sched: Simple helper functions for find_busiest_group()
[linux-2.6/mini2440.git] / kernel / sched.c
blob6aec1e7a72a30366a9132941637594efe2f3b876
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
242 spin_unlock(&rt_b->rt_runtime_lock);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
248 hrtimer_cancel(&rt_b->rt_period_timer);
250 #endif
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
262 struct cfs_rq;
264 static LIST_HEAD(task_groups);
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
288 struct rt_bandwidth rt_bandwidth;
289 #endif
291 struct rcu_head rcu;
292 struct list_head list;
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
304 user->tg->uid = user->uid;
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock);
334 #ifdef CONFIG_SMP
335 static int root_task_group_empty(void)
337 return list_empty(&root_task_group.children);
339 #endif
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 #ifdef CONFIG_USER_SCHED
343 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
344 #else /* !CONFIG_USER_SCHED */
345 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
346 #endif /* CONFIG_USER_SCHED */
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
356 #define MIN_SHARES 2
357 #define MAX_SHARES (1UL << 18)
359 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360 #endif
362 /* Default task group.
363 * Every task in system belong to this group at bootup.
365 struct task_group init_task_group;
367 /* return group to which a task belongs */
368 static inline struct task_group *task_group(struct task_struct *p)
370 struct task_group *tg;
372 #ifdef CONFIG_USER_SCHED
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
376 #elif defined(CONFIG_CGROUP_SCHED)
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
379 #else
380 tg = &init_task_group;
381 #endif
382 return tg;
385 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
386 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
391 #endif
393 #ifdef CONFIG_RT_GROUP_SCHED
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
396 #endif
399 #else
401 #ifdef CONFIG_SMP
402 static int root_task_group_empty(void)
404 return 1;
406 #endif
408 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
409 static inline struct task_group *task_group(struct task_struct *p)
411 return NULL;
414 #endif /* CONFIG_GROUP_SCHED */
416 /* CFS-related fields in a runqueue */
417 struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
421 u64 exec_clock;
422 u64 min_vruntime;
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
427 struct list_head tasks;
428 struct list_head *balance_iterator;
431 * 'curr' points to currently running entity on this cfs_rq.
432 * It is set to NULL otherwise (i.e when none are currently running).
434 struct sched_entity *curr, *next, *last;
436 unsigned int nr_spread_over;
438 #ifdef CONFIG_FAIR_GROUP_SCHED
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
452 #ifdef CONFIG_SMP
454 * the part of load.weight contributed by tasks
456 unsigned long task_weight;
459 * h_load = weight * f(tg)
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
464 unsigned long h_load;
467 * this cpu's part of tg->shares
469 unsigned long shares;
472 * load.weight at the time we set shares
474 unsigned long rq_weight;
475 #endif
476 #endif
479 /* Real-Time classes' related field in a runqueue: */
480 struct rt_rq {
481 struct rt_prio_array active;
482 unsigned long rt_nr_running;
483 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
484 struct {
485 int curr; /* highest queued rt task prio */
486 #ifdef CONFIG_SMP
487 int next; /* next highest */
488 #endif
489 } highest_prio;
490 #endif
491 #ifdef CONFIG_SMP
492 unsigned long rt_nr_migratory;
493 int overloaded;
494 struct plist_head pushable_tasks;
495 #endif
496 int rt_throttled;
497 u64 rt_time;
498 u64 rt_runtime;
499 /* Nests inside the rq lock: */
500 spinlock_t rt_runtime_lock;
502 #ifdef CONFIG_RT_GROUP_SCHED
503 unsigned long rt_nr_boosted;
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509 #endif
512 #ifdef CONFIG_SMP
515 * We add the notion of a root-domain which will be used to define per-domain
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
522 struct root_domain {
523 atomic_t refcount;
524 cpumask_var_t span;
525 cpumask_var_t online;
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
531 cpumask_var_t rto_mask;
532 atomic_t rto_count;
533 #ifdef CONFIG_SMP
534 struct cpupri cpupri;
535 #endif
536 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
542 unsigned int sched_mc_preferred_wakeup_cpu;
543 #endif
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
550 static struct root_domain def_root_domain;
552 #endif
555 * This is the main, per-CPU runqueue data structure.
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
561 struct rq {
562 /* runqueue lock: */
563 spinlock_t lock;
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
569 unsigned long nr_running;
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
572 #ifdef CONFIG_NO_HZ
573 unsigned long last_tick_seen;
574 unsigned char in_nohz_recently;
575 #endif
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
578 unsigned long nr_load_updates;
579 u64 nr_switches;
581 struct cfs_rq cfs;
582 struct rt_rq rt;
584 #ifdef CONFIG_FAIR_GROUP_SCHED
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
587 #endif
588 #ifdef CONFIG_RT_GROUP_SCHED
589 struct list_head leaf_rt_rq_list;
590 #endif
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
598 unsigned long nr_uninterruptible;
600 struct task_struct *curr, *idle;
601 unsigned long next_balance;
602 struct mm_struct *prev_mm;
604 u64 clock;
606 atomic_t nr_iowait;
608 #ifdef CONFIG_SMP
609 struct root_domain *rd;
610 struct sched_domain *sd;
612 unsigned char idle_at_tick;
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
616 /* cpu of this runqueue: */
617 int cpu;
618 int online;
620 unsigned long avg_load_per_task;
622 struct task_struct *migration_thread;
623 struct list_head migration_queue;
624 #endif
626 #ifdef CONFIG_SCHED_HRTICK
627 #ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630 #endif
631 struct hrtimer hrtick_timer;
632 #endif
634 #ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
640 /* sys_sched_yield() stats */
641 unsigned int yld_count;
643 /* schedule() stats */
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
648 /* try_to_wake_up() stats */
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
652 /* BKL stats */
653 unsigned int bkl_count;
654 #endif
657 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
659 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
664 static inline int cpu_of(struct rq *rq)
666 #ifdef CONFIG_SMP
667 return rq->cpu;
668 #else
669 return 0;
670 #endif
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
675 * See detach_destroy_domains: synchronize_sched for details.
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
680 #define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
683 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684 #define this_rq() (&__get_cpu_var(runqueues))
685 #define task_rq(p) cpu_rq(task_cpu(p))
686 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
688 static inline void update_rq_clock(struct rq *rq)
690 rq->clock = sched_clock_cpu(cpu_of(rq));
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
696 #ifdef CONFIG_SCHED_DEBUG
697 # define const_debug __read_mostly
698 #else
699 # define const_debug static const
700 #endif
703 * runqueue_is_locked
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
709 int runqueue_is_locked(void)
711 int cpu = get_cpu();
712 struct rq *rq = cpu_rq(cpu);
713 int ret;
715 ret = spin_is_locked(&rq->lock);
716 put_cpu();
717 return ret;
721 * Debugging: various feature bits
724 #define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
727 enum {
728 #include "sched_features.h"
731 #undef SCHED_FEAT
733 #define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
736 const_debug unsigned int sysctl_sched_features =
737 #include "sched_features.h"
740 #undef SCHED_FEAT
742 #ifdef CONFIG_SCHED_DEBUG
743 #define SCHED_FEAT(name, enabled) \
744 #name ,
746 static __read_mostly char *sched_feat_names[] = {
747 #include "sched_features.h"
748 NULL
751 #undef SCHED_FEAT
753 static int sched_feat_show(struct seq_file *m, void *v)
755 int i;
757 for (i = 0; sched_feat_names[i]; i++) {
758 if (!(sysctl_sched_features & (1UL << i)))
759 seq_puts(m, "NO_");
760 seq_printf(m, "%s ", sched_feat_names[i]);
762 seq_puts(m, "\n");
764 return 0;
767 static ssize_t
768 sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
771 char buf[64];
772 char *cmp = buf;
773 int neg = 0;
774 int i;
776 if (cnt > 63)
777 cnt = 63;
779 if (copy_from_user(&buf, ubuf, cnt))
780 return -EFAULT;
782 buf[cnt] = 0;
784 if (strncmp(buf, "NO_", 3) == 0) {
785 neg = 1;
786 cmp += 3;
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
793 if (neg)
794 sysctl_sched_features &= ~(1UL << i);
795 else
796 sysctl_sched_features |= (1UL << i);
797 break;
801 if (!sched_feat_names[i])
802 return -EINVAL;
804 filp->f_pos += cnt;
806 return cnt;
809 static int sched_feat_open(struct inode *inode, struct file *filp)
811 return single_open(filp, sched_feat_show, NULL);
814 static struct file_operations sched_feat_fops = {
815 .open = sched_feat_open,
816 .write = sched_feat_write,
817 .read = seq_read,
818 .llseek = seq_lseek,
819 .release = single_release,
822 static __init int sched_init_debug(void)
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
825 &sched_feat_fops);
827 return 0;
829 late_initcall(sched_init_debug);
831 #endif
833 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
839 const_debug unsigned int sysctl_sched_nr_migrate = 32;
842 * ratelimit for updating the group shares.
843 * default: 0.25ms
845 unsigned int sysctl_sched_shares_ratelimit = 250000;
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
850 * default: 4
852 unsigned int sysctl_sched_shares_thresh = 4;
855 * period over which we measure -rt task cpu usage in us.
856 * default: 1s
858 unsigned int sysctl_sched_rt_period = 1000000;
860 static __read_mostly int scheduler_running;
863 * part of the period that we allow rt tasks to run in us.
864 * default: 0.95s
866 int sysctl_sched_rt_runtime = 950000;
868 static inline u64 global_rt_period(void)
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
873 static inline u64 global_rt_runtime(void)
875 if (sysctl_sched_rt_runtime < 0)
876 return RUNTIME_INF;
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
881 #ifndef prepare_arch_switch
882 # define prepare_arch_switch(next) do { } while (0)
883 #endif
884 #ifndef finish_arch_switch
885 # define finish_arch_switch(prev) do { } while (0)
886 #endif
888 static inline int task_current(struct rq *rq, struct task_struct *p)
890 return rq->curr == p;
893 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
894 static inline int task_running(struct rq *rq, struct task_struct *p)
896 return task_current(rq, p);
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
905 #ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
908 #endif
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
912 * prev into current:
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
916 spin_unlock_irq(&rq->lock);
919 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
920 static inline int task_running(struct rq *rq, struct task_struct *p)
922 #ifdef CONFIG_SMP
923 return p->oncpu;
924 #else
925 return task_current(rq, p);
926 #endif
929 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
931 #ifdef CONFIG_SMP
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
935 * here.
937 next->oncpu = 1;
938 #endif
939 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
941 #else
942 spin_unlock(&rq->lock);
943 #endif
946 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
948 #ifdef CONFIG_SMP
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
952 * finished.
954 smp_wmb();
955 prev->oncpu = 0;
956 #endif
957 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
958 local_irq_enable();
959 #endif
961 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
967 static inline struct rq *__task_rq_lock(struct task_struct *p)
968 __acquires(rq->lock)
970 for (;;) {
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 spin_unlock(&rq->lock);
980 * task_rq_lock - lock the runqueue a given task resides on and disable
981 * interrupts. Note the ordering: we can safely lookup the task_rq without
982 * explicitly disabling preemption.
984 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
985 __acquires(rq->lock)
987 struct rq *rq;
989 for (;;) {
990 local_irq_save(*flags);
991 rq = task_rq(p);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
994 return rq;
995 spin_unlock_irqrestore(&rq->lock, *flags);
999 void task_rq_unlock_wait(struct task_struct *p)
1001 struct rq *rq = task_rq(p);
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1007 static void __task_rq_unlock(struct rq *rq)
1008 __releases(rq->lock)
1010 spin_unlock(&rq->lock);
1013 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1014 __releases(rq->lock)
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1020 * this_rq_lock - lock this runqueue and disable interrupts.
1022 static struct rq *this_rq_lock(void)
1023 __acquires(rq->lock)
1025 struct rq *rq;
1027 local_irq_disable();
1028 rq = this_rq();
1029 spin_lock(&rq->lock);
1031 return rq;
1034 #ifdef CONFIG_SCHED_HRTICK
1036 * Use HR-timers to deliver accurate preemption points.
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1040 * reschedule event.
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1043 * rq->lock.
1047 * Use hrtick when:
1048 * - enabled by features
1049 * - hrtimer is actually high res
1051 static inline int hrtick_enabled(struct rq *rq)
1053 if (!sched_feat(HRTICK))
1054 return 0;
1055 if (!cpu_active(cpu_of(rq)))
1056 return 0;
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1060 static void hrtick_clear(struct rq *rq)
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1070 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1076 spin_lock(&rq->lock);
1077 update_rq_clock(rq);
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1081 return HRTIMER_NORESTART;
1084 #ifdef CONFIG_SMP
1086 * called from hardirq (IPI) context
1088 static void __hrtick_start(void *arg)
1090 struct rq *rq = arg;
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
1099 * Called to set the hrtick timer state.
1101 * called with rq->lock held and irqs disabled
1103 static void hrtick_start(struct rq *rq, u64 delay)
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1108 hrtimer_set_expires(timer, time);
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1118 static int
1119 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1121 int cpu = (int)(long)hcpu;
1123 switch (action) {
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1128 case CPU_DEAD:
1129 case CPU_DEAD_FROZEN:
1130 hrtick_clear(cpu_rq(cpu));
1131 return NOTIFY_OK;
1134 return NOTIFY_DONE;
1137 static __init void init_hrtick(void)
1139 hotcpu_notifier(hotplug_hrtick, 0);
1141 #else
1143 * Called to set the hrtick timer state.
1145 * called with rq->lock held and irqs disabled
1147 static void hrtick_start(struct rq *rq, u64 delay)
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SMP */
1157 static void init_rq_hrtick(struct rq *rq)
1159 #ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165 #endif
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
1170 #else /* CONFIG_SCHED_HRTICK */
1171 static inline void hrtick_clear(struct rq *rq)
1175 static inline void init_rq_hrtick(struct rq *rq)
1179 static inline void init_hrtick(void)
1182 #endif /* CONFIG_SCHED_HRTICK */
1185 * resched_task - mark a task 'to be rescheduled now'.
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1191 #ifdef CONFIG_SMP
1193 #ifndef tsk_is_polling
1194 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195 #endif
1197 static void resched_task(struct task_struct *p)
1199 int cpu;
1201 assert_spin_locked(&task_rq(p)->lock);
1203 if (test_tsk_need_resched(p))
1204 return;
1206 set_tsk_need_resched(p);
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1218 static void resched_cpu(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1229 #ifdef CONFIG_NO_HZ
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1240 void wake_up_idle_cpu(int cpu)
1242 struct rq *rq = cpu_rq(cpu);
1244 if (cpu == smp_processor_id())
1245 return;
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1254 if (rq->curr != rq->idle)
1255 return;
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1262 set_tsk_need_resched(rq->idle);
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1269 #endif /* CONFIG_NO_HZ */
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1274 assert_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1277 #endif /* CONFIG_SMP */
1279 #if BITS_PER_LONG == 32
1280 # define WMULT_CONST (~0UL)
1281 #else
1282 # define WMULT_CONST (1UL << 32)
1283 #endif
1285 #define WMULT_SHIFT 32
1288 * Shift right and round:
1290 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1293 * delta *= weight / lw
1295 static unsigned long
1296 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1299 u64 tmp;
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1309 tmp = (u64)delta_exec * weight;
1311 * Check whether we'd overflow the 64-bit multiplication:
1313 if (unlikely(tmp > WMULT_CONST))
1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1315 WMULT_SHIFT/2);
1316 else
1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1322 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1324 lw->weight += inc;
1325 lw->inv_weight = 0;
1328 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1330 lw->weight -= dec;
1331 lw->inv_weight = 0;
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1343 #define WEIGHT_IDLEPRIO 3
1344 #define WMULT_IDLEPRIO 1431655765
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
1358 static const int prio_to_weight[40] = {
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1376 static const u32 prio_to_wmult[40] = {
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1387 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1394 struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1400 #ifdef CONFIG_SMP
1401 static unsigned long
1402 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1407 static int
1408 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
1411 #endif
1413 #ifdef CONFIG_CGROUP_CPUACCT
1414 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415 #else
1416 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417 #endif
1419 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421 update_load_add(&rq->load, load);
1424 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426 update_load_sub(&rq->load, load);
1429 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1430 typedef int (*tg_visitor)(struct task_group *, void *);
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1436 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1438 struct task_group *parent, *child;
1439 int ret;
1441 rcu_read_lock();
1442 parent = &root_task_group;
1443 down:
1444 ret = (*down)(parent, data);
1445 if (ret)
1446 goto out_unlock;
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1448 parent = child;
1449 goto down;
1452 continue;
1454 ret = (*up)(parent, data);
1455 if (ret)
1456 goto out_unlock;
1458 child = parent;
1459 parent = parent->parent;
1460 if (parent)
1461 goto up;
1462 out_unlock:
1463 rcu_read_unlock();
1465 return ret;
1468 static int tg_nop(struct task_group *tg, void *data)
1470 return 0;
1472 #endif
1474 #ifdef CONFIG_SMP
1475 static unsigned long source_load(int cpu, int type);
1476 static unsigned long target_load(int cpu, int type);
1477 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1479 static unsigned long cpu_avg_load_per_task(int cpu)
1481 struct rq *rq = cpu_rq(cpu);
1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1484 if (nr_running)
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
1486 else
1487 rq->avg_load_per_task = 0;
1489 return rq->avg_load_per_task;
1492 #ifdef CONFIG_FAIR_GROUP_SCHED
1494 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1497 * Calculate and set the cpu's group shares.
1499 static void
1500 update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
1503 unsigned long shares;
1504 unsigned long rq_weight;
1506 if (!tg->se[cpu])
1507 return;
1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1514 * \Sum rq_weight
1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
1525 spin_lock_irqsave(&rq->lock, flags);
1526 tg->cfs_rq[cpu]->shares = shares;
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
1538 static int tg_shares_up(struct task_group *tg, void *data)
1540 unsigned long weight, rq_weight = 0;
1541 unsigned long shares = 0;
1542 struct sched_domain *sd = data;
1543 int i;
1545 for_each_cpu(i, sched_domain_span(sd)) {
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1551 weight = tg->cfs_rq[i]->load.weight;
1552 if (!weight)
1553 weight = NICE_0_LOAD;
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
1557 shares += tg->cfs_rq[i]->shares;
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
1566 for_each_cpu(i, sched_domain_span(sd))
1567 update_group_shares_cpu(tg, i, shares, rq_weight);
1569 return 0;
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group *tg, void *data)
1579 unsigned long load;
1580 long cpu = (long)data;
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1590 tg->cfs_rq[cpu]->h_load = load;
1592 return 0;
1595 static void update_shares(struct sched_domain *sd)
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
1606 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1608 spin_unlock(&rq->lock);
1609 update_shares(sd);
1610 spin_lock(&rq->lock);
1613 static void update_h_load(long cpu)
1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1618 #else
1620 static inline void update_shares(struct sched_domain *sd)
1624 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 #endif
1630 #ifdef CONFIG_PREEMPT
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
1640 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1648 return 1;
1651 #else
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1659 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1664 int ret = 0;
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1671 ret = 1;
1672 } else
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1675 return ret;
1678 #endif /* CONFIG_PREEMPT */
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1683 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1688 BUG_ON(1);
1691 return _double_lock_balance(this_rq, busiest);
1694 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1700 #endif
1702 #ifdef CONFIG_FAIR_GROUP_SCHED
1703 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1705 #ifdef CONFIG_SMP
1706 cfs_rq->shares = shares;
1707 #endif
1709 #endif
1711 #include "sched_stats.h"
1712 #include "sched_idletask.c"
1713 #include "sched_fair.c"
1714 #include "sched_rt.c"
1715 #ifdef CONFIG_SCHED_DEBUG
1716 # include "sched_debug.c"
1717 #endif
1719 #define sched_class_highest (&rt_sched_class)
1720 #define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
1723 static void inc_nr_running(struct rq *rq)
1725 rq->nr_running++;
1728 static void dec_nr_running(struct rq *rq)
1730 rq->nr_running--;
1733 static void set_load_weight(struct task_struct *p)
1735 if (task_has_rt_policy(p)) {
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1738 return;
1742 * SCHED_IDLE tasks get minimal weight:
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1747 return;
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1754 static void update_avg(u64 *avg, u64 sample)
1756 s64 diff = sample - *avg;
1757 *avg += diff >> 3;
1760 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1762 if (wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1765 sched_info_queued(p);
1766 p->sched_class->enqueue_task(rq, p, wakeup);
1767 p->se.on_rq = 1;
1770 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1772 if (sleep) {
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1777 } else {
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1783 sched_info_dequeued(p);
1784 p->sched_class->dequeue_task(rq, p, sleep);
1785 p->se.on_rq = 0;
1789 * __normal_prio - return the priority that is based on the static prio
1791 static inline int __normal_prio(struct task_struct *p)
1793 return p->static_prio;
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1803 static inline int normal_prio(struct task_struct *p)
1805 int prio;
1807 if (task_has_rt_policy(p))
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1809 else
1810 prio = __normal_prio(p);
1811 return prio;
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1821 static int effective_prio(struct task_struct *p)
1823 p->normal_prio = normal_prio(p);
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1831 return p->prio;
1835 * activate_task - move a task to the runqueue.
1837 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1839 if (task_contributes_to_load(p))
1840 rq->nr_uninterruptible--;
1842 enqueue_task(rq, p, wakeup);
1843 inc_nr_running(rq);
1847 * deactivate_task - remove a task from the runqueue.
1849 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1851 if (task_contributes_to_load(p))
1852 rq->nr_uninterruptible++;
1854 dequeue_task(rq, p, sleep);
1855 dec_nr_running(rq);
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1862 inline int task_curr(const struct task_struct *p)
1864 return cpu_curr(task_cpu(p)) == p;
1867 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1869 set_task_rq(p, cpu);
1870 #ifdef CONFIG_SMP
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1876 smp_wmb();
1877 task_thread_info(p)->cpu = cpu;
1878 #endif
1881 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1889 } else
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1893 #ifdef CONFIG_SMP
1895 /* Used instead of source_load when we know the type == 0 */
1896 static unsigned long weighted_cpuload(const int cpu)
1898 return cpu_rq(cpu)->load.weight;
1902 * Is this task likely cache-hot:
1904 static int
1905 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1907 s64 delta;
1910 * Buddy candidates are cache hot:
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
1915 return 1;
1917 if (p->sched_class != &fair_sched_class)
1918 return 0;
1920 if (sysctl_sched_migration_cost == -1)
1921 return 1;
1922 if (sysctl_sched_migration_cost == 0)
1923 return 0;
1925 delta = now - p->se.exec_start;
1927 return delta < (s64)sysctl_sched_migration_cost;
1931 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1937 u64 clock_offset;
1939 clock_offset = old_rq->clock - new_rq->clock;
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1943 #ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1955 #endif
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
1959 __set_task_cpu(p, new_cpu);
1962 struct migration_req {
1963 struct list_head list;
1965 struct task_struct *task;
1966 int dest_cpu;
1968 struct completion done;
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1975 static int
1976 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1978 struct rq *rq = task_rq(p);
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1984 if (!p->se.on_rq && !task_running(rq, p)) {
1985 set_task_cpu(p, dest_cpu);
1986 return 0;
1989 init_completion(&req->done);
1990 req->task = p;
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
1994 return 1;
1998 * wait_task_inactive - wait for a thread to unschedule.
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2013 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2015 unsigned long flags;
2016 int running, on_rq;
2017 unsigned long ncsw;
2018 struct rq *rq;
2020 for (;;) {
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2025 * work out!
2027 rq = task_rq(p);
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2032 * any locks.
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2042 return 0;
2043 cpu_relax();
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2051 rq = task_rq_lock(p, &flags);
2052 trace_sched_wait_task(rq, p);
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
2055 ncsw = 0;
2056 if (!match_state || p->state == match_state)
2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2058 task_rq_unlock(rq, &flags);
2061 * If it changed from the expected state, bail out now.
2063 if (unlikely(!ncsw))
2064 break;
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2070 * Oops. Go back and try again..
2072 if (unlikely(running)) {
2073 cpu_relax();
2074 continue;
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2080 * preempted!
2082 * So if it was still runnable (but just not actively
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2088 continue;
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2096 break;
2099 return ncsw;
2102 /***
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2113 * achieved as well.
2115 void kick_process(struct task_struct *p)
2117 int cpu;
2119 preempt_disable();
2120 cpu = task_cpu(p);
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2123 preempt_enable();
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2133 static unsigned long source_load(int cpu, int type)
2135 struct rq *rq = cpu_rq(cpu);
2136 unsigned long total = weighted_cpuload(cpu);
2138 if (type == 0 || !sched_feat(LB_BIAS))
2139 return total;
2141 return min(rq->cpu_load[type-1], total);
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
2148 static unsigned long target_load(int cpu, int type)
2150 struct rq *rq = cpu_rq(cpu);
2151 unsigned long total = weighted_cpuload(cpu);
2153 if (type == 0 || !sched_feat(LB_BIAS))
2154 return total;
2156 return max(rq->cpu_load[type-1], total);
2160 * find_idlest_group finds and returns the least busy CPU group within the
2161 * domain.
2163 static struct sched_group *
2164 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2171 do {
2172 unsigned long load, avg_load;
2173 int local_group;
2174 int i;
2176 /* Skip over this group if it has no CPUs allowed */
2177 if (!cpumask_intersects(sched_group_cpus(group),
2178 &p->cpus_allowed))
2179 continue;
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
2184 /* Tally up the load of all CPUs in the group */
2185 avg_load = 0;
2187 for_each_cpu(i, sched_group_cpus(group)) {
2188 /* Bias balancing toward cpus of our domain */
2189 if (local_group)
2190 load = source_load(i, load_idx);
2191 else
2192 load = target_load(i, load_idx);
2194 avg_load += load;
2197 /* Adjust by relative CPU power of the group */
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
2201 if (local_group) {
2202 this_load = avg_load;
2203 this = group;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2206 idlest = group;
2208 } while (group = group->next, group != sd->groups);
2210 if (!idlest || 100*this_load < imbalance*min_load)
2211 return NULL;
2212 return idlest;
2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2218 static int
2219 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2221 unsigned long load, min_load = ULONG_MAX;
2222 int idlest = -1;
2223 int i;
2225 /* Traverse only the allowed CPUs */
2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2227 load = weighted_cpuload(i);
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2230 min_load = load;
2231 idlest = i;
2235 return idlest;
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2241 * SD_BALANCE_EXEC.
2243 * Balance, ie. select the least loaded group.
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2247 * preempt must be disabled.
2249 static int sched_balance_self(int cpu, int flag)
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
2254 for_each_domain(cpu, tmp) {
2256 * If power savings logic is enabled for a domain, stop there.
