changed.
4911 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4912 char __user *optval,
4913 int __user *optlen) {
4914 struct sctp_rtoinfo rtoinfo;
4915 struct sctp_association *asoc;
4917 if (len < sizeof (struct sctp_rtoinfo))
4918 return -EINVAL;
4920 len = sizeof(struct sctp_rtoinfo);
4922 if (copy_from_user(&rtoinfo, optval, len))
4923 return -EFAULT;
4925 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4927 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4928 return -EINVAL;
4930 /* Values corresponding to the specific association. */
4931 if (asoc) {
4932 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4933 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4934 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4935 } else {
4936 /* Values corresponding to the endpoint. */
4937 struct sctp_sock *sp = sctp_sk(sk);
4939 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4940 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4941 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4944 if (put_user(len, optlen))
4945 return -EFAULT;
4947 if (copy_to_user(optval, &rtoinfo, len))
4948 return -EFAULT;
4950 return 0;
4955 * 7.1.2 SCTP_ASSOCINFO
4957 * This option is used to tune the maximum retransmission attempts
4958 * of the association.
4959 * Returns an error if the new association retransmission value is
4960 * greater than the sum of the retransmission value of the peer.
4961 * See [SCTP] for more information.
4964 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4965 char __user *optval,
4966 int __user *optlen)
4969 struct sctp_assocparams assocparams;
4970 struct sctp_association *asoc;
4971 struct list_head *pos;
4972 int cnt = 0;
4974 if (len < sizeof (struct sctp_assocparams))
4975 return -EINVAL;
4977 len = sizeof(struct sctp_assocparams);
4979 if (copy_from_user(&assocparams, optval, len))
4980 return -EFAULT;
4982 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4984 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4985 return -EINVAL;
4987 /* Values correspoinding to the specific association */
4988 if (asoc) {
4989 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4990 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4991 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4992 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4993 * 1000) +
4994 (asoc->cookie_life.tv_usec
4995 / 1000);
4997 list_for_each(pos, &asoc->peer.transport_addr_list) {
4998 cnt ++;
5001 assocparams.sasoc_number_peer_destinations = cnt;
5002 } else {
5003 /* Values corresponding to the endpoint */
5004 struct sctp_sock *sp = sctp_sk(sk);
5006 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5007 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5008 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5009 assocparams.sasoc_cookie_life =
5010 sp->assocparams.sasoc_cookie_life;
5011 assocparams.sasoc_number_peer_destinations =
5012 sp->assocparams.
5013 sasoc_number_peer_destinations;
5016 if (put_user(len, optlen))
5017 return -EFAULT;
5019 if (copy_to_user(optval, &assocparams, len))
5020 return -EFAULT;
5022 return 0;
5026 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5028 * This socket option is a boolean flag which turns on or off mapped V4
5029 * addresses. If this option is turned on and the socket is type
5030 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5031 * If this option is turned off, then no mapping will be done of V4
5032 * addresses and a user will receive both PF_INET6 and PF_INET type
5033 * addresses on the socket.
5035 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5036 char __user *optval, int __user *optlen)
5038 int val;
5039 struct sctp_sock *sp = sctp_sk(sk);
5041 if (len < sizeof(int))
5042 return -EINVAL;
5044 len = sizeof(int);
5045 val = sp->v4mapped;
5046 if (put_user(len, optlen))
5047 return -EFAULT;
5048 if (copy_to_user(optval, &val, len))
5049 return -EFAULT;
5051 return 0;
5055 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5056 * (chapter and verse is quoted at sctp_setsockopt_context())
5058 static int sctp_getsockopt_context(struct sock *sk, int len,
5059 char __user *optval, int __user *optlen)
5061 struct sctp_assoc_value params;
5062 struct sctp_sock *sp;
5063 struct sctp_association *asoc;
5065 if (len < sizeof(struct sctp_assoc_value))
5066 return -EINVAL;
5068 len = sizeof(struct sctp_assoc_value);
5070 if (copy_from_user(&params, optval, len))
5071 return -EFAULT;
5073 sp = sctp_sk(sk);
5075 if (params.assoc_id != 0) {
5076 asoc = sctp_id2assoc(sk, params.assoc_id);
5077 if (!asoc)
5078 return -EINVAL;
5079 params.assoc_value = asoc->default_rcv_context;
5080 } else {
5081 params.assoc_value = sp->default_rcv_context;
5084 if (put_user(len, optlen))
5085 return -EFAULT;
5086 if (copy_to_user(optval, &params, len))
5087 return -EFAULT;
5089 return 0;
5093 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
5095 * This socket option specifies the maximum size to put in any outgoing
5096 * SCTP chunk. If a message is larger than this size it will be
5097 * fragmented by SCTP into the specified size. Note that the underlying
5098 * SCTP implementation may fragment into smaller sized chunks when the
5099 * PMTU of the underlying association is smaller than the value set by
5100 * the user.
5102 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5103 char __user *optval, int __user *optlen)
5105 int val;
5107 if (len < sizeof(int))
5108 return -EINVAL;
5110 len = sizeof(int);
5112 val = sctp_sk(sk)->user_frag;
5113 if (put_user(len, optlen))
5114 return -EFAULT;
5115 if (copy_to_user(optval, &val, len))
5116 return -EFAULT;
5118 return 0;
5122 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5123 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5125 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5126 char __user *optval, int __user *optlen)
5128 int val;
5130 if (len < sizeof(int))
5131 return -EINVAL;
5133 len = sizeof(int);
5135 val = sctp_sk(sk)->frag_interleave;
5136 if (put_user(len, optlen))
5137 return -EFAULT;
5138 if (copy_to_user(optval, &val, len))
5139 return -EFAULT;
5141 return 0;
5145 * 7.1.25. Set or Get the sctp partial delivery point
5146 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5148 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5149 char __user *optval,
5150 int __user *optlen)
5152 u32 val;
5154 if (len < sizeof(u32))
5155 return -EINVAL;
5157 len = sizeof(u32);
5159 val = sctp_sk(sk)->pd_point;
5160 if (put_user(len, optlen))
5161 return -EFAULT;
5162 if (copy_to_user(optval, &val, len))
5163 return -EFAULT;
5165 return -ENOTSUPP;
5169 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5170 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5172 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5173 char __user *optval,
5174 int __user *optlen)
5176 struct sctp_assoc_value params;
5177 struct sctp_sock *sp;
5178 struct sctp_association *asoc;
5180 if (len < sizeof(int))
5181 return -EINVAL;
5183 if (len == sizeof(int)) {
5184 printk(KERN_WARNING
5185 "SCTP: Use of int in max_burst socket option deprecated\n");
5186 printk(KERN_WARNING
5187 "SCTP: Use struct sctp_assoc_value instead\n");
5188 params.assoc_id = 0;
5189 } else if (len == sizeof (struct sctp_assoc_value)) {
5190 if (copy_from_user(&params, optval, len))
5191 return -EFAULT;
5192 } else
5193 return -EINVAL;
5195 sp = sctp_sk(sk);
5197 if (params.assoc_id != 0) {
5198 asoc = sctp_id2assoc(sk, params.assoc_id);
5199 if (!asoc)
5200 return -EINVAL;
5201 params.assoc_value = asoc->max_burst;
5202 } else
5203 params.assoc_value = sp->max_burst;
5205 if (len == sizeof(int)) {
5206 if (copy_to_user(optval, &params.assoc_value, len))
5207 return -EFAULT;
5208 } else {
5209 if (copy_to_user(optval, &params, len))
5210 return -EFAULT;
5213 return 0;
5217 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5218 char __user *optval, int __user *optlen)
5220 struct sctp_hmacalgo __user *p = (void __user *)optval;
5221 struct sctp_hmac_algo_param *hmacs;
5222 __u16 data_len = 0;
5223 u32 num_idents;
5225 if (!sctp_auth_enable)
5226 return -EACCES;
5228 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5229 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5231 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5232 return -EINVAL;
5234 len = sizeof(struct sctp_hmacalgo) + data_len;
5235 num_idents = data_len / sizeof(u16);
5237 if (put_user(len, optlen))
5238 return -EFAULT;
5239 if (put_user(num_idents, &p->shmac_num_idents))
5240 return -EFAULT;
5241 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5242 return -EFAULT;
5243 return 0;
5246 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5247 char __user *optval, int __user *optlen)
5249 struct sctp_authkeyid val;
5250 struct sctp_association *asoc;
5252 if (!sctp_auth_enable)
5253 return -EACCES;
5255 if (len < sizeof(struct sctp_authkeyid))
5256 return -EINVAL;
5257 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5258 return -EFAULT;
5260 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5261 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5262 return -EINVAL;
5264 if (asoc)
5265 val.scact_keynumber = asoc->active_key_id;
5266 else
5267 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5269 len = sizeof(struct sctp_authkeyid);
5270 if (put_user(len, optlen))
5271 return -EFAULT;
5272 if (copy_to_user(optval, &val, len))
5273 return -EFAULT;
5275 return 0;
5278 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5279 char __user *optval, int __user *optlen)
5281 struct sctp_authchunks __user *p = (void __user *)optval;
5282 struct sctp_authchunks val;
5283 struct sctp_association *asoc;
5284 struct sctp_chunks_param *ch;
5285 u32 num_chunks = 0;
5286 char __user *to;
5288 if (!sctp_auth_enable)
5289 return -EACCES;
5291 if (len < sizeof(struct sctp_authchunks))
5292 return -EINVAL;
5294 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5295 return -EFAULT;
5297 to = p->gauth_chunks;
5298 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5299 if (!asoc)
5300 return -EINVAL;
5302 ch = asoc->peer.peer_chunks;
5303 if (!ch)
5304 goto num;
5306 /* See if the user provided enough room for all the data */
5307 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5308 if (len < num_chunks)
5309 return -EINVAL;
5311 if (copy_to_user(to, ch->chunks, num_chunks))
5312 return -EFAULT;
5313 num:
5314 len = sizeof(struct sctp_authchunks) + num_chunks;
5315 if (put_user(len, optlen)) return -EFAULT;
5316 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5317 return -EFAULT;
5318 return 0;
5321 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5322 char __user *optval, int __user *optlen)
5324 struct sctp_authchunks __user *p = (void __user *)optval;
5325 struct sctp_authchunks val;
5326 struct sctp_association *asoc;
5327 struct sctp_chunks_param *ch;
5328 u32 num_chunks = 0;
5329 char __user *to;
5331 if (!sctp_auth_enable)
5332 return -EACCES;
5334 if (len < sizeof(struct sctp_authchunks))
5335 return -EINVAL;
5337 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5338 return -EFAULT;
5340 to = p->gauth_chunks;
5341 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5342 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5343 return -EINVAL;
5345 if (asoc)
5346 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5347 else
5348 ch = sctp_sk(sk)->ep->auth_chunk_list;
5350 if (!ch)
5351 goto num;
5353 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5354 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5355 return -EINVAL;
5357 if (copy_to_user(to, ch->chunks, num_chunks))
5358 return -EFAULT;
5359 num:
5360 len = sizeof(struct sctp_authchunks) + num_chunks;
5361 if (put_user(len, optlen))
5362 return -EFAULT;
5363 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5364 return -EFAULT;
5366 return 0;
5369 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5370 char __user *optval, int __user *optlen)
5372 int retval = 0;
5373 int len;
5375 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5376 sk, optname);
5378 /* I can hardly begin to describe how wrong this is. This is
5379 * so broken as to be worse than useless. The API draft
5380 * REALLY is NOT helpful here... I am not convinced that the
5381 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5382 * are at all well-founded.