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2259 break;
2260 if (tmp->flags & flag)
2261 sd = tmp;
2264 if (sd)
2265 update_shares(sd);
2267 while (sd) {
2268 struct sched_group *group;
2269 int new_cpu, weight;
2271 if (!(sd->flags & flag)) {
2272 sd = sd->child;
2273 continue;
2276 group = find_idlest_group(sd, t, cpu);
2277 if (!group) {
2278 sd = sd->child;
2279 continue;
2282 new_cpu = find_idlest_cpu(group, t, cpu);
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2285 sd = sd->child;
2286 continue;
2289 /* Now try balancing at a lower domain level of new_cpu */
2290 cpu = new_cpu;
2291 weight = cpumask_weight(sched_domain_span(sd));
2292 sd = NULL;
2293 for_each_domain(cpu, tmp) {
2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2295 break;
2296 if (tmp->flags & flag)
2297 sd = tmp;
2299 /* while loop will break here if sd == NULL */
2302 return cpu;
2305 #endif /* CONFIG_SMP */
2307 /***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2319 * returns failure only if the task is already active.
2321 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2323 int cpu, orig_cpu, this_cpu, success = 0;
2324 unsigned long flags;
2325 long old_state;
2326 struct rq *rq;
2328 if (!sched_feat(SYNC_WAKEUPS))
2329 sync = 0;
2331 #ifdef CONFIG_SMP
2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2333 struct sched_domain *sd;
2335 this_cpu = raw_smp_processor_id();
2336 cpu = task_cpu(p);
2338 for_each_domain(this_cpu, sd) {
2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2340 update_shares(sd);
2341 break;
2345 #endif
2347 smp_wmb();
2348 rq = task_rq_lock(p, &flags);
2349 update_rq_clock(rq);
2350 old_state = p->state;
2351 if (!(old_state & state))
2352 goto out;
2354 if (p->se.on_rq)
2355 goto out_running;
2357 cpu = task_cpu(p);
2358 orig_cpu = cpu;
2359 this_cpu = smp_processor_id();
2361 #ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
2374 if (p->se.on_rq)
2375 goto out_running;
2377 this_cpu = smp_processor_id();
2378 cpu = task_cpu(p);
2381 #ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2394 #endif /* CONFIG_SCHEDSTATS */
2396 out_activate:
2397 #endif /* CONFIG_SMP */
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (sync)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
2407 activate_task(rq, p, 1);
2408 success = 1;
2411 * Only attribute actual wakeups done by this task.
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2423 se->last_wakeup = se->sum_exec_runtime;
2426 out_running:
2427 trace_sched_wakeup(rq, p, success);
2428 check_preempt_curr(rq, p, sync);
2430 p->state = TASK_RUNNING;
2431 #ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434 #endif
2435 out:
2436 task_rq_unlock(rq, &flags);
2438 return success;
2441 int wake_up_process(struct task_struct *p)
2443 return try_to_wake_up(p, TASK_ALL, 0);
2445 EXPORT_SYMBOL(wake_up_process);
2447 int wake_up_state(struct task_struct *p, unsigned int state)
2449 return try_to_wake_up(p, state, 0);
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
2456 * __sched_fork() is basic setup used by init_idle() too:
2458 static void __sched_fork(struct task_struct *p)
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
2462 p->se.prev_sum_exec_runtime = 0;
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2468 #ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
2476 p->se.slice_max = 0;
2477 p->se.wait_max = 0;
2478 #endif
2480 INIT_LIST_HEAD(&p->rt.run_list);
2481 p->se.on_rq = 0;
2482 INIT_LIST_HEAD(&p->se.group_node);
2484 #ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2486 #endif
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2494 p->state = TASK_RUNNING;
2498 * fork()/clone()-time setup:
2500 void sched_fork(struct task_struct *p, int clone_flags)
2502 int cpu = get_cpu();
2504 __sched_fork(p);
2506 #ifdef CONFIG_SMP
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2508 #endif
2509 set_task_cpu(p, cpu);
2512 * Make sure we do not leak PI boosting priority to the child:
2514 p->prio = current->normal_prio;
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
2518 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2519 if (likely(sched_info_on()))
2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
2521 #endif
2522 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2523 p->oncpu = 0;
2524 #endif
2525 #ifdef CONFIG_PREEMPT
2526 /* Want to start with kernel preemption disabled. */
2527 task_thread_info(p)->preempt_count = 1;
2528 #endif
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2531 put_cpu();
2535 * wake_up_new_task - wake up a newly created task for the first time.
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2541 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2543 unsigned long flags;
2544 struct rq *rq;
2546 rq = task_rq_lock(p, &flags);
2547 BUG_ON(p->state != TASK_RUNNING);
2548 update_rq_clock(rq);
2550 p->prio = effective_prio(p);
2552 if (!p->sched_class->task_new || !current->se.on_rq) {
2553 activate_task(rq, p, 0);
2554 } else {
2556 * Let the scheduling class do new task startup
2557 * management (if any):
2559 p->sched_class->task_new(rq, p);
2560 inc_nr_running(rq);
2562 trace_sched_wakeup_new(rq, p, 1);
2563 check_preempt_curr(rq, p, 0);
2564 #ifdef CONFIG_SMP
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2567 #endif
2568 task_rq_unlock(rq, &flags);
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2575 * @notifier: notifier struct to register
2577 void preempt_notifier_register(struct preempt_notifier *notifier)
2579 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2581 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
2585 * @notifier: notifier struct to unregister
2587 * This is safe to call from within a preemption notifier.
2589 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2591 hlist_del(&notifier->link);
2593 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2595 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2604 static void
2605 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2615 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2617 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2621 static void
2622 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2627 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
2632 * @prev: the current task that is being switched out
2633 * @next: the task we are going to switch to.
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2637 * switch.
2639 * prepare_task_switch sets up locking and calls architecture specific
2640 * hooks.
2642 static inline void
2643 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
2646 fire_sched_out_preempt_notifiers(prev, next);
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2652 * finish_task_switch - clean up after a task-switch
2653 * @rq: runqueue associated with task-switch
2654 * @prev: the thread we just switched away from.
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
2661 * Note that we may have delayed dropping an mm in context_switch(). If
2662 * so, we finish that here outside of the runqueue lock. (Doing it
2663 * with the lock held can cause deadlocks; see schedule() for
2664 * details.)
2666 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2667 __releases(rq->lock)
2669 struct mm_struct *mm = rq->prev_mm;
2670 long prev_state;
2671 #ifdef CONFIG_SMP
2672 int post_schedule = 0;
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2676 #endif
2678 rq->prev_mm = NULL;
2681 * A task struct has one reference for the use as "current".
2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
2685 * The test for TASK_DEAD must occur while the runqueue locks are
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2688 * be dropped twice.
2689 * Manfred Spraul <manfred@colorfullife.com>
2691 prev_state = prev->state;
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
2694 #ifdef CONFIG_SMP
2695 if (post_schedule)
2696 current->sched_class->post_schedule(rq);
2697 #endif
2699 fire_sched_in_preempt_notifiers(current);
2700 if (mm)
2701 mmdrop(mm);
2702 if (unlikely(prev_state == TASK_DEAD)) {
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
2707 kprobe_flush_task(prev);
2708 put_task_struct(prev);
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2716 asmlinkage void schedule_tail(struct task_struct *prev)
2717 __releases(rq->lock)
2719 struct rq *rq = this_rq();
2721 finish_task_switch(rq, prev);
2722 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2724 preempt_enable();
2725 #endif
2726 if (current->set_child_tid)
2727 put_user(task_pid_vnr(current), current->set_child_tid);
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2734 static inline void
2735 context_switch(struct rq *rq, struct task_struct *prev,
2736 struct task_struct *next)
2738 struct mm_struct *mm, *oldmm;
2740 prepare_task_switch(rq, prev, next);
2741 trace_sched_switch(rq, prev, next);
2742 mm = next->mm;
2743 oldmm = prev->active_mm;
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2747 * one hypercall.
2749 arch_enter_lazy_cpu_mode();
2751 if (unlikely(!mm)) {
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2755 } else
2756 switch_mm(oldmm, mm, next);
2758 if (unlikely(!prev->mm)) {
2759 prev->active_mm = NULL;
2760 rq->prev_mm = oldmm;
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2768 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2770 #endif
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2775 barrier();
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2781 finish_task_switch(this_rq(), prev);
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2791 unsigned long nr_running(void)
2793 unsigned long i, sum = 0;
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2798 return sum;
2801 unsigned long nr_uninterruptible(void)
2803 unsigned long i, sum = 0;
2805 for_each_possible_cpu(i)
2806 sum += cpu_rq(i)->nr_uninterruptible;
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2812 if (unlikely((long)sum < 0))
2813 sum = 0;
2815 return sum;
2818 unsigned long long nr_context_switches(void)
2820 int i;
2821 unsigned long long sum = 0;
2823 for_each_possible_cpu(i)
2824 sum += cpu_rq(i)->nr_switches;
2826 return sum;
2829 unsigned long nr_iowait(void)
2831 unsigned long i, sum = 0;
2833 for_each_possible_cpu(i)
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2836 return sum;
2839 unsigned long nr_active(void)
2841 unsigned long i, running = 0, uninterruptible = 0;
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2851 return running + uninterruptible;
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
2858 static void update_cpu_load(struct rq *this_rq)
2860 unsigned long this_load = this_rq->load.weight;
2861 int i, scale;
2863 this_rq->nr_load_updates++;
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2876 * example.
2878 if (new_load > old_load)
2879 new_load += scale-1;
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2884 #ifdef CONFIG_SMP
2887 * double_rq_lock - safely lock two runqueues
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2892 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2896 BUG_ON(!irqs_disabled());
2897 if (rq1 == rq2) {
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2900 } else {
2901 if (rq1 < rq2) {
2902 spin_lock(&rq1->lock);
2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2904 } else {
2905 spin_lock(&rq2->lock);
2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
2914 * double_rq_unlock - safely unlock two runqueues
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2919 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2923 spin_unlock(&rq1->lock);
2924 if (rq1 != rq2)
2925 spin_unlock(&rq2->lock);
2926 else
2927 __release(rq2->lock);
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2934 * the cpu_allowed mask is restored.
2936 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2938 struct migration_req req;
2939 unsigned long flags;
2940 struct rq *rq;
2942 rq = task_rq_lock(p, &flags);
2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2944 || unlikely(!cpu_active(dest_cpu)))
2945 goto out;
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
2958 return;
2960 out:
2961 task_rq_unlock(rq, &flags);
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
2968 void sched_exec(void)
2970 int new_cpu, this_cpu = get_cpu();
2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2972 put_cpu();
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2981 static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
2984 deactivate_task(src_rq, p, 0);
2985 set_task_cpu(p, this_cpu);
2986 activate_task(this_rq, p, 0);
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2991 check_preempt_curr(this_rq, p, 0);
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2997 static
2998 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2999 struct sched_domain *sd, enum cpu_idle_type idle,
3000 int *all_pinned)
3002 int tsk_cache_hot = 0;
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3010 schedstat_inc(p, se.nr_failed_migrations_affine);
3011 return 0;
3013 *all_pinned = 0;
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
3017 return 0;
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
3029 #ifdef CONFIG_SCHEDSTATS
3030 if (tsk_cache_hot) {
3031 schedstat_inc(sd, lb_hot_gained[idle]);
3032 schedstat_inc(p, se.nr_forced_migrations);
3034 #endif
3035 return 1;
3038 if (tsk_cache_hot) {
3039 schedstat_inc(p, se.nr_failed_migrations_hot);
3040 return 0;
3042 return 1;
3045 static unsigned long
3046 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
3051 int loops = 0, pulled = 0, pinned = 0;
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
3055 if (max_load_move == 0)
3056 goto out;
3058 pinned = 1;
3061 * Start the load-balancing iterator:
3063 p = iterator->start(iterator->arg);
3064 next:
3065 if (!p || loops++ > sysctl_sched_nr_migrate)
3066 goto out;
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3070 p = iterator->next(iterator->arg);
3071 goto next;
3074 pull_task(busiest, p, this_rq, this_cpu);
3075 pulled++;
3076 rem_load_move -= p->se.load.weight;
3078 #ifdef CONFIG_PREEMPT
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3082 * section.
3084 if (idle == CPU_NEWLY_IDLE)
3085 goto out;
3086 #endif
3089 * We only want to steal up to the prescribed amount of weighted load.
3091 if (rem_load_move > 0) {
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
3094 p = iterator->next(iterator->arg);
3095 goto next;
3097 out:
3099 * Right now, this is one of only two places pull_task() is called,
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3103 schedstat_add(sd, lb_gained[idle], pulled);
3105 if (all_pinned)
3106 *all_pinned = pinned;
3108 return max_load_move - rem_load_move;
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
3116 * Called with both runqueues locked.
3118 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3119 unsigned long max_load_move,
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3123 const struct sched_class *class = sched_class_highest;
3124 unsigned long total_load_moved = 0;
3125 int this_best_prio = this_rq->curr->prio;
3127 do {
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
3130 max_load_move - total_load_moved,
3131 sd, idle, all_pinned, &this_best_prio);
3132 class = class->next;
3134 #ifdef CONFIG_PREEMPT
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3141 break;
3142 #endif
3143 } while (class && max_load_move > total_load_moved);
3145 return total_load_moved > 0;
3148 static int
3149 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3153 struct task_struct *p = iterator->start(iterator->arg);
3154 int pinned = 0;
3156 while (p) {
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3164 schedstat_inc(sd, lb_gained[idle]);
3166 return 1;
3168 p = iterator->next(iterator->arg);
3171 return 0;
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3179 * Called with both runqueues locked.
3181 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3184 const struct sched_class *class;
3186 for (class = sched_class_highest; class; class = class->next)
3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3188 return 1;
3190 return 0;
3192 /********** Helpers for find_busiest_group ************************/
3195 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3196 * @group: The group whose first cpu is to be returned.
3198 static inline unsigned int group_first_cpu(struct sched_group *group)
3200 return cpumask_first(sched_group_cpus(group));
3204 * get_sd_load_idx - Obtain the load index for a given sched domain.
3205 * @sd: The sched_domain whose load_idx is to be obtained.
3206 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3208 static inline int get_sd_load_idx(struct sched_domain *sd,
3209 enum cpu_idle_type idle)
3211 int load_idx;
3213 switch (idle) {
3214 case CPU_NOT_IDLE:
3215 load_idx = sd->busy_idx;
3216 break;
3218 case CPU_NEWLY_IDLE:
3219 load_idx = sd->newidle_idx;
3220 break;
3221 default:
3222 load_idx = sd->idle_idx;
3223 break;
3226 return load_idx;
3228 /******* find_busiest_group() helpers end here *********************/
3231 * find_busiest_group finds and returns the busiest CPU group within the
3232 * domain. It calculates and returns the amount of weighted load which
3233 * should be moved to restore balance via the imbalance parameter.
3235 static struct sched_group *
3236 find_busiest_group(struct sched_domain *sd, int this_cpu,
3237 unsigned long *imbalance, enum cpu_idle_type idle,
3238 int *sd_idle, const struct cpumask *cpus, int *balance)
3240 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3241 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3242 unsigned long max_pull;
3243 unsigned long busiest_load_per_task, busiest_nr_running;
3244 unsigned long this_load_per_task, this_nr_running;
3245 int load_idx, group_imb = 0;
3246 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3247 int power_savings_balance = 1;
3248 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3249 unsigned long min_nr_running = ULONG_MAX;
3250 struct sched_group *group_min = NULL, *group_leader = NULL;
3251 #endif
3253 max_load = this_load = total_load = total_pwr = 0;
3254 busiest_load_per_task = busiest_nr_running = 0;
3255 this_load_per_task = this_nr_running = 0;
3257 load_idx = get_sd_load_idx(sd, idle);
3259 do {
3260 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3261 int local_group;
3262 int i;
3263 int __group_imb = 0;
3264 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3265 unsigned long sum_nr_running, sum_weighted_load;
3266 unsigned long sum_avg_load_per_task;
3267 unsigned long avg_load_per_task;
3269 local_group = cpumask_test_cpu(this_cpu,
3270 sched_group_cpus(group));
3272 if (local_group)
3273 balance_cpu = group_first_cpu(group);
3275 /* Tally up the load of all CPUs in the group */
3276 sum_weighted_load = sum_nr_running = avg_load = 0;
3277 sum_avg_load_per_task = avg_load_per_task = 0;
3279 max_cpu_load = 0;
3280 min_cpu_load = ~0UL;
3282 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3283 struct rq *rq = cpu_rq(i);
3285 if (*sd_idle && rq->nr_running)
3286 *sd_idle = 0;
3288 /* Bias balancing toward cpus of our domain */
3289 if (local_group) {
3290 if (idle_cpu(i) && !first_idle_cpu) {
3291 first_idle_cpu = 1;
3292 balance_cpu = i;
3295 load = target_load(i, load_idx);
3296 } else {
3297 load = source_load(i, load_idx);
3298 if (load > max_cpu_load)
3299 max_cpu_load = load;
3300 if (min_cpu_load > load)
3301 min_cpu_load = load;
3304 avg_load += load;
3305 sum_nr_running += rq->nr_running;
3306 sum_weighted_load += weighted_cpuload(i);
3308 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3312 * First idle cpu or the first cpu(busiest) in this sched group
3313 * is eligible for doing load balancing at this and above
3314 * domains. In the newly idle case, we will allow all the cpu's
3315 * to do the newly idle load balance.
3317 if (idle != CPU_NEWLY_IDLE && local_group &&
3318 balance_cpu != this_cpu && balance) {
3319 *balance = 0;
3320 goto ret;
3323 total_load += avg_load;
3324 total_pwr += group->__cpu_power;
3326 /* Adjust by relative CPU power of the group */
3327 avg_load = sg_div_cpu_power(group,
3328 avg_load * SCHED_LOAD_SCALE);
3332 * Consider the group unbalanced when the imbalance is larger
3333 * than the average weight of two tasks.
3335 * APZ: with cgroup the avg task weight can vary wildly and
3336 * might not be a suitable number - should we keep a
3337 * normalized nr_running number somewhere that negates
3338 * the hierarchy?
3340 avg_load_per_task = sg_div_cpu_power(group,
3341 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3343 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3344 __group_imb = 1;
3346 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3348 if (local_group) {
3349 this_load = avg_load;
3350 this = group;
3351 this_nr_running = sum_nr_running;
3352 this_load_per_task = sum_weighted_load;
3353 } else if (avg_load > max_load &&
3354 (sum_nr_running > group_capacity || __group_imb)) {
3355 max_load = avg_load;
3356 busiest = group;
3357 busiest_nr_running = sum_nr_running;
3358 busiest_load_per_task = sum_weighted_load;
3359 group_imb = __group_imb;
3362 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3364 * Busy processors will not participate in power savings
3365 * balance.
3367 if (idle == CPU_NOT_IDLE ||
3368 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3369 goto group_next;
3372 * If the local group is idle or completely loaded
3373 * no need to do power savings balance at this domain
3375 if (local_group && (this_nr_running >= group_capacity ||
3376 !this_nr_running))
3377 power_savings_balance = 0;
3380 * If a group is already running at full capacity or idle,
3381 * don't include that group in power savings calculations
3383 if (!power_savings_balance || sum_nr_running >= group_capacity
3384 || !sum_nr_running)
3385 goto group_next;
3388 * Calculate the group which has the least non-idle load.
3389 * This is the group from where we need to pick up the load
3390 * for saving power
3392 if ((sum_nr_running < min_nr_running) ||
3393 (sum_nr_running == min_nr_running &&
3394 group_first_cpu(group) > group_first_cpu(group_min))) {
3395 group_min = group;
3396 min_nr_running = sum_nr_running;
3397 min_load_per_task = sum_weighted_load /
3398 sum_nr_running;
3402 * Calculate the group which is almost near its
3403 * capacity but still has some space to pick up some load
3404 * from other group and save more power
3406 if (sum_nr_running <= group_capacity - 1) {
3407 if (sum_nr_running > leader_nr_running ||
3408 (sum_nr_running == leader_nr_running &&
3409 group_first_cpu(group) <
3410 group_first_cpu(group_leader))) {
3411 group_leader = group;
3412 leader_nr_running = sum_nr_running;
3415 group_next:
3416 #endif
3417 group = group->next;
3418 } while (group != sd->groups);
3420 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3421 goto out_balanced;
3423 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3425 if (this_load >= avg_load ||
3426 100*max_load <= sd->imbalance_pct*this_load)
3427 goto out_balanced;
3429 busiest_load_per_task /= busiest_nr_running;
3430 if (group_imb)
3431 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3434 * We're trying to get all the cpus to the average_load, so we don't
3435 * want to push ourselves above the average load, nor do we wish to
3436 * reduce the max loaded cpu below the average load, as either of these
3437 * actions would just result in more rebalancing later, and ping-pong
3438 * tasks around. Thus we look for the minimum possible imbalance.
3439 * Negative imbalances (*we* are more loaded than anyone else) will
3440 * be counted as no imbalance for these purposes -- we can't fix that
3441 * by pulling tasks to us. Be careful of negative numbers as they'll
3442 * appear as very large values with unsigned longs.
3444 if (max_load <= busiest_load_per_task)
3445 goto out_balanced;
3448 * In the presence of smp nice balancing, certain scenarios can have
3449 * max load less than avg load(as we skip the groups at or below
3450 * its cpu_power, while calculating max_load..)
3452 if (max_load < avg_load) {
3453 *imbalance = 0;
3454 goto small_imbalance;
3457 /* Don't want to pull so many tasks that a group would go idle */
3458 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3460 /* How much load to actually move to equalise the imbalance */
3461 *imbalance = min(max_pull * busiest->__cpu_power,
3462 (avg_load - this_load) * this->__cpu_power)
3463 / SCHED_LOAD_SCALE;
3466 * if *imbalance is less than the average load per runnable task
3467 * there is no gaurantee that any tasks will be moved so we'll have
3468 * a think about bumping its value to force at least one task to be
3469 * moved
3471 if (*imbalance < busiest_load_per_task) {
3472 unsigned long tmp, pwr_now, pwr_move;
3473 unsigned int imbn;
3475 small_imbalance:
3476 pwr_move = pwr_now = 0;
3477 imbn = 2;
3478 if (this_nr_running) {
3479 this_load_per_task /= this_nr_running;
3480 if (busiest_load_per_task > this_load_per_task)
3481 imbn = 1;
3482 } else
3483 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3485 if (max_load - this_load + busiest_load_per_task >=
3486 busiest_load_per_task * imbn) {
3487 *imbalance = busiest_load_per_task;
3488 return busiest;
3492 * OK, we don't have enough imbalance to justify moving tasks,
3493 * however we may be able to increase total CPU power used by
3494 * moving them.
3497 pwr_now += busiest->__cpu_power *
3498 min(busiest_load_per_task, max_load);
3499 pwr_now += this->__cpu_power *
3500 min(this_load_per_task, this_load);
3501 pwr_now /= SCHED_LOAD_SCALE;
3503 /* Amount of load we'd subtract */
3504 tmp = sg_div_cpu_power(busiest,
3505 busiest_load_per_task * SCHED_LOAD_SCALE);
3506 if (max_load > tmp)
3507 pwr_move += busiest->__cpu_power *
3508 min(busiest_load_per_task, max_load - tmp);
3510 /* Amount of load we'd add */
3511 if (max_load * busiest->__cpu_power <
3512 busiest_load_per_task * SCHED_LOAD_SCALE)
3513 tmp = sg_div_cpu_power(this,
3514 max_load * busiest->__cpu_power);
3515 else
3516 tmp = sg_div_cpu_power(this,
3517 busiest_load_per_task * SCHED_LOAD_SCALE);
3518 pwr_move += this->__cpu_power *
3519 min(this_load_per_task, this_load + tmp);
3520 pwr_move /= SCHED_LOAD_SCALE;
3522 /* Move if we gain throughput */
3523 if (pwr_move > pwr_now)
3524 *imbalance = busiest_load_per_task;
3527 return busiest;
3529 out_balanced:
3530 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3531 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3532 goto ret;
3534 if (this == group_leader && group_leader != group_min) {
3535 *imbalance = min_load_per_task;
3536 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3537 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3538 group_first_cpu(group_leader);
3540 return group_min;
3542 #endif
3543 ret:
3544 *imbalance = 0;
3545 return NULL;
3549 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3551 static struct rq *
3552 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3553 unsigned long imbalance, const struct cpumask *cpus)
3555 struct rq *busiest = NULL, *rq;
3556 unsigned long max_load = 0;
3557 int i;
3559 for_each_cpu(i, sched_group_cpus(group)) {
3560 unsigned long wl;
3562 if (!cpumask_test_cpu(i, cpus))
3563 continue;
3565 rq = cpu_rq(i);
3566 wl = weighted_cpuload(i);
3568 if (rq->nr_running == 1 && wl > imbalance)
3569 continue;
3571 if (wl > max_load) {
3572 max_load = wl;
3573 busiest = rq;
3577 return busiest;
3581 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3582 * so long as it is large enough.
3584 #define MAX_PINNED_INTERVAL 512
3587 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3588 * tasks if there is an imbalance.
3590 static int load_balance(int this_cpu, struct rq *this_rq,
3591 struct sched_domain *sd, enum cpu_idle_type idle,
3592 int *balance, struct cpumask *cpus)
3594 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3595 struct sched_group *group;
3596 unsigned long imbalance;
3597 struct rq *busiest;
3598 unsigned long flags;
3600 cpumask_setall(cpus);
3603 * When power savings policy is enabled for the parent domain, idle
3604 * sibling can pick up load irrespective of busy siblings. In this case,
3605 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3606 * portraying it as CPU_NOT_IDLE.
3608 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3609 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3610 sd_idle = 1;
3612 schedstat_inc(sd, lb_count[idle]);
3614 redo:
3615 update_shares(sd);
3616 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3617 cpus, balance);
3619 if (*balance == 0)
3620 goto out_balanced;
3622 if (!group) {
3623 schedstat_inc(sd, lb_nobusyg[idle]);
3624 goto out_balanced;
3627 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3628 if (!busiest) {
3629 schedstat_inc(sd, lb_nobusyq[idle]);
3630 goto out_balanced;
3633 BUG_ON(busiest == this_rq);
3635 schedstat_add(sd, lb_imbalance[idle], imbalance);
3637 ld_moved = 0;
3638 if (busiest->nr_running > 1) {
3640 * Attempt to move tasks. If find_busiest_group has found
3641 * an imbalance but busiest->nr_running <= 1, the group is
3642 * still unbalanced. ld_moved simply stays zero, so it is
3643 * correctly treated as an imbalance.
3645 local_irq_save(flags);
3646 double_rq_lock(this_rq, busiest);
3647 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3648 imbalance, sd, idle, &all_pinned);
3649 double_rq_unlock(this_rq, busiest);
3650 local_irq_restore(flags);
3653 * some other cpu did the load balance for us.