5384 if (level != SOL_SCTP) {
5385 struct sctp_af *af = sctp_sk(sk)->pf->af;
5387 retval = af->getsockopt(sk, level, optname, optval, optlen);
5388 return retval;
5391 if (get_user(len, optlen))
5392 return -EFAULT;
5394 sctp_lock_sock(sk);
5396 switch (optname) {
5397 case SCTP_STATUS:
5398 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5399 break;
5400 case SCTP_DISABLE_FRAGMENTS:
5401 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5402 optlen);
5403 break;
5404 case SCTP_EVENTS:
5405 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5406 break;
5407 case SCTP_AUTOCLOSE:
5408 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5409 break;
5410 case SCTP_SOCKOPT_PEELOFF:
5411 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5412 break;
5413 case SCTP_PEER_ADDR_PARAMS:
5414 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5415 optlen);
5416 break;
5417 case SCTP_DELAYED_ACK:
5418 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5419 optlen);
5420 break;
5421 case SCTP_INITMSG:
5422 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5423 break;
5424 case SCTP_GET_PEER_ADDRS_NUM_OLD:
5425 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5426 optlen);
5427 break;
5428 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5429 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5430 optlen);
5431 break;
5432 case SCTP_GET_PEER_ADDRS_OLD:
5433 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5434 optlen);
5435 break;
5436 case SCTP_GET_LOCAL_ADDRS_OLD:
5437 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5438 optlen);
5439 break;
5440 case SCTP_GET_PEER_ADDRS:
5441 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5442 optlen);
5443 break;
5444 case SCTP_GET_LOCAL_ADDRS:
5445 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5446 optlen);
5447 break;
5448 case SCTP_DEFAULT_SEND_PARAM:
5449 retval = sctp_getsockopt_default_send_param(sk, len,
5450 optval, optlen);
5451 break;
5452 case SCTP_PRIMARY_ADDR:
5453 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5454 break;
5455 case SCTP_NODELAY:
5456 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5457 break;
5458 case SCTP_RTOINFO:
5459 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5460 break;
5461 case SCTP_ASSOCINFO:
5462 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5463 break;
5464 case SCTP_I_WANT_MAPPED_V4_ADDR:
5465 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5466 break;
5467 case SCTP_MAXSEG:
5468 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5469 break;
5470 case SCTP_GET_PEER_ADDR_INFO:
5471 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5472 optlen);
5473 break;
5474 case SCTP_ADAPTATION_LAYER:
5475 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5476 optlen);
5477 break;
5478 case SCTP_CONTEXT:
5479 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5480 break;
5481 case SCTP_FRAGMENT_INTERLEAVE:
5482 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5483 optlen);
5484 break;
5485 case SCTP_PARTIAL_DELIVERY_POINT:
5486 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5487 optlen);
5488 break;
5489 case SCTP_MAX_BURST:
5490 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5491 break;
5492 case SCTP_AUTH_KEY:
5493 case SCTP_AUTH_CHUNK:
5494 case SCTP_AUTH_DELETE_KEY:
5495 retval = -EOPNOTSUPP;
5496 break;
5497 case SCTP_HMAC_IDENT:
5498 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5499 break;
5500 case SCTP_AUTH_ACTIVE_KEY:
5501 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5502 break;
5503 case SCTP_PEER_AUTH_CHUNKS:
5504 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5505 optlen);
5506 break;
5507 case SCTP_LOCAL_AUTH_CHUNKS:
5508 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5509 optlen);
5510 break;
5511 default:
5512 retval = -ENOPROTOOPT;
5513 break;
5516 sctp_release_sock(sk);
5517 return retval;
5520 static void sctp_hash(struct sock *sk)
5522 /* STUB */
5525 static void sctp_unhash(struct sock *sk)
5527 /* STUB */
5530 /* Check if port is acceptable. Possibly find first available port.
5532 * The port hash table (contained in the 'global' SCTP protocol storage
5533 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5534 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5535 * list (the list number is the port number hashed out, so as you
5536 * would expect from a hash function, all the ports in a given list have
5537 * such a number that hashes out to the same list number; you were
5538 * expecting that, right?); so each list has a set of ports, with a
5539 * link to the socket (struct sock) that uses it, the port number and
5540 * a fastreuse flag (FIXME: NPI ipg).
5542 static struct sctp_bind_bucket *sctp_bucket_create(
5543 struct sctp_bind_hashbucket *head, unsigned short snum);
5545 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5547 struct sctp_bind_hashbucket *head; /* hash list */
5548 struct sctp_bind_bucket *pp; /* hash list port iterator */
5549 struct hlist_node *node;
5550 unsigned short snum;
5551 int ret;
5553 snum = ntohs(addr->v4.sin_port);
5555 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5556 sctp_local_bh_disable();
5558 if (snum == 0) {
5559 /* Search for an available port. */
5560 int low, high, remaining, index;
5561 unsigned int rover;
5563 inet_get_local_port_range(&low, &high);
5564 remaining = (high - low) + 1;
5565 rover = net_random() % remaining + low;
5567 do {
5568 rover++;
5569 if ((rover < low) || (rover > high))
5570 rover = low;
5571 index = sctp_phashfn(rover);
5572 head = &sctp_port_hashtable[index];
5573 sctp_spin_lock(&head->lock);
5574 sctp_for_each_hentry(pp, node, &head->chain)
5575 if (pp->port == rover)
5576 goto next;
5577 break;
5578 next:
5579 sctp_spin_unlock(&head->lock);
5580 } while (--remaining > 0);
5582 /* Exhausted local port range during search? */
5583 ret = 1;
5584 if (remaining <= 0)
5585 goto fail;
5587 /* OK, here is the one we will use. HEAD (the port
5588 * hash table list entry) is non-NULL and we hold it's
5589 * mutex.
5591 snum = rover;
5592 } else {
5593 /* We are given an specific port number; we verify
5594 * that it is not being used. If it is used, we will
5595 * exahust the search in the hash list corresponding
5596 * to the port number (snum) - we detect that with the
5597 * port iterator, pp being NULL.
5599 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5600 sctp_spin_lock(&head->lock);
5601 sctp_for_each_hentry(pp, node, &head->chain) {
5602 if (pp->port == snum)
5603 goto pp_found;
5606 pp = NULL;
5607 goto pp_not_found;
5608 pp_found:
5609 if (!hlist_empty(&pp->owner)) {
5610 /* We had a port hash table hit - there is an
5611 * available port (pp != NULL) and it is being
5612 * used by other socket (pp->owner not empty); that other
5613 * socket is going to be sk2.
5615 int reuse = sk->sk_reuse;
5616 struct sock *sk2;
5617 struct hlist_node *node;
5619 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5620 if (pp->fastreuse && sk->sk_reuse &&
5621 sk->sk_state != SCTP_SS_LISTENING)
5622 goto success;
5624 /* Run through the list of sockets bound to the port
5625 * (pp->port) [via the pointers bind_next and
5626 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5627 * we get the endpoint they describe and run through
5628 * the endpoint's list of IP (v4 or v6) addresses,
5629 * comparing each of the addresses with the address of
5630 * the socket sk. If we find a match, then that means
5631 * that this port/socket (sk) combination are already
5632 * in an endpoint.
5634 sk_for_each_bound(sk2, node, &pp->owner) {
5635 struct sctp_endpoint *ep2;
5636 ep2 = sctp_sk(sk2)->ep;
5638 if (sk == sk2 ||
5639 (reuse && sk2->sk_reuse &&
5640 sk2->sk_state != SCTP_SS_LISTENING))
5641 continue;
5643 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5644 sctp_sk(sk2), sctp_sk(sk))) {
5645 ret = (long)sk2;
5646 goto fail_unlock;
5649 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5651 pp_not_found:
5652 /* If there was a hash table miss, create a new port. */
5653 ret = 1;
5654 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5655 goto fail_unlock;
5657 /* In either case (hit or miss), make sure fastreuse is 1 only
5658 * if sk->sk_reuse is too (that is, if the caller requested
5659 * SO_REUSEADDR on this socket -sk-).
5661 if (hlist_empty(&pp->owner)) {
5662 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5663 pp->fastreuse = 1;
5664 else
5665 pp->fastreuse = 0;
5666 } else if (pp->fastreuse &&
5667 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5668 pp->fastreuse = 0;
5670 /* We are set, so fill up all the data in the hash table
5671 * entry, tie the socket list information with the rest of the
5672 * sockets FIXME: Blurry, NPI (ipg).
5674 success:
5675 if (!sctp_sk(sk)->bind_hash) {
5676 inet_sk(sk)->num = snum;
5677 sk_add_bind_node(sk, &pp->owner);
5678 sctp_sk(sk)->bind_hash = pp;
5680 ret = 0;
5682 fail_unlock:
5683 sctp_spin_unlock(&head->lock);
5685 fail:
5686 sctp_local_bh_enable();
5687 return ret;
5690 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5691 * port is requested.
5693 static int sctp_get_port(struct sock *sk, unsigned short snum)
5695 long ret;
5696 union sctp_addr addr;
5697 struct sctp_af *af = sctp_sk(sk)->pf->af;
5699 /* Set up a dummy address struct from the sk. */
5700 af->from_sk(&addr, sk);
5701 addr.v4.sin_port = htons(snum);
5703 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5704 ret = sctp_get_port_local(sk, &addr);
5706 return (ret ? 1 : 0);
5710 * 3.1.3 listen() - UDP Style Syntax
5712 * By default, new associations are not accepted for UDP style sockets.
5713 * An application uses listen() to mark a socket as being able to
5714 * accept new associations.
5716 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5718 struct sctp_sock *sp = sctp_sk(sk);
5719 struct sctp_endpoint *ep = sp->ep;
5721 /* Only UDP style sockets that are not peeled off are allowed to
5722 * listen().
5724 if (!sctp_style(sk, UDP))
5725 return -EINVAL;
5727 /* If backlog is zero, disable listening. */
5728 if (!backlog) {
5729 if (sctp_sstate(sk, CLOSED))
5730 return 0;
5732 sctp_unhash_endpoint(ep);
5733 sk->sk_state = SCTP_SS_CLOSED;
5734 return 0;
5737 /* Return if we are already listening. */
5738 if (sctp_sstate(sk, LISTENING))
5739 return 0;
5742 * If a bind() or sctp_bindx() is not called prior to a listen()
5743 * call that allows new associations to be accepted, the system
5744 * picks an ephemeral port and will choose an address set equivalent
5745 * to binding with a wildcard address.
5747 * This is not currently spelled out in the SCTP sockets
5748 * extensions draft, but follows the practice as seen in TCP
5749 * sockets.
5751 * Additionally, turn off fastreuse flag since we are not listening
5753 sk->sk_state = SCTP_SS_LISTENING;
5754 if (!ep->base.bind_addr.port) {
5755 if (sctp_autobind(sk))
5756 return -EAGAIN;
5757 } else {
5758 if (sctp_get_port(sk, inet_sk(sk)->num)) {
5759 sk->sk_state = SCTP_SS_CLOSED;
5760 return -EADDRINUSE;
5762 sctp_sk(sk)->bind_hash->fastreuse = 0;
5765 sctp_hash_endpoint(ep);
5766 return 0;
5770 * 4.1.3 listen() - TCP Style Syntax
5772 * Applications uses listen() to ready the SCTP endpoint for accepting
5773 * inbound associations.
5775 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5777 struct sctp_sock *sp = sctp_sk(sk);
5778 struct sctp_endpoint *ep = sp->ep;
5780 /* If backlog is zero, disable listening. */
5781 if (!backlog) {
5782 if (sctp_sstate(sk, CLOSED))
5783 return 0;
5785 sctp_unhash_endpoint(ep);
5786 sk->sk_state = SCTP_SS_CLOSED;
5787 return 0;
5790 if (sctp_sstate(sk, LISTENING))
5791 return 0;
5794 * If a bind() or sctp_bindx() is not called prior to a listen()
5795 * call that allows new associations to be accepted, the system
5796 * picks an ephemeral port and will choose an address set equivalent
5797 * to binding with a wildcard address.
5799 * This is not currently spelled out in the SCTP sockets
5800 * extensions draft, but follows the practice as seen in TCP
5801 * sockets.
5803 sk->sk_state = SCTP_SS_LISTENING;
5804 if (!ep->base.bind_addr.port) {
5805 if (sctp_autobind(sk))
5806 return -EAGAIN;
5807 } else
5808 sctp_sk(sk)->bind_hash->fastreuse = 0;
5810 sk->sk_max_ack_backlog = backlog;
5811 sctp_hash_endpoint(ep);
5812 return 0;
5816 * Move a socket to LISTENING state.
5818 int sctp_inet_listen(struct socket *sock, int backlog)
5820 struct sock *sk = sock->sk;
5821 struct crypto_hash *tfm = NULL;
5822 int err = -EINVAL;
5824 if (unlikely(backlog < 0))
5825 goto out;
5827 sctp_lock_sock(sk);
5829 if (sock->state != SS_UNCONNECTED)
5830 goto out;
5832 /* Allocate HMAC for generating cookie. */
5833 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5834 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5835 if (IS_ERR(tfm)) {
5836 if (net_ratelimit()) {
5837 printk(KERN_INFO
5838 "SCTP: failed to load transform for %s: %ld\n",
5839 sctp_hmac_alg, PTR_ERR(tfm));
5841 err = -ENOSYS;
5842 goto out;
5846 switch (sock->type) {
5847 case SOCK_SEQPACKET:
5848 err = sctp_seqpacket_listen(sk, backlog);
5849 break;
5850 case SOCK_STREAM:
5851 err = sctp_stream_listen(sk, backlog);
5852 break;
5853 default:
5854 break;
5857 if (err)
5858 goto cleanup;
5860 /* Store away the transform reference. */
5861 if (!sctp_sk(sk)->hmac)
5862 sctp_sk(sk)->hmac = tfm;
5863 out:
5864 sctp_release_sock(sk);
5865 return err;
5866 cleanup:
5867 crypto_free_hash(tfm);
5868 goto out;
5872 * This function is done by modeling the current datagram_poll() and the
5873 * tcp_poll(). Note that, based on these implementations, we don't
5874 * lock the socket in this function, even though it seems that,
5875 * ideally, locking or some other mechanisms can be used to ensure
5876 * the integrity of the counters (sndbuf and wmem_alloc) used
5877 * in this place. We assume that we don't need locks either until proven
5878 * otherwise.