3655 if (ld_moved && this_cpu != smp_processor_id())
3656 resched_cpu(this_cpu);
3658 /* All tasks on this runqueue were pinned by CPU affinity */
3659 if (unlikely(all_pinned)) {
3660 cpumask_clear_cpu(cpu_of(busiest), cpus);
3661 if (!cpumask_empty(cpus))
3662 goto redo;
3663 goto out_balanced;
3667 if (!ld_moved) {
3668 schedstat_inc(sd, lb_failed[idle]);
3669 sd->nr_balance_failed++;
3671 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3673 spin_lock_irqsave(&busiest->lock, flags);
3675 /* don't kick the migration_thread, if the curr
3676 * task on busiest cpu can't be moved to this_cpu
3678 if (!cpumask_test_cpu(this_cpu,
3679 &busiest->curr->cpus_allowed)) {
3680 spin_unlock_irqrestore(&busiest->lock, flags);
3681 all_pinned = 1;
3682 goto out_one_pinned;
3685 if (!busiest->active_balance) {
3686 busiest->active_balance = 1;
3687 busiest->push_cpu = this_cpu;
3688 active_balance = 1;
3690 spin_unlock_irqrestore(&busiest->lock, flags);
3691 if (active_balance)
3692 wake_up_process(busiest->migration_thread);
3695 * We've kicked active balancing, reset the failure
3696 * counter.
3698 sd->nr_balance_failed = sd->cache_nice_tries+1;
3700 } else
3701 sd->nr_balance_failed = 0;
3703 if (likely(!active_balance)) {
3704 /* We were unbalanced, so reset the balancing interval */
3705 sd->balance_interval = sd->min_interval;
3706 } else {
3708 * If we've begun active balancing, start to back off. This
3709 * case may not be covered by the all_pinned logic if there
3710 * is only 1 task on the busy runqueue (because we don't call
3711 * move_tasks).
3713 if (sd->balance_interval < sd->max_interval)
3714 sd->balance_interval *= 2;
3717 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3718 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3719 ld_moved = -1;
3721 goto out;
3723 out_balanced:
3724 schedstat_inc(sd, lb_balanced[idle]);
3726 sd->nr_balance_failed = 0;
3728 out_one_pinned:
3729 /* tune up the balancing interval */
3730 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3731 (sd->balance_interval < sd->max_interval))
3732 sd->balance_interval *= 2;
3734 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3735 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3736 ld_moved = -1;
3737 else
3738 ld_moved = 0;
3739 out:
3740 if (ld_moved)
3741 update_shares(sd);
3742 return ld_moved;
3746 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3747 * tasks if there is an imbalance.
3749 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3750 * this_rq is locked.
3752 static int
3753 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3754 struct cpumask *cpus)
3756 struct sched_group *group;
3757 struct rq *busiest = NULL;
3758 unsigned long imbalance;
3759 int ld_moved = 0;
3760 int sd_idle = 0;
3761 int all_pinned = 0;
3763 cpumask_setall(cpus);
3766 * When power savings policy is enabled for the parent domain, idle
3767 * sibling can pick up load irrespective of busy siblings. In this case,
3768 * let the state of idle sibling percolate up as IDLE, instead of
3769 * portraying it as CPU_NOT_IDLE.
3771 if (sd->flags & SD_SHARE_CPUPOWER &&
3772 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3773 sd_idle = 1;
3775 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3776 redo:
3777 update_shares_locked(this_rq, sd);
3778 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3779 &sd_idle, cpus, NULL);
3780 if (!group) {
3781 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3782 goto out_balanced;
3785 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3786 if (!busiest) {
3787 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3788 goto out_balanced;
3791 BUG_ON(busiest == this_rq);
3793 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3795 ld_moved = 0;
3796 if (busiest->nr_running > 1) {
3797 /* Attempt to move tasks */
3798 double_lock_balance(this_rq, busiest);
3799 /* this_rq->clock is already updated */
3800 update_rq_clock(busiest);
3801 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3802 imbalance, sd, CPU_NEWLY_IDLE,
3803 &all_pinned);
3804 double_unlock_balance(this_rq, busiest);
3806 if (unlikely(all_pinned)) {
3807 cpumask_clear_cpu(cpu_of(busiest), cpus);
3808 if (!cpumask_empty(cpus))
3809 goto redo;
3813 if (!ld_moved) {
3814 int active_balance = 0;
3816 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3817 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3818 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3819 return -1;
3821 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3822 return -1;
3824 if (sd->nr_balance_failed++ < 2)
3825 return -1;
3828 * The only task running in a non-idle cpu can be moved to this
3829 * cpu in an attempt to completely freeup the other CPU
3830 * package. The same method used to move task in load_balance()
3831 * have been extended for load_balance_newidle() to speedup
3832 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3834 * The package power saving logic comes from
3835 * find_busiest_group(). If there are no imbalance, then
3836 * f_b_g() will return NULL. However when sched_mc={1,2} then
3837 * f_b_g() will select a group from which a running task may be
3838 * pulled to this cpu in order to make the other package idle.
3839 * If there is no opportunity to make a package idle and if
3840 * there are no imbalance, then f_b_g() will return NULL and no
3841 * action will be taken in load_balance_newidle().
3843 * Under normal task pull operation due to imbalance, there
3844 * will be more than one task in the source run queue and
3845 * move_tasks() will succeed. ld_moved will be true and this
3846 * active balance code will not be triggered.
3849 /* Lock busiest in correct order while this_rq is held */
3850 double_lock_balance(this_rq, busiest);
3853 * don't kick the migration_thread, if the curr
3854 * task on busiest cpu can't be moved to this_cpu
3856 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3857 double_unlock_balance(this_rq, busiest);
3858 all_pinned = 1;
3859 return ld_moved;
3862 if (!busiest->active_balance) {
3863 busiest->active_balance = 1;
3864 busiest->push_cpu = this_cpu;
3865 active_balance = 1;
3868 double_unlock_balance(this_rq, busiest);
3870 * Should not call ttwu while holding a rq->lock
3872 spin_unlock(&this_rq->lock);
3873 if (active_balance)
3874 wake_up_process(busiest->migration_thread);
3875 spin_lock(&this_rq->lock);
3877 } else
3878 sd->nr_balance_failed = 0;
3880 update_shares_locked(this_rq, sd);
3881 return ld_moved;
3883 out_balanced:
3884 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3885 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3886 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3887 return -1;
3888 sd->nr_balance_failed = 0;
3890 return 0;
3894 * idle_balance is called by schedule() if this_cpu is about to become
3895 * idle. Attempts to pull tasks from other CPUs.
3897 static void idle_balance(int this_cpu, struct rq *this_rq)
3899 struct sched_domain *sd;
3900 int pulled_task = 0;
3901 unsigned long next_balance = jiffies + HZ;
3902 cpumask_var_t tmpmask;
3904 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3905 return;
3907 for_each_domain(this_cpu, sd) {
3908 unsigned long interval;
3910 if (!(sd->flags & SD_LOAD_BALANCE))
3911 continue;
3913 if (sd->flags & SD_BALANCE_NEWIDLE)
3914 /* If we've pulled tasks over stop searching: */
3915 pulled_task = load_balance_newidle(this_cpu, this_rq,
3916 sd, tmpmask);
3918 interval = msecs_to_jiffies(sd->balance_interval);
3919 if (time_after(next_balance, sd->last_balance + interval))
3920 next_balance = sd->last_balance + interval;
3921 if (pulled_task)
3922 break;
3924 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3926 * We are going idle. next_balance may be set based on
3927 * a busy processor. So reset next_balance.
3929 this_rq->next_balance = next_balance;
3931 free_cpumask_var(tmpmask);
3935 * active_load_balance is run by migration threads. It pushes running tasks
3936 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3937 * running on each physical CPU where possible, and avoids physical /
3938 * logical imbalances.
3940 * Called with busiest_rq locked.
3942 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3944 int target_cpu = busiest_rq->push_cpu;
3945 struct sched_domain *sd;
3946 struct rq *target_rq;
3948 /* Is there any task to move? */
3949 if (busiest_rq->nr_running <= 1)
3950 return;
3952 target_rq = cpu_rq(target_cpu);
3955 * This condition is "impossible", if it occurs
3956 * we need to fix it. Originally reported by
3957 * Bjorn Helgaas on a 128-cpu setup.
3959 BUG_ON(busiest_rq == target_rq);
3961 /* move a task from busiest_rq to target_rq */
3962 double_lock_balance(busiest_rq, target_rq);
3963 update_rq_clock(busiest_rq);
3964 update_rq_clock(target_rq);
3966 /* Search for an sd spanning us and the target CPU. */
3967 for_each_domain(target_cpu, sd) {
3968 if ((sd->flags & SD_LOAD_BALANCE) &&
3969 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3970 break;
3973 if (likely(sd)) {
3974 schedstat_inc(sd, alb_count);
3976 if (move_one_task(target_rq, target_cpu, busiest_rq,
3977 sd, CPU_IDLE))
3978 schedstat_inc(sd, alb_pushed);
3979 else
3980 schedstat_inc(sd, alb_failed);
3982 double_unlock_balance(busiest_rq, target_rq);
3985 #ifdef CONFIG_NO_HZ
3986 static struct {
3987 atomic_t load_balancer;
3988 cpumask_var_t cpu_mask;
3989 } nohz ____cacheline_aligned = {
3990 .load_balancer = ATOMIC_INIT(-1),
3994 * This routine will try to nominate the ilb (idle load balancing)
3995 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3996 * load balancing on behalf of all those cpus. If all the cpus in the system
3997 * go into this tickless mode, then there will be no ilb owner (as there is
3998 * no need for one) and all the cpus will sleep till the next wakeup event
3999 * arrives...
4001 * For the ilb owner, tick is not stopped. And this tick will be used
4002 * for idle load balancing. ilb owner will still be part of
4003 * nohz.cpu_mask..
4005 * While stopping the tick, this cpu will become the ilb owner if there
4006 * is no other owner. And will be the owner till that cpu becomes busy
4007 * or if all cpus in the system stop their ticks at which point
4008 * there is no need for ilb owner.
4010 * When the ilb owner becomes busy, it nominates another owner, during the
4011 * next busy scheduler_tick()
4013 int select_nohz_load_balancer(int stop_tick)
4015 int cpu = smp_processor_id();
4017 if (stop_tick) {
4018 cpu_rq(cpu)->in_nohz_recently = 1;
4020 if (!cpu_active(cpu)) {
4021 if (atomic_read(&nohz.load_balancer) != cpu)
4022 return 0;
4025 * If we are going offline and still the leader,
4026 * give up!
4028 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4029 BUG();
4031 return 0;
4034 cpumask_set_cpu(cpu, nohz.cpu_mask);
4036 /* time for ilb owner also to sleep */
4037 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4038 if (atomic_read(&nohz.load_balancer) == cpu)
4039 atomic_set(&nohz.load_balancer, -1);
4040 return 0;
4043 if (atomic_read(&nohz.load_balancer) == -1) {
4044 /* make me the ilb owner */
4045 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4046 return 1;
4047 } else if (atomic_read(&nohz.load_balancer) == cpu)
4048 return 1;
4049 } else {
4050 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4051 return 0;
4053 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4055 if (atomic_read(&nohz.load_balancer) == cpu)
4056 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4057 BUG();
4059 return 0;
4061 #endif
4063 static DEFINE_SPINLOCK(balancing);
4066 * It checks each scheduling domain to see if it is due to be balanced,
4067 * and initiates a balancing operation if so.
4069 * Balancing parameters are set up in arch_init_sched_domains.
4071 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4073 int balance = 1;
4074 struct rq *rq = cpu_rq(cpu);
4075 unsigned long interval;
4076 struct sched_domain *sd;
4077 /* Earliest time when we have to do rebalance again */
4078 unsigned long next_balance = jiffies + 60*HZ;
4079 int update_next_balance = 0;
4080 int need_serialize;
4081 cpumask_var_t tmp;
4083 /* Fails alloc? Rebalancing probably not a priority right now. */
4084 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4085 return;
4087 for_each_domain(cpu, sd) {
4088 if (!(sd->flags & SD_LOAD_BALANCE))
4089 continue;
4091 interval = sd->balance_interval;
4092 if (idle != CPU_IDLE)
4093 interval *= sd->busy_factor;
4095 /* scale ms to jiffies */
4096 interval = msecs_to_jiffies(interval);
4097 if (unlikely(!interval))
4098 interval = 1;
4099 if (interval > HZ*NR_CPUS/10)
4100 interval = HZ*NR_CPUS/10;
4102 need_serialize = sd->flags & SD_SERIALIZE;
4104 if (need_serialize) {
4105 if (!spin_trylock(&balancing))
4106 goto out;
4109 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4110 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4112 * We've pulled tasks over so either we're no
4113 * longer idle, or one of our SMT siblings is
4114 * not idle.
4116 idle = CPU_NOT_IDLE;
4118 sd->last_balance = jiffies;
4120 if (need_serialize)
4121 spin_unlock(&balancing);
4122 out:
4123 if (time_after(next_balance, sd->last_balance + interval)) {
4124 next_balance = sd->last_balance + interval;
4125 update_next_balance = 1;
4129 * Stop the load balance at this level. There is another
4130 * CPU in our sched group which is doing load balancing more
4131 * actively.
4133 if (!balance)
4134 break;
4138 * next_balance will be updated only when there is a need.
4139 * When the cpu is attached to null domain for ex, it will not be
4140 * updated.
4142 if (likely(update_next_balance))
4143 rq->next_balance = next_balance;
4145 free_cpumask_var(tmp);
4149 * run_rebalance_domains is triggered when needed from the scheduler tick.
4150 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4151 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4153 static void run_rebalance_domains(struct softirq_action *h)
4155 int this_cpu = smp_processor_id();
4156 struct rq *this_rq = cpu_rq(this_cpu);
4157 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4158 CPU_IDLE : CPU_NOT_IDLE;
4160 rebalance_domains(this_cpu, idle);
4162 #ifdef CONFIG_NO_HZ
4164 * If this cpu is the owner for idle load balancing, then do the
4165 * balancing on behalf of the other idle cpus whose ticks are
4166 * stopped.
4168 if (this_rq->idle_at_tick &&
4169 atomic_read(&nohz.load_balancer) == this_cpu) {
4170 struct rq *rq;
4171 int balance_cpu;
4173 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4174 if (balance_cpu == this_cpu)
4175 continue;
4178 * If this cpu gets work to do, stop the load balancing
4179 * work being done for other cpus. Next load
4180 * balancing owner will pick it up.
4182 if (need_resched())
4183 break;
4185 rebalance_domains(balance_cpu, CPU_IDLE);
4187 rq = cpu_rq(balance_cpu);
4188 if (time_after(this_rq->next_balance, rq->next_balance))
4189 this_rq->next_balance = rq->next_balance;
4192 #endif
4195 static inline int on_null_domain(int cpu)
4197 return !rcu_dereference(cpu_rq(cpu)->sd);
4201 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4203 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4204 * idle load balancing owner or decide to stop the periodic load balancing,
4205 * if the whole system is idle.
4207 static inline void trigger_load_balance(struct rq *rq, int cpu)
4209 #ifdef CONFIG_NO_HZ
4211 * If we were in the nohz mode recently and busy at the current
4212 * scheduler tick, then check if we need to nominate new idle
4213 * load balancer.
4215 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4216 rq->in_nohz_recently = 0;
4218 if (atomic_read(&nohz.load_balancer) == cpu) {
4219 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4220 atomic_set(&nohz.load_balancer, -1);
4223 if (atomic_read(&nohz.load_balancer) == -1) {
4225 * simple selection for now: Nominate the
4226 * first cpu in the nohz list to be the next
4227 * ilb owner.
4229 * TBD: Traverse the sched domains and nominate
4230 * the nearest cpu in the nohz.cpu_mask.
4232 int ilb = cpumask_first(nohz.cpu_mask);
4234 if (ilb < nr_cpu_ids)
4235 resched_cpu(ilb);
4240 * If this cpu is idle and doing idle load balancing for all the
4241 * cpus with ticks stopped, is it time for that to stop?
4243 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4244 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4245 resched_cpu(cpu);
4246 return;
4250 * If this cpu is idle and the idle load balancing is done by
4251 * someone else, then no need raise the SCHED_SOFTIRQ
4253 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4254 cpumask_test_cpu(cpu, nohz.cpu_mask))
4255 return;
4256 #endif
4257 /* Don't need to rebalance while attached to NULL domain */
4258 if (time_after_eq(jiffies, rq->next_balance) &&
4259 likely(!on_null_domain(cpu)))
4260 raise_softirq(SCHED_SOFTIRQ);
4263 #else /* CONFIG_SMP */
4266 * on UP we do not need to balance between CPUs:
4268 static inline void idle_balance(int cpu, struct rq *rq)
4272 #endif
4274 DEFINE_PER_CPU(struct kernel_stat, kstat);
4276 EXPORT_PER_CPU_SYMBOL(kstat);
4279 * Return any ns on the sched_clock that have not yet been banked in
4280 * @p in case that task is currently running.
4282 unsigned long long task_delta_exec(struct task_struct *p)
4284 unsigned long flags;
4285 struct rq *rq;
4286 u64 ns = 0;
4288 rq = task_rq_lock(p, &flags);
4290 if (task_current(rq, p)) {
4291 u64 delta_exec;
4293 update_rq_clock(rq);
4294 delta_exec = rq->clock - p->se.exec_start;
4295 if ((s64)delta_exec > 0)
4296 ns = delta_exec;
4299 task_rq_unlock(rq, &flags);
4301 return ns;
4305 * Account user cpu time to a process.
4306 * @p: the process that the cpu time gets accounted to
4307 * @cputime: the cpu time spent in user space since the last update
4308 * @cputime_scaled: cputime scaled by cpu frequency
4310 void account_user_time(struct task_struct *p, cputime_t cputime,
4311 cputime_t cputime_scaled)
4313 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4314 cputime64_t tmp;
4316 /* Add user time to process. */
4317 p->utime = cputime_add(p->utime, cputime);
4318 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4319 account_group_user_time(p, cputime);
4321 /* Add user time to cpustat. */
4322 tmp = cputime_to_cputime64(cputime);
4323 if (TASK_NICE(p) > 0)
4324 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4325 else
4326 cpustat->user = cputime64_add(cpustat->user, tmp);
4327 /* Account for user time used */
4328 acct_update_integrals(p);
4332 * Account guest cpu time to a process.
4333 * @p: the process that the cpu time gets accounted to
4334 * @cputime: the cpu time spent in virtual machine since the last update
4335 * @cputime_scaled: cputime scaled by cpu frequency
4337 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4338 cputime_t cputime_scaled)
4340 cputime64_t tmp;
4341 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4343 tmp = cputime_to_cputime64(cputime);
4345 /* Add guest time to process. */
4346 p->utime = cputime_add(p->utime, cputime);
4347 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4348 account_group_user_time(p, cputime);
4349 p->gtime = cputime_add(p->gtime, cputime);
4351 /* Add guest time to cpustat. */
4352 cpustat->user = cputime64_add(cpustat->user, tmp);
4353 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4357 * Account system cpu time to a process.
4358 * @p: the process that the cpu time gets accounted to
4359 * @hardirq_offset: the offset to subtract from hardirq_count()
4360 * @cputime: the cpu time spent in kernel space since the last update
4361 * @cputime_scaled: cputime scaled by cpu frequency
4363 void account_system_time(struct task_struct *p, int hardirq_offset,
4364 cputime_t cputime, cputime_t cputime_scaled)
4366 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4367 cputime64_t tmp;
4369 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4370 account_guest_time(p, cputime, cputime_scaled);
4371 return;
4374 /* Add system time to process. */
4375 p->stime = cputime_add(p->stime, cputime);
4376 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4377 account_group_system_time(p, cputime);
4379 /* Add system time to cpustat. */
4380 tmp = cputime_to_cputime64(cputime);
4381 if (hardirq_count() - hardirq_offset)
4382 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4383 else if (softirq_count())
4384 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4385 else
4386 cpustat->system = cputime64_add(cpustat->system, tmp);
4388 /* Account for system time used */
4389 acct_update_integrals(p);
4393 * Account for involuntary wait time.
4394 * @steal: the cpu time spent in involuntary wait
4396 void account_steal_time(cputime_t cputime)
4398 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4399 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4401 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4405 * Account for idle time.
4406 * @cputime: the cpu time spent in idle wait
4408 void account_idle_time(cputime_t cputime)
4410 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4411 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4412 struct rq *rq = this_rq();
4414 if (atomic_read(&rq->nr_iowait) > 0)
4415 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4416 else
4417 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4420 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4423 * Account a single tick of cpu time.
4424 * @p: the process that the cpu time gets accounted to
4425 * @user_tick: indicates if the tick is a user or a system tick
4427 void account_process_tick(struct task_struct *p, int user_tick)
4429 cputime_t one_jiffy = jiffies_to_cputime(1);
4430 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4431 struct rq *rq = this_rq();
4433 if (user_tick)
4434 account_user_time(p, one_jiffy, one_jiffy_scaled);
4435 else if (p != rq->idle)
4436 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4437 one_jiffy_scaled);
4438 else
4439 account_idle_time(one_jiffy);
4443 * Account multiple ticks of steal time.
4444 * @p: the process from which the cpu time has been stolen
4445 * @ticks: number of stolen ticks
4447 void account_steal_ticks(unsigned long ticks)
4449 account_steal_time(jiffies_to_cputime(ticks));
4453 * Account multiple ticks of idle time.
4454 * @ticks: number of stolen ticks
4456 void account_idle_ticks(unsigned long ticks)
4458 account_idle_time(jiffies_to_cputime(ticks));
4461 #endif
4464 * Use precise platform statistics if available:
4466 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4467 cputime_t task_utime(struct task_struct *p)
4469 return p->utime;
4472 cputime_t task_stime(struct task_struct *p)
4474 return p->stime;
4476 #else
4477 cputime_t task_utime(struct task_struct *p)
4479 clock_t utime = cputime_to_clock_t(p->utime),
4480 total = utime + cputime_to_clock_t(p->stime);
4481 u64 temp;
4484 * Use CFS's precise accounting:
4486 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4488 if (total) {
4489 temp *= utime;
4490 do_div(temp, total);
4492 utime = (clock_t)temp;
4494 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4495 return p->prev_utime;
4498 cputime_t task_stime(struct task_struct *p)
4500 clock_t stime;
4503 * Use CFS's precise accounting. (we subtract utime from
4504 * the total, to make sure the total observed by userspace
4505 * grows monotonically - apps rely on that):
4507 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4508 cputime_to_clock_t(task_utime(p));
4510 if (stime >= 0)
4511 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4513 return p->prev_stime;
4515 #endif
4517 inline cputime_t task_gtime(struct task_struct *p)
4519 return p->gtime;
4523 * This function gets called by the timer code, with HZ frequency.
4524 * We call it with interrupts disabled.
4526 * It also gets called by the fork code, when changing the parent's
4527 * timeslices.
4529 void scheduler_tick(void)
4531 int cpu = smp_processor_id();
4532 struct rq *rq = cpu_rq(cpu);
4533 struct task_struct *curr = rq->curr;
4535 sched_clock_tick();
4537 spin_lock(&rq->lock);
4538 update_rq_clock(rq);
4539 update_cpu_load(rq);
4540 curr->sched_class->task_tick(rq, curr, 0);
4541 spin_unlock(&rq->lock);
4543 #ifdef CONFIG_SMP
4544 rq->idle_at_tick = idle_cpu(cpu);
4545 trigger_load_balance(rq, cpu);
4546 #endif
4549 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4550 defined(CONFIG_PREEMPT_TRACER))
4552 static inline unsigned long get_parent_ip(unsigned long addr)
4554 if (in_lock_functions(addr)) {
4555 addr = CALLER_ADDR2;
4556 if (in_lock_functions(addr))
4557 addr = CALLER_ADDR3;
4559 return addr;
4562 void __kprobes add_preempt_count(int val)
4564 #ifdef CONFIG_DEBUG_PREEMPT
4566 * Underflow?
4568 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4569 return;
4570 #endif
4571 preempt_count() += val;
4572 #ifdef CONFIG_DEBUG_PREEMPT
4574 * Spinlock count overflowing soon?
4576 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4577 PREEMPT_MASK - 10);
4578 #endif
4579 if (preempt_count() == val)
4580 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4582 EXPORT_SYMBOL(add_preempt_count);
4584 void __kprobes sub_preempt_count(int val)
4586 #ifdef CONFIG_DEBUG_PREEMPT
4588 * Underflow?
4590 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4591 return;
4593 * Is the spinlock portion underflowing?
4595 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4596 !(preempt_count() & PREEMPT_MASK)))
4597 return;
4598 #endif
4600 if (preempt_count() == val)
4601 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4602 preempt_count() -= val;
4604 EXPORT_SYMBOL(sub_preempt_count);
4606 #endif
4609 * Print scheduling while atomic bug:
4611 static noinline void __schedule_bug(struct task_struct *prev)
4613 struct pt_regs *regs = get_irq_regs();
4615 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4616 prev->comm, prev->pid, preempt_count());
4618 debug_show_held_locks(prev);
4619 print_modules();
4620 if (irqs_disabled())
4621 print_irqtrace_events(prev);
4623 if (regs)
4624 show_regs(regs);
4625 else
4626 dump_stack();
4630 * Various schedule()-time debugging checks and statistics:
4632 static inline void schedule_debug(struct task_struct *prev)
4635 * Test if we are atomic. Since do_exit() needs to call into
4636 * schedule() atomically, we ignore that path for now.
4637 * Otherwise, whine if we are scheduling when we should not be.
4639 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4640 __schedule_bug(prev);
4642 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4644 schedstat_inc(this_rq(), sched_count);
4645 #ifdef CONFIG_SCHEDSTATS
4646 if (unlikely(prev->lock_depth >= 0)) {
4647 schedstat_inc(this_rq(), bkl_count);
4648 schedstat_inc(prev, sched_info.bkl_count);
4650 #endif
4653 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4655 if (prev->state == TASK_RUNNING) {
4656 u64 runtime = prev->se.sum_exec_runtime;
4658 runtime -= prev->se.prev_sum_exec_runtime;
4659 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4662 * In order to avoid avg_overlap growing stale when we are
4663 * indeed overlapping and hence not getting put to sleep, grow
4664 * the avg_overlap on preemption.
4666 * We use the average preemption runtime because that
4667 * correlates to the amount of cache footprint a task can
4668 * build up.