5880 * Another thing to note is that we include the Async I/O support
5881 * here, again, by modeling the current TCP/UDP code. We don't have
5882 * a good way to test with it yet.
5884 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5886 struct sock *sk = sock->sk;
5887 struct sctp_sock *sp = sctp_sk(sk);
5888 unsigned int mask;
5890 poll_wait(file, sk->sk_sleep, wait);
5892 /* A TCP-style listening socket becomes readable when the accept queue
5893 * is not empty.
5895 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5896 return (!list_empty(&sp->ep->asocs)) ?
5897 (POLLIN | POLLRDNORM) : 0;
5899 mask = 0;
5901 /* Is there any exceptional events? */
5902 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5903 mask |= POLLERR;
5904 if (sk->sk_shutdown & RCV_SHUTDOWN)
5905 mask |= POLLRDHUP;
5906 if (sk->sk_shutdown == SHUTDOWN_MASK)
5907 mask |= POLLHUP;
5909 /* Is it readable? Reconsider this code with TCP-style support. */
5910 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5911 (sk->sk_shutdown & RCV_SHUTDOWN))
5912 mask |= POLLIN | POLLRDNORM;
5914 /* The association is either gone or not ready. */
5915 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5916 return mask;
5918 /* Is it writable? */
5919 if (sctp_writeable(sk)) {
5920 mask |= POLLOUT | POLLWRNORM;
5921 } else {
5922 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5924 * Since the socket is not locked, the buffer
5925 * might be made available after the writeable check and
5926 * before the bit is set. This could cause a lost I/O
5927 * signal. tcp_poll() has a race breaker for this race
5928 * condition. Based on their implementation, we put
5929 * in the following code to cover it as well.
5931 if (sctp_writeable(sk))
5932 mask |= POLLOUT | POLLWRNORM;
5934 return mask;
5937 /********************************************************************
5938 * 2nd Level Abstractions
5939 ********************************************************************/
5941 static struct sctp_bind_bucket *sctp_bucket_create(
5942 struct sctp_bind_hashbucket *head, unsigned short snum)
5944 struct sctp_bind_bucket *pp;
5946 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5947 if (pp) {
5948 SCTP_DBG_OBJCNT_INC(bind_bucket);
5949 pp->port = snum;
5950 pp->fastreuse = 0;
5951 INIT_HLIST_HEAD(&pp->owner);
5952 hlist_add_head(&pp->node, &head->chain);
5954 return pp;
5957 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5958 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5960 if (pp && hlist_empty(&pp->owner)) {
5961 __hlist_del(&pp->node);
5962 kmem_cache_free(sctp_bucket_cachep, pp);
5963 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5967 /* Release this socket's reference to a local port. */
5968 static inline void __sctp_put_port(struct sock *sk)
5970 struct sctp_bind_hashbucket *head =
5971 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5972 struct sctp_bind_bucket *pp;
5974 sctp_spin_lock(&head->lock);
5975 pp = sctp_sk(sk)->bind_hash;
5976 __sk_del_bind_node(sk);
5977 sctp_sk(sk)->bind_hash = NULL;
5978 inet_sk(sk)->num = 0;
5979 sctp_bucket_destroy(pp);
5980 sctp_spin_unlock(&head->lock);
5983 void sctp_put_port(struct sock *sk)
5985 sctp_local_bh_disable();
5986 __sctp_put_port(sk);
5987 sctp_local_bh_enable();
5991 * The system picks an ephemeral port and choose an address set equivalent
5992 * to binding with a wildcard address.
5993 * One of those addresses will be the primary address for the association.
5994 * This automatically enables the multihoming capability of SCTP.
5996 static int sctp_autobind(struct sock *sk)
5998 union sctp_addr autoaddr;
5999 struct sctp_af *af;
6000 __be16 port;
6002 /* Initialize a local sockaddr structure to INADDR_ANY. */
6003 af = sctp_sk(sk)->pf->af;
6005 port = htons(inet_sk(sk)->num);
6006 af->inaddr_any(&autoaddr, port);
6008 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6011 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6013 * From RFC 2292
6014 * 4.2 The cmsghdr Structure *
6016 * When ancillary data is sent or received, any number of ancillary data
6017 * objects can be specified by the msg_control and msg_controllen members of
6018 * the msghdr structure, because each object is preceded by
6019 * a cmsghdr structure defining the object's length (the cmsg_len member).
6020 * Historically Berkeley-derived implementations have passed only one object
6021 * at a time, but this API allows multiple objects to be
6022 * passed in a single call to sendmsg() or recvmsg(). The following example
6023 * shows two ancillary data objects in a control buffer.
6025 * |<--------------------------- msg_controllen -------------------------->|
6026 * | |
6028 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6030 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6031 * | | |
6033 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6035 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6036 * | | | | |
6038 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6039 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6041 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6043 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6047 * msg_control
6048 * points here
6050 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6051 sctp_cmsgs_t *cmsgs)
6053 struct cmsghdr *cmsg;
6054 struct msghdr *my_msg = (struct msghdr *)msg;
6056 for (cmsg = CMSG_FIRSTHDR(msg);
6057 cmsg != NULL;
6058 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6059 if (!CMSG_OK(my_msg, cmsg))
6060 return -EINVAL;
6062 /* Should we parse this header or ignore? */
6063 if (cmsg->cmsg_level != IPPROTO_SCTP)
6064 continue;
6066 /* Strictly check lengths following example in SCM code. */
6067 switch (cmsg->cmsg_type) {
6068 case SCTP_INIT:
6069 /* SCTP Socket API Extension
6070 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6072 * This cmsghdr structure provides information for
6073 * initializing new SCTP associations with sendmsg().
6074 * The SCTP_INITMSG socket option uses this same data
6075 * structure. This structure is not used for
6076 * recvmsg().
6078 * cmsg_level cmsg_type cmsg_data[]
6079 * ------------ ------------ ----------------------
6080 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6082 if (cmsg->cmsg_len !=
6083 CMSG_LEN(sizeof(struct sctp_initmsg)))
6084 return -EINVAL;
6085 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6086 break;
6088 case SCTP_SNDRCV:
6089 /* SCTP Socket API Extension
6090 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6092 * This cmsghdr structure specifies SCTP options for
6093 * sendmsg() and describes SCTP header information
6094 * about a received message through recvmsg().
6096 * cmsg_level cmsg_type cmsg_data[]
6097 * ------------ ------------ ----------------------
6098 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6100 if (cmsg->cmsg_len !=
6101 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6102 return -EINVAL;
6104 cmsgs->info =
6105 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6107 /* Minimally, validate the sinfo_flags. */
6108 if (cmsgs->info->sinfo_flags &
6109 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6110 SCTP_ABORT | SCTP_EOF))
6111 return -EINVAL;
6112 break;
6114 default:
6115 return -EINVAL;
6118 return 0;
6122 * Wait for a packet..
6123 * Note: This function is the same function as in core/datagram.c
6124 * with a few modifications to make lksctp work.
6126 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6128 int error;
6129 DEFINE_WAIT(wait);
6131 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6133 /* Socket errors? */
6134 error = sock_error(sk);
6135 if (error)
6136 goto out;
6138 if (!skb_queue_empty(&sk->sk_receive_queue))
6139 goto ready;
6141 /* Socket shut down? */
6142 if (sk->sk_shutdown & RCV_SHUTDOWN)
6143 goto out;
6145 /* Sequenced packets can come disconnected. If so we report the
6146 * problem.
6148 error = -ENOTCONN;
6150 /* Is there a good reason to think that we may receive some data? */
6151 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6152 goto out;
6154 /* Handle signals. */
6155 if (signal_pending(current))
6156 goto interrupted;
6158 /* Let another process have a go. Since we are going to sleep
6159 * anyway. Note: This may cause odd behaviors if the message
6160 * does not fit in the user's buffer, but this seems to be the
6161 * only way to honor MSG_DONTWAIT realistically.
6163 sctp_release_sock(sk);
6164 *timeo_p = schedule_timeout(*timeo_p);
6165 sctp_lock_sock(sk);
6167 ready:
6168 finish_wait(sk->sk_sleep, &wait);
6169 return 0;
6171 interrupted:
6172 error = sock_intr_errno(*timeo_p);
6174 out:
6175 finish_wait(sk->sk_sleep, &wait);
6176 *err = error;
6177 return error;
6180 /* Receive a datagram.
6181 * Note: This is pretty much the same routine as in core/datagram.c
6182 * with a few changes to make lksctp work.
6184 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6185 int noblock, int *err)
6187 int error;
6188 struct sk_buff *skb;
6189 long timeo;
6191 timeo = sock_rcvtimeo(sk, noblock);
6193 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6194 timeo, MAX_SCHEDULE_TIMEOUT);
6196 do {
6197 /* Again only user level code calls this function,
6198 * so nothing interrupt level
6199 * will suddenly eat the receive_queue.
6201 * Look at current nfs client by the way...
6202 * However, this function was corrent in any case. 8)
6204 if (flags & MSG_PEEK) {
6205 spin_lock_bh(&sk->sk_receive_queue.lock);
6206 skb = skb_peek(&sk->sk_receive_queue);
6207 if (skb)
6208 atomic_inc(&skb->users);
6209 spin_unlock_bh(&sk->sk_receive_queue.lock);
6210 } else {
6211 skb = skb_dequeue(&sk->sk_receive_queue);
6214 if (skb)
6215 return skb;
6217 /* Caller is allowed not to check sk->sk_err before calling. */
6218 error = sock_error(sk);
6219 if (error)
6220 goto no_packet;
6222 if (sk->sk_shutdown & RCV_SHUTDOWN)
6223 break;
6225 /* User doesn't want to wait. */
6226 error = -EAGAIN;
6227 if (!timeo)
6228 goto no_packet;
6229 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6231 return NULL;
6233 no_packet:
6234 *err = error;
6235 return NULL;
6238 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6239 static void __sctp_write_space(struct sctp_association *asoc)
6241 struct sock *sk = asoc->base.sk;
6242 struct socket *sock = sk->sk_socket;
6244 if ((sctp_wspace(asoc) > 0) && sock) {
6245 if (waitqueue_active(&asoc->wait))
6246 wake_up_interruptible(&asoc->wait);
6248 if (sctp_writeable(sk)) {
6249 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6250 wake_up_interruptible(sk->sk_sleep);
6252 /* Note that we try to include the Async I/O support
6253 * here by modeling from the current TCP/UDP code.
6254 * We have not tested with it yet.
6256 if (sock->fasync_list &&
6257 !(sk->sk_shutdown & SEND_SHUTDOWN))
6258 sock_wake_async(sock,
6259 SOCK_WAKE_SPACE, POLL_OUT);
6264 /* Do accounting for the sndbuf space.
6265 * Decrement the used sndbuf space of the corresponding association by the
6266 * data size which was just transmitted(freed).
6268 static void sctp_wfree(struct sk_buff *skb)
6270 struct sctp_association *asoc;
6271 struct sctp_chunk *chunk;
6272 struct sock *sk;
6274 /* Get the saved chunk pointer. */
6275 chunk = *((struct sctp_chunk **)(skb->cb));
6276 asoc = chunk->asoc;
6277 sk = asoc->base.sk;
6278 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6279 sizeof(struct sk_buff) +
6280 sizeof(struct sctp_chunk);
6282 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6285 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6287 sk->sk_wmem_queued -= skb->truesize;
6288 sk_mem_uncharge(sk, skb->truesize);
6290 sock_wfree(skb);
6291 __sctp_write_space(asoc);
6293 sctp_association_put(asoc);
6296 /* Do accounting for the receive space on the socket.
6297 * Accounting for the association is done in ulpevent.c
6298 * We set this as a destructor for the cloned data skbs so that
6299 * accounting is done at the correct time.
6301 void sctp_sock_rfree(struct sk_buff *skb)
6303 struct sock *sk = skb->sk;
6304 struct sctp_ulpevent *event = sctp_skb2event(skb);
6306 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6309 * Mimic the behavior of sock_rfree
6311 sk_mem_uncharge(sk, event->rmem_len);
6315 /* Helper function to wait for space in the sndbuf. */
6316 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6317 size_t msg_len)
6319 struct sock *sk = asoc->base.sk;
6320 int err = 0;
6321 long current_timeo = *timeo_p;
6322 DEFINE_WAIT(wait);
6324 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6325 asoc, (long)(*timeo_p), msg_len);
6327 /* Increment the association's refcnt. */
6328 sctp_association_hold(asoc);
6330 /* Wait on the association specific sndbuf space. */
6331 for (;;) {
6332 prepare_to_wait_exclusive(&asoc->wait, &wait,
6333 TASK_INTERRUPTIBLE);
6334 if (!*timeo_p)
6335 goto do_nonblock;
6336 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6337 asoc->base.dead)
6338 goto do_error;
6339 if (signal_pending(current))
6340 goto do_interrupted;
6341 if (msg_len <= sctp_wspace(asoc))
6342 break;
6344 /* Let another process have a go. Since we are going
6345 * to sleep anyway.