4670 update_avg(&prev->se.avg_overlap, runtime);
4672 prev->sched_class->put_prev_task(rq, prev);
4676 * Pick up the highest-prio task:
4678 static inline struct task_struct *
4679 pick_next_task(struct rq *rq)
4681 const struct sched_class *class;
4682 struct task_struct *p;
4685 * Optimization: we know that if all tasks are in
4686 * the fair class we can call that function directly:
4688 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4689 p = fair_sched_class.pick_next_task(rq);
4690 if (likely(p))
4691 return p;
4694 class = sched_class_highest;
4695 for ( ; ; ) {
4696 p = class->pick_next_task(rq);
4697 if (p)
4698 return p;
4700 * Will never be NULL as the idle class always
4701 * returns a non-NULL p:
4703 class = class->next;
4708 * schedule() is the main scheduler function.
4710 asmlinkage void __sched schedule(void)
4712 struct task_struct *prev, *next;
4713 unsigned long *switch_count;
4714 struct rq *rq;
4715 int cpu;
4717 need_resched:
4718 preempt_disable();
4719 cpu = smp_processor_id();
4720 rq = cpu_rq(cpu);
4721 rcu_qsctr_inc(cpu);
4722 prev = rq->curr;
4723 switch_count = &prev->nivcsw;
4725 release_kernel_lock(prev);
4726 need_resched_nonpreemptible:
4728 schedule_debug(prev);
4730 if (sched_feat(HRTICK))
4731 hrtick_clear(rq);
4733 spin_lock_irq(&rq->lock);
4734 update_rq_clock(rq);
4735 clear_tsk_need_resched(prev);
4737 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4738 if (unlikely(signal_pending_state(prev->state, prev)))
4739 prev->state = TASK_RUNNING;
4740 else
4741 deactivate_task(rq, prev, 1);
4742 switch_count = &prev->nvcsw;
4745 #ifdef CONFIG_SMP
4746 if (prev->sched_class->pre_schedule)
4747 prev->sched_class->pre_schedule(rq, prev);
4748 #endif
4750 if (unlikely(!rq->nr_running))
4751 idle_balance(cpu, rq);
4753 put_prev_task(rq, prev);
4754 next = pick_next_task(rq);
4756 if (likely(prev != next)) {
4757 sched_info_switch(prev, next);
4759 rq->nr_switches++;
4760 rq->curr = next;
4761 ++*switch_count;
4763 context_switch(rq, prev, next); /* unlocks the rq */
4765 * the context switch might have flipped the stack from under
4766 * us, hence refresh the local variables.
4768 cpu = smp_processor_id();
4769 rq = cpu_rq(cpu);
4770 } else
4771 spin_unlock_irq(&rq->lock);
4773 if (unlikely(reacquire_kernel_lock(current) < 0))
4774 goto need_resched_nonpreemptible;
4776 preempt_enable_no_resched();
4777 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4778 goto need_resched;
4780 EXPORT_SYMBOL(schedule);
4782 #ifdef CONFIG_PREEMPT
4784 * this is the entry point to schedule() from in-kernel preemption
4785 * off of preempt_enable. Kernel preemptions off return from interrupt
4786 * occur there and call schedule directly.
4788 asmlinkage void __sched preempt_schedule(void)
4790 struct thread_info *ti = current_thread_info();
4793 * If there is a non-zero preempt_count or interrupts are disabled,
4794 * we do not want to preempt the current task. Just return..
4796 if (likely(ti->preempt_count || irqs_disabled()))
4797 return;
4799 do {
4800 add_preempt_count(PREEMPT_ACTIVE);
4801 schedule();
4802 sub_preempt_count(PREEMPT_ACTIVE);
4805 * Check again in case we missed a preemption opportunity
4806 * between schedule and now.
4808 barrier();
4809 } while (need_resched());
4811 EXPORT_SYMBOL(preempt_schedule);
4814 * this is the entry point to schedule() from kernel preemption
4815 * off of irq context.
4816 * Note, that this is called and return with irqs disabled. This will
4817 * protect us against recursive calling from irq.
4819 asmlinkage void __sched preempt_schedule_irq(void)
4821 struct thread_info *ti = current_thread_info();
4823 /* Catch callers which need to be fixed */
4824 BUG_ON(ti->preempt_count || !irqs_disabled());
4826 do {
4827 add_preempt_count(PREEMPT_ACTIVE);
4828 local_irq_enable();
4829 schedule();
4830 local_irq_disable();
4831 sub_preempt_count(PREEMPT_ACTIVE);
4834 * Check again in case we missed a preemption opportunity
4835 * between schedule and now.
4837 barrier();
4838 } while (need_resched());
4841 #endif /* CONFIG_PREEMPT */
4843 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4844 void *key)
4846 return try_to_wake_up(curr->private, mode, sync);
4848 EXPORT_SYMBOL(default_wake_function);
4851 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4852 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4853 * number) then we wake all the non-exclusive tasks and one exclusive task.
4855 * There are circumstances in which we can try to wake a task which has already
4856 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4857 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4859 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4860 int nr_exclusive, int sync, void *key)
4862 wait_queue_t *curr, *next;
4864 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4865 unsigned flags = curr->flags;
4867 if (curr->func(curr, mode, sync, key) &&
4868 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4869 break;
4874 * __wake_up - wake up threads blocked on a waitqueue.
4875 * @q: the waitqueue
4876 * @mode: which threads
4877 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4878 * @key: is directly passed to the wakeup function
4880 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4881 int nr_exclusive, void *key)
4883 unsigned long flags;
4885 spin_lock_irqsave(&q->lock, flags);
4886 __wake_up_common(q, mode, nr_exclusive, 0, key);
4887 spin_unlock_irqrestore(&q->lock, flags);
4889 EXPORT_SYMBOL(__wake_up);
4892 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4894 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4896 __wake_up_common(q, mode, 1, 0, NULL);
4900 * __wake_up_sync - wake up threads blocked on a waitqueue.
4901 * @q: the waitqueue
4902 * @mode: which threads
4903 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4905 * The sync wakeup differs that the waker knows that it will schedule
4906 * away soon, so while the target thread will be woken up, it will not
4907 * be migrated to another CPU - ie. the two threads are 'synchronized'
4908 * with each other. This can prevent needless bouncing between CPUs.
4910 * On UP it can prevent extra preemption.
4912 void
4913 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4915 unsigned long flags;
4916 int sync = 1;
4918 if (unlikely(!q))
4919 return;
4921 if (unlikely(!nr_exclusive))
4922 sync = 0;
4924 spin_lock_irqsave(&q->lock, flags);
4925 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4926 spin_unlock_irqrestore(&q->lock, flags);
4928 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4931 * complete: - signals a single thread waiting on this completion
4932 * @x: holds the state of this particular completion
4934 * This will wake up a single thread waiting on this completion. Threads will be
4935 * awakened in the same order in which they were queued.
4937 * See also complete_all(), wait_for_completion() and related routines.
4939 void complete(struct completion *x)
4941 unsigned long flags;
4943 spin_lock_irqsave(&x->wait.lock, flags);
4944 x->done++;
4945 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4946 spin_unlock_irqrestore(&x->wait.lock, flags);
4948 EXPORT_SYMBOL(complete);
4951 * complete_all: - signals all threads waiting on this completion
4952 * @x: holds the state of this particular completion
4954 * This will wake up all threads waiting on this particular completion event.
4956 void complete_all(struct completion *x)
4958 unsigned long flags;
4960 spin_lock_irqsave(&x->wait.lock, flags);
4961 x->done += UINT_MAX/2;
4962 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4963 spin_unlock_irqrestore(&x->wait.lock, flags);
4965 EXPORT_SYMBOL(complete_all);
4967 static inline long __sched
4968 do_wait_for_common(struct completion *x, long timeout, int state)
4970 if (!x->done) {
4971 DECLARE_WAITQUEUE(wait, current);
4973 wait.flags |= WQ_FLAG_EXCLUSIVE;
4974 __add_wait_queue_tail(&x->wait, &wait);
4975 do {
4976 if (signal_pending_state(state, current)) {
4977 timeout = -ERESTARTSYS;
4978 break;
4980 __set_current_state(state);
4981 spin_unlock_irq(&x->wait.lock);
4982 timeout = schedule_timeout(timeout);
4983 spin_lock_irq(&x->wait.lock);
4984 } while (!x->done && timeout);
4985 __remove_wait_queue(&x->wait, &wait);
4986 if (!x->done)
4987 return timeout;
4989 x->done--;
4990 return timeout ?: 1;
4993 static long __sched
4994 wait_for_common(struct completion *x, long timeout, int state)
4996 might_sleep();
4998 spin_lock_irq(&x->wait.lock);
4999 timeout = do_wait_for_common(x, timeout, state);
5000 spin_unlock_irq(&x->wait.lock);
5001 return timeout;
5005 * wait_for_completion: - waits for completion of a task
5006 * @x: holds the state of this particular completion
5008 * This waits to be signaled for completion of a specific task. It is NOT
5009 * interruptible and there is no timeout.
5011 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5012 * and interrupt capability. Also see complete().
5014 void __sched wait_for_completion(struct completion *x)
5016 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5018 EXPORT_SYMBOL(wait_for_completion);
5021 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5022 * @x: holds the state of this particular completion
5023 * @timeout: timeout value in jiffies
5025 * This waits for either a completion of a specific task to be signaled or for a
5026 * specified timeout to expire. The timeout is in jiffies. It is not
5027 * interruptible.
5029 unsigned long __sched
5030 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5032 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5034 EXPORT_SYMBOL(wait_for_completion_timeout);
5037 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5038 * @x: holds the state of this particular completion
5040 * This waits for completion of a specific task to be signaled. It is
5041 * interruptible.
5043 int __sched wait_for_completion_interruptible(struct completion *x)
5045 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5046 if (t == -ERESTARTSYS)
5047 return t;
5048 return 0;
5050 EXPORT_SYMBOL(wait_for_completion_interruptible);
5053 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5054 * @x: holds the state of this particular completion
5055 * @timeout: timeout value in jiffies
5057 * This waits for either a completion of a specific task to be signaled or for a
5058 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5060 unsigned long __sched
5061 wait_for_completion_interruptible_timeout(struct completion *x,
5062 unsigned long timeout)
5064 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5066 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5069 * wait_for_completion_killable: - waits for completion of a task (killable)
5070 * @x: holds the state of this particular completion
5072 * This waits to be signaled for completion of a specific task. It can be
5073 * interrupted by a kill signal.
5075 int __sched wait_for_completion_killable(struct completion *x)
5077 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5078 if (t == -ERESTARTSYS)
5079 return t;
5080 return 0;
5082 EXPORT_SYMBOL(wait_for_completion_killable);
5085 * try_wait_for_completion - try to decrement a completion without blocking
5086 * @x: completion structure
5088 * Returns: 0 if a decrement cannot be done without blocking
5089 * 1 if a decrement succeeded.
5091 * If a completion is being used as a counting completion,
5092 * attempt to decrement the counter without blocking. This
5093 * enables us to avoid waiting if the resource the completion
5094 * is protecting is not available.
5096 bool try_wait_for_completion(struct completion *x)
5098 int ret = 1;
5100 spin_lock_irq(&x->wait.lock);
5101 if (!x->done)
5102 ret = 0;
5103 else
5104 x->done--;
5105 spin_unlock_irq(&x->wait.lock);
5106 return ret;
5108 EXPORT_SYMBOL(try_wait_for_completion);
5111 * completion_done - Test to see if a completion has any waiters
5112 * @x: completion structure
5114 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5115 * 1 if there are no waiters.
5118 bool completion_done(struct completion *x)
5120 int ret = 1;
5122 spin_lock_irq(&x->wait.lock);
5123 if (!x->done)
5124 ret = 0;
5125 spin_unlock_irq(&x->wait.lock);
5126 return ret;
5128 EXPORT_SYMBOL(completion_done);
5130 static long __sched
5131 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5133 unsigned long flags;
5134 wait_queue_t wait;
5136 init_waitqueue_entry(&wait, current);
5138 __set_current_state(state);
5140 spin_lock_irqsave(&q->lock, flags);
5141 __add_wait_queue(q, &wait);
5142 spin_unlock(&q->lock);
5143 timeout = schedule_timeout(timeout);
5144 spin_lock_irq(&q->lock);
5145 __remove_wait_queue(q, &wait);
5146 spin_unlock_irqrestore(&q->lock, flags);
5148 return timeout;
5151 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5153 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5155 EXPORT_SYMBOL(interruptible_sleep_on);
5157 long __sched
5158 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5160 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5162 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5164 void __sched sleep_on(wait_queue_head_t *q)
5166 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5168 EXPORT_SYMBOL(sleep_on);
5170 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5172 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5174 EXPORT_SYMBOL(sleep_on_timeout);
5176 #ifdef CONFIG_RT_MUTEXES
5179 * rt_mutex_setprio - set the current priority of a task
5180 * @p: task
5181 * @prio: prio value (kernel-internal form)
5183 * This function changes the 'effective' priority of a task. It does
5184 * not touch ->normal_prio like __setscheduler().
5186 * Used by the rt_mutex code to implement priority inheritance logic.
5188 void rt_mutex_setprio(struct task_struct *p, int prio)
5190 unsigned long flags;
5191 int oldprio, on_rq, running;
5192 struct rq *rq;
5193 const struct sched_class *prev_class = p->sched_class;
5195 BUG_ON(prio < 0 || prio > MAX_PRIO);
5197 rq = task_rq_lock(p, &flags);
5198 update_rq_clock(rq);
5200 oldprio = p->prio;
5201 on_rq = p->se.on_rq;
5202 running = task_current(rq, p);
5203 if (on_rq)
5204 dequeue_task(rq, p, 0);
5205 if (running)
5206 p->sched_class->put_prev_task(rq, p);
5208 if (rt_prio(prio))
5209 p->sched_class = &rt_sched_class;
5210 else
5211 p->sched_class = &fair_sched_class;
5213 p->prio = prio;
5215 if (running)
5216 p->sched_class->set_curr_task(rq);
5217 if (on_rq) {
5218 enqueue_task(rq, p, 0);
5220 check_class_changed(rq, p, prev_class, oldprio, running);
5222 task_rq_unlock(rq, &flags);
5225 #endif
5227 void set_user_nice(struct task_struct *p, long nice)
5229 int old_prio, delta, on_rq;
5230 unsigned long flags;
5231 struct rq *rq;
5233 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5234 return;
5236 * We have to be careful, if called from sys_setpriority(),
5237 * the task might be in the middle of scheduling on another CPU.
5239 rq = task_rq_lock(p, &flags);
5240 update_rq_clock(rq);
5242 * The RT priorities are set via sched_setscheduler(), but we still
5243 * allow the 'normal' nice value to be set - but as expected
5244 * it wont have any effect on scheduling until the task is
5245 * SCHED_FIFO/SCHED_RR:
5247 if (task_has_rt_policy(p)) {
5248 p->static_prio = NICE_TO_PRIO(nice);
5249 goto out_unlock;
5251 on_rq = p->se.on_rq;
5252 if (on_rq)
5253 dequeue_task(rq, p, 0);
5255 p->static_prio = NICE_TO_PRIO(nice);
5256 set_load_weight(p);
5257 old_prio = p->prio;
5258 p->prio = effective_prio(p);
5259 delta = p->prio - old_prio;
5261 if (on_rq) {
5262 enqueue_task(rq, p, 0);
5264 * If the task increased its priority or is running and
5265 * lowered its priority, then reschedule its CPU:
5267 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5268 resched_task(rq->curr);
5270 out_unlock:
5271 task_rq_unlock(rq, &flags);
5273 EXPORT_SYMBOL(set_user_nice);
5276 * can_nice - check if a task can reduce its nice value
5277 * @p: task
5278 * @nice: nice value
5280 int can_nice(const struct task_struct *p, const int nice)
5282 /* convert nice value [19,-20] to rlimit style value [1,40] */
5283 int nice_rlim = 20 - nice;
5285 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5286 capable(CAP_SYS_NICE));
5289 #ifdef __ARCH_WANT_SYS_NICE
5292 * sys_nice - change the priority of the current process.
5293 * @increment: priority increment
5295 * sys_setpriority is a more generic, but much slower function that
5296 * does similar things.
5298 SYSCALL_DEFINE1(nice, int, increment)
5300 long nice, retval;
5303 * Setpriority might change our priority at the same moment.
5304 * We don't have to worry. Conceptually one call occurs first
5305 * and we have a single winner.
5307 if (increment < -40)
5308 increment = -40;
5309 if (increment > 40)
5310 increment = 40;
5312 nice = TASK_NICE(current) + increment;
5313 if (nice < -20)
5314 nice = -20;
5315 if (nice > 19)
5316 nice = 19;
5318 if (increment < 0 && !can_nice(current, nice))
5319 return -EPERM;
5321 retval = security_task_setnice(current, nice);
5322 if (retval)
5323 return retval;
5325 set_user_nice(current, nice);
5326 return 0;
5329 #endif
5332 * task_prio - return the priority value of a given task.
5333 * @p: the task in question.
5335 * This is the priority value as seen by users in /proc.
5336 * RT tasks are offset by -200. Normal tasks are centered
5337 * around 0, value goes from -16 to +15.
5339 int task_prio(const struct task_struct *p)
5341 return p->prio - MAX_RT_PRIO;
5345 * task_nice - return the nice value of a given task.
5346 * @p: the task in question.
5348 int task_nice(const struct task_struct *p)
5350 return TASK_NICE(p);
5352 EXPORT_SYMBOL(task_nice);
5355 * idle_cpu - is a given cpu idle currently?
5356 * @cpu: the processor in question.
5358 int idle_cpu(int cpu)
5360 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5364 * idle_task - return the idle task for a given cpu.
5365 * @cpu: the processor in question.
5367 struct task_struct *idle_task(int cpu)
5369 return cpu_rq(cpu)->idle;
5373 * find_process_by_pid - find a process with a matching PID value.
5374 * @pid: the pid in question.
5376 static struct task_struct *find_process_by_pid(pid_t pid)
5378 return pid ? find_task_by_vpid(pid) : current;
5381 /* Actually do priority change: must hold rq lock. */
5382 static void
5383 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5385 BUG_ON(p->se.on_rq);
5387 p->policy = policy;
5388 switch (p->policy) {
5389 case SCHED_NORMAL:
5390 case SCHED_BATCH:
5391 case SCHED_IDLE:
5392 p->sched_class = &fair_sched_class;
5393 break;
5394 case SCHED_FIFO:
5395 case SCHED_RR:
5396 p->sched_class = &rt_sched_class;
5397 break;
5400 p->rt_priority = prio;
5401 p->normal_prio = normal_prio(p);
5402 /* we are holding p->pi_lock already */
5403 p->prio = rt_mutex_getprio(p);
5404 set_load_weight(p);
5408 * check the target process has a UID that matches the current process's
5410 static bool check_same_owner(struct task_struct *p)
5412 const struct cred *cred = current_cred(), *pcred;
5413 bool match;
5415 rcu_read_lock();
5416 pcred = __task_cred(p);
5417 match = (cred->euid == pcred->euid ||
5418 cred->euid == pcred->uid);
5419 rcu_read_unlock();
5420 return match;
5423 static int __sched_setscheduler(struct task_struct *p, int policy,
5424 struct sched_param *param, bool user)
5426 int retval, oldprio, oldpolicy = -1, on_rq, running;
5427 unsigned long flags;
5428 const struct sched_class *prev_class = p->sched_class;
5429 struct rq *rq;
5431 /* may grab non-irq protected spin_locks */
5432 BUG_ON(in_interrupt());
5433 recheck:
5434 /* double check policy once rq lock held */
5435 if (policy < 0)
5436 policy = oldpolicy = p->policy;
5437 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5438 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5439 policy != SCHED_IDLE)
5440 return -EINVAL;
5442 * Valid priorities for SCHED_FIFO and SCHED_RR are
5443 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5444 * SCHED_BATCH and SCHED_IDLE is 0.
5446 if (param->sched_priority < 0 ||
5447 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5448 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5449 return -EINVAL;
5450 if (rt_policy(policy) != (param->sched_priority != 0))
5451 return -EINVAL;
5454 * Allow unprivileged RT tasks to decrease priority:
5456 if (user && !capable(CAP_SYS_NICE)) {
5457 if (rt_policy(policy)) {
5458 unsigned long rlim_rtprio;
5460 if (!lock_task_sighand(p, &flags))
5461 return -ESRCH;
5462 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5463 unlock_task_sighand(p, &flags);
5465 /* can't set/change the rt policy */
5466 if (policy != p->policy && !rlim_rtprio)
5467 return -EPERM;
5469 /* can't increase priority */
5470 if (param->sched_priority > p->rt_priority &&
5471 param->sched_priority > rlim_rtprio)
5472 return -EPERM;
5475 * Like positive nice levels, dont allow tasks to
5476 * move out of SCHED_IDLE either:
5478 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5479 return -EPERM;
5481 /* can't change other user's priorities */
5482 if (!check_same_owner(p))
5483 return -EPERM;
5486 if (user) {
5487 #ifdef CONFIG_RT_GROUP_SCHED
5489 * Do not allow realtime tasks into groups that have no runtime
5490 * assigned.
5492 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5493 task_group(p)->rt_bandwidth.rt_runtime == 0)
5494 return -EPERM;
5495 #endif
5497 retval = security_task_setscheduler(p, policy, param);
5498 if (retval)
5499 return retval;
5503 * make sure no PI-waiters arrive (or leave) while we are
5504 * changing the priority of the task:
5506 spin_lock_irqsave(&p->pi_lock, flags);
5508 * To be able to change p->policy safely, the apropriate
5509 * runqueue lock must be held.
5511 rq = __task_rq_lock(p);
5512 /* recheck policy now with rq lock held */
5513 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5514 policy = oldpolicy = -1;
5515 __task_rq_unlock(rq);
5516 spin_unlock_irqrestore(&p->pi_lock, flags);
5517 goto recheck;
5519 update_rq_clock(rq);
5520 on_rq = p->se.on_rq;
5521 running = task_current(rq, p);
5522 if (on_rq)
5523 deactivate_task(rq, p, 0);
5524 if (running)
5525 p->sched_class->put_prev_task(rq, p);
5527 oldprio = p->prio;
5528 __setscheduler(rq, p, policy, param->sched_priority);
5530 if (running)
5531 p->sched_class->set_curr_task(rq);
5532 if (on_rq) {
5533 activate_task(rq, p, 0);
5535 check_class_changed(rq, p, prev_class, oldprio, running);
5537 __task_rq_unlock(rq);
5538 spin_unlock_irqrestore(&p->pi_lock, flags);
5540 rt_mutex_adjust_pi(p);
5542 return 0;
5546 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5547 * @p: the task in question.
5548 * @policy: new policy.
5549 * @param: structure containing the new RT priority.
5551 * NOTE that the task may be already dead.
5553 int sched_setscheduler(struct task_struct *p, int policy,
5554 struct sched_param *param)
5556 return __sched_setscheduler(p, policy, param, true);
5558 EXPORT_SYMBOL_GPL(sched_setscheduler);
5561 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5562 * @p: the task in question.
5563 * @policy: new policy.
5564 * @param: structure containing the new RT priority.
5566 * Just like sched_setscheduler, only don't bother checking if the
5567 * current context has permission. For example, this is needed in
5568 * stop_machine(): we create temporary high priority worker threads,
5569 * but our caller might not have that capability.
5571 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5572 struct sched_param *param)
5574 return __sched_setscheduler(p, policy, param, false);
5577 static int
5578 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5580 struct sched_param lparam;
5581 struct task_struct *p;
5582 int retval;
5584 if (!param || pid < 0)
5585 return -EINVAL;
5586 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5587 return -EFAULT;
5589 rcu_read_lock();
5590 retval = -ESRCH;
5591 p = find_process_by_pid(pid);
5592 if (p != NULL)
5593 retval = sched_setscheduler(p, policy, &lparam);
5594 rcu_read_unlock();
5596 return retval;
5600 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5601 * @pid: the pid in question.
5602 * @policy: new policy.
5603 * @param: structure containing the new RT priority.
5605 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5606 struct sched_param __user *, param)
5608 /* negative values for policy are not valid */
5609 if (policy < 0)
5610 return -EINVAL;
5612 return do_sched_setscheduler(pid, policy, param);
5616 * sys_sched_setparam - set/change the RT priority of a thread
5617 * @pid: the pid in question.
5618 * @param: structure containing the new RT priority.
5620 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5622 return do_sched_setscheduler(pid, -1, param);
5626 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5627 * @pid: the pid in question.
5629 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5631 struct task_struct *p;
5632 int retval;
5634 if (pid < 0)
5635 return -EINVAL;
5637 retval = -ESRCH;
5638 read_lock(&tasklist_lock);
5639 p = find_process_by_pid(pid);
5640 if (p) {
5641 retval = security_task_getscheduler(p);
5642 if (!retval)
5643 retval = p->policy;
5645 read_unlock(&tasklist_lock);
5646 return retval;
5650 * sys_sched_getscheduler - get the RT priority of a thread
5651 * @pid: the pid in question.
5652 * @param: structure containing the RT priority.
5654 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5656 struct sched_param lp;
5657 struct task_struct *p;
5658 int retval;
5660 if (!param || pid < 0)
5661 return -EINVAL;
5663 read_lock(&tasklist_lock);
5664 p = find_process_by_pid(pid);
5665 retval = -ESRCH;
5666 if (!p)
5667 goto out_unlock;
5669 retval = security_task_getscheduler(p);
5670 if (retval)
5671 goto out_unlock;
5673 lp.sched_priority = p->rt_priority;
5674 read_unlock(&tasklist_lock);
5677 * This one might sleep, we cannot do it with a spinlock held ...
5679 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5681 return retval;
5683 out_unlock:
5684 read_unlock(&tasklist_lock);
5685 return retval;
5688 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5690 cpumask_var_t cpus_allowed, new_mask;
5691 struct task_struct *p;
5692 int retval;
5694 get_online_cpus();
5695 read_lock(&tasklist_lock);
5697 p = find_process_by_pid(pid);
5698 if (!p) {
5699 read_unlock(&tasklist_lock);
5700 put_online_cpus();
5701 return -ESRCH;
5705 * It is not safe to call set_cpus_allowed with the
5706 * tasklist_lock held. We will bump the task_struct's
5707 * usage count and then drop tasklist_lock.