6347 sctp_release_sock(sk);
6348 current_timeo = schedule_timeout(current_timeo);
6349 BUG_ON(sk != asoc->base.sk);
6350 sctp_lock_sock(sk);
6352 *timeo_p = current_timeo;
6355 out:
6356 finish_wait(&asoc->wait, &wait);
6358 /* Release the association's refcnt. */
6359 sctp_association_put(asoc);
6361 return err;
6363 do_error:
6364 err = -EPIPE;
6365 goto out;
6367 do_interrupted:
6368 err = sock_intr_errno(*timeo_p);
6369 goto out;
6371 do_nonblock:
6372 err = -EAGAIN;
6373 goto out;
6376 /* If socket sndbuf has changed, wake up all per association waiters. */
6377 void sctp_write_space(struct sock *sk)
6379 struct sctp_association *asoc;
6381 /* Wake up the tasks in each wait queue. */
6382 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6383 __sctp_write_space(asoc);
6387 /* Is there any sndbuf space available on the socket?
6389 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6390 * associations on the same socket. For a UDP-style socket with
6391 * multiple associations, it is possible for it to be "unwriteable"
6392 * prematurely. I assume that this is acceptable because
6393 * a premature "unwriteable" is better than an accidental "writeable" which
6394 * would cause an unwanted block under certain circumstances. For the 1-1
6395 * UDP-style sockets or TCP-style sockets, this code should work.
6396 * - Daisy
6398 static int sctp_writeable(struct sock *sk)
6400 int amt = 0;
6402 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6403 if (amt < 0)
6404 amt = 0;
6405 return amt;
6408 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6409 * returns immediately with EINPROGRESS.
6411 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6413 struct sock *sk = asoc->base.sk;
6414 int err = 0;
6415 long current_timeo = *timeo_p;
6416 DEFINE_WAIT(wait);
6418 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6419 (long)(*timeo_p));
6421 /* Increment the association's refcnt. */
6422 sctp_association_hold(asoc);
6424 for (;;) {
6425 prepare_to_wait_exclusive(&asoc->wait, &wait,
6426 TASK_INTERRUPTIBLE);
6427 if (!*timeo_p)
6428 goto do_nonblock;
6429 if (sk->sk_shutdown & RCV_SHUTDOWN)
6430 break;
6431 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6432 asoc->base.dead)
6433 goto do_error;
6434 if (signal_pending(current))
6435 goto do_interrupted;
6437 if (sctp_state(asoc, ESTABLISHED))
6438 break;
6440 /* Let another process have a go. Since we are going
6441 * to sleep anyway.
6443 sctp_release_sock(sk);
6444 current_timeo = schedule_timeout(current_timeo);
6445 sctp_lock_sock(sk);
6447 *timeo_p = current_timeo;
6450 out:
6451 finish_wait(&asoc->wait, &wait);
6453 /* Release the association's refcnt. */
6454 sctp_association_put(asoc);
6456 return err;
6458 do_error:
6459 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6460 err = -ETIMEDOUT;
6461 else
6462 err = -ECONNREFUSED;
6463 goto out;
6465 do_interrupted:
6466 err = sock_intr_errno(*timeo_p);
6467 goto out;
6469 do_nonblock:
6470 err = -EINPROGRESS;
6471 goto out;
6474 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6476 struct sctp_endpoint *ep;
6477 int err = 0;
6478 DEFINE_WAIT(wait);
6480 ep = sctp_sk(sk)->ep;
6483 for (;;) {
6484 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6485 TASK_INTERRUPTIBLE);
6487 if (list_empty(&ep->asocs)) {
6488 sctp_release_sock(sk);
6489 timeo = schedule_timeout(timeo);
6490 sctp_lock_sock(sk);
6493 err = -EINVAL;
6494 if (!sctp_sstate(sk, LISTENING))
6495 break;
6497 err = 0;
6498 if (!list_empty(&ep->asocs))
6499 break;
6501 err = sock_intr_errno(timeo);
6502 if (signal_pending(current))
6503 break;
6505 err = -EAGAIN;
6506 if (!timeo)
6507 break;
6510 finish_wait(sk->sk_sleep, &wait);
6512 return err;
6515 static void sctp_wait_for_close(struct sock *sk, long timeout)
6517 DEFINE_WAIT(wait);
6519 do {
6520 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6521 if (list_empty(&sctp_sk(sk)->ep->asocs))
6522 break;
6523 sctp_release_sock(sk);
6524 timeout = schedule_timeout(timeout);
6525 sctp_lock_sock(sk);
6526 } while (!signal_pending(current) && timeout);
6528 finish_wait(sk->sk_sleep, &wait);
6531 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6533 struct sk_buff *frag;
6535 if (!skb->data_len)
6536 goto done;
6538 /* Don't forget the fragments. */
6539 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6540 sctp_sock_rfree_frag(frag);
6542 done:
6543 sctp_sock_rfree(skb);
6546 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6548 struct sk_buff *frag;
6550 if (!skb->data_len)
6551 goto done;
6553 /* Don't forget the fragments. */
6554 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6555 sctp_skb_set_owner_r_frag(frag, sk);
6557 done:
6558 sctp_skb_set_owner_r(skb, sk);
6561 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6562 * and its messages to the newsk.
6564 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6565 struct sctp_association *assoc,
6566 sctp_socket_type_t type)
6568 struct sctp_sock *oldsp = sctp_sk(oldsk);
6569 struct sctp_sock *newsp = sctp_sk(newsk);
6570 struct sctp_bind_bucket *pp; /* hash list port iterator */
6571 struct sctp_endpoint *newep = newsp->ep;
6572 struct sk_buff *skb, *tmp;
6573 struct sctp_ulpevent *event;
6574 struct sctp_bind_hashbucket *head;
6576 /* Migrate socket buffer sizes and all the socket level options to the
6577 * new socket.