5709 get_task_struct(p);
5710 read_unlock(&tasklist_lock);
5712 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5713 retval = -ENOMEM;
5714 goto out_put_task;
5716 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5717 retval = -ENOMEM;
5718 goto out_free_cpus_allowed;
5720 retval = -EPERM;
5721 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5722 goto out_unlock;
5724 retval = security_task_setscheduler(p, 0, NULL);
5725 if (retval)
5726 goto out_unlock;
5728 cpuset_cpus_allowed(p, cpus_allowed);
5729 cpumask_and(new_mask, in_mask, cpus_allowed);
5730 again:
5731 retval = set_cpus_allowed_ptr(p, new_mask);
5733 if (!retval) {
5734 cpuset_cpus_allowed(p, cpus_allowed);
5735 if (!cpumask_subset(new_mask, cpus_allowed)) {
5737 * We must have raced with a concurrent cpuset
5738 * update. Just reset the cpus_allowed to the
5739 * cpuset's cpus_allowed
5741 cpumask_copy(new_mask, cpus_allowed);
5742 goto again;
5745 out_unlock:
5746 free_cpumask_var(new_mask);
5747 out_free_cpus_allowed:
5748 free_cpumask_var(cpus_allowed);
5749 out_put_task:
5750 put_task_struct(p);
5751 put_online_cpus();
5752 return retval;
5755 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5756 struct cpumask *new_mask)
5758 if (len < cpumask_size())
5759 cpumask_clear(new_mask);
5760 else if (len > cpumask_size())
5761 len = cpumask_size();
5763 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5767 * sys_sched_setaffinity - set the cpu affinity of a process
5768 * @pid: pid of the process
5769 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5770 * @user_mask_ptr: user-space pointer to the new cpu mask
5772 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5773 unsigned long __user *, user_mask_ptr)
5775 cpumask_var_t new_mask;
5776 int retval;
5778 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5779 return -ENOMEM;
5781 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5782 if (retval == 0)
5783 retval = sched_setaffinity(pid, new_mask);
5784 free_cpumask_var(new_mask);
5785 return retval;
5788 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5790 struct task_struct *p;
5791 int retval;
5793 get_online_cpus();
5794 read_lock(&tasklist_lock);
5796 retval = -ESRCH;
5797 p = find_process_by_pid(pid);
5798 if (!p)
5799 goto out_unlock;
5801 retval = security_task_getscheduler(p);
5802 if (retval)
5803 goto out_unlock;
5805 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5807 out_unlock:
5808 read_unlock(&tasklist_lock);
5809 put_online_cpus();
5811 return retval;
5815 * sys_sched_getaffinity - get the cpu affinity of a process
5816 * @pid: pid of the process
5817 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5818 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5820 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5821 unsigned long __user *, user_mask_ptr)
5823 int ret;
5824 cpumask_var_t mask;
5826 if (len < cpumask_size())
5827 return -EINVAL;
5829 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5830 return -ENOMEM;
5832 ret = sched_getaffinity(pid, mask);
5833 if (ret == 0) {
5834 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5835 ret = -EFAULT;
5836 else
5837 ret = cpumask_size();
5839 free_cpumask_var(mask);
5841 return ret;
5845 * sys_sched_yield - yield the current processor to other threads.
5847 * This function yields the current CPU to other tasks. If there are no
5848 * other threads running on this CPU then this function will return.
5850 SYSCALL_DEFINE0(sched_yield)
5852 struct rq *rq = this_rq_lock();
5854 schedstat_inc(rq, yld_count);
5855 current->sched_class->yield_task(rq);
5858 * Since we are going to call schedule() anyway, there's
5859 * no need to preempt or enable interrupts:
5861 __release(rq->lock);
5862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5863 _raw_spin_unlock(&rq->lock);
5864 preempt_enable_no_resched();
5866 schedule();
5868 return 0;
5871 static void __cond_resched(void)
5873 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5874 __might_sleep(__FILE__, __LINE__);
5875 #endif
5877 * The BKS might be reacquired before we have dropped
5878 * PREEMPT_ACTIVE, which could trigger a second
5879 * cond_resched() call.
5881 do {
5882 add_preempt_count(PREEMPT_ACTIVE);
5883 schedule();
5884 sub_preempt_count(PREEMPT_ACTIVE);
5885 } while (need_resched());
5888 int __sched _cond_resched(void)
5890 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5891 system_state == SYSTEM_RUNNING) {
5892 __cond_resched();
5893 return 1;
5895 return 0;
5897 EXPORT_SYMBOL(_cond_resched);
5900 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5901 * call schedule, and on return reacquire the lock.
5903 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5904 * operations here to prevent schedule() from being called twice (once via
5905 * spin_unlock(), once by hand).
5907 int cond_resched_lock(spinlock_t *lock)
5909 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5910 int ret = 0;
5912 if (spin_needbreak(lock) || resched) {
5913 spin_unlock(lock);
5914 if (resched && need_resched())
5915 __cond_resched();
5916 else
5917 cpu_relax();
5918 ret = 1;
5919 spin_lock(lock);
5921 return ret;
5923 EXPORT_SYMBOL(cond_resched_lock);
5925 int __sched cond_resched_softirq(void)
5927 BUG_ON(!in_softirq());
5929 if (need_resched() && system_state == SYSTEM_RUNNING) {
5930 local_bh_enable();
5931 __cond_resched();
5932 local_bh_disable();
5933 return 1;
5935 return 0;
5937 EXPORT_SYMBOL(cond_resched_softirq);
5940 * yield - yield the current processor to other threads.
5942 * This is a shortcut for kernel-space yielding - it marks the
5943 * thread runnable and calls sys_sched_yield().
5945 void __sched yield(void)
5947 set_current_state(TASK_RUNNING);
5948 sys_sched_yield();
5950 EXPORT_SYMBOL(yield);
5953 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5954 * that process accounting knows that this is a task in IO wait state.
5956 * But don't do that if it is a deliberate, throttling IO wait (this task
5957 * has set its backing_dev_info: the queue against which it should throttle)
5959 void __sched io_schedule(void)
5961 struct rq *rq = &__raw_get_cpu_var(runqueues);
5963 delayacct_blkio_start();
5964 atomic_inc(&rq->nr_iowait);
5965 schedule();
5966 atomic_dec(&rq->nr_iowait);
5967 delayacct_blkio_end();
5969 EXPORT_SYMBOL(io_schedule);
5971 long __sched io_schedule_timeout(long timeout)
5973 struct rq *rq = &__raw_get_cpu_var(runqueues);
5974 long ret;
5976 delayacct_blkio_start();
5977 atomic_inc(&rq->nr_iowait);
5978 ret = schedule_timeout(timeout);
5979 atomic_dec(&rq->nr_iowait);
5980 delayacct_blkio_end();
5981 return ret;
5985 * sys_sched_get_priority_max - return maximum RT priority.
5986 * @policy: scheduling class.
5988 * this syscall returns the maximum rt_priority that can be used
5989 * by a given scheduling class.
5991 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5993 int ret = -EINVAL;
5995 switch (policy) {
5996 case SCHED_FIFO:
5997 case SCHED_RR:
5998 ret = MAX_USER_RT_PRIO-1;
5999 break;
6000 case SCHED_NORMAL:
6001 case SCHED_BATCH:
6002 case SCHED_IDLE:
6003 ret = 0;
6004 break;
6006 return ret;
6010 * sys_sched_get_priority_min - return minimum RT priority.
6011 * @policy: scheduling class.
6013 * this syscall returns the minimum rt_priority that can be used
6014 * by a given scheduling class.
6016 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6018 int ret = -EINVAL;
6020 switch (policy) {
6021 case SCHED_FIFO:
6022 case SCHED_RR:
6023 ret = 1;
6024 break;
6025 case SCHED_NORMAL:
6026 case SCHED_BATCH:
6027 case SCHED_IDLE:
6028 ret = 0;
6030 return ret;
6034 * sys_sched_rr_get_interval - return the default timeslice of a process.
6035 * @pid: pid of the process.
6036 * @interval: userspace pointer to the timeslice value.
6038 * this syscall writes the default timeslice value of a given process
6039 * into the user-space timespec buffer. A value of '0' means infinity.
6041 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6042 struct timespec __user *, interval)
6044 struct task_struct *p;
6045 unsigned int time_slice;
6046 int retval;
6047 struct timespec t;
6049 if (pid < 0)
6050 return -EINVAL;
6052 retval = -ESRCH;
6053 read_lock(&tasklist_lock);
6054 p = find_process_by_pid(pid);
6055 if (!p)
6056 goto out_unlock;
6058 retval = security_task_getscheduler(p);
6059 if (retval)
6060 goto out_unlock;
6063 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6064 * tasks that are on an otherwise idle runqueue:
6066 time_slice = 0;
6067 if (p->policy == SCHED_RR) {
6068 time_slice = DEF_TIMESLICE;
6069 } else if (p->policy != SCHED_FIFO) {
6070 struct sched_entity *se = &p->se;
6071 unsigned long flags;
6072 struct rq *rq;
6074 rq = task_rq_lock(p, &flags);
6075 if (rq->cfs.load.weight)
6076 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6077 task_rq_unlock(rq, &flags);
6079 read_unlock(&tasklist_lock);
6080 jiffies_to_timespec(time_slice, &t);
6081 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6082 return retval;
6084 out_unlock:
6085 read_unlock(&tasklist_lock);
6086 return retval;
6089 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6091 void sched_show_task(struct task_struct *p)
6093 unsigned long free = 0;
6094 unsigned state;
6096 state = p->state ? __ffs(p->state) + 1 : 0;
6097 printk(KERN_INFO "%-13.13s %c", p->comm,
6098 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6099 #if BITS_PER_LONG == 32
6100 if (state == TASK_RUNNING)
6101 printk(KERN_CONT " running ");
6102 else
6103 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6104 #else
6105 if (state == TASK_RUNNING)
6106 printk(KERN_CONT " running task ");
6107 else
6108 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6109 #endif
6110 #ifdef CONFIG_DEBUG_STACK_USAGE
6112 unsigned long *n = end_of_stack(p);
6113 while (!*n)
6114 n++;
6115 free = (unsigned long)n - (unsigned long)end_of_stack(p);
6117 #endif
6118 printk(KERN_CONT "%5lu %5d %6d\n", free,
6119 task_pid_nr(p), task_pid_nr(p->real_parent));
6121 show_stack(p, NULL);
6124 void show_state_filter(unsigned long state_filter)
6126 struct task_struct *g, *p;
6128 #if BITS_PER_LONG == 32
6129 printk(KERN_INFO
6130 " task PC stack pid father\n");
6131 #else
6132 printk(KERN_INFO
6133 " task PC stack pid father\n");
6134 #endif
6135 read_lock(&tasklist_lock);
6136 do_each_thread(g, p) {
6138 * reset the NMI-timeout, listing all files on a slow
6139 * console might take alot of time:
6141 touch_nmi_watchdog();
6142 if (!state_filter || (p->state & state_filter))
6143 sched_show_task(p);
6144 } while_each_thread(g, p);
6146 touch_all_softlockup_watchdogs();
6148 #ifdef CONFIG_SCHED_DEBUG
6149 sysrq_sched_debug_show();
6150 #endif
6151 read_unlock(&tasklist_lock);
6153 * Only show locks if all tasks are dumped:
6155 if (state_filter == -1)
6156 debug_show_all_locks();
6159 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6161 idle->sched_class = &idle_sched_class;
6165 * init_idle - set up an idle thread for a given CPU
6166 * @idle: task in question
6167 * @cpu: cpu the idle task belongs to
6169 * NOTE: this function does not set the idle thread's NEED_RESCHED
6170 * flag, to make booting more robust.
6172 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6174 struct rq *rq = cpu_rq(cpu);
6175 unsigned long flags;
6177 spin_lock_irqsave(&rq->lock, flags);
6179 __sched_fork(idle);
6180 idle->se.exec_start = sched_clock();
6182 idle->prio = idle->normal_prio = MAX_PRIO;
6183 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6184 __set_task_cpu(idle, cpu);
6186 rq->curr = rq->idle = idle;
6187 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6188 idle->oncpu = 1;
6189 #endif
6190 spin_unlock_irqrestore(&rq->lock, flags);
6192 /* Set the preempt count _outside_ the spinlocks! */
6193 #if defined(CONFIG_PREEMPT)
6194 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6195 #else
6196 task_thread_info(idle)->preempt_count = 0;
6197 #endif
6199 * The idle tasks have their own, simple scheduling class:
6201 idle->sched_class = &idle_sched_class;
6202 ftrace_graph_init_task(idle);
6206 * In a system that switches off the HZ timer nohz_cpu_mask
6207 * indicates which cpus entered this state. This is used
6208 * in the rcu update to wait only for active cpus. For system
6209 * which do not switch off the HZ timer nohz_cpu_mask should
6210 * always be CPU_BITS_NONE.
6212 cpumask_var_t nohz_cpu_mask;
6215 * Increase the granularity value when there are more CPUs,
6216 * because with more CPUs the 'effective latency' as visible
6217 * to users decreases. But the relationship is not linear,
6218 * so pick a second-best guess by going with the log2 of the
6219 * number of CPUs.
6221 * This idea comes from the SD scheduler of Con Kolivas:
6223 static inline void sched_init_granularity(void)
6225 unsigned int factor = 1 + ilog2(num_online_cpus());
6226 const unsigned long limit = 200000000;
6228 sysctl_sched_min_granularity *= factor;
6229 if (sysctl_sched_min_granularity > limit)
6230 sysctl_sched_min_granularity = limit;
6232 sysctl_sched_latency *= factor;
6233 if (sysctl_sched_latency > limit)
6234 sysctl_sched_latency = limit;
6236 sysctl_sched_wakeup_granularity *= factor;
6238 sysctl_sched_shares_ratelimit *= factor;
6241 #ifdef CONFIG_SMP
6243 * This is how migration works:
6245 * 1) we queue a struct migration_req structure in the source CPU's
6246 * runqueue and wake up that CPU's migration thread.
6247 * 2) we down() the locked semaphore => thread blocks.
6248 * 3) migration thread wakes up (implicitly it forces the migrated
6249 * thread off the CPU)
6250 * 4) it gets the migration request and checks whether the migrated
6251 * task is still in the wrong runqueue.
6252 * 5) if it's in the wrong runqueue then the migration thread removes
6253 * it and puts it into the right queue.
6254 * 6) migration thread up()s the semaphore.
6255 * 7) we wake up and the migration is done.
6259 * Change a given task's CPU affinity. Migrate the thread to a
6260 * proper CPU and schedule it away if the CPU it's executing on
6261 * is removed from the allowed bitmask.
6263 * NOTE: the caller must have a valid reference to the task, the
6264 * task must not exit() & deallocate itself prematurely. The
6265 * call is not atomic; no spinlocks may be held.
6267 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6269 struct migration_req req;
6270 unsigned long flags;
6271 struct rq *rq;
6272 int ret = 0;
6274 rq = task_rq_lock(p, &flags);
6275 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6276 ret = -EINVAL;
6277 goto out;
6280 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6281 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6282 ret = -EINVAL;
6283 goto out;
6286 if (p->sched_class->set_cpus_allowed)
6287 p->sched_class->set_cpus_allowed(p, new_mask);
6288 else {
6289 cpumask_copy(&p->cpus_allowed, new_mask);
6290 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6293 /* Can the task run on the task's current CPU? If so, we're done */
6294 if (cpumask_test_cpu(task_cpu(p), new_mask))
6295 goto out;
6297 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6298 /* Need help from migration thread: drop lock and wait. */
6299 task_rq_unlock(rq, &flags);
6300 wake_up_process(rq->migration_thread);
6301 wait_for_completion(&req.done);
6302 tlb_migrate_finish(p->mm);
6303 return 0;
6305 out:
6306 task_rq_unlock(rq, &flags);
6308 return ret;
6310 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6313 * Move (not current) task off this cpu, onto dest cpu. We're doing
6314 * this because either it can't run here any more (set_cpus_allowed()
6315 * away from this CPU, or CPU going down), or because we're
6316 * attempting to rebalance this task on exec (sched_exec).
6318 * So we race with normal scheduler movements, but that's OK, as long
6319 * as the task is no longer on this CPU.
6321 * Returns non-zero if task was successfully migrated.
6323 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6325 struct rq *rq_dest, *rq_src;
6326 int ret = 0, on_rq;
6328 if (unlikely(!cpu_active(dest_cpu)))
6329 return ret;
6331 rq_src = cpu_rq(src_cpu);
6332 rq_dest = cpu_rq(dest_cpu);
6334 double_rq_lock(rq_src, rq_dest);
6335 /* Already moved. */
6336 if (task_cpu(p) != src_cpu)
6337 goto done;
6338 /* Affinity changed (again). */
6339 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6340 goto fail;
6342 on_rq = p->se.on_rq;
6343 if (on_rq)
6344 deactivate_task(rq_src, p, 0);
6346 set_task_cpu(p, dest_cpu);
6347 if (on_rq) {
6348 activate_task(rq_dest, p, 0);
6349 check_preempt_curr(rq_dest, p, 0);
6351 done:
6352 ret = 1;
6353 fail:
6354 double_rq_unlock(rq_src, rq_dest);
6355 return ret;
6359 * migration_thread - this is a highprio system thread that performs
6360 * thread migration by bumping thread off CPU then 'pushing' onto
6361 * another runqueue.
6363 static int migration_thread(void *data)
6365 int cpu = (long)data;
6366 struct rq *rq;
6368 rq = cpu_rq(cpu);
6369 BUG_ON(rq->migration_thread != current);
6371 set_current_state(TASK_INTERRUPTIBLE);
6372 while (!kthread_should_stop()) {
6373 struct migration_req *req;
6374 struct list_head *head;
6376 spin_lock_irq(&rq->lock);
6378 if (cpu_is_offline(cpu)) {
6379 spin_unlock_irq(&rq->lock);
6380 goto wait_to_die;
6383 if (rq->active_balance) {
6384 active_load_balance(rq, cpu);
6385 rq->active_balance = 0;
6388 head = &rq->migration_queue;
6390 if (list_empty(head)) {
6391 spin_unlock_irq(&rq->lock);
6392 schedule();
6393 set_current_state(TASK_INTERRUPTIBLE);
6394 continue;
6396 req = list_entry(head->next, struct migration_req, list);
6397 list_del_init(head->next);
6399 spin_unlock(&rq->lock);
6400 __migrate_task(req->task, cpu, req->dest_cpu);
6401 local_irq_enable();
6403 complete(&req->done);
6405 __set_current_state(TASK_RUNNING);
6406 return 0;
6408 wait_to_die:
6409 /* Wait for kthread_stop */
6410 set_current_state(TASK_INTERRUPTIBLE);
6411 while (!kthread_should_stop()) {
6412 schedule();
6413 set_current_state(TASK_INTERRUPTIBLE);
6415 __set_current_state(TASK_RUNNING);
6416 return 0;
6419 #ifdef CONFIG_HOTPLUG_CPU
6421 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6423 int ret;
6425 local_irq_disable();
6426 ret = __migrate_task(p, src_cpu, dest_cpu);
6427 local_irq_enable();
6428 return ret;
6432 * Figure out where task on dead CPU should go, use force if necessary.
6434 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6436 int dest_cpu;
6437 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6439 again:
6440 /* Look for allowed, online CPU in same node. */
6441 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6442 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6443 goto move;
6445 /* Any allowed, online CPU? */
6446 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6447 if (dest_cpu < nr_cpu_ids)
6448 goto move;
6450 /* No more Mr. Nice Guy. */
6451 if (dest_cpu >= nr_cpu_ids) {
6452 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6453 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6456 * Don't tell them about moving exiting tasks or
6457 * kernel threads (both mm NULL), since they never
6458 * leave kernel.
6460 if (p->mm && printk_ratelimit()) {
6461 printk(KERN_INFO "process %d (%s) no "
6462 "longer affine to cpu%d\n",
6463 task_pid_nr(p), p->comm, dead_cpu);
6467 move:
6468 /* It can have affinity changed while we were choosing. */
6469 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6470 goto again;
6474 * While a dead CPU has no uninterruptible tasks queued at this point,
6475 * it might still have a nonzero ->nr_uninterruptible counter, because
6476 * for performance reasons the counter is not stricly tracking tasks to
6477 * their home CPUs. So we just add the counter to another CPU's counter,
6478 * to keep the global sum constant after CPU-down:
6480 static void migrate_nr_uninterruptible(struct rq *rq_src)
6482 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6483 unsigned long flags;
6485 local_irq_save(flags);
6486 double_rq_lock(rq_src, rq_dest);
6487 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6488 rq_src->nr_uninterruptible = 0;
6489 double_rq_unlock(rq_src, rq_dest);
6490 local_irq_restore(flags);
6493 /* Run through task list and migrate tasks from the dead cpu. */
6494 static void migrate_live_tasks(int src_cpu)
6496 struct task_struct *p, *t;
6498 read_lock(&tasklist_lock);
6500 do_each_thread(t, p) {
6501 if (p == current)
6502 continue;
6504 if (task_cpu(p) == src_cpu)
6505 move_task_off_dead_cpu(src_cpu, p);
6506 } while_each_thread(t, p);
6508 read_unlock(&tasklist_lock);
6512 * Schedules idle task to be the next runnable task on current CPU.
6513 * It does so by boosting its priority to highest possible.
6514 * Used by CPU offline code.
6516 void sched_idle_next(void)
6518 int this_cpu = smp_processor_id();
6519 struct rq *rq = cpu_rq(this_cpu);
6520 struct task_struct *p = rq->idle;
6521 unsigned long flags;
6523 /* cpu has to be offline */
6524 BUG_ON(cpu_online(this_cpu));
6527 * Strictly not necessary since rest of the CPUs are stopped by now
6528 * and interrupts disabled on the current cpu.
6530 spin_lock_irqsave(&rq->lock, flags);
6532 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6534 update_rq_clock(rq);
6535 activate_task(rq, p, 0);
6537 spin_unlock_irqrestore(&rq->lock, flags);
6541 * Ensures that the idle task is using init_mm right before its cpu goes
6542 * offline.
6544 void idle_task_exit(void)
6546 struct mm_struct *mm = current->active_mm;
6548 BUG_ON(cpu_online(smp_processor_id()));
6550 if (mm != &init_mm)
6551 switch_mm(mm, &init_mm, current);
6552 mmdrop(mm);
6555 /* called under rq->lock with disabled interrupts */
6556 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6558 struct rq *rq = cpu_rq(dead_cpu);
6560 /* Must be exiting, otherwise would be on tasklist. */
6561 BUG_ON(!p->exit_state);
6563 /* Cannot have done final schedule yet: would have vanished. */
6564 BUG_ON(p->state == TASK_DEAD);
6566 get_task_struct(p);
6569 * Drop lock around migration; if someone else moves it,
6570 * that's OK. No task can be added to this CPU, so iteration is
6571 * fine.
6573 spin_unlock_irq(&rq->lock);
6574 move_task_off_dead_cpu(dead_cpu, p);
6575 spin_lock_irq(&rq->lock);
6577 put_task_struct(p);
6580 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6581 static void migrate_dead_tasks(unsigned int dead_cpu)
6583 struct rq *rq = cpu_rq(dead_cpu);
6584 struct task_struct *next;
6586 for ( ; ; ) {
6587 if (!rq->nr_running)
6588 break;
6589 update_rq_clock(rq);
6590 next = pick_next_task(rq);
6591 if (!next)
6592 break;
6593 next->sched_class->put_prev_task(rq, next);
6594 migrate_dead(dead_cpu, next);
6598 #endif /* CONFIG_HOTPLUG_CPU */
6600 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6602 static struct ctl_table sd_ctl_dir[] = {
6604 .procname = "sched_domain",
6605 .mode = 0555,
6607 {0, },
6610 static struct ctl_table sd_ctl_root[] = {
6612 .ctl_name = CTL_KERN,
6613 .procname = "kernel",
6614 .mode = 0555,
6615 .child = sd_ctl_dir,
6617 {0, },
6620 static struct ctl_table *sd_alloc_ctl_entry(int n)
6622 struct ctl_table *entry =
6623 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6625 return entry;
6628 static void sd_free_ctl_entry(struct ctl_table **tablep)
6630 struct ctl_table *entry;
6633 * In the intermediate directories, both the child directory and
6634 * procname are dynamically allocated and could fail but the mode
6635 * will always be set. In the lowest directory the names are
6636 * static strings and all have proc handlers.
6638 for (entry = *tablep; entry->mode; entry++) {
6639 if (entry->child)
6640 sd_free_ctl_entry(&entry->child);
6641 if (entry->proc_handler == NULL)
6642 kfree(entry->procname);
6645 kfree(*tablep);
6646 *tablep = NULL;
6649 static void
6650 set_table_entry(struct ctl_table *entry,
6651 const char *procname, void *data, int maxlen,
6652 mode_t mode, proc_handler *proc_handler)
6654 entry->procname = procname;
6655 entry->data = data;
6656 entry->maxlen = maxlen;
6657 entry->mode = mode;
6658 entry->proc_handler = proc_handler;
6661 static struct ctl_table *
6662 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6664 struct ctl_table *table = sd_alloc_ctl_entry(13);
6666 if (table == NULL)
6667 return NULL;
6669 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6670 sizeof(long), 0644, proc_doulongvec_minmax);
6671 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6672 sizeof(long), 0644, proc_doulongvec_minmax);
6673 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6674 sizeof(int), 0644, proc_dointvec_minmax);
6675 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6676 sizeof(int), 0644, proc_dointvec_minmax);
6677 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6678 sizeof(int), 0644, proc_dointvec_minmax);
6679 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6680 sizeof(int), 0644, proc_dointvec_minmax);
6681 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6682 sizeof(int), 0644, proc_dointvec_minmax);
6683 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6684 sizeof(int), 0644, proc_dointvec_minmax);
6685 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6686 sizeof(int), 0644, proc_dointvec_minmax);
6687 set_table_entry(&table[9], "cache_nice_tries",
6688 &sd->cache_nice_tries,
6689 sizeof(int), 0644, proc_dointvec_minmax);
6690 set_table_entry(&table[10], "flags", &sd->flags,
6691 sizeof(int), 0644, proc_dointvec_minmax);
6692 set_table_entry(&table[11], "name", sd->name,
6693 CORENAME_MAX_SIZE, 0444, proc_dostring);
6694 /* &table[12] is terminator */
6696 return table;
6699 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6701 struct ctl_table *entry, *table;
6702 struct sched_domain *sd;
6703 int domain_num = 0, i;
6704 char buf[32];
6706 for_each_domain(cpu, sd)
6707 domain_num++;
6708 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6709 if (table == NULL)
6710 return NULL;
6712 i = 0;
6713 for_each_domain(cpu, sd) {
6714 snprintf(buf, 32, "domain%d", i);
6715 entry->procname = kstrdup(buf, GFP_KERNEL);
6716 entry->mode = 0555;
6717 entry->child = sd_alloc_ctl_domain_table(sd);
6718 entry++;
6719 i++;
6721 return table;
6724 static struct ctl_table_header *sd_sysctl_header;
6725 static void register_sched_domain_sysctl(void)
6727 int i, cpu_num = num_online_cpus();
6728 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6729 char buf[32];
6731 WARN_ON(sd_ctl_dir[0].child);
6732 sd_ctl_dir[0].child = entry;
6734 if (entry == NULL)
6735 return;
6737 for_each_online_cpu(i) {
6738 snprintf(buf, 32, "cpu%d", i);
6739 entry->procname = kstrdup(buf, GFP_KERNEL);
6740 entry->mode = 0555;
6741 entry->child = sd_alloc_ctl_cpu_table(i);
6742 entry++;
6745 WARN_ON(sd_sysctl_header);
6746 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6749 /* may be called multiple times per register */
6750 static void unregister_sched_domain_sysctl(void)
6752 if (sd_sysctl_header)
6753 unregister_sysctl_table(sd_sysctl_header);
6754 sd_sysctl_header = NULL;
6755 if (sd_ctl_dir[0].child)
6756 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6758 #else
6759 static void register_sched_domain_sysctl(void)
6762 static void unregister_sched_domain_sysctl(void)
6765 #endif
6767 static void set_rq_online(struct rq *rq)
6769 if (!rq->online) {
6770 const struct sched_class *class;
6772 cpumask_set_cpu(rq->cpu, rq->rd->online);
6773 rq->online = 1;
6775 for_each_class(class) {
6776 if (class->rq_online)
6777 class->rq_online(rq);
6782 static void set_rq_offline(struct rq *rq)
6784 if (rq->online) {
6785 const struct sched_class *class;
6787 for_each_class(class) {
6788 if (class->rq_offline)
6789 class->rq_offline(rq);
6792 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6793 rq->online = 0;
6798 * migration_call - callback that gets triggered when a CPU is added.
6799 * Here we can start up the necessary migration thread for the new CPU.
6801 static int __cpuinit
6802 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6804 struct task_struct *p;
6805 int cpu = (long)hcpu;
6806 unsigned long flags;
6807 struct rq *rq;
6809 switch (action) {
6811 case CPU_UP_PREPARE:
6812 case CPU_UP_PREPARE_FROZEN:
6813 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6814 if (IS_ERR(p))
6815 return NOTIFY_BAD;
6816 kthread_bind(p, cpu);
6817 /* Must be high prio: stop_machine expects to yield to it. */
6818 rq = task_rq_lock(p, &flags);
6819 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6820 task_rq_unlock(rq, &flags);
6821 cpu_rq(cpu)->migration_thread = p;
6822 break;
6824 case CPU_ONLINE:
6825 case CPU_ONLINE_FROZEN:
6826 /* Strictly unnecessary, as first user will wake it. */
6827 wake_up_process(cpu_rq(cpu)->migration_thread);
6829 /* Update our root-domain */
6830 rq = cpu_rq(cpu);
6831 spin_lock_irqsave(&rq->lock, flags);
6832 if (rq->rd) {
6833 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6835 set_rq_online(rq);
6837 spin_unlock_irqrestore(&rq->lock, flags);
6838 break;
6840 #ifdef CONFIG_HOTPLUG_CPU
6841 case CPU_UP_CANCELED:
6842 case CPU_UP_CANCELED_FROZEN:
6843 if (!cpu_rq(cpu)->migration_thread)
6844 break;
6845 /* Unbind it from offline cpu so it can run. Fall thru. */
6846 kthread_bind(cpu_rq(cpu)->migration_thread,
6847 cpumask_any(cpu_online_mask));
6848 kthread_stop(cpu_rq(cpu)->migration_thread);
6849 cpu_rq(cpu)->migration_thread = NULL;
6850 break;
6852 case CPU_DEAD:
6853 case CPU_DEAD_FROZEN:
6854 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6855 migrate_live_tasks(cpu);
6856 rq = cpu_rq(cpu);
6857 kthread_stop(rq->migration_thread);
6858 rq->migration_thread = NULL;
6859 /* Idle task back to normal (off runqueue, low prio) */
6860 spin_lock_irq(&rq->lock);
6861 update_rq_clock(rq);
6862 deactivate_task(rq, rq->idle, 0);
6863 rq->idle->static_prio = MAX_PRIO;
6864 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6865 rq->idle->sched_class = &idle_sched_class;
6866 migrate_dead_tasks(cpu);
6867 spin_unlock_irq(&rq->lock);
6868 cpuset_unlock();
6869 migrate_nr_uninterruptible(rq);
6870 BUG_ON(rq->nr_running != 0);
6873 * No need to migrate the tasks: it was best-effort if
6874 * they didn't take sched_hotcpu_mutex. Just wake up
6875 * the requestors.
6877 spin_lock_irq(&rq->lock);
6878 while (!list_empty(&rq->migration_queue)) {
6879 struct migration_req *req;
6881 req = list_entry(rq->migration_queue.next,
6882 struct migration_req, list);
6883 list_del_init(&req->list);
6884 spin_unlock_irq(&rq->lock);
6885 complete(&req->done);
6886 spin_lock_irq(&rq->lock);
6888 spin_unlock_irq(&rq->lock);
6889 break;
6891 case CPU_DYING:
6892 case CPU_DYING_FROZEN:
6893 /* Update our root-domain */
6894 rq = cpu_rq(cpu);
6895 spin_lock_irqsave(&rq->lock, flags);
6896 if (rq->rd) {
6897 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6898 set_rq_offline(rq);
6900 spin_unlock_irqrestore(&rq->lock, flags);
6901 break;
6902 #endif
6904 return NOTIFY_OK;
6907 /* Register at highest priority so that task migration (migrate_all_tasks)
6908 * happens before everything else.
6910 static struct notifier_block __cpuinitdata migration_notifier = {
6911 .notifier_call = migration_call,
6912 .priority = 10
6915 static int __init migration_init(void)
6917 void *cpu = (void *)(long)smp_processor_id();
6918 int err;
6920 /* Start one for the boot CPU: */
6921 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6922 BUG_ON(err == NOTIFY_BAD);
6923 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6924 register_cpu_notifier(&migration_notifier);
6926 return err;
6928 early_initcall(migration_init);
6929 #endif
6931 #ifdef CONFIG_SMP
6933 #ifdef CONFIG_SCHED_DEBUG
6935 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6936 struct cpumask *groupmask)
6938 struct sched_group *group = sd->groups;
6939 char str[256];
6941 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6942 cpumask_clear(groupmask);
6944 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6946 if (!(sd->flags & SD_LOAD_BALANCE)) {
6947 printk("does not load-balance\n");
6948 if (sd->parent)
6949 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6950 " has parent");
6951 return -1;
6954 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6956 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6957 printk(KERN_ERR "ERROR: domain->span does not contain "
6958 "CPU%d\n", cpu);
6960 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6961 printk(KERN_ERR "ERROR: domain->groups does not contain"
6962 " CPU%d\n", cpu);
6965 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6966 do {
6967 if (!group) {
6968 printk("\n");
6969 printk(KERN_ERR "ERROR: group is NULL\n");
6970 break;
6973 if (!group->__cpu_power) {
6974 printk(KERN_CONT "\n");
6975 printk(KERN_ERR "ERROR: domain->cpu_power not "
6976 "set\n");
6977 break;
6980 if (!cpumask_weight(sched_group_cpus(group))) {
6981 printk(KERN_CONT "\n");
6982 printk(KERN_ERR "ERROR: empty group\n");
6983 break;
6986 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6987 printk(KERN_CONT "\n");
6988 printk(KERN_ERR "ERROR: repeated CPUs\n");
6989 break;
6992 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6994 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6995 printk(KERN_CONT " %s", str);
6997 group = group->next;
6998 } while (group != sd->groups);
6999 printk(KERN_CONT "\n");
7001 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7002 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7004 if (sd->parent &&
7005 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7006 printk(KERN_ERR "ERROR: parent span is not a superset "
7007 "of domain->span\n");
7008 return 0;
7011 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7013 cpumask_var_t groupmask;
7014 int level = 0;
7016 if (!sd) {
7017 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7018 return;
7021 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7023 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7024 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7025 return;
7028 for (;;) {
7029 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7030 break;
7031 level++;
7032 sd = sd->parent;
7033 if (!sd)
7034 break;
7036 free_cpumask_var(groupmask);
7038 #else /* !CONFIG_SCHED_DEBUG */
7039 # define sched_domain_debug(sd, cpu) do { } while (0)
7040 #endif /* CONFIG_SCHED_DEBUG */
7042 static int sd_degenerate(struct sched_domain *sd)
7044 if (cpumask_weight(sched_domain_span(sd)) == 1)
7045 return 1;
7047 /* Following flags need at least 2 groups */
7048 if (sd->flags & (SD_LOAD_BALANCE |
7049 SD_BALANCE_NEWIDLE |
7050 SD_BALANCE_FORK |
7051 SD_BALANCE_EXEC |
7052 SD_SHARE_CPUPOWER |
7053 SD_SHARE_PKG_RESOURCES)) {
7054 if (sd->groups != sd->groups->next)
7055 return 0;
7058 /* Following flags don't use groups */
7059 if (sd->flags & (SD_WAKE_IDLE |
7060 SD_WAKE_AFFINE |
7061 SD_WAKE_BALANCE))
7062 return 0;
7064 return 1;
7067 static int
7068 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7070 unsigned long cflags = sd->flags, pflags = parent->flags;
7072 if (sd_degenerate(parent))
7073 return 1;
7075 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7076 return 0;
7078 /* Does parent contain flags not in child? */
7079 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7080 if (cflags & SD_WAKE_AFFINE)
7081 pflags &= ~SD_WAKE_BALANCE;
7082 /* Flags needing groups don't count if only 1 group in parent */
7083 if (parent->groups == parent->groups->next) {
7084 pflags &= ~(SD_LOAD_BALANCE |
7085 SD_BALANCE_NEWIDLE |
7086 SD_BALANCE_FORK |
7087 SD_BALANCE_EXEC |
7088 SD_SHARE_CPUPOWER |
7089 SD_SHARE_PKG_RESOURCES);
7090 if (nr_node_ids == 1)
7091 pflags &= ~SD_SERIALIZE;
7093 if (~cflags & pflags)
7094 return 0;
7096 return 1;
7099 static void free_rootdomain(struct root_domain *rd)
7101 cpupri_cleanup(&rd->cpupri);
7103 free_cpumask_var(rd->rto_mask);
7104 free_cpumask_var(rd->online);
7105 free_cpumask_var(rd->span);
7106 kfree(rd);
7109 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7111 struct root_domain *old_rd = NULL;
7112 unsigned long flags;
7114 spin_lock_irqsave(&rq->lock, flags);
7116 if (rq->rd) {
7117 old_rd = rq->rd;
7119 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7120 set_rq_offline(rq);
7122 cpumask_clear_cpu(rq->cpu, old_rd->span);
7125 * If we dont want to free the old_rt yet then
7126 * set old_rd to NULL to skip the freeing later
7127 * in this function:
7129 if (!atomic_dec_and_test(&old_rd->refcount))
7130 old_rd = NULL;
7133 atomic_inc(&rd->refcount);
7134 rq->rd = rd;
7136 cpumask_set_cpu(rq->cpu, rd->span);
7137 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7138 set_rq_online(rq);
7140 spin_unlock_irqrestore(&rq->lock, flags);
7142 if (old_rd)
7143 free_rootdomain(old_rd);
7146 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7148 memset(rd, 0, sizeof(*rd));
7150 if (bootmem) {
7151 alloc_bootmem_cpumask_var(&def_root_domain.span);
7152 alloc_bootmem_cpumask_var(&def_root_domain.online);
7153 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7154 cpupri_init(&rd->cpupri, true);
7155 return 0;
7158 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7159 goto out;
7160 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7161 goto free_span;
7162 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7163 goto free_online;
7165 if (cpupri_init(&rd->cpupri, false) != 0)
7166 goto free_rto_mask;
7167 return 0;
7169 free_rto_mask:
7170 free_cpumask_var(rd->rto_mask);
7171 free_online:
7172 free_cpumask_var(rd->online);
7173 free_span:
7174 free_cpumask_var(rd->span);
7175 out:
7176 return -ENOMEM;
7179 static void init_defrootdomain(void)
7181 init_rootdomain(&def_root_domain, true);
7183 atomic_set(&def_root_domain.refcount, 1);
7186 static struct root_domain *alloc_rootdomain(void)
7188 struct root_domain *rd;
7190 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7191 if (!rd)
7192 return NULL;
7194 if (init_rootdomain(rd, false) != 0) {
7195 kfree(rd);
7196 return NULL;
7199 return rd;
7203 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7204 * hold the hotplug lock.
7206 static void
7207 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7209 struct rq *rq = cpu_rq(cpu);
7210 struct sched_domain *tmp;
7212 /* Remove the sched domains which do not contribute to scheduling. */
7213 for (tmp = sd; tmp; ) {
7214 struct sched_domain *parent = tmp->parent;
7215 if (!parent)
7216 break;
7218 if (sd_parent_degenerate(tmp, parent)) {
7219 tmp->parent = parent->parent;
7220 if (parent->parent)
7221 parent->parent->child = tmp;
7222 } else
7223 tmp = tmp->parent;
7226 if (sd && sd_degenerate(sd)) {
7227 sd = sd->parent;
7228 if (sd)
7229 sd->child = NULL;
7232 sched_domain_debug(sd, cpu);
7234 rq_attach_root(rq, rd);
7235 rcu_assign_pointer(rq->sd, sd);
7238 /* cpus with isolated domains */
7239 static cpumask_var_t cpu_isolated_map;
7241 /* Setup the mask of cpus configured for isolated domains */
7242 static int __init isolated_cpu_setup(char *str)
7244 cpulist_parse(str, cpu_isolated_map);
7245 return 1;
7248 __setup("isolcpus=", isolated_cpu_setup);
7251 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7252 * to a function which identifies what group(along with sched group) a CPU
7253 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7254 * (due to the fact that we keep track of groups covered with a struct cpumask).
7256 * init_sched_build_groups will build a circular linked list of the groups
7257 * covered by the given span, and will set each group's ->cpumask correctly,
7258 * and ->cpu_power to 0.
7260 static void
7261 init_sched_build_groups(const struct cpumask *span,
7262 const struct cpumask *cpu_map,
7263 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7264 struct sched_group **sg,
7265 struct cpumask *tmpmask),
7266 struct cpumask *covered, struct cpumask *tmpmask)
7268 struct sched_group *first = NULL, *last = NULL;
7269 int i;
7271 cpumask_clear(covered);
7273 for_each_cpu(i, span) {
7274 struct sched_group *sg;
7275 int group = group_fn(i, cpu_map, &sg, tmpmask);
7276 int j;
7278 if (cpumask_test_cpu(i, covered))
7279 continue;
7281 cpumask_clear(sched_group_cpus(sg));
7282 sg->__cpu_power = 0;
7284 for_each_cpu(j, span) {
7285 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7286 continue;
7288 cpumask_set_cpu(j, covered);
7289 cpumask_set_cpu(j, sched_group_cpus(sg));
7291 if (!first)
7292 first = sg;
7293 if (last)
7294 last->next = sg;
7295 last = sg;
7297 last->next = first;
7300 #define SD_NODES_PER_DOMAIN 16
7302 #ifdef CONFIG_NUMA
7305 * find_next_best_node - find the next node to include in a sched_domain
7306 * @node: node whose sched_domain we're building
7307 * @used_nodes: nodes already in the sched_domain
7309 * Find the next node to include in a given scheduling domain. Simply
7310 * finds the closest node not already in the @used_nodes map.
7312 * Should use nodemask_t.
7314 static int find_next_best_node(int node, nodemask_t *used_nodes)
7316 int i, n, val, min_val, best_node = 0;
7318 min_val = INT_MAX;
7320 for (i = 0; i < nr_node_ids; i++) {
7321 /* Start at @node */
7322 n = (node + i) % nr_node_ids;
7324 if (!nr_cpus_node(n))
7325 continue;
7327 /* Skip already used nodes */
7328 if (node_isset(n, *used_nodes))
7329 continue;
7331 /* Simple min distance search */
7332 val = node_distance(node, n);
7334 if (val < min_val) {
7335 min_val = val;
7336 best_node = n;
7340 node_set(best_node, *used_nodes);
7341 return best_node;
7345 * sched_domain_node_span - get a cpumask for a node's sched_domain
7346 * @node: node whose cpumask we're constructing
7347 * @span: resulting cpumask
7349 * Given a node, construct a good cpumask for its sched_domain to span. It
7350 * should be one that prevents unnecessary balancing, but also spreads tasks
7351 * out optimally.
7353 static void sched_domain_node_span(int node, struct cpumask *span)
7355 nodemask_t used_nodes;
7356 int i;
7358 cpumask_clear(span);
7359 nodes_clear(used_nodes);
7361 cpumask_or(span, span, cpumask_of_node(node));
7362 node_set(node, used_nodes);
7364 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7365 int next_node = find_next_best_node(node, &used_nodes);
7367 cpumask_or(span, span, cpumask_of_node(next_node));
7370 #endif /* CONFIG_NUMA */
7372 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7375 * The cpus mask in sched_group and sched_domain hangs off the end.
7376 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7377 * for nr_cpu_ids < CONFIG_NR_CPUS.
7379 struct static_sched_group {
7380 struct sched_group sg;
7381 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7384 struct static_sched_domain {
7385 struct sched_domain sd;
7386 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7390 * SMT sched-domains:
7392 #ifdef CONFIG_SCHED_SMT
7393 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7394 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7396 static int
7397 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7398 struct sched_group **sg, struct cpumask *unused)
7400 if (sg)
7401 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7402 return cpu;
7404 #endif /* CONFIG_SCHED_SMT */
7407 * multi-core sched-domains:
7409 #ifdef CONFIG_SCHED_MC
7410 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7411 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7412 #endif /* CONFIG_SCHED_MC */
7414 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7415 static int
7416 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7417 struct sched_group **sg, struct cpumask *mask)
7419 int group;
7421 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7422 group = cpumask_first(mask);
7423 if (sg)
7424 *sg = &per_cpu(sched_group_core, group).sg;
7425 return group;
7427 #elif defined(CONFIG_SCHED_MC)
7428 static int
7429 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7430 struct sched_group **sg, struct cpumask *unused)
7432 if (sg)
7433 *sg = &per_cpu(sched_group_core, cpu).sg;
7434 return cpu;
7436 #endif
7438 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7439 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7441 static int
7442 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7443 struct sched_group **sg, struct cpumask *mask)
7445 int group;
7446 #ifdef CONFIG_SCHED_MC
7447 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7448 group = cpumask_first(mask);
7449 #elif defined(CONFIG_SCHED_SMT)
7450 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7451 group = cpumask_first(mask);
7452 #else
7453 group = cpu;
7454 #endif
7455 if (sg)
7456 *sg = &per_cpu(sched_group_phys, group).sg;
7457 return group;
7460 #ifdef CONFIG_NUMA
7462 * The init_sched_build_groups can't handle what we want to do with node
7463 * groups, so roll our own. Now each node has its own list of groups which
7464 * gets dynamically allocated.
7466 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7467 static struct sched_group ***sched_group_nodes_bycpu;
7469 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7470 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7472 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7473 struct sched_group **sg,
7474 struct cpumask *nodemask)
7476 int group;
7478 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7479 group = cpumask_first(nodemask);
7481 if (sg)
7482 *sg = &per_cpu(sched_group_allnodes, group).sg;
7483 return group;
7486 static void init_numa_sched_groups_power(struct sched_group *group_head)
7488 struct sched_group *sg = group_head;
7489 int j;
7491 if (!sg)
7492 return;
7493 do {
7494 for_each_cpu(j, sched_group_cpus(sg)) {
7495 struct sched_domain *sd;
7497 sd = &per_cpu(phys_domains, j).sd;
7498 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7500 * Only add "power" once for each
7501 * physical package.
7503 continue;
7506 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7508 sg = sg->next;
7509 } while (sg != group_head);
7511 #endif /* CONFIG_NUMA */
7513 #ifdef CONFIG_NUMA
7514 /* Free memory allocated for various sched_group structures */
7515 static void free_sched_groups(const struct cpumask *cpu_map,
7516 struct cpumask *nodemask)
7518 int cpu, i;
7520 for_each_cpu(cpu, cpu_map) {
7521 struct sched_group **sched_group_nodes
7522 = sched_group_nodes_bycpu[cpu];
7524 if (!sched_group_nodes)
7525 continue;
7527 for (i = 0; i < nr_node_ids; i++) {
7528 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7530 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7531 if (cpumask_empty(nodemask))
7532 continue;
7534 if (sg == NULL)
7535 continue;
7536 sg = sg->next;
7537 next_sg:
7538 oldsg = sg;
7539 sg = sg->next;
7540 kfree(oldsg);
7541 if (oldsg != sched_group_nodes[i])
7542 goto next_sg;
7544 kfree(sched_group_nodes);
7545 sched_group_nodes_bycpu[cpu] = NULL;
7548 #else /* !CONFIG_NUMA */
7549 static void free_sched_groups(const struct cpumask *cpu_map,
7550 struct cpumask *nodemask)
7553 #endif /* CONFIG_NUMA */
7556 * Initialize sched groups cpu_power.
7558 * cpu_power indicates the capacity of sched group, which is used while
7559 * distributing the load between different sched groups in a sched domain.
7560 * Typically cpu_power for all the groups in a sched domain will be same unless
7561 * there are asymmetries in the topology. If there are asymmetries, group
7562 * having more cpu_power will pickup more load compared to the group having
7563 * less cpu_power.
7565 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7566 * the maximum number of tasks a group can handle in the presence of other idle
7567 * or lightly loaded groups in the same sched domain.
7569 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7571 struct sched_domain *child;
7572 struct sched_group *group;
7574 WARN_ON(!sd || !sd->groups);
7576 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7577 return;
7579 child = sd->child;
7581 sd->groups->__cpu_power = 0;
7584 * For perf policy, if the groups in child domain share resources
7585 * (for example cores sharing some portions of the cache hierarchy
7586 * or SMT), then set this domain groups cpu_power such that each group
7587 * can handle only one task, when there are other idle groups in the
7588 * same sched domain.
7590 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7591 (child->flags &
7592 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7593 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7594 return;
7598 * add cpu_power of each child group to this groups cpu_power
7600 group = child->groups;
7601 do {
7602 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7603 group = group->next;
7604 } while (group != child->groups);
7608 * Initializers for schedule domains
7609 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7612 #ifdef CONFIG_SCHED_DEBUG
7613 # define SD_INIT_NAME(sd, type) sd->name = #type
7614 #else
7615 # define SD_INIT_NAME(sd, type) do { } while (0)
7616 #endif
7618 #define SD_INIT(sd, type) sd_init_##type(sd)
7620 #define SD_INIT_FUNC(type) \
7621 static noinline void sd_init_##type(struct sched_domain *sd) \
7623 memset(sd, 0, sizeof(*sd)); \
7624 *sd = SD_##type##_INIT; \
7625 sd->level = SD_LV_##type; \
7626 SD_INIT_NAME(sd, type); \
7629 SD_INIT_FUNC(CPU)
7630 #ifdef CONFIG_NUMA
7631 SD_INIT_FUNC(ALLNODES)
7632 SD_INIT_FUNC(NODE)
7633 #endif
7634 #ifdef CONFIG_SCHED_SMT
7635 SD_INIT_FUNC(SIBLING)
7636 #endif
7637 #ifdef CONFIG_SCHED_MC
7638 SD_INIT_FUNC(MC)
7639 #endif
7641 static int default_relax_domain_level = -1;
7643 static int __init setup_relax_domain_level(char *str)
7645 unsigned long val;
7647 val = simple_strtoul(str, NULL, 0);
7648 if (val < SD_LV_MAX)
7649 default_relax_domain_level = val;
7651 return 1;
7653 __setup("relax_domain_level=", setup_relax_domain_level);
7655 static void set_domain_attribute(struct sched_domain *sd,
7656 struct sched_domain_attr *attr)
7658 int request;
7660 if (!attr || attr->relax_domain_level < 0) {
7661 if (default_relax_domain_level < 0)
7662 return;
7663 else
7664 request = default_relax_domain_level;
7665 } else
7666 request = attr->relax_domain_level;
7667 if (request < sd->level) {
7668 /* turn off idle balance on this domain */
7669 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7670 } else {
7671 /* turn on idle balance on this domain */
7672 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7677 * Build sched domains for a given set of cpus and attach the sched domains
7678 * to the individual cpus
7680 static int __build_sched_domains(const struct cpumask *cpu_map,
7681 struct sched_domain_attr *attr)
7683 int i, err = -ENOMEM;
7684 struct root_domain *rd;
7685 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7686 tmpmask;
7687 #ifdef CONFIG_NUMA
7688 cpumask_var_t domainspan, covered, notcovered;
7689 struct sched_group **sched_group_nodes = NULL;
7690 int sd_allnodes = 0;
7692 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7693 goto out;
7694 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7695 goto free_domainspan;
7696 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7697 goto free_covered;
7698 #endif
7700 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7701 goto free_notcovered;
7702 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7703 goto free_nodemask;
7704 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7705 goto free_this_sibling_map;
7706 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7707 goto free_this_core_map;
7708 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7709 goto free_send_covered;
7711 #ifdef CONFIG_NUMA
7713 * Allocate the per-node list of sched groups
7715 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7716 GFP_KERNEL);
7717 if (!sched_group_nodes) {
7718 printk(KERN_WARNING "Can not alloc sched group node list\n");
7719 goto free_tmpmask;
7721 #endif
7723 rd = alloc_rootdomain();
7724 if (!rd) {
7725 printk(KERN_WARNING "Cannot alloc root domain\n");
7726 goto free_sched_groups;
7729 #ifdef CONFIG_NUMA
7730 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7731 #endif
7734 * Set up domains for cpus specified by the cpu_map.
7736 for_each_cpu(i, cpu_map) {
7737 struct sched_domain *sd = NULL, *p;
7739 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7741 #ifdef CONFIG_NUMA
7742 if (cpumask_weight(cpu_map) >
7743 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7744 sd = &per_cpu(allnodes_domains, i).sd;
7745 SD_INIT(sd, ALLNODES);
7746 set_domain_attribute(sd, attr);
7747 cpumask_copy(sched_domain_span(sd), cpu_map);
7748 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7749 p = sd;
7750 sd_allnodes = 1;
7751 } else
7752 p = NULL;
7754 sd = &per_cpu(node_domains, i).sd;
7755 SD_INIT(sd, NODE);
7756 set_domain_attribute(sd, attr);
7757 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7758 sd->parent = p;
7759 if (p)
7760 p->child = sd;
7761 cpumask_and(sched_domain_span(sd),
7762 sched_domain_span(sd), cpu_map);
7763 #endif
7765 p = sd;
7766 sd = &per_cpu(phys_domains, i).sd;
7767 SD_INIT(sd, CPU);
7768 set_domain_attribute(sd, attr);
7769 cpumask_copy(sched_domain_span(sd), nodemask);
7770 sd->parent = p;
7771 if (p)
7772 p->child = sd;
7773 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7775 #ifdef CONFIG_SCHED_MC
7776 p = sd;
7777 sd = &per_cpu(core_domains, i).sd;
7778 SD_INIT(sd, MC);
7779 set_domain_attribute(sd, attr);
7780 cpumask_and(sched_domain_span(sd), cpu_map,
7781 cpu_coregroup_mask(i));
7782 sd->parent = p;
7783 p->child = sd;
7784 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7785 #endif
7787 #ifdef CONFIG_SCHED_SMT
7788 p = sd;
7789 sd = &per_cpu(cpu_domains, i).sd;
7790 SD_INIT(sd, SIBLING);
7791 set_domain_attribute(sd, attr);
7792 cpumask_and(sched_domain_span(sd),
7793 &per_cpu(cpu_sibling_map, i), cpu_map);
7794 sd->parent = p;
7795 p->child = sd;
7796 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7797 #endif
7800 #ifdef CONFIG_SCHED_SMT
7801 /* Set up CPU (sibling) groups */
7802 for_each_cpu(i, cpu_map) {
7803 cpumask_and(this_sibling_map,
7804 &per_cpu(cpu_sibling_map, i), cpu_map);
7805 if (i != cpumask_first(this_sibling_map))
7806 continue;
7808 init_sched_build_groups(this_sibling_map, cpu_map,
7809 &cpu_to_cpu_group,
7810 send_covered, tmpmask);
7812 #endif
7814 #ifdef CONFIG_SCHED_MC
7815 /* Set up multi-core groups */
7816 for_each_cpu(i, cpu_map) {
7817 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7818 if (i != cpumask_first(this_core_map))
7819 continue;
7821 init_sched_build_groups(this_core_map, cpu_map,
7822 &cpu_to_core_group,
7823 send_covered, tmpmask);
7825 #endif
7827 /* Set up physical groups */
7828 for (i = 0; i < nr_node_ids; i++) {
7829 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7830 if (cpumask_empty(nodemask))
7831 continue;
7833 init_sched_build_groups(nodemask, cpu_map,
7834 &cpu_to_phys_group,
7835 send_covered, tmpmask);
7838 #ifdef CONFIG_NUMA
7839 /* Set up node groups */
7840 if (sd_allnodes) {
7841 init_sched_build_groups(cpu_map, cpu_map,
7842 &cpu_to_allnodes_group,
7843 send_covered, tmpmask);
7846 for (i = 0; i < nr_node_ids; i++) {
7847 /* Set up node groups */
7848 struct sched_group *sg, *prev;
7849 int j;
7851 cpumask_clear(covered);
7852 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7853 if (cpumask_empty(nodemask)) {
7854 sched_group_nodes[i] = NULL;
7855 continue;
7858 sched_domain_node_span(i, domainspan);
7859 cpumask_and(domainspan, domainspan, cpu_map);
7861 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7862 GFP_KERNEL, i);
7863 if (!sg) {
7864 printk(KERN_WARNING "Can not alloc domain group for "
7865 "node %d\n", i);
7866 goto error;
7868 sched_group_nodes[i] = sg;
7869 for_each_cpu(j, nodemask) {
7870 struct sched_domain *sd;
7872 sd = &per_cpu(node_domains, j).sd;
7873 sd->groups = sg;
7875 sg->__cpu_power = 0;
7876 cpumask_copy(sched_group_cpus(sg), nodemask);
7877 sg->next = sg;
7878 cpumask_or(covered, covered, nodemask);
7879 prev = sg;
7881 for (j = 0; j < nr_node_ids; j++) {
7882 int n = (i + j) % nr_node_ids;
7884 cpumask_complement(notcovered, covered);
7885 cpumask_and(tmpmask, notcovered, cpu_map);
7886 cpumask_and(tmpmask, tmpmask, domainspan);
7887 if (cpumask_empty(tmpmask))
7888 break;
7890 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7891 if (cpumask_empty(tmpmask))
7892 continue;
7894 sg = kmalloc_node(sizeof(struct sched_group) +
7895 cpumask_size(),
7896 GFP_KERNEL, i);
7897 if (!sg) {
7898 printk(KERN_WARNING
7899 "Can not alloc domain group for node %d\n", j);
7900 goto error;
7902 sg->__cpu_power = 0;
7903 cpumask_copy(sched_group_cpus(sg), tmpmask);
7904 sg->next = prev->next;
7905 cpumask_or(covered, covered, tmpmask);
7906 prev->next = sg;
7907 prev = sg;
7910 #endif
7912 /* Calculate CPU power for physical packages and nodes */
7913 #ifdef CONFIG_SCHED_SMT
7914 for_each_cpu(i, cpu_map) {
7915 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7917 init_sched_groups_power(i, sd);
7919 #endif
7920 #ifdef CONFIG_SCHED_MC
7921 for_each_cpu(i, cpu_map) {
7922 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7924 init_sched_groups_power(i, sd);
7926 #endif
7928 for_each_cpu(i, cpu_map) {
7929 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7931 init_sched_groups_power(i, sd);
7934 #ifdef CONFIG_NUMA
7935 for (i = 0; i < nr_node_ids; i++)
7936 init_numa_sched_groups_power(sched_group_nodes[i]);
7938 if (sd_allnodes) {
7939 struct sched_group *sg;
7941 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7942 tmpmask);
7943 init_numa_sched_groups_power(sg);
7945 #endif
7947 /* Attach the domains */
7948 for_each_cpu(i, cpu_map) {
7949 struct sched_domain *sd;
7950 #ifdef CONFIG_SCHED_SMT
7951 sd = &per_cpu(cpu_domains, i).sd;
7952 #elif defined(CONFIG_SCHED_MC)
7953 sd = &per_cpu(core_domains, i).sd;
7954 #else
7955 sd = &per_cpu(phys_domains, i).sd;
7956 #endif
7957 cpu_attach_domain(sd, rd, i);
7960 err = 0;
7962 free_tmpmask:
7963 free_cpumask_var(tmpmask);
7964 free_send_covered:
7965 free_cpumask_var(send_covered);
7966 free_this_core_map:
7967 free_cpumask_var(this_core_map);
7968 free_this_sibling_map:
7969 free_cpumask_var(this_sibling_map);
7970 free_nodemask:
7971 free_cpumask_var(nodemask);
7972 free_notcovered:
7973 #ifdef CONFIG_NUMA
7974 free_cpumask_var(notcovered);
7975 free_covered:
7976 free_cpumask_var(covered);
7977 free_domainspan:
7978 free_cpumask_var(domainspan);
7979 out:
7980 #endif
7981 return err;
7983 free_sched_groups:
7984 #ifdef CONFIG_NUMA
7985 kfree(sched_group_nodes);
7986 #endif
7987 goto free_tmpmask;
7989 #ifdef CONFIG_NUMA
7990 error:
7991 free_sched_groups(cpu_map, tmpmask);
7992 free_rootdomain(rd);
7993 goto free_tmpmask;
7994 #endif
7997 static int build_sched_domains(const struct cpumask *cpu_map)
7999 return __build_sched_domains(cpu_map, NULL);
8002 static struct cpumask *doms_cur; /* current sched domains */
8003 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8004 static struct sched_domain_attr *dattr_cur;
8005 /* attribues of custom domains in 'doms_cur' */
8008 * Special case: If a kmalloc of a doms_cur partition (array of
8009 * cpumask) fails, then fallback to a single sched domain,
8010 * as determined by the single cpumask fallback_doms.
8012 static cpumask_var_t fallback_doms;
8015 * arch_update_cpu_topology lets virtualized architectures update the
8016 * cpu core maps. It is supposed to return 1 if the topology changed
8017 * or 0 if it stayed the same.
8019 int __attribute__((weak)) arch_update_cpu_topology(void)
8021 return 0;
8025 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8026 * For now this just excludes isolated cpus, but could be used to
8027 * exclude other special cases in the future.
8029 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8031 int err;
8033 arch_update_cpu_topology();
8034 ndoms_cur = 1;
8035 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8036 if (!doms_cur)
8037 doms_cur = fallback_doms;
8038 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8039 dattr_cur = NULL;
8040 err = build_sched_domains(doms_cur);
8041 register_sched_domain_sysctl();
8043 return err;
8046 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8047 struct cpumask *tmpmask)
8049 free_sched_groups(cpu_map, tmpmask);
8053 * Detach sched domains from a group of cpus specified in cpu_map
8054 * These cpus will now be attached to the NULL domain
8056 static void detach_destroy_domains(const struct cpumask *cpu_map)
8058 /* Save because hotplug lock held. */
8059 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8060 int i;
8062 for_each_cpu(i, cpu_map)
8063 cpu_attach_domain(NULL, &def_root_domain, i);
8064 synchronize_sched();
8065 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8068 /* handle null as "default" */
8069 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8070 struct sched_domain_attr *new, int idx_new)
8072 struct sched_domain_attr tmp;
8074 /* fast path */
8075 if (!new && !cur)
8076 return 1;
8078 tmp = SD_ATTR_INIT;
8079 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8080 new ? (new + idx_new) : &tmp,
8081 sizeof(struct sched_domain_attr));
8085 * Partition sched domains as specified by the 'ndoms_new'
8086 * cpumasks in the array doms_new[] of cpumasks. This compares
8087 * doms_new[] to the current sched domain partitioning, doms_cur[].
8088 * It destroys each deleted domain and builds each new domain.
8090 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8091 * The masks don't intersect (don't overlap.) We should setup one
8092 * sched domain for each mask. CPUs not in any of the cpumasks will
8093 * not be load balanced. If the same cpumask appears both in the
8094 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8095 * it as it is.
8097 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8098 * ownership of it and will kfree it when done with it. If the caller
8099 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8100 * ndoms_new == 1, and partition_sched_domains() will fallback to
8101 * the single partition 'fallback_doms', it also forces the domains
8102 * to be rebuilt.
8104 * If doms_new == NULL it will be replaced with cpu_online_mask.
8105 * ndoms_new == 0 is a special case for destroying existing domains,
8106 * and it will not create the default domain.
8108 * Call with hotplug lock held
8110 /* FIXME: Change to struct cpumask *doms_new[] */
8111 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8112 struct sched_domain_attr *dattr_new)
8114 int i, j, n;
8115 int new_topology;
8117 mutex_lock(&sched_domains_mutex);
8119 /* always unregister in case we don't destroy any domains */
8120 unregister_sched_domain_sysctl();
8122 /* Let architecture update cpu core mappings. */
8123 new_topology = arch_update_cpu_topology();
8125 n = doms_new ? ndoms_new : 0;
8127 /* Destroy deleted domains */
8128 for (i = 0; i < ndoms_cur; i++) {
8129 for (j = 0; j < n && !new_topology; j++) {
8130 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8131 && dattrs_equal(dattr_cur, i, dattr_new, j))
8132 goto match1;
8134 /* no match - a current sched domain not in new doms_new[] */
8135 detach_destroy_domains(doms_cur + i);
8136 match1:
8140 if (doms_new == NULL) {
8141 ndoms_cur = 0;
8142 doms_new = fallback_doms;
8143 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8144 WARN_ON_ONCE(dattr_new);
8147 /* Build new domains */
8148 for (i = 0; i < ndoms_new; i++) {
8149 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8150 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8151 && dattrs_equal(dattr_new, i, dattr_cur, j))
8152 goto match2;
8154 /* no match - add a new doms_new */
8155 __build_sched_domains(doms_new + i,
8156 dattr_new ? dattr_new + i : NULL);
8157 match2:
8161 /* Remember the new sched domains */
8162 if (doms_cur != fallback_doms)
8163 kfree(doms_cur);
8164 kfree(dattr_cur); /* kfree(NULL) is safe */
8165 doms_cur = doms_new;
8166 dattr_cur = dattr_new;
8167 ndoms_cur = ndoms_new;
8169 register_sched_domain_sysctl();
8171 mutex_unlock(&sched_domains_mutex);
8174 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8175 static void arch_reinit_sched_domains(void)
8177 get_online_cpus();
8179 /* Destroy domains first to force the rebuild */
8180 partition_sched_domains(0, NULL, NULL);
8182 rebuild_sched_domains();
8183 put_online_cpus();
8186 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8188 unsigned int level = 0;
8190 if (sscanf(buf, "%u", &level) != 1)
8191 return -EINVAL;
8194 * level is always be positive so don't check for
8195 * level < POWERSAVINGS_BALANCE_NONE which is 0
8196 * What happens on 0 or 1 byte write,
8197 * need to check for count as well?
8200 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8201 return -EINVAL;
8203 if (smt)
8204 sched_smt_power_savings = level;
8205 else
8206 sched_mc_power_savings = level;
8208 arch_reinit_sched_domains();
8210 return count;
8213 #ifdef CONFIG_SCHED_MC
8214 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8215 char *page)
8217 return sprintf(page, "%u\n", sched_mc_power_savings);
8219 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8220 const char *buf, size_t count)
8222 return sched_power_savings_store(buf, count, 0);
8224 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8225 sched_mc_power_savings_show,
8226 sched_mc_power_savings_store);
8227 #endif
8229 #ifdef CONFIG_SCHED_SMT
8230 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8231 char *page)
8233 return sprintf(page, "%u\n", sched_smt_power_savings);
8235 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8236 const char *buf, size_t count)
8238 return sched_power_savings_store(buf, count, 1);
8240 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8241 sched_smt_power_savings_show,
8242 sched_smt_power_savings_store);
8243 #endif
8245 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8247 int err = 0;
8249 #ifdef CONFIG_SCHED_SMT
8250 if (smt_capable())
8251 err = sysfs_create_file(&cls->kset.kobj,
8252 &attr_sched_smt_power_savings.attr);
8253 #endif
8254 #ifdef CONFIG_SCHED_MC
8255 if (!err && mc_capable())
8256 err = sysfs_create_file(&cls->kset.kobj,
8257 &attr_sched_mc_power_savings.attr);
8258 #endif
8259 return err;
8261 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8263 #ifndef CONFIG_CPUSETS
8265 * Add online and remove offline CPUs from the scheduler domains.
8266 * When cpusets are enabled they take over this function.
8268 static int update_sched_domains(struct notifier_block *nfb,
8269 unsigned long action, void *hcpu)
8271 switch (action) {
8272 case CPU_ONLINE:
8273 case CPU_ONLINE_FROZEN:
8274 case CPU_DEAD:
8275 case CPU_DEAD_FROZEN:
8276 partition_sched_domains(1, NULL, NULL);
8277 return NOTIFY_OK;
8279 default:
8280 return NOTIFY_DONE;
8283 #endif
8285 static int update_runtime(struct notifier_block *nfb,
8286 unsigned long action, void *hcpu)
8288 int cpu = (int)(long)hcpu;
8290 switch (action) {
8291 case CPU_DOWN_PREPARE:
8292 case CPU_DOWN_PREPARE_FROZEN:
8293 disable_runtime(cpu_rq(cpu));
8294 return NOTIFY_OK;
8296 case CPU_DOWN_FAILED:
8297 case CPU_DOWN_FAILED_FROZEN:
8298 case CPU_ONLINE:
8299 case CPU_ONLINE_FROZEN:
8300 enable_runtime(cpu_rq(cpu));
8301 return NOTIFY_OK;
8303 default:
8304 return NOTIFY_DONE;
8308 void __init sched_init_smp(void)
8310 cpumask_var_t non_isolated_cpus;
8312 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8314 #if defined(CONFIG_NUMA)
8315 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8316 GFP_KERNEL);
8317 BUG_ON(sched_group_nodes_bycpu == NULL);
8318 #endif
8319 get_online_cpus();
8320 mutex_lock(&sched_domains_mutex);
8321 arch_init_sched_domains(cpu_online_mask);
8322 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8323 if (cpumask_empty(non_isolated_cpus))
8324 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8325 mutex_unlock(&sched_domains_mutex);
8326 put_online_cpus();
8328 #ifndef CONFIG_CPUSETS
8329 /* XXX: Theoretical race here - CPU may be hotplugged now */
8330 hotcpu_notifier(update_sched_domains, 0);
8331 #endif
8333 /* RT runtime code needs to handle some hotplug events */
8334 hotcpu_notifier(update_runtime, 0);
8336 init_hrtick();
8338 /* Move init over to a non-isolated CPU */
8339 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8340 BUG();
8341 sched_init_granularity();
8342 free_cpumask_var(non_isolated_cpus);
8344 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8345 init_sched_rt_class();
8347 #else
8348 void __init sched_init_smp(void)
8350 sched_init_granularity();
8352 #endif /* CONFIG_SMP */
8354 int in_sched_functions(unsigned long addr)
8356 return in_lock_functions(addr) ||
8357 (addr >= (unsigned long)__sched_text_start
8358 && addr < (unsigned long)__sched_text_end);
8361 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8363 cfs_rq->tasks_timeline = RB_ROOT;
8364 INIT_LIST_HEAD(&cfs_rq->tasks);
8365 #ifdef CONFIG_FAIR_GROUP_SCHED
8366 cfs_rq->rq = rq;
8367 #endif
8368 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8371 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8373 struct rt_prio_array *array;
8374 int i;
8376 array = &rt_rq->active;
8377 for (i = 0; i < MAX_RT_PRIO; i++) {
8378 INIT_LIST_HEAD(array->queue + i);
8379 __clear_bit(i, array->bitmap);
8381 /* delimiter for bitsearch: */
8382 __set_bit(MAX_RT_PRIO, array->bitmap);
8384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8385 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8386 #ifdef CONFIG_SMP
8387 rt_rq->highest_prio.next = MAX_RT_PRIO;
8388 #endif
8389 #endif
8390 #ifdef CONFIG_SMP
8391 rt_rq->rt_nr_migratory = 0;
8392 rt_rq->overloaded = 0;
8393 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8394 #endif
8396 rt_rq->rt_time = 0;
8397 rt_rq->rt_throttled = 0;
8398 rt_rq->rt_runtime = 0;
8399 spin_lock_init(&rt_rq->rt_runtime_lock);
8401 #ifdef CONFIG_RT_GROUP_SCHED
8402 rt_rq->rt_nr_boosted = 0;
8403 rt_rq->rq = rq;
8404 #endif
8407 #ifdef CONFIG_FAIR_GROUP_SCHED
8408 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8409 struct sched_entity *se, int cpu, int add,
8410 struct sched_entity *parent)
8412 struct rq *rq = cpu_rq(cpu);
8413 tg->cfs_rq[cpu] = cfs_rq;
8414 init_cfs_rq(cfs_rq, rq);
8415 cfs_rq->tg = tg;
8416 if (add)
8417 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8419 tg->se[cpu] = se;
8420 /* se could be NULL for init_task_group */
8421 if (!se)
8422 return;
8424 if (!parent)
8425 se->cfs_rq = &rq->cfs;
8426 else
8427 se->cfs_rq = parent->my_q;
8429 se->my_q = cfs_rq;
8430 se->load.weight = tg->shares;
8431 se->load.inv_weight = 0;
8432 se->parent = parent;
8434 #endif
8436 #ifdef CONFIG_RT_GROUP_SCHED
8437 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8438 struct sched_rt_entity *rt_se, int cpu, int add,
8439 struct sched_rt_entity *parent)
8441 struct rq *rq = cpu_rq(cpu);
8443 tg->rt_rq[cpu] = rt_rq;
8444 init_rt_rq(rt_rq, rq);
8445 rt_rq->tg = tg;
8446 rt_rq->rt_se = rt_se;
8447 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8448 if (add)
8449 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8451 tg->rt_se[cpu] = rt_se;
8452 if (!rt_se)
8453 return;
8455 if (!parent)
8456 rt_se->rt_rq = &rq->rt;
8457 else
8458 rt_se->rt_rq = parent->my_q;
8460 rt_se->my_q = rt_rq;
8461 rt_se->parent = parent;
8462 INIT_LIST_HEAD(&rt_se->run_list);
8464 #endif
8466 void __init sched_init(void)
8468 int i, j;
8469 unsigned long alloc_size = 0, ptr;
8471 #ifdef CONFIG_FAIR_GROUP_SCHED
8472 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8473 #endif
8474 #ifdef CONFIG_RT_GROUP_SCHED
8475 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8476 #endif
8477 #ifdef CONFIG_USER_SCHED
8478 alloc_size *= 2;
8479 #endif
8481 * As sched_init() is called before page_alloc is setup,
8482 * we use alloc_bootmem().
8484 if (alloc_size) {
8485 ptr = (unsigned long)alloc_bootmem(alloc_size);
8487 #ifdef CONFIG_FAIR_GROUP_SCHED
8488 init_task_group.se = (struct sched_entity **)ptr;
8489 ptr += nr_cpu_ids * sizeof(void **);
8491 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8492 ptr += nr_cpu_ids * sizeof(void **);
8494 #ifdef CONFIG_USER_SCHED
8495 root_task_group.se = (struct sched_entity **)ptr;
8496 ptr += nr_cpu_ids * sizeof(void **);
8498 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8499 ptr += nr_cpu_ids * sizeof(void **);
8500 #endif /* CONFIG_USER_SCHED */
8501 #endif /* CONFIG_FAIR_GROUP_SCHED */
8502 #ifdef CONFIG_RT_GROUP_SCHED
8503 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8504 ptr += nr_cpu_ids * sizeof(void **);
8506 init_task_group.rt_rq = (struct rt_rq **)ptr;
8507 ptr += nr_cpu_ids * sizeof(void **);
8509 #ifdef CONFIG_USER_SCHED
8510 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8511 ptr += nr_cpu_ids * sizeof(void **);
8513 root_task_group.rt_rq = (struct rt_rq **)ptr;
8514 ptr += nr_cpu_ids * sizeof(void **);
8515 #endif /* CONFIG_USER_SCHED */
8516 #endif /* CONFIG_RT_GROUP_SCHED */
8519 #ifdef CONFIG_SMP
8520 init_defrootdomain();
8521 #endif
8523 init_rt_bandwidth(&def_rt_bandwidth,
8524 global_rt_period(), global_rt_runtime());
8526 #ifdef CONFIG_RT_GROUP_SCHED
8527 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8528 global_rt_period(), global_rt_runtime());
8529 #ifdef CONFIG_USER_SCHED
8530 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8531 global_rt_period(), RUNTIME_INF);
8532 #endif /* CONFIG_USER_SCHED */
8533 #endif /* CONFIG_RT_GROUP_SCHED */
8535 #ifdef CONFIG_GROUP_SCHED
8536 list_add(&init_task_group.list, &task_groups);
8537 INIT_LIST_HEAD(&init_task_group.children);
8539 #ifdef CONFIG_USER_SCHED
8540 INIT_LIST_HEAD(&root_task_group.children);
8541 init_task_group.parent = &root_task_group;
8542 list_add(&init_task_group.siblings, &root_task_group.children);
8543 #endif /* CONFIG_USER_SCHED */
8544 #endif /* CONFIG_GROUP_SCHED */
8546 for_each_possible_cpu(i) {
8547 struct rq *rq;
8549 rq = cpu_rq(i);
8550 spin_lock_init(&rq->lock);
8551 rq->nr_running = 0;
8552 init_cfs_rq(&rq->cfs, rq);
8553 init_rt_rq(&rq->rt, rq);
8554 #ifdef CONFIG_FAIR_GROUP_SCHED
8555 init_task_group.shares = init_task_group_load;
8556 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8557 #ifdef CONFIG_CGROUP_SCHED
8559 * How much cpu bandwidth does init_task_group get?
8561 * In case of task-groups formed thr' the cgroup filesystem, it
8562 * gets 100% of the cpu resources in the system. This overall
8563 * system cpu resource is divided among the tasks of
8564 * init_task_group and its child task-groups in a fair manner,
8565 * based on each entity's (task or task-group's) weight
8566 * (se->load.weight).
8568 * In other words, if init_task_group has 10 tasks of weight
8569 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8570 * then A0's share of the cpu resource is:
8572 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8574 * We achieve this by letting init_task_group's tasks sit
8575 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8577 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8578 #elif defined CONFIG_USER_SCHED
8579 root_task_group.shares = NICE_0_LOAD;
8580 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8582 * In case of task-groups formed thr' the user id of tasks,
8583 * init_task_group represents tasks belonging to root user.
8584 * Hence it forms a sibling of all subsequent groups formed.
8585 * In this case, init_task_group gets only a fraction of overall
8586 * system cpu resource, based on the weight assigned to root
8587 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8588 * by letting tasks of init_task_group sit in a separate cfs_rq
8589 * (init_cfs_rq) and having one entity represent this group of
8590 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8592 init_tg_cfs_entry(&init_task_group,
8593 &per_cpu(init_cfs_rq, i),
8594 &per_cpu(init_sched_entity, i), i, 1,
8595 root_task_group.se[i]);
8597 #endif
8598 #endif /* CONFIG_FAIR_GROUP_SCHED */
8600 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8601 #ifdef CONFIG_RT_GROUP_SCHED
8602 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8603 #ifdef CONFIG_CGROUP_SCHED
8604 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8605 #elif defined CONFIG_USER_SCHED
8606 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8607 init_tg_rt_entry(&init_task_group,
8608 &per_cpu(init_rt_rq, i),
8609 &per_cpu(init_sched_rt_entity, i), i, 1,
8610 root_task_group.rt_se[i]);
8611 #endif
8612 #endif
8614 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8615 rq->cpu_load[j] = 0;
8616 #ifdef CONFIG_SMP
8617 rq->sd = NULL;
8618 rq->rd = NULL;
8619 rq->active_balance = 0;
8620 rq->next_balance = jiffies;
8621 rq->push_cpu = 0;
8622 rq->cpu = i;
8623 rq->online = 0;
8624 rq->migration_thread = NULL;
8625 INIT_LIST_HEAD(&rq->migration_queue);
8626 rq_attach_root(rq, &def_root_domain);
8627 #endif
8628 init_rq_hrtick(rq);
8629 atomic_set(&rq->nr_iowait, 0);
8632 set_load_weight(&init_task);
8634 #ifdef CONFIG_PREEMPT_NOTIFIERS
8635 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8636 #endif
8638 #ifdef CONFIG_SMP
8639 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8640 #endif
8642 #ifdef CONFIG_RT_MUTEXES
8643 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8644 #endif
8647 * The boot idle thread does lazy MMU switching as well:
8649 atomic_inc(&init_mm.mm_count);
8650 enter_lazy_tlb(&init_mm, current);
8653 * Make us the idle thread. Technically, schedule() should not be
8654 * called from this thread, however somewhere below it might be,
8655 * but because we are the idle thread, we just pick up running again
8656 * when this runqueue becomes "idle".
8658 init_idle(current, smp_processor_id());
8660 * During early bootup we pretend to be a normal task:
8662 current->sched_class = &fair_sched_class;
8664 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8665 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8666 #ifdef CONFIG_SMP
8667 #ifdef CONFIG_NO_HZ
8668 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8669 #endif
8670 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8671 #endif /* SMP */
8673 scheduler_running = 1;
8676 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8677 void __might_sleep(char *file, int line)
8679 #ifdef in_atomic
8680 static unsigned long prev_jiffy; /* ratelimiting */
8682 if ((!in_atomic() && !irqs_disabled()) ||
8683 system_state != SYSTEM_RUNNING || oops_in_progress)
8684 return;
8685 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8686 return;
8687 prev_jiffy = jiffies;
8689 printk(KERN_ERR
8690 "BUG: sleeping function called from invalid context at %s:%d\n",
8691 file, line);
8692 printk(KERN_ERR
8693 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8694 in_atomic(), irqs_disabled(),
8695 current->pid, current->comm);
8697 debug_show_held_locks(current);
8698 if (irqs_disabled())
8699 print_irqtrace_events(current);
8700 dump_stack();
8701 #endif
8703 EXPORT_SYMBOL(__might_sleep);
8704 #endif
8706 #ifdef CONFIG_MAGIC_SYSRQ
8707 static void normalize_task(struct rq *rq, struct task_struct *p)
8709 int on_rq;
8711 update_rq_clock(rq);
8712 on_rq = p->se.on_rq;
8713 if (on_rq)
8714 deactivate_task(rq, p, 0);
8715 __setscheduler(rq, p, SCHED_NORMAL, 0);
8716 if (on_rq) {
8717 activate_task(rq, p, 0);
8718 resched_task(rq->curr);
8722 void normalize_rt_tasks(void)
8724 struct task_struct *g, *p;
8725 unsigned long flags;
8726 struct rq *rq;
8728 read_lock_irqsave(&tasklist_lock, flags);
8729 do_each_thread(g, p) {
8731 * Only normalize user tasks:
8733 if (!p->mm)
8734 continue;
8736 p->se.exec_start = 0;
8737 #ifdef CONFIG_SCHEDSTATS
8738 p->se.wait_start = 0;
8739 p->se.sleep_start = 0;
8740 p->se.block_start = 0;
8741 #endif
8743 if (!rt_task(p)) {
8745 * Renice negative nice level userspace
8746 * tasks back to 0:
8748 if (TASK_NICE(p) < 0 && p->mm)
8749 set_user_nice(p, 0);
8750 continue;
8753 spin_lock(&p->pi_lock);
8754 rq = __task_rq_lock(p);
8756 normalize_task(rq, p);
8758 __task_rq_unlock(rq);
8759 spin_unlock(&p->pi_lock);
8760 } while_each_thread(g, p);
8762 read_unlock_irqrestore(&tasklist_lock, flags);
8765 #endif /* CONFIG_MAGIC_SYSRQ */
8767 #ifdef CONFIG_IA64
8769 * These functions are only useful for the IA64 MCA handling.
8771 * They can only be called when the whole system has been
8772 * stopped - every CPU needs to be quiescent, and no scheduling
8773 * activity can take place. Using them for anything else would
8774 * be a serious bug, and as a result, they aren't even visible
8775 * under any other configuration.
8779 * curr_task - return the current task for a given cpu.
8780 * @cpu: the processor in question.
8782 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8784 struct task_struct *curr_task(int cpu)
8786 return cpu_curr(cpu);
8790 * set_curr_task - set the current task for a given cpu.
8791 * @cpu: the processor in question.
8792 * @p: the task pointer to set.
8794 * Description: This function must only be used when non-maskable interrupts
8795 * are serviced on a separate stack. It allows the architecture to switch the
8796 * notion of the current task on a cpu in a non-blocking manner. This function
8797 * must be called with all CPU's synchronized, and interrupts disabled, the
8798 * and caller must save the original value of the current task (see
8799 * curr_task() above) and restore that value before reenabling interrupts and
8800 * re-starting the system.
8802 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8804 void set_curr_task(int cpu, struct task_struct *p)
8806 cpu_curr(cpu) = p;
8809 #endif
8811 #ifdef CONFIG_FAIR_GROUP_SCHED
8812 static void free_fair_sched_group(struct task_group *tg)
8814 int i;
8816 for_each_possible_cpu(i) {
8817 if (tg->cfs_rq)
8818 kfree(tg->cfs_rq[i]);
8819 if (tg->se)
8820 kfree(tg->se[i]);
8823 kfree(tg->cfs_rq);
8824 kfree(tg->se);
8827 static
8828 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8830 struct cfs_rq *cfs_rq;
8831 struct sched_entity *se;
8832 struct rq *rq;
8833 int i;
8835 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8836 if (!tg->cfs_rq)
8837 goto err;
8838 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8839 if (!tg->se)
8840 goto err;
8842 tg->shares = NICE_0_LOAD;
8844 for_each_possible_cpu(i) {
8845 rq = cpu_rq(i);
8847 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8848 GFP_KERNEL, cpu_to_node(i));
8849 if (!cfs_rq)
8850 goto err;
8852 se = kzalloc_node(sizeof(struct sched_entity),
8853 GFP_KERNEL, cpu_to_node(i));
8854 if (!se)
8855 goto err;
8857 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8860 return 1;
8862 err:
8863 return 0;
8866 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8868 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8869 &cpu_rq(cpu)->leaf_cfs_rq_list);
8872 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8874 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8876 #else /* !CONFG_FAIR_GROUP_SCHED */
8877 static inline void free_fair_sched_group(struct task_group *tg)
8881 static inline
8882 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8884 return 1;
8887 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8891 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8894 #endif /* CONFIG_FAIR_GROUP_SCHED */
8896 #ifdef CONFIG_RT_GROUP_SCHED
8897 static void free_rt_sched_group(struct task_group *tg)
8899 int i;
8901 destroy_rt_bandwidth(&tg->rt_bandwidth);
8903 for_each_possible_cpu(i) {
8904 if (tg->rt_rq)
8905 kfree(tg->rt_rq[i]);
8906 if (tg->rt_se)
8907 kfree(tg->rt_se[i]);
8910 kfree(tg->rt_rq);
8911 kfree(tg->rt_se);
8914 static
8915 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8917 struct rt_rq *rt_rq;
8918 struct sched_rt_entity *rt_se;
8919 struct rq *rq;
8920 int i;
8922 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8923 if (!tg->rt_rq)
8924 goto err;
8925 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8926 if (!tg->rt_se)
8927 goto err;
8929 init_rt_bandwidth(&tg->rt_bandwidth,
8930 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8932 for_each_possible_cpu(i) {
8933 rq = cpu_rq(i);
8935 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8936 GFP_KERNEL, cpu_to_node(i));
8937 if (!rt_rq)
8938 goto err;
8940 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8941 GFP_KERNEL, cpu_to_node(i));
8942 if (!rt_se)
8943 goto err;
8945 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8948 return 1;
8950 err:
8951 return 0;
8954 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8956 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8957 &cpu_rq(cpu)->leaf_rt_rq_list);
8960 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8962 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8964 #else /* !CONFIG_RT_GROUP_SCHED */
8965 static inline void free_rt_sched_group(struct task_group *tg)
8969 static inline
8970 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8972 return 1;
8975 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8979 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8982 #endif /* CONFIG_RT_GROUP_SCHED */
8984 #ifdef CONFIG_GROUP_SCHED
8985 static void free_sched_group(struct task_group *tg)
8987 free_fair_sched_group(tg);
8988 free_rt_sched_group(tg);
8989 kfree(tg);
8992 /* allocate runqueue etc for a new task group */
8993 struct task_group *sched_create_group(struct task_group *parent)
8995 struct task_group *tg;
8996 unsigned long flags;
8997 int i;
8999 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9000 if (!tg)
9001 return ERR_PTR(-ENOMEM);
9003 if (!alloc_fair_sched_group(tg, parent))
9004 goto err;
9006 if (!alloc_rt_sched_group(tg, parent))
9007 goto err;
9009 spin_lock_irqsave(&task_group_lock, flags);
9010 for_each_possible_cpu(i) {
9011 register_fair_sched_group(tg, i);
9012 register_rt_sched_group(tg, i);
9014 list_add_rcu(&tg->list, &task_groups);
9016 WARN_ON(!parent); /* root should already exist */
9018 tg->parent = parent;
9019 INIT_LIST_HEAD(&tg->children);
9020 list_add_rcu(&tg->siblings, &parent->children);
9021 spin_unlock_irqrestore(&task_group_lock, flags);
9023 return tg;
9025 err:
9026 free_sched_group(tg);
9027 return ERR_PTR(-ENOMEM);
9030 /* rcu callback to free various structures associated with a task group */
9031 static void free_sched_group_rcu(struct rcu_head *rhp)
9033 /* now it should be safe to free those cfs_rqs */
9034 free_sched_group(container_of(rhp, struct task_group, rcu));
9037 /* Destroy runqueue etc associated with a task group */
9038 void sched_destroy_group(struct task_group *tg)
9040 unsigned long flags;
9041 int i;
9043 spin_lock_irqsave(&task_group_lock, flags);
9044 for_each_possible_cpu(i) {
9045 unregister_fair_sched_group(tg, i);
9046 unregister_rt_sched_group(tg, i);
9048 list_del_rcu(&tg->list);
9049 list_del_rcu(&tg->siblings);
9050 spin_unlock_irqrestore(&task_group_lock, flags);
9052 /* wait for possible concurrent references to cfs_rqs complete */
9053 call_rcu(&tg->rcu, free_sched_group_rcu);
9056 /* change task's runqueue when it moves between groups.
9057 * The caller of this function should have put the task in its new group
9058 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9059 * reflect its new group.
9061 void sched_move_task(struct task_struct *tsk)
9063 int on_rq, running;
9064 unsigned long flags;
9065 struct rq *rq;
9067 rq = task_rq_lock(tsk, &flags);
9069 update_rq_clock(rq);
9071 running = task_current(rq, tsk);
9072 on_rq = tsk->se.on_rq;
9074 if (on_rq)
9075 dequeue_task(rq, tsk, 0);
9076 if (unlikely(running))
9077 tsk->sched_class->put_prev_task(rq, tsk);
9079 set_task_rq(tsk, task_cpu(tsk));
9081 #ifdef CONFIG_FAIR_GROUP_SCHED
9082 if (tsk->sched_class->moved_group)
9083 tsk->sched_class->moved_group(tsk);
9084 #endif
9086 if (unlikely(running))
9087 tsk->sched_class->set_curr_task(rq);
9088 if (on_rq)
9089 enqueue_task(rq, tsk, 0);
9091 task_rq_unlock(rq, &flags);
9093 #endif /* CONFIG_GROUP_SCHED */
9095 #ifdef CONFIG_FAIR_GROUP_SCHED
9096 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9098 struct cfs_rq *cfs_rq = se->cfs_rq;
9099 int on_rq;
9101 on_rq = se->on_rq;
9102 if (on_rq)
9103 dequeue_entity(cfs_rq, se, 0);
9105 se->load.weight = shares;
9106 se->load.inv_weight = 0;
9108 if (on_rq)
9109 enqueue_entity(cfs_rq, se, 0);
9112 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9114 struct cfs_rq *cfs_rq = se->cfs_rq;
9115 struct rq *rq = cfs_rq->rq;
9116 unsigned long flags;
9118 spin_lock_irqsave(&rq->lock, flags);
9119 __set_se_shares(se, shares);
9120 spin_unlock_irqrestore(&rq->lock, flags);
9123 static DEFINE_MUTEX(shares_mutex);
9125 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9127 int i;
9128 unsigned long flags;
9131 * We can't change the weight of the root cgroup.
9133 if (!tg->se[0])
9134 return -EINVAL;
9136 if (shares < MIN_SHARES)
9137 shares = MIN_SHARES;
9138 else if (shares > MAX_SHARES)
9139 shares = MAX_SHARES;
9141 mutex_lock(&shares_mutex);
9142 if (tg->shares == shares)
9143 goto done;
9145 spin_lock_irqsave(&task_group_lock, flags);
9146 for_each_possible_cpu(i)
9147 unregister_fair_sched_group(tg, i);
9148 list_del_rcu(&tg->siblings);
9149 spin_unlock_irqrestore(&task_group_lock, flags);
9151 /* wait for any ongoing reference to this group to finish */
9152 synchronize_sched();
9155 * Now we are free to modify the group's share on each cpu
9156 * w/o tripping rebalance_share or load_balance_fair.
9158 tg->shares = shares;
9159 for_each_possible_cpu(i) {
9161 * force a rebalance
9163 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9164 set_se_shares(tg->se[i], shares);
9168 * Enable load balance activity on this group, by inserting it back on
9169 * each cpu's rq->leaf_cfs_rq_list.
9171 spin_lock_irqsave(&task_group_lock, flags);
9172 for_each_possible_cpu(i)
9173 register_fair_sched_group(tg, i);
9174 list_add_rcu(&tg->siblings, &tg->parent->children);
9175 spin_unlock_irqrestore(&task_group_lock, flags);
9176 done:
9177 mutex_unlock(&shares_mutex);
9178 return 0;
9181 unsigned long sched_group_shares(struct task_group *tg)
9183 return tg->shares;
9185 #endif
9187 #ifdef CONFIG_RT_GROUP_SCHED
9189 * Ensure that the real time constraints are schedulable.
9191 static DEFINE_MUTEX(rt_constraints_mutex);
9193 static unsigned long to_ratio(u64 period, u64 runtime)
9195 if (runtime == RUNTIME_INF)
9196 return 1ULL << 20;
9198 return div64_u64(runtime << 20, period);
9201 /* Must be called with tasklist_lock held */
9202 static inline int tg_has_rt_tasks(struct task_group *tg)
9204 struct task_struct *g, *p;
9206 do_each_thread(g, p) {
9207 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9208 return 1;
9209 } while_each_thread(g, p);
9211 return 0;
9214 struct rt_schedulable_data {
9215 struct task_group *tg;
9216 u64 rt_period;
9217 u64 rt_runtime;
9220 static int tg_schedulable(struct task_group *tg, void *data)
9222 struct rt_schedulable_data *d = data;
9223 struct task_group *child;
9224 unsigned long total, sum = 0;
9225 u64 period, runtime;
9227 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9228 runtime = tg->rt_bandwidth.rt_runtime;
9230 if (tg == d->tg) {
9231 period = d->rt_period;
9232 runtime = d->rt_runtime;
9235 #ifdef CONFIG_USER_SCHED
9236 if (tg == &root_task_group) {
9237 period = global_rt_period();
9238 runtime = global_rt_runtime();
9240 #endif
9243 * Cannot have more runtime than the period.
9245 if (runtime > period && runtime != RUNTIME_INF)
9246 return -EINVAL;
9249 * Ensure we don't starve existing RT tasks.
9251 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9252 return -EBUSY;
9254 total = to_ratio(period, runtime);
9257 * Nobody can have more than the global setting allows.
9259 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9260 return -EINVAL;
9263 * The sum of our children's runtime should not exceed our own.
9265 list_for_each_entry_rcu(child, &tg->children, siblings) {
9266 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9267 runtime = child->rt_bandwidth.rt_runtime;
9269 if (child == d->tg) {
9270 period = d->rt_period;
9271 runtime = d->rt_runtime;
9274 sum += to_ratio(period, runtime);
9277 if (sum > total)
9278 return -EINVAL;
9280 return 0;
9283 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9285 struct rt_schedulable_data data = {
9286 .tg = tg,
9287 .rt_period = period,
9288 .rt_runtime = runtime,
9291 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9294 static int tg_set_bandwidth(struct task_group *tg,
9295 u64 rt_period, u64 rt_runtime)
9297 int i, err = 0;
9299 mutex_lock(&rt_constraints_mutex);
9300 read_lock(&tasklist_lock);
9301 err = __rt_schedulable(tg, rt_period, rt_runtime);
9302 if (err)
9303 goto unlock;
9305 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9306 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9307 tg->rt_bandwidth.rt_runtime = rt_runtime;
9309 for_each_possible_cpu(i) {
9310 struct rt_rq *rt_rq = tg->rt_rq[i];
9312 spin_lock(&rt_rq->rt_runtime_lock);
9313 rt_rq->rt_runtime = rt_runtime;
9314 spin_unlock(&rt_rq->rt_runtime_lock);
9316 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9317 unlock:
9318 read_unlock(&tasklist_lock);
9319 mutex_unlock(&rt_constraints_mutex);
9321 return err;
9324 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9326 u64 rt_runtime, rt_period;
9328 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9329 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9330 if (rt_runtime_us < 0)
9331 rt_runtime = RUNTIME_INF;
9333 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9336 long sched_group_rt_runtime(struct task_group *tg)
9338 u64 rt_runtime_us;
9340 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9341 return -1;
9343 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9344 do_div(rt_runtime_us, NSEC_PER_USEC);
9345 return rt_runtime_us;
9348 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9350 u64 rt_runtime, rt_period;
9352 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9353 rt_runtime = tg->rt_bandwidth.rt_runtime;
9355 if (rt_period == 0)
9356 return -EINVAL;
9358 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9361 long sched_group_rt_period(struct task_group *tg)
9363 u64 rt_period_us;
9365 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9366 do_div(rt_period_us, NSEC_PER_USEC);
9367 return rt_period_us;
9370 static int sched_rt_global_constraints(void)
9372 u64 runtime, period;
9373 int ret = 0;
9375 if (sysctl_sched_rt_period <= 0)
9376 return -EINVAL;
9378 runtime = global_rt_runtime();
9379 period = global_rt_period();
9382 * Sanity check on the sysctl variables.
9384 if (runtime > period && runtime != RUNTIME_INF)
9385 return -EINVAL;
9387 mutex_lock(&rt_constraints_mutex);
9388 read_lock(&tasklist_lock);
9389 ret = __rt_schedulable(NULL, 0, 0);
9390 read_unlock(&tasklist_lock);
9391 mutex_unlock(&rt_constraints_mutex);
9393 return ret;
9396 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9398 /* Don't accept realtime tasks when there is no way for them to run */
9399 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9400 return 0;
9402 return 1;
9405 #else /* !CONFIG_RT_GROUP_SCHED */
9406 static int sched_rt_global_constraints(void)
9408 unsigned long flags;
9409 int i;
9411 if (sysctl_sched_rt_period <= 0)
9412 return -EINVAL;
9414 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9415 for_each_possible_cpu(i) {
9416 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9418 spin_lock(&rt_rq->rt_runtime_lock);
9419 rt_rq->rt_runtime = global_rt_runtime();
9420 spin_unlock(&rt_rq->rt_runtime_lock);
9422 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9424 return 0;
9426 #endif /* CONFIG_RT_GROUP_SCHED */
9428 int sched_rt_handler(struct ctl_table *table, int write,
9429 struct file *filp, void __user *buffer, size_t *lenp,
9430 loff_t *ppos)
9432 int ret;
9433 int old_period, old_runtime;
9434 static DEFINE_MUTEX(mutex);
9436 mutex_lock(&mutex);
9437 old_period = sysctl_sched_rt_period;
9438 old_runtime = sysctl_sched_rt_runtime;
9440 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9442 if (!ret && write) {
9443 ret = sched_rt_global_constraints();
9444 if (ret) {
9445 sysctl_sched_rt_period = old_period;
9446 sysctl_sched_rt_runtime = old_runtime;
9447 } else {
9448 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9449 def_rt_bandwidth.rt_period =
9450 ns_to_ktime(global_rt_period());
9453 mutex_unlock(&mutex);
9455 return ret;
9458 #ifdef CONFIG_CGROUP_SCHED
9460 /* return corresponding task_group object of a cgroup */
9461 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9463 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9464 struct task_group, css);
9467 static struct cgroup_subsys_state *
9468 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9470 struct task_group *tg, *parent;
9472 if (!cgrp->parent) {
9473 /* This is early initialization for the top cgroup */
9474 return &init_task_group.css;
9477 parent = cgroup_tg(cgrp->parent);
9478 tg = sched_create_group(parent);
9479 if (IS_ERR(tg))
9480 return ERR_PTR(-ENOMEM);
9482 return &tg->css;
9485 static void
9486 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9488 struct task_group *tg = cgroup_tg(cgrp);
9490 sched_destroy_group(tg);
9493 static int
9494 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9495 struct task_struct *tsk)
9497 #ifdef CONFIG_RT_GROUP_SCHED
9498 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9499 return -EINVAL;
9500 #else
9501 /* We don't support RT-tasks being in separate groups */
9502 if (tsk->sched_class != &fair_sched_class)
9503 return -EINVAL;
9504 #endif
9506 return 0;
9509 static void
9510 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9511 struct cgroup *old_cont, struct task_struct *tsk)
9513 sched_move_task(tsk);
9516 #ifdef CONFIG_FAIR_GROUP_SCHED
9517 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9518 u64 shareval)
9520 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9523 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9525 struct task_group *tg = cgroup_tg(cgrp);
9527 return (u64) tg->shares;
9529 #endif /* CONFIG_FAIR_GROUP_SCHED */
9531 #ifdef CONFIG_RT_GROUP_SCHED
9532 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9533 s64 val)
9535 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9538 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9540 return sched_group_rt_runtime(cgroup_tg(cgrp));
9543 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9544 u64 rt_period_us)
9546 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9549 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9551 return sched_group_rt_period(cgroup_tg(cgrp));
9553 #endif /* CONFIG_RT_GROUP_SCHED */
9555 static struct cftype cpu_files[] = {
9556 #ifdef CONFIG_FAIR_GROUP_SCHED
9558 .name = "shares",
9559 .read_u64 = cpu_shares_read_u64,
9560 .write_u64 = cpu_shares_write_u64,
9562 #endif
9563 #ifdef CONFIG_RT_GROUP_SCHED
9565 .name = "rt_runtime_us",
9566 .read_s64 = cpu_rt_runtime_read,
9567 .write_s64 = cpu_rt_runtime_write,
9570 .name = "rt_period_us",
9571 .read_u64 = cpu_rt_period_read_uint,
9572 .write_u64 = cpu_rt_period_write_uint,
9574 #endif
9577 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9579 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9582 struct cgroup_subsys cpu_cgroup_subsys = {
9583 .name = "cpu",
9584 .create = cpu_cgroup_create,
9585 .destroy = cpu_cgroup_destroy,
9586 .can_attach = cpu_cgroup_can_attach,
9587 .attach = cpu_cgroup_attach,
9588 .populate = cpu_cgroup_populate,
9589 .subsys_id = cpu_cgroup_subsys_id,
9590 .early_init = 1,
9593 #endif /* CONFIG_CGROUP_SCHED */
9595 #ifdef CONFIG_CGROUP_CPUACCT
9598 * CPU accounting code for task groups.
9600 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9601 * (balbir@in.ibm.com).
9604 /* track cpu usage of a group of tasks and its child groups */
9605 struct cpuacct {
9606 struct cgroup_subsys_state css;
9607 /* cpuusage holds pointer to a u64-type object on every cpu */
9608 u64 *cpuusage;
9609 struct cpuacct *parent;
9612 struct cgroup_subsys cpuacct_subsys;
9614 /* return cpu accounting group corresponding to this container */
9615 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9617 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9618 struct cpuacct, css);
9621 /* return cpu accounting group to which this task belongs */
9622 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9624 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9625 struct cpuacct, css);
9628 /* create a new cpu accounting group */
9629 static struct cgroup_subsys_state *cpuacct_create(
9630 struct cgroup_subsys *ss, struct cgroup *cgrp)
9632 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9634 if (!ca)
9635 return ERR_PTR(-ENOMEM);
9637 ca->cpuusage = alloc_percpu(u64);
9638 if (!ca->cpuusage) {
9639 kfree(ca);
9640 return ERR_PTR(-ENOMEM);
9643 if (cgrp->parent)
9644 ca->parent = cgroup_ca(cgrp->parent);
9646 return &ca->css;
9649 /* destroy an existing cpu accounting group */
9650 static void
9651 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9653 struct cpuacct *ca = cgroup_ca(cgrp);
9655 free_percpu(ca->cpuusage);
9656 kfree(ca);
9659 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9661 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9662 u64 data;
9664 #ifndef CONFIG_64BIT
9666 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9668 spin_lock_irq(&cpu_rq(cpu)->lock);
9669 data = *cpuusage;
9670 spin_unlock_irq(&cpu_rq(cpu)->lock);
9671 #else
9672 data = *cpuusage;
9673 #endif
9675 return data;
9678 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9680 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9682 #ifndef CONFIG_64BIT
9684 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9686 spin_lock_irq(&cpu_rq(cpu)->lock);
9687 *cpuusage = val;
9688 spin_unlock_irq(&cpu_rq(cpu)->lock);
9689 #else
9690 *cpuusage = val;
9691 #endif
9694 /* return total cpu usage (in nanoseconds) of a group */
9695 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9697 struct cpuacct *ca = cgroup_ca(cgrp);
9698 u64 totalcpuusage = 0;
9699 int i;
9701 for_each_present_cpu(i)
9702 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9704 return totalcpuusage;
9707 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9708 u64 reset)
9710 struct cpuacct *ca = cgroup_ca(cgrp);
9711 int err = 0;
9712 int i;
9714 if (reset) {
9715 err = -EINVAL;
9716 goto out;
9719 for_each_present_cpu(i)
9720 cpuacct_cpuusage_write(ca, i, 0);
9722 out:
9723 return err;
9726 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9727 struct seq_file *m)
9729 struct cpuacct *ca = cgroup_ca(cgroup);
9730 u64 percpu;
9731 int i;
9733 for_each_present_cpu(i) {
9734 percpu = cpuacct_cpuusage_read(ca, i);
9735 seq_printf(m, "%llu ", (unsigned long long) percpu);
9737 seq_printf(m, "\n");
9738 return 0;
9741 static struct cftype files[] = {
9743 .name = "usage",
9744 .read_u64 = cpuusage_read,
9745 .write_u64 = cpuusage_write,
9748 .name = "usage_percpu",
9749 .read_seq_string = cpuacct_percpu_seq_read,
9754 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9756 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9760 * charge this task's execution time to its accounting group.
9762 * called with rq->lock held.
9764 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9766 struct cpuacct *ca;
9767 int cpu;
9769 if (unlikely(!cpuacct_subsys.active))
9770 return;
9772 cpu = task_cpu(tsk);
9773 ca = task_ca(tsk);
9775 for (; ca; ca = ca->parent) {
9776 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9777 *cpuusage += cputime;
9781 struct cgroup_subsys cpuacct_subsys = {
9782 .name = "cpuacct",
9783 .create = cpuacct_create,
9784 .destroy = cpuacct_destroy,
9785 .populate = cpuacct_populate,
9786 .subsys_id = cpuacct_subsys_id,
9788 #endif /* CONFIG_CGROUP_CPUACCT */