6579 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6580 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6581 /* Brute force copy old sctp opt. */
6582 inet_sk_copy_descendant(newsk, oldsk);
6584 /* Restore the ep value that was overwritten with the above structure
6585 * copy.
6587 newsp->ep = newep;
6588 newsp->hmac = NULL;
6590 /* Hook this new socket in to the bind_hash list. */
6591 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6592 sctp_local_bh_disable();
6593 sctp_spin_lock(&head->lock);
6594 pp = sctp_sk(oldsk)->bind_hash;
6595 sk_add_bind_node(newsk, &pp->owner);
6596 sctp_sk(newsk)->bind_hash = pp;
6597 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6598 sctp_spin_unlock(&head->lock);
6599 sctp_local_bh_enable();
6601 /* Copy the bind_addr list from the original endpoint to the new
6602 * endpoint so that we can handle restarts properly
6604 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6605 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6607 /* Move any messages in the old socket's receive queue that are for the
6608 * peeled off association to the new socket's receive queue.
6610 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6611 event = sctp_skb2event(skb);
6612 if (event->asoc == assoc) {
6613 sctp_sock_rfree_frag(skb);
6614 __skb_unlink(skb, &oldsk->sk_receive_queue);
6615 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6616 sctp_skb_set_owner_r_frag(skb, newsk);
6620 /* Clean up any messages pending delivery due to partial
6621 * delivery. Three cases:
6622 * 1) No partial deliver; no work.
6623 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6624 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6626 skb_queue_head_init(&newsp->pd_lobby);
6627 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6629 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6630 struct sk_buff_head *queue;
6632 /* Decide which queue to move pd_lobby skbs to. */
6633 if (assoc->ulpq.pd_mode) {
6634 queue = &newsp->pd_lobby;
6635 } else
6636 queue = &newsk->sk_receive_queue;
6638 /* Walk through the pd_lobby, looking for skbs that
6639 * need moved to the new socket.
6641 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6642 event = sctp_skb2event(skb);
6643 if (event->asoc == assoc) {
6644 sctp_sock_rfree_frag(skb);
6645 __skb_unlink(skb, &oldsp->pd_lobby);
6646 __skb_queue_tail(queue, skb);
6647 sctp_skb_set_owner_r_frag(skb, newsk);
6651 /* Clear up any skbs waiting for the partial
6652 * delivery to finish.
6654 if (assoc->ulpq.pd_mode)
6655 sctp_clear_pd(oldsk, NULL);
6659 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6660 sctp_sock_rfree_frag(skb);
6661 sctp_skb_set_owner_r_frag(skb, newsk);
6664 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6665 sctp_sock_rfree_frag(skb);
6666 sctp_skb_set_owner_r_frag(skb, newsk);
6669 /* Set the type of socket to indicate that it is peeled off from the
6670 * original UDP-style socket or created with the accept() call on a
6671 * TCP-style socket..
6673 newsp->type = type;
6675 /* Mark the new socket "in-use" by the user so that any packets
6676 * that may arrive on the association after we've moved it are
6677 * queued to the backlog. This prevents a potential race between
6678 * backlog processing on the old socket and new-packet processing
6679 * on the new socket.
6681 * The caller has just allocated newsk so we can guarantee that other
6682 * paths won't try to lock it and then oldsk.
6684 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6685 sctp_assoc_migrate(assoc, newsk);
6687 /* If the association on the newsk is already closed before accept()
6688 * is called, set RCV_SHUTDOWN flag.
6690 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6691 newsk->sk_shutdown |= RCV_SHUTDOWN;
6693 newsk->sk_state = SCTP_SS_ESTABLISHED;
6694 sctp_release_sock(newsk);
6698 /* This proto struct describes the ULP interface for SCTP. */
6699 struct proto sctp_prot = {
6700 .name = "SCTP",
6701 .owner = THIS_MODULE,
6702 .close = sctp_close,
6703 .connect = sctp_connect,
6704 .disconnect = sctp_disconnect,
6705 .accept = sctp_accept,
6706 .ioctl = sctp_ioctl,
6707 .init = sctp_init_sock,
6708 .destroy = sctp_destroy_sock,
6709 .shutdown = sctp_shutdown,
6710 .setsockopt = sctp_setsockopt,
6711 .getsockopt = sctp_getsockopt,
6712 .sendmsg = sctp_sendmsg,
6713 .recvmsg = sctp_recvmsg,
6714 .bind = sctp_bind,
6715 .backlog_rcv = sctp_backlog_rcv,
6716 .hash = sctp_hash,
6717 .unhash = sctp_unhash,
6718 .get_port = sctp_get_port,
6719 .obj_size = sizeof(struct sctp_sock),
6720 .sysctl_mem = sysctl_sctp_mem,
6721 .sysctl_rmem = sysctl_sctp_rmem,
6722 .sysctl_wmem = sysctl_sctp_wmem,
6723 .memory_pressure = &sctp_memory_pressure,
6724 .enter_memory_pressure = sctp_enter_memory_pressure,
6725 .memory_allocated = &sctp_memory_allocated,
6726 .sockets_allocated = &sctp_sockets_allocated,
6729 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6731 struct proto sctpv6_prot = {
6732 .name = "SCTPv6",
6733 .owner = THIS_MODULE,
6734 .close = sctp_close,
6735 .connect = sctp_connect,
6736 .disconnect = sctp_disconnect,
6737 .accept = sctp_accept,
6738 .ioctl = sctp_ioctl,
6739 .init = sctp_init_sock,
6740 .destroy = sctp_destroy_sock,
6741 .shutdown = sctp_shutdown,
6742 .setsockopt = sctp_setsockopt,
6743 .getsockopt = sctp_getsockopt,
6744 .sendmsg = sctp_sendmsg,
6745 .recvmsg = sctp_recvmsg,
6746 .bind = sctp_bind,
6747 .backlog_rcv = sctp_backlog_rcv,
6748 .hash = sctp_hash,
6749 .unhash = sctp_unhash,
6750 .get_port = sctp_get_port,
6751 .obj_size = sizeof(struct sctp6_sock),
6752 .sysctl_mem = sysctl_sctp_mem,
6753 .sysctl_rmem = sysctl_sctp_rmem,
6754 .sysctl_wmem = sysctl_sctp_wmem,
6755 .memory_pressure = &sctp_memory_pressure,
6756 .enter_memory_pressure = sctp_enter_memory_pressure,
6757 .memory_allocated = &sctp_memory_allocated,
6758 .sockets_allocated = &sctp_sockets_allocated,
6760 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */