4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task
);
122 DEFINE_TRACE(sched_wakeup
);
123 DEFINE_TRACE(sched_wakeup_new
);
124 DEFINE_TRACE(sched_switch
);
125 DEFINE_TRACE(sched_migrate_task
);
129 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
137 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
146 sg
->__cpu_power
+= val
;
147 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
151 static inline int rt_policy(int policy
)
153 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
158 static inline int task_has_rt_policy(struct task_struct
*p
)
160 return rt_policy(p
->policy
);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array
{
167 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
168 struct list_head queue
[MAX_RT_PRIO
];
171 struct rt_bandwidth
{
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock
;
176 struct hrtimer rt_period_timer
;
179 static struct rt_bandwidth def_rt_bandwidth
;
181 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
183 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
185 struct rt_bandwidth
*rt_b
=
186 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
192 now
= hrtimer_cb_get_time(timer
);
193 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
198 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
201 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
205 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
207 rt_b
->rt_period
= ns_to_ktime(period
);
208 rt_b
->rt_runtime
= runtime
;
210 spin_lock_init(&rt_b
->rt_runtime_lock
);
212 hrtimer_init(&rt_b
->rt_period_timer
,
213 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
214 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime
>= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
229 if (hrtimer_active(&rt_b
->rt_period_timer
))
232 spin_lock(&rt_b
->rt_runtime_lock
);
234 if (hrtimer_active(&rt_b
->rt_period_timer
))
237 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
238 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
239 hrtimer_start_expires(&rt_b
->rt_period_timer
,
242 spin_unlock(&rt_b
->rt_runtime_lock
);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
248 hrtimer_cancel(&rt_b
->rt_period_timer
);
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex
);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
264 static LIST_HEAD(task_groups
);
266 /* task group related information */
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css
;
272 #ifdef CONFIG_USER_SCHED
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity
**se
;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq
**cfs_rq
;
281 unsigned long shares
;
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity
**rt_se
;
286 struct rt_rq
**rt_rq
;
288 struct rt_bandwidth rt_bandwidth
;
292 struct list_head list
;
294 struct task_group
*parent
;
295 struct list_head siblings
;
296 struct list_head children
;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct
*user
)
304 user
->tg
->uid
= user
->uid
;
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group
;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
323 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock
);
335 static int root_task_group_empty(void)
337 return list_empty(&root_task_group
.children
);
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 #ifdef CONFIG_USER_SCHED
343 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
344 #else /* !CONFIG_USER_SCHED */
345 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
346 #endif /* CONFIG_USER_SCHED */
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
357 #define MAX_SHARES (1UL << 18)
359 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
362 /* Default task group.
363 * Every task in system belong to this group at bootup.
365 struct task_group init_task_group
;
367 /* return group to which a task belongs */
368 static inline struct task_group
*task_group(struct task_struct
*p
)
370 struct task_group
*tg
;
372 #ifdef CONFIG_USER_SCHED
374 tg
= __task_cred(p
)->user
->tg
;
376 #elif defined(CONFIG_CGROUP_SCHED)
377 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
378 struct task_group
, css
);
380 tg
= &init_task_group
;
385 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
386 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
390 p
->se
.parent
= task_group(p
)->se
[cpu
];
393 #ifdef CONFIG_RT_GROUP_SCHED
394 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
395 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
402 static int root_task_group_empty(void)
408 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
409 static inline struct task_group
*task_group(struct task_struct
*p
)
414 #endif /* CONFIG_GROUP_SCHED */
416 /* CFS-related fields in a runqueue */
418 struct load_weight load
;
419 unsigned long nr_running
;
424 struct rb_root tasks_timeline
;
425 struct rb_node
*rb_leftmost
;
427 struct list_head tasks
;
428 struct list_head
*balance_iterator
;
431 * 'curr' points to currently running entity on this cfs_rq.
432 * It is set to NULL otherwise (i.e when none are currently running).
434 struct sched_entity
*curr
, *next
, *last
;
436 unsigned int nr_spread_over
;
438 #ifdef CONFIG_FAIR_GROUP_SCHED
439 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
449 struct list_head leaf_cfs_rq_list
;
450 struct task_group
*tg
; /* group that "owns" this runqueue */
454 * the part of load.weight contributed by tasks
456 unsigned long task_weight
;
459 * h_load = weight * f(tg)
461 * Where f(tg) is the recursive weight fraction assigned to
464 unsigned long h_load
;
467 * this cpu's part of tg->shares
469 unsigned long shares
;
472 * load.weight at the time we set shares
474 unsigned long rq_weight
;
479 /* Real-Time classes' related field in a runqueue: */
481 struct rt_prio_array active
;
482 unsigned long rt_nr_running
;
483 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
485 int curr
; /* highest queued rt task prio */
487 int next
; /* next highest */
492 unsigned long rt_nr_migratory
;
494 struct plist_head pushable_tasks
;
499 /* Nests inside the rq lock: */
500 spinlock_t rt_runtime_lock
;
502 #ifdef CONFIG_RT_GROUP_SCHED
503 unsigned long rt_nr_boosted
;
506 struct list_head leaf_rt_rq_list
;
507 struct task_group
*tg
;
508 struct sched_rt_entity
*rt_se
;
515 * We add the notion of a root-domain which will be used to define per-domain
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
518 * exclusive cpuset is created, we also create and attach a new root-domain
525 cpumask_var_t online
;
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
531 cpumask_var_t rto_mask
;
534 struct cpupri cpupri
;
536 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
542 unsigned int sched_mc_preferred_wakeup_cpu
;
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
550 static struct root_domain def_root_domain
;
555 * This is the main, per-CPU runqueue data structure.
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
569 unsigned long nr_running
;
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
573 unsigned long last_tick_seen
;
574 unsigned char in_nohz_recently
;
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load
;
578 unsigned long nr_load_updates
;
584 #ifdef CONFIG_FAIR_GROUP_SCHED
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list
;
588 #ifdef CONFIG_RT_GROUP_SCHED
589 struct list_head leaf_rt_rq_list
;
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
598 unsigned long nr_uninterruptible
;
600 struct task_struct
*curr
, *idle
;
601 unsigned long next_balance
;
602 struct mm_struct
*prev_mm
;
609 struct root_domain
*rd
;
610 struct sched_domain
*sd
;
612 unsigned char idle_at_tick
;
613 /* For active balancing */
616 /* cpu of this runqueue: */
620 unsigned long avg_load_per_task
;
622 struct task_struct
*migration_thread
;
623 struct list_head migration_queue
;
626 #ifdef CONFIG_SCHED_HRTICK
628 int hrtick_csd_pending
;
629 struct call_single_data hrtick_csd
;
631 struct hrtimer hrtick_timer
;
634 #ifdef CONFIG_SCHEDSTATS
636 struct sched_info rq_sched_info
;
637 unsigned long long rq_cpu_time
;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
640 /* sys_sched_yield() stats */
641 unsigned int yld_count
;
643 /* schedule() stats */
644 unsigned int sched_switch
;
645 unsigned int sched_count
;
646 unsigned int sched_goidle
;
648 /* try_to_wake_up() stats */
649 unsigned int ttwu_count
;
650 unsigned int ttwu_local
;
653 unsigned int bkl_count
;
657 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
659 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
661 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
664 static inline int cpu_of(struct rq
*rq
)
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
675 * See detach_destroy_domains: synchronize_sched for details.
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
680 #define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
683 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684 #define this_rq() (&__get_cpu_var(runqueues))
685 #define task_rq(p) cpu_rq(task_cpu(p))
686 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
688 static inline void update_rq_clock(struct rq
*rq
)
690 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
696 #ifdef CONFIG_SCHED_DEBUG
697 # define const_debug __read_mostly
699 # define const_debug static const
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
709 int runqueue_is_locked(void)
712 struct rq
*rq
= cpu_rq(cpu
);
715 ret
= spin_is_locked(&rq
->lock
);
721 * Debugging: various feature bits
724 #define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
728 #include "sched_features.h"
733 #define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
736 const_debug
unsigned int sysctl_sched_features
=
737 #include "sched_features.h"
742 #ifdef CONFIG_SCHED_DEBUG
743 #define SCHED_FEAT(name, enabled) \
746 static __read_mostly
char *sched_feat_names
[] = {
747 #include "sched_features.h"
753 static int sched_feat_show(struct seq_file
*m
, void *v
)
757 for (i
= 0; sched_feat_names
[i
]; i
++) {
758 if (!(sysctl_sched_features
& (1UL << i
)))
760 seq_printf(m
, "%s ", sched_feat_names
[i
]);
768 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
769 size_t cnt
, loff_t
*ppos
)
779 if (copy_from_user(&buf
, ubuf
, cnt
))
784 if (strncmp(buf
, "NO_", 3) == 0) {
789 for (i
= 0; sched_feat_names
[i
]; i
++) {
790 int len
= strlen(sched_feat_names
[i
]);
792 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
794 sysctl_sched_features
&= ~(1UL << i
);
796 sysctl_sched_features
|= (1UL << i
);
801 if (!sched_feat_names
[i
])
809 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
811 return single_open(filp
, sched_feat_show
, NULL
);
814 static struct file_operations sched_feat_fops
= {
815 .open
= sched_feat_open
,
816 .write
= sched_feat_write
,
819 .release
= single_release
,
822 static __init
int sched_init_debug(void)
824 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
829 late_initcall(sched_init_debug
);
833 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
839 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
842 * ratelimit for updating the group shares.
845 unsigned int sysctl_sched_shares_ratelimit
= 250000;
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
852 unsigned int sysctl_sched_shares_thresh
= 4;
855 * period over which we measure -rt task cpu usage in us.
858 unsigned int sysctl_sched_rt_period
= 1000000;
860 static __read_mostly
int scheduler_running
;
863 * part of the period that we allow rt tasks to run in us.
866 int sysctl_sched_rt_runtime
= 950000;
868 static inline u64
global_rt_period(void)
870 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
873 static inline u64
global_rt_runtime(void)
875 if (sysctl_sched_rt_runtime
< 0)
878 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
881 #ifndef prepare_arch_switch
882 # define prepare_arch_switch(next) do { } while (0)
884 #ifndef finish_arch_switch
885 # define finish_arch_switch(prev) do { } while (0)
888 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
890 return rq
->curr
== p
;
893 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
894 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
896 return task_current(rq
, p
);
899 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
903 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
905 #ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq
->lock
.owner
= current
;
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
914 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
916 spin_unlock_irq(&rq
->lock
);
919 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
920 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
925 return task_current(rq
, p
);
929 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
939 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq
->lock
);
942 spin_unlock(&rq
->lock
);
946 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
957 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
961 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
967 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
971 struct rq
*rq
= task_rq(p
);
972 spin_lock(&rq
->lock
);
973 if (likely(rq
== task_rq(p
)))
975 spin_unlock(&rq
->lock
);
980 * task_rq_lock - lock the runqueue a given task resides on and disable
981 * interrupts. Note the ordering: we can safely lookup the task_rq without
982 * explicitly disabling preemption.
984 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
990 local_irq_save(*flags
);
992 spin_lock(&rq
->lock
);
993 if (likely(rq
== task_rq(p
)))
995 spin_unlock_irqrestore(&rq
->lock
, *flags
);
999 void task_rq_unlock_wait(struct task_struct
*p
)
1001 struct rq
*rq
= task_rq(p
);
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq
->lock
);
1007 static void __task_rq_unlock(struct rq
*rq
)
1008 __releases(rq
->lock
)
1010 spin_unlock(&rq
->lock
);
1013 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1014 __releases(rq
->lock
)
1016 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1020 * this_rq_lock - lock this runqueue and disable interrupts.
1022 static struct rq
*this_rq_lock(void)
1023 __acquires(rq
->lock
)
1027 local_irq_disable();
1029 spin_lock(&rq
->lock
);
1034 #ifdef CONFIG_SCHED_HRTICK
1036 * Use HR-timers to deliver accurate preemption points.
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1048 * - enabled by features
1049 * - hrtimer is actually high res
1051 static inline int hrtick_enabled(struct rq
*rq
)
1053 if (!sched_feat(HRTICK
))
1055 if (!cpu_active(cpu_of(rq
)))
1057 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1060 static void hrtick_clear(struct rq
*rq
)
1062 if (hrtimer_active(&rq
->hrtick_timer
))
1063 hrtimer_cancel(&rq
->hrtick_timer
);
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1070 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1072 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1074 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1076 spin_lock(&rq
->lock
);
1077 update_rq_clock(rq
);
1078 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1079 spin_unlock(&rq
->lock
);
1081 return HRTIMER_NORESTART
;
1086 * called from hardirq (IPI) context
1088 static void __hrtick_start(void *arg
)
1090 struct rq
*rq
= arg
;
1092 spin_lock(&rq
->lock
);
1093 hrtimer_restart(&rq
->hrtick_timer
);
1094 rq
->hrtick_csd_pending
= 0;
1095 spin_unlock(&rq
->lock
);
1099 * Called to set the hrtick timer state.
1101 * called with rq->lock held and irqs disabled
1103 static void hrtick_start(struct rq
*rq
, u64 delay
)
1105 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1106 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1108 hrtimer_set_expires(timer
, time
);
1110 if (rq
== this_rq()) {
1111 hrtimer_restart(timer
);
1112 } else if (!rq
->hrtick_csd_pending
) {
1113 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1114 rq
->hrtick_csd_pending
= 1;
1119 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1121 int cpu
= (int)(long)hcpu
;
1124 case CPU_UP_CANCELED
:
1125 case CPU_UP_CANCELED_FROZEN
:
1126 case CPU_DOWN_PREPARE
:
1127 case CPU_DOWN_PREPARE_FROZEN
:
1129 case CPU_DEAD_FROZEN
:
1130 hrtick_clear(cpu_rq(cpu
));
1137 static __init
void init_hrtick(void)
1139 hotcpu_notifier(hotplug_hrtick
, 0);
1143 * Called to set the hrtick timer state.
1145 * called with rq->lock held and irqs disabled
1147 static void hrtick_start(struct rq
*rq
, u64 delay
)
1149 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SMP */
1157 static void init_rq_hrtick(struct rq
*rq
)
1160 rq
->hrtick_csd_pending
= 0;
1162 rq
->hrtick_csd
.flags
= 0;
1163 rq
->hrtick_csd
.func
= __hrtick_start
;
1164 rq
->hrtick_csd
.info
= rq
;
1167 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1168 rq
->hrtick_timer
.function
= hrtick
;
1170 #else /* CONFIG_SCHED_HRTICK */
1171 static inline void hrtick_clear(struct rq
*rq
)
1175 static inline void init_rq_hrtick(struct rq
*rq
)
1179 static inline void init_hrtick(void)
1182 #endif /* CONFIG_SCHED_HRTICK */
1185 * resched_task - mark a task 'to be rescheduled now'.
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1193 #ifndef tsk_is_polling
1194 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1197 static void resched_task(struct task_struct
*p
)
1201 assert_spin_locked(&task_rq(p
)->lock
);
1203 if (test_tsk_need_resched(p
))
1206 set_tsk_need_resched(p
);
1209 if (cpu
== smp_processor_id())
1212 /* NEED_RESCHED must be visible before we test polling */
1214 if (!tsk_is_polling(p
))
1215 smp_send_reschedule(cpu
);
1218 static void resched_cpu(int cpu
)
1220 struct rq
*rq
= cpu_rq(cpu
);
1221 unsigned long flags
;
1223 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1225 resched_task(cpu_curr(cpu
));
1226 spin_unlock_irqrestore(&rq
->lock
, flags
);
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1240 void wake_up_idle_cpu(int cpu
)
1242 struct rq
*rq
= cpu_rq(cpu
);
1244 if (cpu
== smp_processor_id())
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1254 if (rq
->curr
!= rq
->idle
)
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1262 set_tsk_need_resched(rq
->idle
);
1264 /* NEED_RESCHED must be visible before we test polling */
1266 if (!tsk_is_polling(rq
->idle
))
1267 smp_send_reschedule(cpu
);
1269 #endif /* CONFIG_NO_HZ */
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct
*p
)
1274 assert_spin_locked(&task_rq(p
)->lock
);
1275 set_tsk_need_resched(p
);
1277 #endif /* CONFIG_SMP */
1279 #if BITS_PER_LONG == 32
1280 # define WMULT_CONST (~0UL)
1282 # define WMULT_CONST (1UL << 32)
1285 #define WMULT_SHIFT 32
1288 * Shift right and round:
1290 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1293 * delta *= weight / lw
1295 static unsigned long
1296 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1297 struct load_weight
*lw
)
1301 if (!lw
->inv_weight
) {
1302 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1305 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1309 tmp
= (u64
)delta_exec
* weight
;
1311 * Check whether we'd overflow the 64-bit multiplication:
1313 if (unlikely(tmp
> WMULT_CONST
))
1314 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1317 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1319 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1322 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1328 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 * scaled version of the new time slice allocation that they receive on time
1343 #define WEIGHT_IDLEPRIO 3
1344 #define WMULT_IDLEPRIO 1431655765
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
1358 static const int prio_to_weight
[40] = {
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1376 static const u32 prio_to_wmult
[40] = {
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1387 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1394 struct rq_iterator
{
1396 struct task_struct
*(*start
)(void *);
1397 struct task_struct
*(*next
)(void *);
1401 static unsigned long
1402 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1403 unsigned long max_load_move
, struct sched_domain
*sd
,
1404 enum cpu_idle_type idle
, int *all_pinned
,
1405 int *this_best_prio
, struct rq_iterator
*iterator
);
1408 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1409 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1410 struct rq_iterator
*iterator
);
1413 #ifdef CONFIG_CGROUP_CPUACCT
1414 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1416 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1419 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1421 update_load_add(&rq
->load
, load
);
1424 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1426 update_load_sub(&rq
->load
, load
);
1429 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1430 typedef int (*tg_visitor
)(struct task_group
*, void *);
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1436 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1438 struct task_group
*parent
, *child
;
1442 parent
= &root_task_group
;
1444 ret
= (*down
)(parent
, data
);
1447 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1454 ret
= (*up
)(parent
, data
);
1459 parent
= parent
->parent
;
1468 static int tg_nop(struct task_group
*tg
, void *data
)
1475 static unsigned long source_load(int cpu
, int type
);
1476 static unsigned long target_load(int cpu
, int type
);
1477 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1479 static unsigned long cpu_avg_load_per_task(int cpu
)
1481 struct rq
*rq
= cpu_rq(cpu
);
1482 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1485 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1487 rq
->avg_load_per_task
= 0;
1489 return rq
->avg_load_per_task
;
1492 #ifdef CONFIG_FAIR_GROUP_SCHED
1494 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1497 * Calculate and set the cpu's group shares.
1500 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1501 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1503 unsigned long shares
;
1504 unsigned long rq_weight
;
1509 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1517 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1518 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1520 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1521 sysctl_sched_shares_thresh
) {
1522 struct rq
*rq
= cpu_rq(cpu
);
1523 unsigned long flags
;
1525 spin_lock_irqsave(&rq
->lock
, flags
);
1526 tg
->cfs_rq
[cpu
]->shares
= shares
;
1528 __set_se_shares(tg
->se
[cpu
], shares
);
1529 spin_unlock_irqrestore(&rq
->lock
, flags
);
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
1538 static int tg_shares_up(struct task_group
*tg
, void *data
)
1540 unsigned long weight
, rq_weight
= 0;
1541 unsigned long shares
= 0;
1542 struct sched_domain
*sd
= data
;
1545 for_each_cpu(i
, sched_domain_span(sd
)) {
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1551 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1553 weight
= NICE_0_LOAD
;
1555 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1556 rq_weight
+= weight
;
1557 shares
+= tg
->cfs_rq
[i
]->shares
;
1560 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1561 shares
= tg
->shares
;
1563 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1564 shares
= tg
->shares
;
1566 for_each_cpu(i
, sched_domain_span(sd
))
1567 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group
*tg
, void *data
)
1580 long cpu
= (long)data
;
1583 load
= cpu_rq(cpu
)->load
.weight
;
1585 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1586 load
*= tg
->cfs_rq
[cpu
]->shares
;
1587 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1590 tg
->cfs_rq
[cpu
]->h_load
= load
;
1595 static void update_shares(struct sched_domain
*sd
)
1597 u64 now
= cpu_clock(raw_smp_processor_id());
1598 s64 elapsed
= now
- sd
->last_update
;
1600 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1601 sd
->last_update
= now
;
1602 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1606 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1608 spin_unlock(&rq
->lock
);
1610 spin_lock(&rq
->lock
);
1613 static void update_h_load(long cpu
)
1615 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1620 static inline void update_shares(struct sched_domain
*sd
)
1624 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1630 #ifdef CONFIG_PREEMPT
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
1640 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1641 __releases(this_rq
->lock
)
1642 __acquires(busiest
->lock
)
1643 __acquires(this_rq
->lock
)
1645 spin_unlock(&this_rq
->lock
);
1646 double_rq_lock(this_rq
, busiest
);
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1659 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1660 __releases(this_rq
->lock
)
1661 __acquires(busiest
->lock
)
1662 __acquires(this_rq
->lock
)
1666 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1667 if (busiest
< this_rq
) {
1668 spin_unlock(&this_rq
->lock
);
1669 spin_lock(&busiest
->lock
);
1670 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1673 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1678 #endif /* CONFIG_PREEMPT */
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1683 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq
->lock
);
1691 return _double_lock_balance(this_rq
, busiest
);
1694 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1695 __releases(busiest
->lock
)
1697 spin_unlock(&busiest
->lock
);
1698 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1702 #ifdef CONFIG_FAIR_GROUP_SCHED
1703 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1706 cfs_rq
->shares
= shares
;
1711 #include "sched_stats.h"
1712 #include "sched_idletask.c"
1713 #include "sched_fair.c"
1714 #include "sched_rt.c"
1715 #ifdef CONFIG_SCHED_DEBUG
1716 # include "sched_debug.c"
1719 #define sched_class_highest (&rt_sched_class)
1720 #define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
1723 static void inc_nr_running(struct rq
*rq
)
1728 static void dec_nr_running(struct rq
*rq
)
1733 static void set_load_weight(struct task_struct
*p
)
1735 if (task_has_rt_policy(p
)) {
1736 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1737 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1742 * SCHED_IDLE tasks get minimal weight:
1744 if (p
->policy
== SCHED_IDLE
) {
1745 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1746 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1750 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1751 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1754 static void update_avg(u64
*avg
, u64 sample
)
1756 s64 diff
= sample
- *avg
;
1760 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1763 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1765 sched_info_queued(p
);
1766 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1770 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1773 if (p
->se
.last_wakeup
) {
1774 update_avg(&p
->se
.avg_overlap
,
1775 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1776 p
->se
.last_wakeup
= 0;
1778 update_avg(&p
->se
.avg_wakeup
,
1779 sysctl_sched_wakeup_granularity
);
1783 sched_info_dequeued(p
);
1784 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1789 * __normal_prio - return the priority that is based on the static prio
1791 static inline int __normal_prio(struct task_struct
*p
)
1793 return p
->static_prio
;
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1803 static inline int normal_prio(struct task_struct
*p
)
1807 if (task_has_rt_policy(p
))
1808 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1810 prio
= __normal_prio(p
);
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1821 static int effective_prio(struct task_struct
*p
)
1823 p
->normal_prio
= normal_prio(p
);
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1829 if (!rt_prio(p
->prio
))
1830 return p
->normal_prio
;
1835 * activate_task - move a task to the runqueue.
1837 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1839 if (task_contributes_to_load(p
))
1840 rq
->nr_uninterruptible
--;
1842 enqueue_task(rq
, p
, wakeup
);
1847 * deactivate_task - remove a task from the runqueue.
1849 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1851 if (task_contributes_to_load(p
))
1852 rq
->nr_uninterruptible
++;
1854 dequeue_task(rq
, p
, sleep
);
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1862 inline int task_curr(const struct task_struct
*p
)
1864 return cpu_curr(task_cpu(p
)) == p
;
1867 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1869 set_task_rq(p
, cpu
);
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1877 task_thread_info(p
)->cpu
= cpu
;
1881 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1882 const struct sched_class
*prev_class
,
1883 int oldprio
, int running
)
1885 if (prev_class
!= p
->sched_class
) {
1886 if (prev_class
->switched_from
)
1887 prev_class
->switched_from(rq
, p
, running
);
1888 p
->sched_class
->switched_to(rq
, p
, running
);
1890 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1895 /* Used instead of source_load when we know the type == 0 */
1896 static unsigned long weighted_cpuload(const int cpu
)
1898 return cpu_rq(cpu
)->load
.weight
;
1902 * Is this task likely cache-hot:
1905 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1910 * Buddy candidates are cache hot:
1912 if (sched_feat(CACHE_HOT_BUDDY
) &&
1913 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1914 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1917 if (p
->sched_class
!= &fair_sched_class
)
1920 if (sysctl_sched_migration_cost
== -1)
1922 if (sysctl_sched_migration_cost
== 0)
1925 delta
= now
- p
->se
.exec_start
;
1927 return delta
< (s64
)sysctl_sched_migration_cost
;
1931 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1933 int old_cpu
= task_cpu(p
);
1934 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1935 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1936 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1939 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1941 trace_sched_migrate_task(p
, task_cpu(p
), new_cpu
);
1943 #ifdef CONFIG_SCHEDSTATS
1944 if (p
->se
.wait_start
)
1945 p
->se
.wait_start
-= clock_offset
;
1946 if (p
->se
.sleep_start
)
1947 p
->se
.sleep_start
-= clock_offset
;
1948 if (p
->se
.block_start
)
1949 p
->se
.block_start
-= clock_offset
;
1950 if (old_cpu
!= new_cpu
) {
1951 schedstat_inc(p
, se
.nr_migrations
);
1952 if (task_hot(p
, old_rq
->clock
, NULL
))
1953 schedstat_inc(p
, se
.nr_forced2_migrations
);
1956 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1957 new_cfsrq
->min_vruntime
;
1959 __set_task_cpu(p
, new_cpu
);
1962 struct migration_req
{
1963 struct list_head list
;
1965 struct task_struct
*task
;
1968 struct completion done
;
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1976 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1978 struct rq
*rq
= task_rq(p
);
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1984 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1985 set_task_cpu(p
, dest_cpu
);
1989 init_completion(&req
->done
);
1991 req
->dest_cpu
= dest_cpu
;
1992 list_add(&req
->list
, &rq
->migration_queue
);
1998 * wait_task_inactive - wait for a thread to unschedule.
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2013 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2015 unsigned long flags
;
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2040 while (task_running(rq
, p
)) {
2041 if (match_state
&& unlikely(p
->state
!= match_state
))
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2051 rq
= task_rq_lock(p
, &flags
);
2052 trace_sched_wait_task(rq
, p
);
2053 running
= task_running(rq
, p
);
2054 on_rq
= p
->se
.on_rq
;
2056 if (!match_state
|| p
->state
== match_state
)
2057 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2058 task_rq_unlock(rq
, &flags
);
2061 * If it changed from the expected state, bail out now.
2063 if (unlikely(!ncsw
))
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2070 * Oops. Go back and try again..
2072 if (unlikely(running
)) {
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2082 * So if it was still runnable (but just not actively
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2086 if (unlikely(on_rq
)) {
2087 schedule_timeout_uninterruptible(1);
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2115 void kick_process(struct task_struct
*p
)
2121 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2122 smp_send_reschedule(cpu
);
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2133 static unsigned long source_load(int cpu
, int type
)
2135 struct rq
*rq
= cpu_rq(cpu
);
2136 unsigned long total
= weighted_cpuload(cpu
);
2138 if (type
== 0 || !sched_feat(LB_BIAS
))
2141 return min(rq
->cpu_load
[type
-1], total
);
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
2148 static unsigned long target_load(int cpu
, int type
)
2150 struct rq
*rq
= cpu_rq(cpu
);
2151 unsigned long total
= weighted_cpuload(cpu
);
2153 if (type
== 0 || !sched_feat(LB_BIAS
))
2156 return max(rq
->cpu_load
[type
-1], total
);
2160 * find_idlest_group finds and returns the least busy CPU group within the
2163 static struct sched_group
*
2164 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2166 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2167 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2168 int load_idx
= sd
->forkexec_idx
;
2169 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2172 unsigned long load
, avg_load
;
2176 /* Skip over this group if it has no CPUs allowed */
2177 if (!cpumask_intersects(sched_group_cpus(group
),
2181 local_group
= cpumask_test_cpu(this_cpu
,
2182 sched_group_cpus(group
));
2184 /* Tally up the load of all CPUs in the group */
2187 for_each_cpu(i
, sched_group_cpus(group
)) {
2188 /* Bias balancing toward cpus of our domain */
2190 load
= source_load(i
, load_idx
);
2192 load
= target_load(i
, load_idx
);
2197 /* Adjust by relative CPU power of the group */
2198 avg_load
= sg_div_cpu_power(group
,
2199 avg_load
* SCHED_LOAD_SCALE
);
2202 this_load
= avg_load
;
2204 } else if (avg_load
< min_load
) {
2205 min_load
= avg_load
;
2208 } while (group
= group
->next
, group
!= sd
->groups
);
2210 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2219 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2221 unsigned long load
, min_load
= ULONG_MAX
;
2225 /* Traverse only the allowed CPUs */
2226 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2227 load
= weighted_cpuload(i
);
2229 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2243 * Balance, ie. select the least loaded group.
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2247 * preempt must be disabled.
2249 static int sched_balance_self(int cpu
, int flag
)
2251 struct task_struct
*t
= current
;
2252 struct sched_domain
*tmp
, *sd
= NULL
;
2254 for_each_domain(cpu
, tmp
) {
2256 * If power savings logic is enabled for a domain, stop there.
2258 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2260 if (tmp
->flags
& flag
)
2268 struct sched_group
*group
;
2269 int new_cpu
, weight
;
2271 if (!(sd
->flags
& flag
)) {
2276 group
= find_idlest_group(sd
, t
, cpu
);
2282 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2283 if (new_cpu
== -1 || new_cpu
== cpu
) {
2284 /* Now try balancing at a lower domain level of cpu */
2289 /* Now try balancing at a lower domain level of new_cpu */
2291 weight
= cpumask_weight(sched_domain_span(sd
));
2293 for_each_domain(cpu
, tmp
) {
2294 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2296 if (tmp
->flags
& flag
)
2299 /* while loop will break here if sd == NULL */
2305 #endif /* CONFIG_SMP */
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2319 * returns failure only if the task is already active.
2321 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2323 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2324 unsigned long flags
;
2328 if (!sched_feat(SYNC_WAKEUPS
))
2332 if (sched_feat(LB_WAKEUP_UPDATE
) && !root_task_group_empty()) {
2333 struct sched_domain
*sd
;
2335 this_cpu
= raw_smp_processor_id();
2338 for_each_domain(this_cpu
, sd
) {
2339 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2348 rq
= task_rq_lock(p
, &flags
);
2349 update_rq_clock(rq
);
2350 old_state
= p
->state
;
2351 if (!(old_state
& state
))
2359 this_cpu
= smp_processor_id();
2362 if (unlikely(task_running(rq
, p
)))
2365 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2366 if (cpu
!= orig_cpu
) {
2367 set_task_cpu(p
, cpu
);
2368 task_rq_unlock(rq
, &flags
);
2369 /* might preempt at this point */
2370 rq
= task_rq_lock(p
, &flags
);
2371 old_state
= p
->state
;
2372 if (!(old_state
& state
))
2377 this_cpu
= smp_processor_id();
2381 #ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq
, ttwu_count
);
2383 if (cpu
== this_cpu
)
2384 schedstat_inc(rq
, ttwu_local
);
2386 struct sched_domain
*sd
;
2387 for_each_domain(this_cpu
, sd
) {
2388 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2389 schedstat_inc(sd
, ttwu_wake_remote
);
2394 #endif /* CONFIG_SCHEDSTATS */
2397 #endif /* CONFIG_SMP */
2398 schedstat_inc(p
, se
.nr_wakeups
);
2400 schedstat_inc(p
, se
.nr_wakeups_sync
);
2401 if (orig_cpu
!= cpu
)
2402 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2403 if (cpu
== this_cpu
)
2404 schedstat_inc(p
, se
.nr_wakeups_local
);
2406 schedstat_inc(p
, se
.nr_wakeups_remote
);
2407 activate_task(rq
, p
, 1);
2411 * Only attribute actual wakeups done by this task.
2413 if (!in_interrupt()) {
2414 struct sched_entity
*se
= ¤t
->se
;
2415 u64 sample
= se
->sum_exec_runtime
;
2417 if (se
->last_wakeup
)
2418 sample
-= se
->last_wakeup
;
2420 sample
-= se
->start_runtime
;
2421 update_avg(&se
->avg_wakeup
, sample
);
2423 se
->last_wakeup
= se
->sum_exec_runtime
;
2427 trace_sched_wakeup(rq
, p
, success
);
2428 check_preempt_curr(rq
, p
, sync
);
2430 p
->state
= TASK_RUNNING
;
2432 if (p
->sched_class
->task_wake_up
)
2433 p
->sched_class
->task_wake_up(rq
, p
);
2436 task_rq_unlock(rq
, &flags
);
2441 int wake_up_process(struct task_struct
*p
)
2443 return try_to_wake_up(p
, TASK_ALL
, 0);
2445 EXPORT_SYMBOL(wake_up_process
);
2447 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2449 return try_to_wake_up(p
, state
, 0);
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
2456 * __sched_fork() is basic setup used by init_idle() too:
2458 static void __sched_fork(struct task_struct
*p
)
2460 p
->se
.exec_start
= 0;
2461 p
->se
.sum_exec_runtime
= 0;
2462 p
->se
.prev_sum_exec_runtime
= 0;
2463 p
->se
.last_wakeup
= 0;
2464 p
->se
.avg_overlap
= 0;
2465 p
->se
.start_runtime
= 0;
2466 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2468 #ifdef CONFIG_SCHEDSTATS
2469 p
->se
.wait_start
= 0;
2470 p
->se
.sum_sleep_runtime
= 0;
2471 p
->se
.sleep_start
= 0;
2472 p
->se
.block_start
= 0;
2473 p
->se
.sleep_max
= 0;
2474 p
->se
.block_max
= 0;
2476 p
->se
.slice_max
= 0;
2480 INIT_LIST_HEAD(&p
->rt
.run_list
);
2482 INIT_LIST_HEAD(&p
->se
.group_node
);
2484 #ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2494 p
->state
= TASK_RUNNING
;
2498 * fork()/clone()-time setup:
2500 void sched_fork(struct task_struct
*p
, int clone_flags
)
2502 int cpu
= get_cpu();
2507 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2509 set_task_cpu(p
, cpu
);
2512 * Make sure we do not leak PI boosting priority to the child:
2514 p
->prio
= current
->normal_prio
;
2515 if (!rt_prio(p
->prio
))
2516 p
->sched_class
= &fair_sched_class
;
2518 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2519 if (likely(sched_info_on()))
2520 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2522 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2525 #ifdef CONFIG_PREEMPT
2526 /* Want to start with kernel preemption disabled. */
2527 task_thread_info(p
)->preempt_count
= 1;
2529 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2535 * wake_up_new_task - wake up a newly created task for the first time.
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2541 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2543 unsigned long flags
;
2546 rq
= task_rq_lock(p
, &flags
);
2547 BUG_ON(p
->state
!= TASK_RUNNING
);
2548 update_rq_clock(rq
);
2550 p
->prio
= effective_prio(p
);
2552 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2553 activate_task(rq
, p
, 0);
2556 * Let the scheduling class do new task startup
2557 * management (if any):
2559 p
->sched_class
->task_new(rq
, p
);
2562 trace_sched_wakeup_new(rq
, p
, 1);
2563 check_preempt_curr(rq
, p
, 0);
2565 if (p
->sched_class
->task_wake_up
)
2566 p
->sched_class
->task_wake_up(rq
, p
);
2568 task_rq_unlock(rq
, &flags
);
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2575 * @notifier: notifier struct to register
2577 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2579 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2581 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
2585 * @notifier: notifier struct to unregister
2587 * This is safe to call from within a preemption notifier.
2589 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2591 hlist_del(¬ifier
->link
);
2593 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2595 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2597 struct preempt_notifier
*notifier
;
2598 struct hlist_node
*node
;
2600 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2601 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2605 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2606 struct task_struct
*next
)
2608 struct preempt_notifier
*notifier
;
2609 struct hlist_node
*node
;
2611 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2612 notifier
->ops
->sched_out(notifier
, next
);
2615 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2617 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2622 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2623 struct task_struct
*next
)
2627 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
2632 * @prev: the current task that is being switched out
2633 * @next: the task we are going to switch to.
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2639 * prepare_task_switch sets up locking and calls architecture specific
2643 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2644 struct task_struct
*next
)
2646 fire_sched_out_preempt_notifiers(prev
, next
);
2647 prepare_lock_switch(rq
, next
);
2648 prepare_arch_switch(next
);
2652 * finish_task_switch - clean up after a task-switch
2653 * @rq: runqueue associated with task-switch
2654 * @prev: the thread we just switched away from.
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
2661 * Note that we may have delayed dropping an mm in context_switch(). If
2662 * so, we finish that here outside of the runqueue lock. (Doing it
2663 * with the lock held can cause deadlocks; see schedule() for
2666 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2667 __releases(rq
->lock
)
2669 struct mm_struct
*mm
= rq
->prev_mm
;
2672 int post_schedule
= 0;
2674 if (current
->sched_class
->needs_post_schedule
)
2675 post_schedule
= current
->sched_class
->needs_post_schedule(rq
);
2681 * A task struct has one reference for the use as "current".
2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
2685 * The test for TASK_DEAD must occur while the runqueue locks are
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2689 * Manfred Spraul <manfred@colorfullife.com>
2691 prev_state
= prev
->state
;
2692 finish_arch_switch(prev
);
2693 finish_lock_switch(rq
, prev
);
2696 current
->sched_class
->post_schedule(rq
);
2699 fire_sched_in_preempt_notifiers(current
);
2702 if (unlikely(prev_state
== TASK_DEAD
)) {
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
2707 kprobe_flush_task(prev
);
2708 put_task_struct(prev
);
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2716 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2717 __releases(rq
->lock
)
2719 struct rq
*rq
= this_rq();
2721 finish_task_switch(rq
, prev
);
2722 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2726 if (current
->set_child_tid
)
2727 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2735 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2736 struct task_struct
*next
)
2738 struct mm_struct
*mm
, *oldmm
;
2740 prepare_task_switch(rq
, prev
, next
);
2741 trace_sched_switch(rq
, prev
, next
);
2743 oldmm
= prev
->active_mm
;
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2749 arch_enter_lazy_cpu_mode();
2751 if (unlikely(!mm
)) {
2752 next
->active_mm
= oldmm
;
2753 atomic_inc(&oldmm
->mm_count
);
2754 enter_lazy_tlb(oldmm
, next
);
2756 switch_mm(oldmm
, mm
, next
);
2758 if (unlikely(!prev
->mm
)) {
2759 prev
->active_mm
= NULL
;
2760 rq
->prev_mm
= oldmm
;
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2768 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2769 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev
, next
, prev
);
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2781 finish_task_switch(this_rq(), prev
);
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2791 unsigned long nr_running(void)
2793 unsigned long i
, sum
= 0;
2795 for_each_online_cpu(i
)
2796 sum
+= cpu_rq(i
)->nr_running
;
2801 unsigned long nr_uninterruptible(void)
2803 unsigned long i
, sum
= 0;
2805 for_each_possible_cpu(i
)
2806 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2812 if (unlikely((long)sum
< 0))
2818 unsigned long long nr_context_switches(void)
2821 unsigned long long sum
= 0;
2823 for_each_possible_cpu(i
)
2824 sum
+= cpu_rq(i
)->nr_switches
;
2829 unsigned long nr_iowait(void)
2831 unsigned long i
, sum
= 0;
2833 for_each_possible_cpu(i
)
2834 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2839 unsigned long nr_active(void)
2841 unsigned long i
, running
= 0, uninterruptible
= 0;
2843 for_each_online_cpu(i
) {
2844 running
+= cpu_rq(i
)->nr_running
;
2845 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2848 if (unlikely((long)uninterruptible
< 0))
2849 uninterruptible
= 0;
2851 return running
+ uninterruptible
;
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
2858 static void update_cpu_load(struct rq
*this_rq
)
2860 unsigned long this_load
= this_rq
->load
.weight
;
2863 this_rq
->nr_load_updates
++;
2865 /* Update our load: */
2866 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2867 unsigned long old_load
, new_load
;
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2871 old_load
= this_rq
->cpu_load
[i
];
2872 new_load
= this_load
;
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2878 if (new_load
> old_load
)
2879 new_load
+= scale
-1;
2880 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2887 * double_rq_lock - safely lock two runqueues
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2892 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2893 __acquires(rq1
->lock
)
2894 __acquires(rq2
->lock
)
2896 BUG_ON(!irqs_disabled());
2898 spin_lock(&rq1
->lock
);
2899 __acquire(rq2
->lock
); /* Fake it out ;) */
2902 spin_lock(&rq1
->lock
);
2903 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2905 spin_lock(&rq2
->lock
);
2906 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2909 update_rq_clock(rq1
);
2910 update_rq_clock(rq2
);
2914 * double_rq_unlock - safely unlock two runqueues
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2919 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2920 __releases(rq1
->lock
)
2921 __releases(rq2
->lock
)
2923 spin_unlock(&rq1
->lock
);
2925 spin_unlock(&rq2
->lock
);
2927 __release(rq2
->lock
);
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2934 * the cpu_allowed mask is restored.
2936 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2938 struct migration_req req
;
2939 unsigned long flags
;
2942 rq
= task_rq_lock(p
, &flags
);
2943 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
2944 || unlikely(!cpu_active(dest_cpu
)))
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p
, dest_cpu
, &req
)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct
*mt
= rq
->migration_thread
;
2952 get_task_struct(mt
);
2953 task_rq_unlock(rq
, &flags
);
2954 wake_up_process(mt
);
2955 put_task_struct(mt
);
2956 wait_for_completion(&req
.done
);
2961 task_rq_unlock(rq
, &flags
);
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
2968 void sched_exec(void)
2970 int new_cpu
, this_cpu
= get_cpu();
2971 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2973 if (new_cpu
!= this_cpu
)
2974 sched_migrate_task(current
, new_cpu
);
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2981 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2982 struct rq
*this_rq
, int this_cpu
)
2984 deactivate_task(src_rq
, p
, 0);
2985 set_task_cpu(p
, this_cpu
);
2986 activate_task(this_rq
, p
, 0);
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2991 check_preempt_curr(this_rq
, p
, 0);
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2998 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2999 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3002 int tsk_cache_hot
= 0;
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3009 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3010 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3015 if (task_running(rq
, p
)) {
3016 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3026 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3027 if (!tsk_cache_hot
||
3028 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3029 #ifdef CONFIG_SCHEDSTATS
3030 if (tsk_cache_hot
) {
3031 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3032 schedstat_inc(p
, se
.nr_forced_migrations
);
3038 if (tsk_cache_hot
) {
3039 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3045 static unsigned long
3046 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3047 unsigned long max_load_move
, struct sched_domain
*sd
,
3048 enum cpu_idle_type idle
, int *all_pinned
,
3049 int *this_best_prio
, struct rq_iterator
*iterator
)
3051 int loops
= 0, pulled
= 0, pinned
= 0;
3052 struct task_struct
*p
;
3053 long rem_load_move
= max_load_move
;
3055 if (max_load_move
== 0)
3061 * Start the load-balancing iterator:
3063 p
= iterator
->start(iterator
->arg
);
3065 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3068 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3069 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3070 p
= iterator
->next(iterator
->arg
);
3074 pull_task(busiest
, p
, this_rq
, this_cpu
);
3076 rem_load_move
-= p
->se
.load
.weight
;
3078 #ifdef CONFIG_PREEMPT
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3084 if (idle
== CPU_NEWLY_IDLE
)
3089 * We only want to steal up to the prescribed amount of weighted load.
3091 if (rem_load_move
> 0) {
3092 if (p
->prio
< *this_best_prio
)
3093 *this_best_prio
= p
->prio
;
3094 p
= iterator
->next(iterator
->arg
);
3099 * Right now, this is one of only two places pull_task() is called,
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3103 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3106 *all_pinned
= pinned
;
3108 return max_load_move
- rem_load_move
;
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
3116 * Called with both runqueues locked.
3118 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3119 unsigned long max_load_move
,
3120 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3123 const struct sched_class
*class = sched_class_highest
;
3124 unsigned long total_load_moved
= 0;
3125 int this_best_prio
= this_rq
->curr
->prio
;
3129 class->load_balance(this_rq
, this_cpu
, busiest
,
3130 max_load_move
- total_load_moved
,
3131 sd
, idle
, all_pinned
, &this_best_prio
);
3132 class = class->next
;
3134 #ifdef CONFIG_PREEMPT
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3140 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3143 } while (class && max_load_move
> total_load_moved
);
3145 return total_load_moved
> 0;
3149 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3150 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3151 struct rq_iterator
*iterator
)
3153 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3157 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3158 pull_task(busiest
, p
, this_rq
, this_cpu
);
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3164 schedstat_inc(sd
, lb_gained
[idle
]);
3168 p
= iterator
->next(iterator
->arg
);
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3179 * Called with both runqueues locked.
3181 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3182 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3184 const struct sched_class
*class;
3186 for (class = sched_class_highest
; class; class = class->next
)
3187 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3192 /********** Helpers for find_busiest_group ************************/
3195 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3196 * @group: The group whose first cpu is to be returned.
3198 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3200 return cpumask_first(sched_group_cpus(group
));
3204 * get_sd_load_idx - Obtain the load index for a given sched domain.
3205 * @sd: The sched_domain whose load_idx is to be obtained.
3206 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3208 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3209 enum cpu_idle_type idle
)
3215 load_idx
= sd
->busy_idx
;
3218 case CPU_NEWLY_IDLE
:
3219 load_idx
= sd
->newidle_idx
;
3222 load_idx
= sd
->idle_idx
;
3228 /******* find_busiest_group() helpers end here *********************/
3231 * find_busiest_group finds and returns the busiest CPU group within the
3232 * domain. It calculates and returns the amount of weighted load which
3233 * should be moved to restore balance via the imbalance parameter.
3235 static struct sched_group
*
3236 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3237 unsigned long *imbalance
, enum cpu_idle_type idle
,
3238 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3240 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3241 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3242 unsigned long max_pull
;
3243 unsigned long busiest_load_per_task
, busiest_nr_running
;
3244 unsigned long this_load_per_task
, this_nr_running
;
3245 int load_idx
, group_imb
= 0;
3246 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3247 int power_savings_balance
= 1;
3248 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3249 unsigned long min_nr_running
= ULONG_MAX
;
3250 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3253 max_load
= this_load
= total_load
= total_pwr
= 0;
3254 busiest_load_per_task
= busiest_nr_running
= 0;
3255 this_load_per_task
= this_nr_running
= 0;
3257 load_idx
= get_sd_load_idx(sd
, idle
);
3260 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3263 int __group_imb
= 0;
3264 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3265 unsigned long sum_nr_running
, sum_weighted_load
;
3266 unsigned long sum_avg_load_per_task
;
3267 unsigned long avg_load_per_task
;
3269 local_group
= cpumask_test_cpu(this_cpu
,
3270 sched_group_cpus(group
));
3273 balance_cpu
= group_first_cpu(group
);
3275 /* Tally up the load of all CPUs in the group */
3276 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3277 sum_avg_load_per_task
= avg_load_per_task
= 0;
3280 min_cpu_load
= ~0UL;
3282 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3283 struct rq
*rq
= cpu_rq(i
);
3285 if (*sd_idle
&& rq
->nr_running
)
3288 /* Bias balancing toward cpus of our domain */
3290 if (idle_cpu(i
) && !first_idle_cpu
) {
3295 load
= target_load(i
, load_idx
);
3297 load
= source_load(i
, load_idx
);
3298 if (load
> max_cpu_load
)
3299 max_cpu_load
= load
;
3300 if (min_cpu_load
> load
)
3301 min_cpu_load
= load
;
3305 sum_nr_running
+= rq
->nr_running
;
3306 sum_weighted_load
+= weighted_cpuload(i
);
3308 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3312 * First idle cpu or the first cpu(busiest) in this sched group
3313 * is eligible for doing load balancing at this and above
3314 * domains. In the newly idle case, we will allow all the cpu's
3315 * to do the newly idle load balance.
3317 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3318 balance_cpu
!= this_cpu
&& balance
) {
3323 total_load
+= avg_load
;
3324 total_pwr
+= group
->__cpu_power
;
3326 /* Adjust by relative CPU power of the group */
3327 avg_load
= sg_div_cpu_power(group
,
3328 avg_load
* SCHED_LOAD_SCALE
);
3332 * Consider the group unbalanced when the imbalance is larger
3333 * than the average weight of two tasks.
3335 * APZ: with cgroup the avg task weight can vary wildly and
3336 * might not be a suitable number - should we keep a
3337 * normalized nr_running number somewhere that negates
3340 avg_load_per_task
= sg_div_cpu_power(group
,
3341 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3343 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3346 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3349 this_load
= avg_load
;
3351 this_nr_running
= sum_nr_running
;
3352 this_load_per_task
= sum_weighted_load
;
3353 } else if (avg_load
> max_load
&&
3354 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3355 max_load
= avg_load
;
3357 busiest_nr_running
= sum_nr_running
;
3358 busiest_load_per_task
= sum_weighted_load
;
3359 group_imb
= __group_imb
;
3362 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3364 * Busy processors will not participate in power savings
3367 if (idle
== CPU_NOT_IDLE
||
3368 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3372 * If the local group is idle or completely loaded
3373 * no need to do power savings balance at this domain
3375 if (local_group
&& (this_nr_running
>= group_capacity
||
3377 power_savings_balance
= 0;
3380 * If a group is already running at full capacity or idle,
3381 * don't include that group in power savings calculations
3383 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3388 * Calculate the group which has the least non-idle load.
3389 * This is the group from where we need to pick up the load
3392 if ((sum_nr_running
< min_nr_running
) ||
3393 (sum_nr_running
== min_nr_running
&&
3394 group_first_cpu(group
) > group_first_cpu(group_min
))) {
3396 min_nr_running
= sum_nr_running
;
3397 min_load_per_task
= sum_weighted_load
/
3402 * Calculate the group which is almost near its
3403 * capacity but still has some space to pick up some load
3404 * from other group and save more power
3406 if (sum_nr_running
<= group_capacity
- 1) {
3407 if (sum_nr_running
> leader_nr_running
||
3408 (sum_nr_running
== leader_nr_running
&&
3409 group_first_cpu(group
) <
3410 group_first_cpu(group_leader
))) {
3411 group_leader
= group
;
3412 leader_nr_running
= sum_nr_running
;
3417 group
= group
->next
;
3418 } while (group
!= sd
->groups
);
3420 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3423 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3425 if (this_load
>= avg_load
||
3426 100*max_load
<= sd
->imbalance_pct
*this_load
)
3429 busiest_load_per_task
/= busiest_nr_running
;
3431 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3434 * We're trying to get all the cpus to the average_load, so we don't
3435 * want to push ourselves above the average load, nor do we wish to
3436 * reduce the max loaded cpu below the average load, as either of these
3437 * actions would just result in more rebalancing later, and ping-pong
3438 * tasks around. Thus we look for the minimum possible imbalance.
3439 * Negative imbalances (*we* are more loaded than anyone else) will
3440 * be counted as no imbalance for these purposes -- we can't fix that
3441 * by pulling tasks to us. Be careful of negative numbers as they'll
3442 * appear as very large values with unsigned longs.
3444 if (max_load
<= busiest_load_per_task
)
3448 * In the presence of smp nice balancing, certain scenarios can have
3449 * max load less than avg load(as we skip the groups at or below
3450 * its cpu_power, while calculating max_load..)
3452 if (max_load
< avg_load
) {
3454 goto small_imbalance
;
3457 /* Don't want to pull so many tasks that a group would go idle */
3458 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3460 /* How much load to actually move to equalise the imbalance */
3461 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3462 (avg_load
- this_load
) * this->__cpu_power
)
3466 * if *imbalance is less than the average load per runnable task
3467 * there is no gaurantee that any tasks will be moved so we'll have
3468 * a think about bumping its value to force at least one task to be
3471 if (*imbalance
< busiest_load_per_task
) {
3472 unsigned long tmp
, pwr_now
, pwr_move
;
3476 pwr_move
= pwr_now
= 0;
3478 if (this_nr_running
) {
3479 this_load_per_task
/= this_nr_running
;
3480 if (busiest_load_per_task
> this_load_per_task
)
3483 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3485 if (max_load
- this_load
+ busiest_load_per_task
>=
3486 busiest_load_per_task
* imbn
) {
3487 *imbalance
= busiest_load_per_task
;
3492 * OK, we don't have enough imbalance to justify moving tasks,
3493 * however we may be able to increase total CPU power used by
3497 pwr_now
+= busiest
->__cpu_power
*
3498 min(busiest_load_per_task
, max_load
);
3499 pwr_now
+= this->__cpu_power
*
3500 min(this_load_per_task
, this_load
);
3501 pwr_now
/= SCHED_LOAD_SCALE
;
3503 /* Amount of load we'd subtract */
3504 tmp
= sg_div_cpu_power(busiest
,
3505 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3507 pwr_move
+= busiest
->__cpu_power
*
3508 min(busiest_load_per_task
, max_load
- tmp
);
3510 /* Amount of load we'd add */
3511 if (max_load
* busiest
->__cpu_power
<
3512 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3513 tmp
= sg_div_cpu_power(this,
3514 max_load
* busiest
->__cpu_power
);
3516 tmp
= sg_div_cpu_power(this,
3517 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3518 pwr_move
+= this->__cpu_power
*
3519 min(this_load_per_task
, this_load
+ tmp
);
3520 pwr_move
/= SCHED_LOAD_SCALE
;
3522 /* Move if we gain throughput */
3523 if (pwr_move
> pwr_now
)
3524 *imbalance
= busiest_load_per_task
;
3530 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3531 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3534 if (this == group_leader
&& group_leader
!= group_min
) {
3535 *imbalance
= min_load_per_task
;
3536 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3537 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3538 group_first_cpu(group_leader
);
3549 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3552 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3553 unsigned long imbalance
, const struct cpumask
*cpus
)
3555 struct rq
*busiest
= NULL
, *rq
;
3556 unsigned long max_load
= 0;
3559 for_each_cpu(i
, sched_group_cpus(group
)) {
3562 if (!cpumask_test_cpu(i
, cpus
))
3566 wl
= weighted_cpuload(i
);
3568 if (rq
->nr_running
== 1 && wl
> imbalance
)
3571 if (wl
> max_load
) {
3581 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3582 * so long as it is large enough.
3584 #define MAX_PINNED_INTERVAL 512
3587 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3588 * tasks if there is an imbalance.
3590 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3591 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3592 int *balance
, struct cpumask
*cpus
)
3594 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3595 struct sched_group
*group
;
3596 unsigned long imbalance
;
3598 unsigned long flags
;
3600 cpumask_setall(cpus
);
3603 * When power savings policy is enabled for the parent domain, idle
3604 * sibling can pick up load irrespective of busy siblings. In this case,
3605 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3606 * portraying it as CPU_NOT_IDLE.
3608 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3609 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3612 schedstat_inc(sd
, lb_count
[idle
]);
3616 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3623 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3627 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3629 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3633 BUG_ON(busiest
== this_rq
);
3635 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3638 if (busiest
->nr_running
> 1) {
3640 * Attempt to move tasks. If find_busiest_group has found
3641 * an imbalance but busiest->nr_running <= 1, the group is
3642 * still unbalanced. ld_moved simply stays zero, so it is
3643 * correctly treated as an imbalance.
3645 local_irq_save(flags
);
3646 double_rq_lock(this_rq
, busiest
);
3647 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3648 imbalance
, sd
, idle
, &all_pinned
);
3649 double_rq_unlock(this_rq
, busiest
);
3650 local_irq_restore(flags
);
3653 * some other cpu did the load balance for us.
3655 if (ld_moved
&& this_cpu
!= smp_processor_id())
3656 resched_cpu(this_cpu
);
3658 /* All tasks on this runqueue were pinned by CPU affinity */
3659 if (unlikely(all_pinned
)) {
3660 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3661 if (!cpumask_empty(cpus
))
3668 schedstat_inc(sd
, lb_failed
[idle
]);
3669 sd
->nr_balance_failed
++;
3671 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3673 spin_lock_irqsave(&busiest
->lock
, flags
);
3675 /* don't kick the migration_thread, if the curr
3676 * task on busiest cpu can't be moved to this_cpu
3678 if (!cpumask_test_cpu(this_cpu
,
3679 &busiest
->curr
->cpus_allowed
)) {
3680 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3682 goto out_one_pinned
;
3685 if (!busiest
->active_balance
) {
3686 busiest
->active_balance
= 1;
3687 busiest
->push_cpu
= this_cpu
;
3690 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3692 wake_up_process(busiest
->migration_thread
);
3695 * We've kicked active balancing, reset the failure
3698 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3701 sd
->nr_balance_failed
= 0;
3703 if (likely(!active_balance
)) {
3704 /* We were unbalanced, so reset the balancing interval */
3705 sd
->balance_interval
= sd
->min_interval
;
3708 * If we've begun active balancing, start to back off. This
3709 * case may not be covered by the all_pinned logic if there
3710 * is only 1 task on the busy runqueue (because we don't call
3713 if (sd
->balance_interval
< sd
->max_interval
)
3714 sd
->balance_interval
*= 2;
3717 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3718 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3724 schedstat_inc(sd
, lb_balanced
[idle
]);
3726 sd
->nr_balance_failed
= 0;
3729 /* tune up the balancing interval */
3730 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3731 (sd
->balance_interval
< sd
->max_interval
))
3732 sd
->balance_interval
*= 2;
3734 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3735 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3746 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3747 * tasks if there is an imbalance.
3749 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3750 * this_rq is locked.
3753 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3754 struct cpumask
*cpus
)
3756 struct sched_group
*group
;
3757 struct rq
*busiest
= NULL
;
3758 unsigned long imbalance
;
3763 cpumask_setall(cpus
);
3766 * When power savings policy is enabled for the parent domain, idle
3767 * sibling can pick up load irrespective of busy siblings. In this case,
3768 * let the state of idle sibling percolate up as IDLE, instead of
3769 * portraying it as CPU_NOT_IDLE.
3771 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3772 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3775 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3777 update_shares_locked(this_rq
, sd
);
3778 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3779 &sd_idle
, cpus
, NULL
);
3781 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3785 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3787 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3791 BUG_ON(busiest
== this_rq
);
3793 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3796 if (busiest
->nr_running
> 1) {
3797 /* Attempt to move tasks */
3798 double_lock_balance(this_rq
, busiest
);
3799 /* this_rq->clock is already updated */
3800 update_rq_clock(busiest
);
3801 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3802 imbalance
, sd
, CPU_NEWLY_IDLE
,
3804 double_unlock_balance(this_rq
, busiest
);
3806 if (unlikely(all_pinned
)) {
3807 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3808 if (!cpumask_empty(cpus
))
3814 int active_balance
= 0;
3816 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3817 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3818 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3821 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3824 if (sd
->nr_balance_failed
++ < 2)
3828 * The only task running in a non-idle cpu can be moved to this
3829 * cpu in an attempt to completely freeup the other CPU
3830 * package. The same method used to move task in load_balance()
3831 * have been extended for load_balance_newidle() to speedup
3832 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3834 * The package power saving logic comes from
3835 * find_busiest_group(). If there are no imbalance, then
3836 * f_b_g() will return NULL. However when sched_mc={1,2} then
3837 * f_b_g() will select a group from which a running task may be
3838 * pulled to this cpu in order to make the other package idle.
3839 * If there is no opportunity to make a package idle and if
3840 * there are no imbalance, then f_b_g() will return NULL and no
3841 * action will be taken in load_balance_newidle().
3843 * Under normal task pull operation due to imbalance, there
3844 * will be more than one task in the source run queue and
3845 * move_tasks() will succeed. ld_moved will be true and this
3846 * active balance code will not be triggered.
3849 /* Lock busiest in correct order while this_rq is held */
3850 double_lock_balance(this_rq
, busiest
);
3853 * don't kick the migration_thread, if the curr
3854 * task on busiest cpu can't be moved to this_cpu
3856 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
3857 double_unlock_balance(this_rq
, busiest
);
3862 if (!busiest
->active_balance
) {
3863 busiest
->active_balance
= 1;
3864 busiest
->push_cpu
= this_cpu
;
3868 double_unlock_balance(this_rq
, busiest
);
3870 * Should not call ttwu while holding a rq->lock
3872 spin_unlock(&this_rq
->lock
);
3874 wake_up_process(busiest
->migration_thread
);
3875 spin_lock(&this_rq
->lock
);
3878 sd
->nr_balance_failed
= 0;
3880 update_shares_locked(this_rq
, sd
);
3884 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3885 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3886 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3888 sd
->nr_balance_failed
= 0;
3894 * idle_balance is called by schedule() if this_cpu is about to become
3895 * idle. Attempts to pull tasks from other CPUs.
3897 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3899 struct sched_domain
*sd
;
3900 int pulled_task
= 0;
3901 unsigned long next_balance
= jiffies
+ HZ
;
3902 cpumask_var_t tmpmask
;
3904 if (!alloc_cpumask_var(&tmpmask
, GFP_ATOMIC
))
3907 for_each_domain(this_cpu
, sd
) {
3908 unsigned long interval
;
3910 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3913 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3914 /* If we've pulled tasks over stop searching: */
3915 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3918 interval
= msecs_to_jiffies(sd
->balance_interval
);
3919 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3920 next_balance
= sd
->last_balance
+ interval
;
3924 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3926 * We are going idle. next_balance may be set based on
3927 * a busy processor. So reset next_balance.
3929 this_rq
->next_balance
= next_balance
;
3931 free_cpumask_var(tmpmask
);
3935 * active_load_balance is run by migration threads. It pushes running tasks
3936 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3937 * running on each physical CPU where possible, and avoids physical /
3938 * logical imbalances.
3940 * Called with busiest_rq locked.
3942 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3944 int target_cpu
= busiest_rq
->push_cpu
;
3945 struct sched_domain
*sd
;
3946 struct rq
*target_rq
;
3948 /* Is there any task to move? */
3949 if (busiest_rq
->nr_running
<= 1)
3952 target_rq
= cpu_rq(target_cpu
);
3955 * This condition is "impossible", if it occurs
3956 * we need to fix it. Originally reported by
3957 * Bjorn Helgaas on a 128-cpu setup.
3959 BUG_ON(busiest_rq
== target_rq
);
3961 /* move a task from busiest_rq to target_rq */
3962 double_lock_balance(busiest_rq
, target_rq
);
3963 update_rq_clock(busiest_rq
);
3964 update_rq_clock(target_rq
);
3966 /* Search for an sd spanning us and the target CPU. */
3967 for_each_domain(target_cpu
, sd
) {
3968 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3969 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3974 schedstat_inc(sd
, alb_count
);
3976 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3978 schedstat_inc(sd
, alb_pushed
);
3980 schedstat_inc(sd
, alb_failed
);
3982 double_unlock_balance(busiest_rq
, target_rq
);
3987 atomic_t load_balancer
;
3988 cpumask_var_t cpu_mask
;
3989 } nohz ____cacheline_aligned
= {
3990 .load_balancer
= ATOMIC_INIT(-1),
3994 * This routine will try to nominate the ilb (idle load balancing)
3995 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3996 * load balancing on behalf of all those cpus. If all the cpus in the system
3997 * go into this tickless mode, then there will be no ilb owner (as there is
3998 * no need for one) and all the cpus will sleep till the next wakeup event
4001 * For the ilb owner, tick is not stopped. And this tick will be used
4002 * for idle load balancing. ilb owner will still be part of
4005 * While stopping the tick, this cpu will become the ilb owner if there
4006 * is no other owner. And will be the owner till that cpu becomes busy
4007 * or if all cpus in the system stop their ticks at which point
4008 * there is no need for ilb owner.
4010 * When the ilb owner becomes busy, it nominates another owner, during the
4011 * next busy scheduler_tick()
4013 int select_nohz_load_balancer(int stop_tick
)
4015 int cpu
= smp_processor_id();
4018 cpu_rq(cpu
)->in_nohz_recently
= 1;
4020 if (!cpu_active(cpu
)) {
4021 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4025 * If we are going offline and still the leader,
4028 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4034 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4036 /* time for ilb owner also to sleep */
4037 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4038 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4039 atomic_set(&nohz
.load_balancer
, -1);
4043 if (atomic_read(&nohz
.load_balancer
) == -1) {
4044 /* make me the ilb owner */
4045 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4047 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
4050 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4053 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4055 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4056 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4063 static DEFINE_SPINLOCK(balancing
);
4066 * It checks each scheduling domain to see if it is due to be balanced,
4067 * and initiates a balancing operation if so.
4069 * Balancing parameters are set up in arch_init_sched_domains.
4071 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4074 struct rq
*rq
= cpu_rq(cpu
);
4075 unsigned long interval
;
4076 struct sched_domain
*sd
;
4077 /* Earliest time when we have to do rebalance again */
4078 unsigned long next_balance
= jiffies
+ 60*HZ
;
4079 int update_next_balance
= 0;
4083 /* Fails alloc? Rebalancing probably not a priority right now. */
4084 if (!alloc_cpumask_var(&tmp
, GFP_ATOMIC
))
4087 for_each_domain(cpu
, sd
) {
4088 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4091 interval
= sd
->balance_interval
;
4092 if (idle
!= CPU_IDLE
)
4093 interval
*= sd
->busy_factor
;
4095 /* scale ms to jiffies */
4096 interval
= msecs_to_jiffies(interval
);
4097 if (unlikely(!interval
))
4099 if (interval
> HZ
*NR_CPUS
/10)
4100 interval
= HZ
*NR_CPUS
/10;
4102 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4104 if (need_serialize
) {
4105 if (!spin_trylock(&balancing
))
4109 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4110 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, tmp
)) {
4112 * We've pulled tasks over so either we're no
4113 * longer idle, or one of our SMT siblings is
4116 idle
= CPU_NOT_IDLE
;
4118 sd
->last_balance
= jiffies
;
4121 spin_unlock(&balancing
);
4123 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4124 next_balance
= sd
->last_balance
+ interval
;
4125 update_next_balance
= 1;
4129 * Stop the load balance at this level. There is another
4130 * CPU in our sched group which is doing load balancing more
4138 * next_balance will be updated only when there is a need.
4139 * When the cpu is attached to null domain for ex, it will not be
4142 if (likely(update_next_balance
))
4143 rq
->next_balance
= next_balance
;
4145 free_cpumask_var(tmp
);
4149 * run_rebalance_domains is triggered when needed from the scheduler tick.
4150 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4151 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4153 static void run_rebalance_domains(struct softirq_action
*h
)
4155 int this_cpu
= smp_processor_id();
4156 struct rq
*this_rq
= cpu_rq(this_cpu
);
4157 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4158 CPU_IDLE
: CPU_NOT_IDLE
;
4160 rebalance_domains(this_cpu
, idle
);
4164 * If this cpu is the owner for idle load balancing, then do the
4165 * balancing on behalf of the other idle cpus whose ticks are
4168 if (this_rq
->idle_at_tick
&&
4169 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4173 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4174 if (balance_cpu
== this_cpu
)
4178 * If this cpu gets work to do, stop the load balancing
4179 * work being done for other cpus. Next load
4180 * balancing owner will pick it up.
4185 rebalance_domains(balance_cpu
, CPU_IDLE
);
4187 rq
= cpu_rq(balance_cpu
);
4188 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4189 this_rq
->next_balance
= rq
->next_balance
;
4195 static inline int on_null_domain(int cpu
)
4197 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4201 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4203 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4204 * idle load balancing owner or decide to stop the periodic load balancing,
4205 * if the whole system is idle.
4207 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4211 * If we were in the nohz mode recently and busy at the current
4212 * scheduler tick, then check if we need to nominate new idle
4215 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4216 rq
->in_nohz_recently
= 0;
4218 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4219 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4220 atomic_set(&nohz
.load_balancer
, -1);
4223 if (atomic_read(&nohz
.load_balancer
) == -1) {
4225 * simple selection for now: Nominate the
4226 * first cpu in the nohz list to be the next
4229 * TBD: Traverse the sched domains and nominate
4230 * the nearest cpu in the nohz.cpu_mask.
4232 int ilb
= cpumask_first(nohz
.cpu_mask
);
4234 if (ilb
< nr_cpu_ids
)
4240 * If this cpu is idle and doing idle load balancing for all the
4241 * cpus with ticks stopped, is it time for that to stop?
4243 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4244 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4250 * If this cpu is idle and the idle load balancing is done by
4251 * someone else, then no need raise the SCHED_SOFTIRQ
4253 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4254 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4257 /* Don't need to rebalance while attached to NULL domain */
4258 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4259 likely(!on_null_domain(cpu
)))
4260 raise_softirq(SCHED_SOFTIRQ
);
4263 #else /* CONFIG_SMP */
4266 * on UP we do not need to balance between CPUs:
4268 static inline void idle_balance(int cpu
, struct rq
*rq
)
4274 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4276 EXPORT_PER_CPU_SYMBOL(kstat
);
4279 * Return any ns on the sched_clock that have not yet been banked in
4280 * @p in case that task is currently running.
4282 unsigned long long task_delta_exec(struct task_struct
*p
)
4284 unsigned long flags
;
4288 rq
= task_rq_lock(p
, &flags
);
4290 if (task_current(rq
, p
)) {
4293 update_rq_clock(rq
);
4294 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4295 if ((s64
)delta_exec
> 0)
4299 task_rq_unlock(rq
, &flags
);
4305 * Account user cpu time to a process.
4306 * @p: the process that the cpu time gets accounted to
4307 * @cputime: the cpu time spent in user space since the last update
4308 * @cputime_scaled: cputime scaled by cpu frequency
4310 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4311 cputime_t cputime_scaled
)
4313 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4316 /* Add user time to process. */
4317 p
->utime
= cputime_add(p
->utime
, cputime
);
4318 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4319 account_group_user_time(p
, cputime
);
4321 /* Add user time to cpustat. */
4322 tmp
= cputime_to_cputime64(cputime
);
4323 if (TASK_NICE(p
) > 0)
4324 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4326 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4327 /* Account for user time used */
4328 acct_update_integrals(p
);
4332 * Account guest cpu time to a process.
4333 * @p: the process that the cpu time gets accounted to
4334 * @cputime: the cpu time spent in virtual machine since the last update
4335 * @cputime_scaled: cputime scaled by cpu frequency
4337 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4338 cputime_t cputime_scaled
)
4341 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4343 tmp
= cputime_to_cputime64(cputime
);
4345 /* Add guest time to process. */
4346 p
->utime
= cputime_add(p
->utime
, cputime
);
4347 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4348 account_group_user_time(p
, cputime
);
4349 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4351 /* Add guest time to cpustat. */
4352 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4353 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4357 * Account system cpu time to a process.
4358 * @p: the process that the cpu time gets accounted to
4359 * @hardirq_offset: the offset to subtract from hardirq_count()
4360 * @cputime: the cpu time spent in kernel space since the last update
4361 * @cputime_scaled: cputime scaled by cpu frequency
4363 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4364 cputime_t cputime
, cputime_t cputime_scaled
)
4366 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4369 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4370 account_guest_time(p
, cputime
, cputime_scaled
);
4374 /* Add system time to process. */
4375 p
->stime
= cputime_add(p
->stime
, cputime
);
4376 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4377 account_group_system_time(p
, cputime
);
4379 /* Add system time to cpustat. */
4380 tmp
= cputime_to_cputime64(cputime
);
4381 if (hardirq_count() - hardirq_offset
)
4382 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4383 else if (softirq_count())
4384 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4386 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4388 /* Account for system time used */
4389 acct_update_integrals(p
);
4393 * Account for involuntary wait time.
4394 * @steal: the cpu time spent in involuntary wait
4396 void account_steal_time(cputime_t cputime
)
4398 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4399 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4401 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4405 * Account for idle time.
4406 * @cputime: the cpu time spent in idle wait
4408 void account_idle_time(cputime_t cputime
)
4410 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4411 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4412 struct rq
*rq
= this_rq();
4414 if (atomic_read(&rq
->nr_iowait
) > 0)
4415 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4417 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4420 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4423 * Account a single tick of cpu time.
4424 * @p: the process that the cpu time gets accounted to
4425 * @user_tick: indicates if the tick is a user or a system tick
4427 void account_process_tick(struct task_struct
*p
, int user_tick
)
4429 cputime_t one_jiffy
= jiffies_to_cputime(1);
4430 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
4431 struct rq
*rq
= this_rq();
4434 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
4435 else if (p
!= rq
->idle
)
4436 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
4439 account_idle_time(one_jiffy
);
4443 * Account multiple ticks of steal time.
4444 * @p: the process from which the cpu time has been stolen
4445 * @ticks: number of stolen ticks
4447 void account_steal_ticks(unsigned long ticks
)
4449 account_steal_time(jiffies_to_cputime(ticks
));
4453 * Account multiple ticks of idle time.
4454 * @ticks: number of stolen ticks
4456 void account_idle_ticks(unsigned long ticks
)
4458 account_idle_time(jiffies_to_cputime(ticks
));
4464 * Use precise platform statistics if available:
4466 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4467 cputime_t
task_utime(struct task_struct
*p
)
4472 cputime_t
task_stime(struct task_struct
*p
)
4477 cputime_t
task_utime(struct task_struct
*p
)
4479 clock_t utime
= cputime_to_clock_t(p
->utime
),
4480 total
= utime
+ cputime_to_clock_t(p
->stime
);
4484 * Use CFS's precise accounting:
4486 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4490 do_div(temp
, total
);
4492 utime
= (clock_t)temp
;
4494 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4495 return p
->prev_utime
;
4498 cputime_t
task_stime(struct task_struct
*p
)
4503 * Use CFS's precise accounting. (we subtract utime from
4504 * the total, to make sure the total observed by userspace
4505 * grows monotonically - apps rely on that):
4507 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4508 cputime_to_clock_t(task_utime(p
));
4511 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4513 return p
->prev_stime
;
4517 inline cputime_t
task_gtime(struct task_struct
*p
)
4523 * This function gets called by the timer code, with HZ frequency.
4524 * We call it with interrupts disabled.
4526 * It also gets called by the fork code, when changing the parent's
4529 void scheduler_tick(void)
4531 int cpu
= smp_processor_id();
4532 struct rq
*rq
= cpu_rq(cpu
);
4533 struct task_struct
*curr
= rq
->curr
;
4537 spin_lock(&rq
->lock
);
4538 update_rq_clock(rq
);
4539 update_cpu_load(rq
);
4540 curr
->sched_class
->task_tick(rq
, curr
, 0);
4541 spin_unlock(&rq
->lock
);
4544 rq
->idle_at_tick
= idle_cpu(cpu
);
4545 trigger_load_balance(rq
, cpu
);
4549 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4550 defined(CONFIG_PREEMPT_TRACER))
4552 static inline unsigned long get_parent_ip(unsigned long addr
)
4554 if (in_lock_functions(addr
)) {
4555 addr
= CALLER_ADDR2
;
4556 if (in_lock_functions(addr
))
4557 addr
= CALLER_ADDR3
;
4562 void __kprobes
add_preempt_count(int val
)
4564 #ifdef CONFIG_DEBUG_PREEMPT
4568 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4571 preempt_count() += val
;
4572 #ifdef CONFIG_DEBUG_PREEMPT
4574 * Spinlock count overflowing soon?
4576 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4579 if (preempt_count() == val
)
4580 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4582 EXPORT_SYMBOL(add_preempt_count
);
4584 void __kprobes
sub_preempt_count(int val
)
4586 #ifdef CONFIG_DEBUG_PREEMPT
4590 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4593 * Is the spinlock portion underflowing?
4595 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4596 !(preempt_count() & PREEMPT_MASK
)))
4600 if (preempt_count() == val
)
4601 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4602 preempt_count() -= val
;
4604 EXPORT_SYMBOL(sub_preempt_count
);
4609 * Print scheduling while atomic bug:
4611 static noinline
void __schedule_bug(struct task_struct
*prev
)
4613 struct pt_regs
*regs
= get_irq_regs();
4615 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4616 prev
->comm
, prev
->pid
, preempt_count());
4618 debug_show_held_locks(prev
);
4620 if (irqs_disabled())
4621 print_irqtrace_events(prev
);
4630 * Various schedule()-time debugging checks and statistics:
4632 static inline void schedule_debug(struct task_struct
*prev
)
4635 * Test if we are atomic. Since do_exit() needs to call into
4636 * schedule() atomically, we ignore that path for now.
4637 * Otherwise, whine if we are scheduling when we should not be.
4639 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4640 __schedule_bug(prev
);
4642 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4644 schedstat_inc(this_rq(), sched_count
);
4645 #ifdef CONFIG_SCHEDSTATS
4646 if (unlikely(prev
->lock_depth
>= 0)) {
4647 schedstat_inc(this_rq(), bkl_count
);
4648 schedstat_inc(prev
, sched_info
.bkl_count
);
4653 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4655 if (prev
->state
== TASK_RUNNING
) {
4656 u64 runtime
= prev
->se
.sum_exec_runtime
;
4658 runtime
-= prev
->se
.prev_sum_exec_runtime
;
4659 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
4662 * In order to avoid avg_overlap growing stale when we are
4663 * indeed overlapping and hence not getting put to sleep, grow
4664 * the avg_overlap on preemption.
4666 * We use the average preemption runtime because that
4667 * correlates to the amount of cache footprint a task can
4670 update_avg(&prev
->se
.avg_overlap
, runtime
);
4672 prev
->sched_class
->put_prev_task(rq
, prev
);
4676 * Pick up the highest-prio task:
4678 static inline struct task_struct
*
4679 pick_next_task(struct rq
*rq
)
4681 const struct sched_class
*class;
4682 struct task_struct
*p
;
4685 * Optimization: we know that if all tasks are in
4686 * the fair class we can call that function directly:
4688 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4689 p
= fair_sched_class
.pick_next_task(rq
);
4694 class = sched_class_highest
;
4696 p
= class->pick_next_task(rq
);
4700 * Will never be NULL as the idle class always
4701 * returns a non-NULL p:
4703 class = class->next
;
4708 * schedule() is the main scheduler function.
4710 asmlinkage
void __sched
schedule(void)
4712 struct task_struct
*prev
, *next
;
4713 unsigned long *switch_count
;
4719 cpu
= smp_processor_id();
4723 switch_count
= &prev
->nivcsw
;
4725 release_kernel_lock(prev
);
4726 need_resched_nonpreemptible
:
4728 schedule_debug(prev
);
4730 if (sched_feat(HRTICK
))
4733 spin_lock_irq(&rq
->lock
);
4734 update_rq_clock(rq
);
4735 clear_tsk_need_resched(prev
);
4737 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4738 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4739 prev
->state
= TASK_RUNNING
;
4741 deactivate_task(rq
, prev
, 1);
4742 switch_count
= &prev
->nvcsw
;
4746 if (prev
->sched_class
->pre_schedule
)
4747 prev
->sched_class
->pre_schedule(rq
, prev
);
4750 if (unlikely(!rq
->nr_running
))
4751 idle_balance(cpu
, rq
);
4753 put_prev_task(rq
, prev
);
4754 next
= pick_next_task(rq
);
4756 if (likely(prev
!= next
)) {
4757 sched_info_switch(prev
, next
);
4763 context_switch(rq
, prev
, next
); /* unlocks the rq */
4765 * the context switch might have flipped the stack from under
4766 * us, hence refresh the local variables.
4768 cpu
= smp_processor_id();
4771 spin_unlock_irq(&rq
->lock
);
4773 if (unlikely(reacquire_kernel_lock(current
) < 0))
4774 goto need_resched_nonpreemptible
;
4776 preempt_enable_no_resched();
4777 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4780 EXPORT_SYMBOL(schedule
);
4782 #ifdef CONFIG_PREEMPT
4784 * this is the entry point to schedule() from in-kernel preemption
4785 * off of preempt_enable. Kernel preemptions off return from interrupt
4786 * occur there and call schedule directly.
4788 asmlinkage
void __sched
preempt_schedule(void)
4790 struct thread_info
*ti
= current_thread_info();
4793 * If there is a non-zero preempt_count or interrupts are disabled,
4794 * we do not want to preempt the current task. Just return..
4796 if (likely(ti
->preempt_count
|| irqs_disabled()))
4800 add_preempt_count(PREEMPT_ACTIVE
);
4802 sub_preempt_count(PREEMPT_ACTIVE
);
4805 * Check again in case we missed a preemption opportunity
4806 * between schedule and now.
4809 } while (need_resched());
4811 EXPORT_SYMBOL(preempt_schedule
);
4814 * this is the entry point to schedule() from kernel preemption
4815 * off of irq context.
4816 * Note, that this is called and return with irqs disabled. This will
4817 * protect us against recursive calling from irq.
4819 asmlinkage
void __sched
preempt_schedule_irq(void)
4821 struct thread_info
*ti
= current_thread_info();
4823 /* Catch callers which need to be fixed */
4824 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4827 add_preempt_count(PREEMPT_ACTIVE
);
4830 local_irq_disable();
4831 sub_preempt_count(PREEMPT_ACTIVE
);
4834 * Check again in case we missed a preemption opportunity
4835 * between schedule and now.
4838 } while (need_resched());
4841 #endif /* CONFIG_PREEMPT */
4843 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4846 return try_to_wake_up(curr
->private, mode
, sync
);
4848 EXPORT_SYMBOL(default_wake_function
);
4851 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4852 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4853 * number) then we wake all the non-exclusive tasks and one exclusive task.
4855 * There are circumstances in which we can try to wake a task which has already
4856 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4857 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4859 void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4860 int nr_exclusive
, int sync
, void *key
)
4862 wait_queue_t
*curr
, *next
;
4864 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4865 unsigned flags
= curr
->flags
;
4867 if (curr
->func(curr
, mode
, sync
, key
) &&
4868 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4874 * __wake_up - wake up threads blocked on a waitqueue.
4876 * @mode: which threads
4877 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4878 * @key: is directly passed to the wakeup function
4880 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4881 int nr_exclusive
, void *key
)
4883 unsigned long flags
;
4885 spin_lock_irqsave(&q
->lock
, flags
);
4886 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4887 spin_unlock_irqrestore(&q
->lock
, flags
);
4889 EXPORT_SYMBOL(__wake_up
);
4892 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4894 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4896 __wake_up_common(q
, mode
, 1, 0, NULL
);
4900 * __wake_up_sync - wake up threads blocked on a waitqueue.
4902 * @mode: which threads
4903 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4905 * The sync wakeup differs that the waker knows that it will schedule
4906 * away soon, so while the target thread will be woken up, it will not
4907 * be migrated to another CPU - ie. the two threads are 'synchronized'
4908 * with each other. This can prevent needless bouncing between CPUs.
4910 * On UP it can prevent extra preemption.
4913 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4915 unsigned long flags
;
4921 if (unlikely(!nr_exclusive
))
4924 spin_lock_irqsave(&q
->lock
, flags
);
4925 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4926 spin_unlock_irqrestore(&q
->lock
, flags
);
4928 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4931 * complete: - signals a single thread waiting on this completion
4932 * @x: holds the state of this particular completion
4934 * This will wake up a single thread waiting on this completion. Threads will be
4935 * awakened in the same order in which they were queued.
4937 * See also complete_all(), wait_for_completion() and related routines.
4939 void complete(struct completion
*x
)
4941 unsigned long flags
;
4943 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4945 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4946 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4948 EXPORT_SYMBOL(complete
);
4951 * complete_all: - signals all threads waiting on this completion
4952 * @x: holds the state of this particular completion
4954 * This will wake up all threads waiting on this particular completion event.
4956 void complete_all(struct completion
*x
)
4958 unsigned long flags
;
4960 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4961 x
->done
+= UINT_MAX
/2;
4962 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4963 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4965 EXPORT_SYMBOL(complete_all
);
4967 static inline long __sched
4968 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4971 DECLARE_WAITQUEUE(wait
, current
);
4973 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4974 __add_wait_queue_tail(&x
->wait
, &wait
);
4976 if (signal_pending_state(state
, current
)) {
4977 timeout
= -ERESTARTSYS
;
4980 __set_current_state(state
);
4981 spin_unlock_irq(&x
->wait
.lock
);
4982 timeout
= schedule_timeout(timeout
);
4983 spin_lock_irq(&x
->wait
.lock
);
4984 } while (!x
->done
&& timeout
);
4985 __remove_wait_queue(&x
->wait
, &wait
);
4990 return timeout
?: 1;
4994 wait_for_common(struct completion
*x
, long timeout
, int state
)
4998 spin_lock_irq(&x
->wait
.lock
);
4999 timeout
= do_wait_for_common(x
, timeout
, state
);
5000 spin_unlock_irq(&x
->wait
.lock
);
5005 * wait_for_completion: - waits for completion of a task
5006 * @x: holds the state of this particular completion
5008 * This waits to be signaled for completion of a specific task. It is NOT
5009 * interruptible and there is no timeout.
5011 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5012 * and interrupt capability. Also see complete().
5014 void __sched
wait_for_completion(struct completion
*x
)
5016 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5018 EXPORT_SYMBOL(wait_for_completion
);
5021 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5022 * @x: holds the state of this particular completion
5023 * @timeout: timeout value in jiffies
5025 * This waits for either a completion of a specific task to be signaled or for a
5026 * specified timeout to expire. The timeout is in jiffies. It is not
5029 unsigned long __sched
5030 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5032 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5034 EXPORT_SYMBOL(wait_for_completion_timeout
);
5037 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5038 * @x: holds the state of this particular completion
5040 * This waits for completion of a specific task to be signaled. It is
5043 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5045 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5046 if (t
== -ERESTARTSYS
)
5050 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5053 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5054 * @x: holds the state of this particular completion
5055 * @timeout: timeout value in jiffies
5057 * This waits for either a completion of a specific task to be signaled or for a
5058 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5060 unsigned long __sched
5061 wait_for_completion_interruptible_timeout(struct completion
*x
,
5062 unsigned long timeout
)
5064 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5066 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5069 * wait_for_completion_killable: - waits for completion of a task (killable)
5070 * @x: holds the state of this particular completion
5072 * This waits to be signaled for completion of a specific task. It can be
5073 * interrupted by a kill signal.
5075 int __sched
wait_for_completion_killable(struct completion
*x
)
5077 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5078 if (t
== -ERESTARTSYS
)
5082 EXPORT_SYMBOL(wait_for_completion_killable
);
5085 * try_wait_for_completion - try to decrement a completion without blocking
5086 * @x: completion structure
5088 * Returns: 0 if a decrement cannot be done without blocking
5089 * 1 if a decrement succeeded.
5091 * If a completion is being used as a counting completion,
5092 * attempt to decrement the counter without blocking. This
5093 * enables us to avoid waiting if the resource the completion
5094 * is protecting is not available.
5096 bool try_wait_for_completion(struct completion
*x
)
5100 spin_lock_irq(&x
->wait
.lock
);
5105 spin_unlock_irq(&x
->wait
.lock
);
5108 EXPORT_SYMBOL(try_wait_for_completion
);
5111 * completion_done - Test to see if a completion has any waiters
5112 * @x: completion structure
5114 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5115 * 1 if there are no waiters.
5118 bool completion_done(struct completion
*x
)
5122 spin_lock_irq(&x
->wait
.lock
);
5125 spin_unlock_irq(&x
->wait
.lock
);
5128 EXPORT_SYMBOL(completion_done
);
5131 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5133 unsigned long flags
;
5136 init_waitqueue_entry(&wait
, current
);
5138 __set_current_state(state
);
5140 spin_lock_irqsave(&q
->lock
, flags
);
5141 __add_wait_queue(q
, &wait
);
5142 spin_unlock(&q
->lock
);
5143 timeout
= schedule_timeout(timeout
);
5144 spin_lock_irq(&q
->lock
);
5145 __remove_wait_queue(q
, &wait
);
5146 spin_unlock_irqrestore(&q
->lock
, flags
);
5151 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5153 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5155 EXPORT_SYMBOL(interruptible_sleep_on
);
5158 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5160 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5162 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5164 void __sched
sleep_on(wait_queue_head_t
*q
)
5166 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5168 EXPORT_SYMBOL(sleep_on
);
5170 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5172 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5174 EXPORT_SYMBOL(sleep_on_timeout
);
5176 #ifdef CONFIG_RT_MUTEXES
5179 * rt_mutex_setprio - set the current priority of a task
5181 * @prio: prio value (kernel-internal form)
5183 * This function changes the 'effective' priority of a task. It does
5184 * not touch ->normal_prio like __setscheduler().
5186 * Used by the rt_mutex code to implement priority inheritance logic.
5188 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5190 unsigned long flags
;
5191 int oldprio
, on_rq
, running
;
5193 const struct sched_class
*prev_class
= p
->sched_class
;
5195 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5197 rq
= task_rq_lock(p
, &flags
);
5198 update_rq_clock(rq
);
5201 on_rq
= p
->se
.on_rq
;
5202 running
= task_current(rq
, p
);
5204 dequeue_task(rq
, p
, 0);
5206 p
->sched_class
->put_prev_task(rq
, p
);
5209 p
->sched_class
= &rt_sched_class
;
5211 p
->sched_class
= &fair_sched_class
;
5216 p
->sched_class
->set_curr_task(rq
);
5218 enqueue_task(rq
, p
, 0);
5220 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5222 task_rq_unlock(rq
, &flags
);
5227 void set_user_nice(struct task_struct
*p
, long nice
)
5229 int old_prio
, delta
, on_rq
;
5230 unsigned long flags
;
5233 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5236 * We have to be careful, if called from sys_setpriority(),
5237 * the task might be in the middle of scheduling on another CPU.
5239 rq
= task_rq_lock(p
, &flags
);
5240 update_rq_clock(rq
);
5242 * The RT priorities are set via sched_setscheduler(), but we still
5243 * allow the 'normal' nice value to be set - but as expected
5244 * it wont have any effect on scheduling until the task is
5245 * SCHED_FIFO/SCHED_RR:
5247 if (task_has_rt_policy(p
)) {
5248 p
->static_prio
= NICE_TO_PRIO(nice
);
5251 on_rq
= p
->se
.on_rq
;
5253 dequeue_task(rq
, p
, 0);
5255 p
->static_prio
= NICE_TO_PRIO(nice
);
5258 p
->prio
= effective_prio(p
);
5259 delta
= p
->prio
- old_prio
;
5262 enqueue_task(rq
, p
, 0);
5264 * If the task increased its priority or is running and
5265 * lowered its priority, then reschedule its CPU:
5267 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5268 resched_task(rq
->curr
);
5271 task_rq_unlock(rq
, &flags
);
5273 EXPORT_SYMBOL(set_user_nice
);
5276 * can_nice - check if a task can reduce its nice value
5280 int can_nice(const struct task_struct
*p
, const int nice
)
5282 /* convert nice value [19,-20] to rlimit style value [1,40] */
5283 int nice_rlim
= 20 - nice
;
5285 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5286 capable(CAP_SYS_NICE
));
5289 #ifdef __ARCH_WANT_SYS_NICE
5292 * sys_nice - change the priority of the current process.
5293 * @increment: priority increment
5295 * sys_setpriority is a more generic, but much slower function that
5296 * does similar things.
5298 SYSCALL_DEFINE1(nice
, int, increment
)
5303 * Setpriority might change our priority at the same moment.
5304 * We don't have to worry. Conceptually one call occurs first
5305 * and we have a single winner.
5307 if (increment
< -40)
5312 nice
= TASK_NICE(current
) + increment
;
5318 if (increment
< 0 && !can_nice(current
, nice
))
5321 retval
= security_task_setnice(current
, nice
);
5325 set_user_nice(current
, nice
);
5332 * task_prio - return the priority value of a given task.
5333 * @p: the task in question.
5335 * This is the priority value as seen by users in /proc.
5336 * RT tasks are offset by -200. Normal tasks are centered
5337 * around 0, value goes from -16 to +15.
5339 int task_prio(const struct task_struct
*p
)
5341 return p
->prio
- MAX_RT_PRIO
;
5345 * task_nice - return the nice value of a given task.
5346 * @p: the task in question.
5348 int task_nice(const struct task_struct
*p
)
5350 return TASK_NICE(p
);
5352 EXPORT_SYMBOL(task_nice
);
5355 * idle_cpu - is a given cpu idle currently?
5356 * @cpu: the processor in question.
5358 int idle_cpu(int cpu
)
5360 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5364 * idle_task - return the idle task for a given cpu.
5365 * @cpu: the processor in question.
5367 struct task_struct
*idle_task(int cpu
)
5369 return cpu_rq(cpu
)->idle
;
5373 * find_process_by_pid - find a process with a matching PID value.
5374 * @pid: the pid in question.
5376 static struct task_struct
*find_process_by_pid(pid_t pid
)
5378 return pid
? find_task_by_vpid(pid
) : current
;
5381 /* Actually do priority change: must hold rq lock. */
5383 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5385 BUG_ON(p
->se
.on_rq
);
5388 switch (p
->policy
) {
5392 p
->sched_class
= &fair_sched_class
;
5396 p
->sched_class
= &rt_sched_class
;
5400 p
->rt_priority
= prio
;
5401 p
->normal_prio
= normal_prio(p
);
5402 /* we are holding p->pi_lock already */
5403 p
->prio
= rt_mutex_getprio(p
);
5408 * check the target process has a UID that matches the current process's
5410 static bool check_same_owner(struct task_struct
*p
)
5412 const struct cred
*cred
= current_cred(), *pcred
;
5416 pcred
= __task_cred(p
);
5417 match
= (cred
->euid
== pcred
->euid
||
5418 cred
->euid
== pcred
->uid
);
5423 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5424 struct sched_param
*param
, bool user
)
5426 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5427 unsigned long flags
;
5428 const struct sched_class
*prev_class
= p
->sched_class
;
5431 /* may grab non-irq protected spin_locks */
5432 BUG_ON(in_interrupt());
5434 /* double check policy once rq lock held */
5436 policy
= oldpolicy
= p
->policy
;
5437 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5438 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5439 policy
!= SCHED_IDLE
)
5442 * Valid priorities for SCHED_FIFO and SCHED_RR are
5443 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5444 * SCHED_BATCH and SCHED_IDLE is 0.
5446 if (param
->sched_priority
< 0 ||
5447 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5448 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5450 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5454 * Allow unprivileged RT tasks to decrease priority:
5456 if (user
&& !capable(CAP_SYS_NICE
)) {
5457 if (rt_policy(policy
)) {
5458 unsigned long rlim_rtprio
;
5460 if (!lock_task_sighand(p
, &flags
))
5462 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5463 unlock_task_sighand(p
, &flags
);
5465 /* can't set/change the rt policy */
5466 if (policy
!= p
->policy
&& !rlim_rtprio
)
5469 /* can't increase priority */
5470 if (param
->sched_priority
> p
->rt_priority
&&
5471 param
->sched_priority
> rlim_rtprio
)
5475 * Like positive nice levels, dont allow tasks to
5476 * move out of SCHED_IDLE either:
5478 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5481 /* can't change other user's priorities */
5482 if (!check_same_owner(p
))
5487 #ifdef CONFIG_RT_GROUP_SCHED
5489 * Do not allow realtime tasks into groups that have no runtime
5492 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5493 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5497 retval
= security_task_setscheduler(p
, policy
, param
);
5503 * make sure no PI-waiters arrive (or leave) while we are
5504 * changing the priority of the task:
5506 spin_lock_irqsave(&p
->pi_lock
, flags
);
5508 * To be able to change p->policy safely, the apropriate
5509 * runqueue lock must be held.
5511 rq
= __task_rq_lock(p
);
5512 /* recheck policy now with rq lock held */
5513 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5514 policy
= oldpolicy
= -1;
5515 __task_rq_unlock(rq
);
5516 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5519 update_rq_clock(rq
);
5520 on_rq
= p
->se
.on_rq
;
5521 running
= task_current(rq
, p
);
5523 deactivate_task(rq
, p
, 0);
5525 p
->sched_class
->put_prev_task(rq
, p
);
5528 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5531 p
->sched_class
->set_curr_task(rq
);
5533 activate_task(rq
, p
, 0);
5535 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5537 __task_rq_unlock(rq
);
5538 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5540 rt_mutex_adjust_pi(p
);
5546 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5547 * @p: the task in question.
5548 * @policy: new policy.
5549 * @param: structure containing the new RT priority.
5551 * NOTE that the task may be already dead.
5553 int sched_setscheduler(struct task_struct
*p
, int policy
,
5554 struct sched_param
*param
)
5556 return __sched_setscheduler(p
, policy
, param
, true);
5558 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5561 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5562 * @p: the task in question.
5563 * @policy: new policy.
5564 * @param: structure containing the new RT priority.
5566 * Just like sched_setscheduler, only don't bother checking if the
5567 * current context has permission. For example, this is needed in
5568 * stop_machine(): we create temporary high priority worker threads,
5569 * but our caller might not have that capability.
5571 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5572 struct sched_param
*param
)
5574 return __sched_setscheduler(p
, policy
, param
, false);
5578 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5580 struct sched_param lparam
;
5581 struct task_struct
*p
;
5584 if (!param
|| pid
< 0)
5586 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5591 p
= find_process_by_pid(pid
);
5593 retval
= sched_setscheduler(p
, policy
, &lparam
);
5600 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5601 * @pid: the pid in question.
5602 * @policy: new policy.
5603 * @param: structure containing the new RT priority.
5605 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5606 struct sched_param __user
*, param
)
5608 /* negative values for policy are not valid */
5612 return do_sched_setscheduler(pid
, policy
, param
);
5616 * sys_sched_setparam - set/change the RT priority of a thread
5617 * @pid: the pid in question.
5618 * @param: structure containing the new RT priority.
5620 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5622 return do_sched_setscheduler(pid
, -1, param
);
5626 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5627 * @pid: the pid in question.
5629 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5631 struct task_struct
*p
;
5638 read_lock(&tasklist_lock
);
5639 p
= find_process_by_pid(pid
);
5641 retval
= security_task_getscheduler(p
);
5645 read_unlock(&tasklist_lock
);
5650 * sys_sched_getscheduler - get the RT priority of a thread
5651 * @pid: the pid in question.
5652 * @param: structure containing the RT priority.
5654 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5656 struct sched_param lp
;
5657 struct task_struct
*p
;
5660 if (!param
|| pid
< 0)
5663 read_lock(&tasklist_lock
);
5664 p
= find_process_by_pid(pid
);
5669 retval
= security_task_getscheduler(p
);
5673 lp
.sched_priority
= p
->rt_priority
;
5674 read_unlock(&tasklist_lock
);
5677 * This one might sleep, we cannot do it with a spinlock held ...
5679 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5684 read_unlock(&tasklist_lock
);
5688 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5690 cpumask_var_t cpus_allowed
, new_mask
;
5691 struct task_struct
*p
;
5695 read_lock(&tasklist_lock
);
5697 p
= find_process_by_pid(pid
);
5699 read_unlock(&tasklist_lock
);
5705 * It is not safe to call set_cpus_allowed with the
5706 * tasklist_lock held. We will bump the task_struct's
5707 * usage count and then drop tasklist_lock.
5710 read_unlock(&tasklist_lock
);
5712 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5716 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5718 goto out_free_cpus_allowed
;
5721 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5724 retval
= security_task_setscheduler(p
, 0, NULL
);
5728 cpuset_cpus_allowed(p
, cpus_allowed
);
5729 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5731 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5734 cpuset_cpus_allowed(p
, cpus_allowed
);
5735 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5737 * We must have raced with a concurrent cpuset
5738 * update. Just reset the cpus_allowed to the
5739 * cpuset's cpus_allowed
5741 cpumask_copy(new_mask
, cpus_allowed
);
5746 free_cpumask_var(new_mask
);
5747 out_free_cpus_allowed
:
5748 free_cpumask_var(cpus_allowed
);
5755 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5756 struct cpumask
*new_mask
)
5758 if (len
< cpumask_size())
5759 cpumask_clear(new_mask
);
5760 else if (len
> cpumask_size())
5761 len
= cpumask_size();
5763 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5767 * sys_sched_setaffinity - set the cpu affinity of a process
5768 * @pid: pid of the process
5769 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5770 * @user_mask_ptr: user-space pointer to the new cpu mask
5772 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5773 unsigned long __user
*, user_mask_ptr
)
5775 cpumask_var_t new_mask
;
5778 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5781 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5783 retval
= sched_setaffinity(pid
, new_mask
);
5784 free_cpumask_var(new_mask
);
5788 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5790 struct task_struct
*p
;
5794 read_lock(&tasklist_lock
);
5797 p
= find_process_by_pid(pid
);
5801 retval
= security_task_getscheduler(p
);
5805 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5808 read_unlock(&tasklist_lock
);
5815 * sys_sched_getaffinity - get the cpu affinity of a process
5816 * @pid: pid of the process
5817 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5818 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5820 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5821 unsigned long __user
*, user_mask_ptr
)
5826 if (len
< cpumask_size())
5829 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5832 ret
= sched_getaffinity(pid
, mask
);
5834 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
5837 ret
= cpumask_size();
5839 free_cpumask_var(mask
);
5845 * sys_sched_yield - yield the current processor to other threads.
5847 * This function yields the current CPU to other tasks. If there are no
5848 * other threads running on this CPU then this function will return.
5850 SYSCALL_DEFINE0(sched_yield
)
5852 struct rq
*rq
= this_rq_lock();
5854 schedstat_inc(rq
, yld_count
);
5855 current
->sched_class
->yield_task(rq
);
5858 * Since we are going to call schedule() anyway, there's
5859 * no need to preempt or enable interrupts:
5861 __release(rq
->lock
);
5862 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5863 _raw_spin_unlock(&rq
->lock
);
5864 preempt_enable_no_resched();
5871 static void __cond_resched(void)
5873 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5874 __might_sleep(__FILE__
, __LINE__
);
5877 * The BKS might be reacquired before we have dropped
5878 * PREEMPT_ACTIVE, which could trigger a second
5879 * cond_resched() call.
5882 add_preempt_count(PREEMPT_ACTIVE
);
5884 sub_preempt_count(PREEMPT_ACTIVE
);
5885 } while (need_resched());
5888 int __sched
_cond_resched(void)
5890 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5891 system_state
== SYSTEM_RUNNING
) {
5897 EXPORT_SYMBOL(_cond_resched
);
5900 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5901 * call schedule, and on return reacquire the lock.
5903 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5904 * operations here to prevent schedule() from being called twice (once via
5905 * spin_unlock(), once by hand).
5907 int cond_resched_lock(spinlock_t
*lock
)
5909 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5912 if (spin_needbreak(lock
) || resched
) {
5914 if (resched
&& need_resched())
5923 EXPORT_SYMBOL(cond_resched_lock
);
5925 int __sched
cond_resched_softirq(void)
5927 BUG_ON(!in_softirq());
5929 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5937 EXPORT_SYMBOL(cond_resched_softirq
);
5940 * yield - yield the current processor to other threads.
5942 * This is a shortcut for kernel-space yielding - it marks the
5943 * thread runnable and calls sys_sched_yield().
5945 void __sched
yield(void)
5947 set_current_state(TASK_RUNNING
);
5950 EXPORT_SYMBOL(yield
);
5953 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5954 * that process accounting knows that this is a task in IO wait state.
5956 * But don't do that if it is a deliberate, throttling IO wait (this task
5957 * has set its backing_dev_info: the queue against which it should throttle)
5959 void __sched
io_schedule(void)
5961 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5963 delayacct_blkio_start();
5964 atomic_inc(&rq
->nr_iowait
);
5966 atomic_dec(&rq
->nr_iowait
);
5967 delayacct_blkio_end();
5969 EXPORT_SYMBOL(io_schedule
);
5971 long __sched
io_schedule_timeout(long timeout
)
5973 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5976 delayacct_blkio_start();
5977 atomic_inc(&rq
->nr_iowait
);
5978 ret
= schedule_timeout(timeout
);
5979 atomic_dec(&rq
->nr_iowait
);
5980 delayacct_blkio_end();
5985 * sys_sched_get_priority_max - return maximum RT priority.
5986 * @policy: scheduling class.
5988 * this syscall returns the maximum rt_priority that can be used
5989 * by a given scheduling class.
5991 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5998 ret
= MAX_USER_RT_PRIO
-1;
6010 * sys_sched_get_priority_min - return minimum RT priority.
6011 * @policy: scheduling class.
6013 * this syscall returns the minimum rt_priority that can be used
6014 * by a given scheduling class.
6016 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6034 * sys_sched_rr_get_interval - return the default timeslice of a process.
6035 * @pid: pid of the process.
6036 * @interval: userspace pointer to the timeslice value.
6038 * this syscall writes the default timeslice value of a given process
6039 * into the user-space timespec buffer. A value of '0' means infinity.
6041 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6042 struct timespec __user
*, interval
)
6044 struct task_struct
*p
;
6045 unsigned int time_slice
;
6053 read_lock(&tasklist_lock
);
6054 p
= find_process_by_pid(pid
);
6058 retval
= security_task_getscheduler(p
);
6063 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6064 * tasks that are on an otherwise idle runqueue:
6067 if (p
->policy
== SCHED_RR
) {
6068 time_slice
= DEF_TIMESLICE
;
6069 } else if (p
->policy
!= SCHED_FIFO
) {
6070 struct sched_entity
*se
= &p
->se
;
6071 unsigned long flags
;
6074 rq
= task_rq_lock(p
, &flags
);
6075 if (rq
->cfs
.load
.weight
)
6076 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
6077 task_rq_unlock(rq
, &flags
);
6079 read_unlock(&tasklist_lock
);
6080 jiffies_to_timespec(time_slice
, &t
);
6081 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6085 read_unlock(&tasklist_lock
);
6089 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6091 void sched_show_task(struct task_struct
*p
)
6093 unsigned long free
= 0;
6096 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6097 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6098 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6099 #if BITS_PER_LONG == 32
6100 if (state
== TASK_RUNNING
)
6101 printk(KERN_CONT
" running ");
6103 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6105 if (state
== TASK_RUNNING
)
6106 printk(KERN_CONT
" running task ");
6108 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6110 #ifdef CONFIG_DEBUG_STACK_USAGE
6112 unsigned long *n
= end_of_stack(p
);
6115 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
6118 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
6119 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
6121 show_stack(p
, NULL
);
6124 void show_state_filter(unsigned long state_filter
)
6126 struct task_struct
*g
, *p
;
6128 #if BITS_PER_LONG == 32
6130 " task PC stack pid father\n");
6133 " task PC stack pid father\n");
6135 read_lock(&tasklist_lock
);
6136 do_each_thread(g
, p
) {
6138 * reset the NMI-timeout, listing all files on a slow
6139 * console might take alot of time:
6141 touch_nmi_watchdog();
6142 if (!state_filter
|| (p
->state
& state_filter
))
6144 } while_each_thread(g
, p
);
6146 touch_all_softlockup_watchdogs();
6148 #ifdef CONFIG_SCHED_DEBUG
6149 sysrq_sched_debug_show();
6151 read_unlock(&tasklist_lock
);
6153 * Only show locks if all tasks are dumped:
6155 if (state_filter
== -1)
6156 debug_show_all_locks();
6159 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6161 idle
->sched_class
= &idle_sched_class
;
6165 * init_idle - set up an idle thread for a given CPU
6166 * @idle: task in question
6167 * @cpu: cpu the idle task belongs to
6169 * NOTE: this function does not set the idle thread's NEED_RESCHED
6170 * flag, to make booting more robust.
6172 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6174 struct rq
*rq
= cpu_rq(cpu
);
6175 unsigned long flags
;
6177 spin_lock_irqsave(&rq
->lock
, flags
);
6180 idle
->se
.exec_start
= sched_clock();
6182 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6183 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6184 __set_task_cpu(idle
, cpu
);
6186 rq
->curr
= rq
->idle
= idle
;
6187 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6190 spin_unlock_irqrestore(&rq
->lock
, flags
);
6192 /* Set the preempt count _outside_ the spinlocks! */
6193 #if defined(CONFIG_PREEMPT)
6194 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6196 task_thread_info(idle
)->preempt_count
= 0;
6199 * The idle tasks have their own, simple scheduling class:
6201 idle
->sched_class
= &idle_sched_class
;
6202 ftrace_graph_init_task(idle
);
6206 * In a system that switches off the HZ timer nohz_cpu_mask
6207 * indicates which cpus entered this state. This is used
6208 * in the rcu update to wait only for active cpus. For system
6209 * which do not switch off the HZ timer nohz_cpu_mask should
6210 * always be CPU_BITS_NONE.
6212 cpumask_var_t nohz_cpu_mask
;
6215 * Increase the granularity value when there are more CPUs,
6216 * because with more CPUs the 'effective latency' as visible
6217 * to users decreases. But the relationship is not linear,
6218 * so pick a second-best guess by going with the log2 of the
6221 * This idea comes from the SD scheduler of Con Kolivas:
6223 static inline void sched_init_granularity(void)
6225 unsigned int factor
= 1 + ilog2(num_online_cpus());
6226 const unsigned long limit
= 200000000;
6228 sysctl_sched_min_granularity
*= factor
;
6229 if (sysctl_sched_min_granularity
> limit
)
6230 sysctl_sched_min_granularity
= limit
;
6232 sysctl_sched_latency
*= factor
;
6233 if (sysctl_sched_latency
> limit
)
6234 sysctl_sched_latency
= limit
;
6236 sysctl_sched_wakeup_granularity
*= factor
;
6238 sysctl_sched_shares_ratelimit
*= factor
;
6243 * This is how migration works:
6245 * 1) we queue a struct migration_req structure in the source CPU's
6246 * runqueue and wake up that CPU's migration thread.
6247 * 2) we down() the locked semaphore => thread blocks.
6248 * 3) migration thread wakes up (implicitly it forces the migrated
6249 * thread off the CPU)
6250 * 4) it gets the migration request and checks whether the migrated
6251 * task is still in the wrong runqueue.
6252 * 5) if it's in the wrong runqueue then the migration thread removes
6253 * it and puts it into the right queue.
6254 * 6) migration thread up()s the semaphore.
6255 * 7) we wake up and the migration is done.
6259 * Change a given task's CPU affinity. Migrate the thread to a
6260 * proper CPU and schedule it away if the CPU it's executing on
6261 * is removed from the allowed bitmask.
6263 * NOTE: the caller must have a valid reference to the task, the
6264 * task must not exit() & deallocate itself prematurely. The
6265 * call is not atomic; no spinlocks may be held.
6267 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6269 struct migration_req req
;
6270 unsigned long flags
;
6274 rq
= task_rq_lock(p
, &flags
);
6275 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6280 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6281 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6286 if (p
->sched_class
->set_cpus_allowed
)
6287 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6289 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6290 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6293 /* Can the task run on the task's current CPU? If so, we're done */
6294 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6297 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6298 /* Need help from migration thread: drop lock and wait. */
6299 task_rq_unlock(rq
, &flags
);
6300 wake_up_process(rq
->migration_thread
);
6301 wait_for_completion(&req
.done
);
6302 tlb_migrate_finish(p
->mm
);
6306 task_rq_unlock(rq
, &flags
);
6310 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6313 * Move (not current) task off this cpu, onto dest cpu. We're doing
6314 * this because either it can't run here any more (set_cpus_allowed()
6315 * away from this CPU, or CPU going down), or because we're
6316 * attempting to rebalance this task on exec (sched_exec).
6318 * So we race with normal scheduler movements, but that's OK, as long
6319 * as the task is no longer on this CPU.
6321 * Returns non-zero if task was successfully migrated.
6323 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6325 struct rq
*rq_dest
, *rq_src
;
6328 if (unlikely(!cpu_active(dest_cpu
)))
6331 rq_src
= cpu_rq(src_cpu
);
6332 rq_dest
= cpu_rq(dest_cpu
);
6334 double_rq_lock(rq_src
, rq_dest
);
6335 /* Already moved. */
6336 if (task_cpu(p
) != src_cpu
)
6338 /* Affinity changed (again). */
6339 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6342 on_rq
= p
->se
.on_rq
;
6344 deactivate_task(rq_src
, p
, 0);
6346 set_task_cpu(p
, dest_cpu
);
6348 activate_task(rq_dest
, p
, 0);
6349 check_preempt_curr(rq_dest
, p
, 0);
6354 double_rq_unlock(rq_src
, rq_dest
);
6359 * migration_thread - this is a highprio system thread that performs
6360 * thread migration by bumping thread off CPU then 'pushing' onto
6363 static int migration_thread(void *data
)
6365 int cpu
= (long)data
;
6369 BUG_ON(rq
->migration_thread
!= current
);
6371 set_current_state(TASK_INTERRUPTIBLE
);
6372 while (!kthread_should_stop()) {
6373 struct migration_req
*req
;
6374 struct list_head
*head
;
6376 spin_lock_irq(&rq
->lock
);
6378 if (cpu_is_offline(cpu
)) {
6379 spin_unlock_irq(&rq
->lock
);
6383 if (rq
->active_balance
) {
6384 active_load_balance(rq
, cpu
);
6385 rq
->active_balance
= 0;
6388 head
= &rq
->migration_queue
;
6390 if (list_empty(head
)) {
6391 spin_unlock_irq(&rq
->lock
);
6393 set_current_state(TASK_INTERRUPTIBLE
);
6396 req
= list_entry(head
->next
, struct migration_req
, list
);
6397 list_del_init(head
->next
);
6399 spin_unlock(&rq
->lock
);
6400 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6403 complete(&req
->done
);
6405 __set_current_state(TASK_RUNNING
);
6409 /* Wait for kthread_stop */
6410 set_current_state(TASK_INTERRUPTIBLE
);
6411 while (!kthread_should_stop()) {
6413 set_current_state(TASK_INTERRUPTIBLE
);
6415 __set_current_state(TASK_RUNNING
);
6419 #ifdef CONFIG_HOTPLUG_CPU
6421 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6425 local_irq_disable();
6426 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6432 * Figure out where task on dead CPU should go, use force if necessary.
6434 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6437 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
6440 /* Look for allowed, online CPU in same node. */
6441 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
6442 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6445 /* Any allowed, online CPU? */
6446 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
6447 if (dest_cpu
< nr_cpu_ids
)
6450 /* No more Mr. Nice Guy. */
6451 if (dest_cpu
>= nr_cpu_ids
) {
6452 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
6453 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
6456 * Don't tell them about moving exiting tasks or
6457 * kernel threads (both mm NULL), since they never
6460 if (p
->mm
&& printk_ratelimit()) {
6461 printk(KERN_INFO
"process %d (%s) no "
6462 "longer affine to cpu%d\n",
6463 task_pid_nr(p
), p
->comm
, dead_cpu
);
6468 /* It can have affinity changed while we were choosing. */
6469 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
6474 * While a dead CPU has no uninterruptible tasks queued at this point,
6475 * it might still have a nonzero ->nr_uninterruptible counter, because
6476 * for performance reasons the counter is not stricly tracking tasks to
6477 * their home CPUs. So we just add the counter to another CPU's counter,
6478 * to keep the global sum constant after CPU-down:
6480 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6482 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
6483 unsigned long flags
;
6485 local_irq_save(flags
);
6486 double_rq_lock(rq_src
, rq_dest
);
6487 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6488 rq_src
->nr_uninterruptible
= 0;
6489 double_rq_unlock(rq_src
, rq_dest
);
6490 local_irq_restore(flags
);
6493 /* Run through task list and migrate tasks from the dead cpu. */
6494 static void migrate_live_tasks(int src_cpu
)
6496 struct task_struct
*p
, *t
;
6498 read_lock(&tasklist_lock
);
6500 do_each_thread(t
, p
) {
6504 if (task_cpu(p
) == src_cpu
)
6505 move_task_off_dead_cpu(src_cpu
, p
);
6506 } while_each_thread(t
, p
);
6508 read_unlock(&tasklist_lock
);
6512 * Schedules idle task to be the next runnable task on current CPU.
6513 * It does so by boosting its priority to highest possible.
6514 * Used by CPU offline code.
6516 void sched_idle_next(void)
6518 int this_cpu
= smp_processor_id();
6519 struct rq
*rq
= cpu_rq(this_cpu
);
6520 struct task_struct
*p
= rq
->idle
;
6521 unsigned long flags
;
6523 /* cpu has to be offline */
6524 BUG_ON(cpu_online(this_cpu
));
6527 * Strictly not necessary since rest of the CPUs are stopped by now
6528 * and interrupts disabled on the current cpu.
6530 spin_lock_irqsave(&rq
->lock
, flags
);
6532 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6534 update_rq_clock(rq
);
6535 activate_task(rq
, p
, 0);
6537 spin_unlock_irqrestore(&rq
->lock
, flags
);
6541 * Ensures that the idle task is using init_mm right before its cpu goes
6544 void idle_task_exit(void)
6546 struct mm_struct
*mm
= current
->active_mm
;
6548 BUG_ON(cpu_online(smp_processor_id()));
6551 switch_mm(mm
, &init_mm
, current
);
6555 /* called under rq->lock with disabled interrupts */
6556 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6558 struct rq
*rq
= cpu_rq(dead_cpu
);
6560 /* Must be exiting, otherwise would be on tasklist. */
6561 BUG_ON(!p
->exit_state
);
6563 /* Cannot have done final schedule yet: would have vanished. */
6564 BUG_ON(p
->state
== TASK_DEAD
);
6569 * Drop lock around migration; if someone else moves it,
6570 * that's OK. No task can be added to this CPU, so iteration is
6573 spin_unlock_irq(&rq
->lock
);
6574 move_task_off_dead_cpu(dead_cpu
, p
);
6575 spin_lock_irq(&rq
->lock
);
6580 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6581 static void migrate_dead_tasks(unsigned int dead_cpu
)
6583 struct rq
*rq
= cpu_rq(dead_cpu
);
6584 struct task_struct
*next
;
6587 if (!rq
->nr_running
)
6589 update_rq_clock(rq
);
6590 next
= pick_next_task(rq
);
6593 next
->sched_class
->put_prev_task(rq
, next
);
6594 migrate_dead(dead_cpu
, next
);
6598 #endif /* CONFIG_HOTPLUG_CPU */
6600 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6602 static struct ctl_table sd_ctl_dir
[] = {
6604 .procname
= "sched_domain",
6610 static struct ctl_table sd_ctl_root
[] = {
6612 .ctl_name
= CTL_KERN
,
6613 .procname
= "kernel",
6615 .child
= sd_ctl_dir
,
6620 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6622 struct ctl_table
*entry
=
6623 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6628 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6630 struct ctl_table
*entry
;
6633 * In the intermediate directories, both the child directory and
6634 * procname are dynamically allocated and could fail but the mode
6635 * will always be set. In the lowest directory the names are
6636 * static strings and all have proc handlers.
6638 for (entry
= *tablep
; entry
->mode
; entry
++) {
6640 sd_free_ctl_entry(&entry
->child
);
6641 if (entry
->proc_handler
== NULL
)
6642 kfree(entry
->procname
);
6650 set_table_entry(struct ctl_table
*entry
,
6651 const char *procname
, void *data
, int maxlen
,
6652 mode_t mode
, proc_handler
*proc_handler
)
6654 entry
->procname
= procname
;
6656 entry
->maxlen
= maxlen
;
6658 entry
->proc_handler
= proc_handler
;
6661 static struct ctl_table
*
6662 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6664 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6669 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6670 sizeof(long), 0644, proc_doulongvec_minmax
);
6671 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6672 sizeof(long), 0644, proc_doulongvec_minmax
);
6673 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6674 sizeof(int), 0644, proc_dointvec_minmax
);
6675 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6676 sizeof(int), 0644, proc_dointvec_minmax
);
6677 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6678 sizeof(int), 0644, proc_dointvec_minmax
);
6679 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6680 sizeof(int), 0644, proc_dointvec_minmax
);
6681 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6682 sizeof(int), 0644, proc_dointvec_minmax
);
6683 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6684 sizeof(int), 0644, proc_dointvec_minmax
);
6685 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6686 sizeof(int), 0644, proc_dointvec_minmax
);
6687 set_table_entry(&table
[9], "cache_nice_tries",
6688 &sd
->cache_nice_tries
,
6689 sizeof(int), 0644, proc_dointvec_minmax
);
6690 set_table_entry(&table
[10], "flags", &sd
->flags
,
6691 sizeof(int), 0644, proc_dointvec_minmax
);
6692 set_table_entry(&table
[11], "name", sd
->name
,
6693 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6694 /* &table[12] is terminator */
6699 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6701 struct ctl_table
*entry
, *table
;
6702 struct sched_domain
*sd
;
6703 int domain_num
= 0, i
;
6706 for_each_domain(cpu
, sd
)
6708 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6713 for_each_domain(cpu
, sd
) {
6714 snprintf(buf
, 32, "domain%d", i
);
6715 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6717 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6724 static struct ctl_table_header
*sd_sysctl_header
;
6725 static void register_sched_domain_sysctl(void)
6727 int i
, cpu_num
= num_online_cpus();
6728 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6731 WARN_ON(sd_ctl_dir
[0].child
);
6732 sd_ctl_dir
[0].child
= entry
;
6737 for_each_online_cpu(i
) {
6738 snprintf(buf
, 32, "cpu%d", i
);
6739 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6741 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6745 WARN_ON(sd_sysctl_header
);
6746 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6749 /* may be called multiple times per register */
6750 static void unregister_sched_domain_sysctl(void)
6752 if (sd_sysctl_header
)
6753 unregister_sysctl_table(sd_sysctl_header
);
6754 sd_sysctl_header
= NULL
;
6755 if (sd_ctl_dir
[0].child
)
6756 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6759 static void register_sched_domain_sysctl(void)
6762 static void unregister_sched_domain_sysctl(void)
6767 static void set_rq_online(struct rq
*rq
)
6770 const struct sched_class
*class;
6772 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6775 for_each_class(class) {
6776 if (class->rq_online
)
6777 class->rq_online(rq
);
6782 static void set_rq_offline(struct rq
*rq
)
6785 const struct sched_class
*class;
6787 for_each_class(class) {
6788 if (class->rq_offline
)
6789 class->rq_offline(rq
);
6792 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6798 * migration_call - callback that gets triggered when a CPU is added.
6799 * Here we can start up the necessary migration thread for the new CPU.
6801 static int __cpuinit
6802 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6804 struct task_struct
*p
;
6805 int cpu
= (long)hcpu
;
6806 unsigned long flags
;
6811 case CPU_UP_PREPARE
:
6812 case CPU_UP_PREPARE_FROZEN
:
6813 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6816 kthread_bind(p
, cpu
);
6817 /* Must be high prio: stop_machine expects to yield to it. */
6818 rq
= task_rq_lock(p
, &flags
);
6819 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6820 task_rq_unlock(rq
, &flags
);
6821 cpu_rq(cpu
)->migration_thread
= p
;
6825 case CPU_ONLINE_FROZEN
:
6826 /* Strictly unnecessary, as first user will wake it. */
6827 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6829 /* Update our root-domain */
6831 spin_lock_irqsave(&rq
->lock
, flags
);
6833 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6837 spin_unlock_irqrestore(&rq
->lock
, flags
);
6840 #ifdef CONFIG_HOTPLUG_CPU
6841 case CPU_UP_CANCELED
:
6842 case CPU_UP_CANCELED_FROZEN
:
6843 if (!cpu_rq(cpu
)->migration_thread
)
6845 /* Unbind it from offline cpu so it can run. Fall thru. */
6846 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6847 cpumask_any(cpu_online_mask
));
6848 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6849 cpu_rq(cpu
)->migration_thread
= NULL
;
6853 case CPU_DEAD_FROZEN
:
6854 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6855 migrate_live_tasks(cpu
);
6857 kthread_stop(rq
->migration_thread
);
6858 rq
->migration_thread
= NULL
;
6859 /* Idle task back to normal (off runqueue, low prio) */
6860 spin_lock_irq(&rq
->lock
);
6861 update_rq_clock(rq
);
6862 deactivate_task(rq
, rq
->idle
, 0);
6863 rq
->idle
->static_prio
= MAX_PRIO
;
6864 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6865 rq
->idle
->sched_class
= &idle_sched_class
;
6866 migrate_dead_tasks(cpu
);
6867 spin_unlock_irq(&rq
->lock
);
6869 migrate_nr_uninterruptible(rq
);
6870 BUG_ON(rq
->nr_running
!= 0);
6873 * No need to migrate the tasks: it was best-effort if
6874 * they didn't take sched_hotcpu_mutex. Just wake up
6877 spin_lock_irq(&rq
->lock
);
6878 while (!list_empty(&rq
->migration_queue
)) {
6879 struct migration_req
*req
;
6881 req
= list_entry(rq
->migration_queue
.next
,
6882 struct migration_req
, list
);
6883 list_del_init(&req
->list
);
6884 spin_unlock_irq(&rq
->lock
);
6885 complete(&req
->done
);
6886 spin_lock_irq(&rq
->lock
);
6888 spin_unlock_irq(&rq
->lock
);
6892 case CPU_DYING_FROZEN
:
6893 /* Update our root-domain */
6895 spin_lock_irqsave(&rq
->lock
, flags
);
6897 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6900 spin_unlock_irqrestore(&rq
->lock
, flags
);
6907 /* Register at highest priority so that task migration (migrate_all_tasks)
6908 * happens before everything else.
6910 static struct notifier_block __cpuinitdata migration_notifier
= {
6911 .notifier_call
= migration_call
,
6915 static int __init
migration_init(void)
6917 void *cpu
= (void *)(long)smp_processor_id();
6920 /* Start one for the boot CPU: */
6921 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6922 BUG_ON(err
== NOTIFY_BAD
);
6923 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6924 register_cpu_notifier(&migration_notifier
);
6928 early_initcall(migration_init
);
6933 #ifdef CONFIG_SCHED_DEBUG
6935 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6936 struct cpumask
*groupmask
)
6938 struct sched_group
*group
= sd
->groups
;
6941 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6942 cpumask_clear(groupmask
);
6944 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6946 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6947 printk("does not load-balance\n");
6949 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6954 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6956 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6957 printk(KERN_ERR
"ERROR: domain->span does not contain "
6960 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6961 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6965 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6969 printk(KERN_ERR
"ERROR: group is NULL\n");
6973 if (!group
->__cpu_power
) {
6974 printk(KERN_CONT
"\n");
6975 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6980 if (!cpumask_weight(sched_group_cpus(group
))) {
6981 printk(KERN_CONT
"\n");
6982 printk(KERN_ERR
"ERROR: empty group\n");
6986 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6987 printk(KERN_CONT
"\n");
6988 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6992 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6994 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6995 printk(KERN_CONT
" %s", str
);
6997 group
= group
->next
;
6998 } while (group
!= sd
->groups
);
6999 printk(KERN_CONT
"\n");
7001 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7002 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7005 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7006 printk(KERN_ERR
"ERROR: parent span is not a superset "
7007 "of domain->span\n");
7011 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7013 cpumask_var_t groupmask
;
7017 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7021 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7023 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7024 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7029 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7036 free_cpumask_var(groupmask
);
7038 #else /* !CONFIG_SCHED_DEBUG */
7039 # define sched_domain_debug(sd, cpu) do { } while (0)
7040 #endif /* CONFIG_SCHED_DEBUG */
7042 static int sd_degenerate(struct sched_domain
*sd
)
7044 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7047 /* Following flags need at least 2 groups */
7048 if (sd
->flags
& (SD_LOAD_BALANCE
|
7049 SD_BALANCE_NEWIDLE
|
7053 SD_SHARE_PKG_RESOURCES
)) {
7054 if (sd
->groups
!= sd
->groups
->next
)
7058 /* Following flags don't use groups */
7059 if (sd
->flags
& (SD_WAKE_IDLE
|
7068 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7070 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7072 if (sd_degenerate(parent
))
7075 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7078 /* Does parent contain flags not in child? */
7079 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7080 if (cflags
& SD_WAKE_AFFINE
)
7081 pflags
&= ~SD_WAKE_BALANCE
;
7082 /* Flags needing groups don't count if only 1 group in parent */
7083 if (parent
->groups
== parent
->groups
->next
) {
7084 pflags
&= ~(SD_LOAD_BALANCE
|
7085 SD_BALANCE_NEWIDLE
|
7089 SD_SHARE_PKG_RESOURCES
);
7090 if (nr_node_ids
== 1)
7091 pflags
&= ~SD_SERIALIZE
;
7093 if (~cflags
& pflags
)
7099 static void free_rootdomain(struct root_domain
*rd
)
7101 cpupri_cleanup(&rd
->cpupri
);
7103 free_cpumask_var(rd
->rto_mask
);
7104 free_cpumask_var(rd
->online
);
7105 free_cpumask_var(rd
->span
);
7109 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7111 struct root_domain
*old_rd
= NULL
;
7112 unsigned long flags
;
7114 spin_lock_irqsave(&rq
->lock
, flags
);
7119 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7122 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7125 * If we dont want to free the old_rt yet then
7126 * set old_rd to NULL to skip the freeing later
7129 if (!atomic_dec_and_test(&old_rd
->refcount
))
7133 atomic_inc(&rd
->refcount
);
7136 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7137 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
7140 spin_unlock_irqrestore(&rq
->lock
, flags
);
7143 free_rootdomain(old_rd
);
7146 static int __init_refok
init_rootdomain(struct root_domain
*rd
, bool bootmem
)
7148 memset(rd
, 0, sizeof(*rd
));
7151 alloc_bootmem_cpumask_var(&def_root_domain
.span
);
7152 alloc_bootmem_cpumask_var(&def_root_domain
.online
);
7153 alloc_bootmem_cpumask_var(&def_root_domain
.rto_mask
);
7154 cpupri_init(&rd
->cpupri
, true);
7158 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
7160 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
7162 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
7165 if (cpupri_init(&rd
->cpupri
, false) != 0)
7170 free_cpumask_var(rd
->rto_mask
);
7172 free_cpumask_var(rd
->online
);
7174 free_cpumask_var(rd
->span
);
7179 static void init_defrootdomain(void)
7181 init_rootdomain(&def_root_domain
, true);
7183 atomic_set(&def_root_domain
.refcount
, 1);
7186 static struct root_domain
*alloc_rootdomain(void)
7188 struct root_domain
*rd
;
7190 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7194 if (init_rootdomain(rd
, false) != 0) {
7203 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7204 * hold the hotplug lock.
7207 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7209 struct rq
*rq
= cpu_rq(cpu
);
7210 struct sched_domain
*tmp
;
7212 /* Remove the sched domains which do not contribute to scheduling. */
7213 for (tmp
= sd
; tmp
; ) {
7214 struct sched_domain
*parent
= tmp
->parent
;
7218 if (sd_parent_degenerate(tmp
, parent
)) {
7219 tmp
->parent
= parent
->parent
;
7221 parent
->parent
->child
= tmp
;
7226 if (sd
&& sd_degenerate(sd
)) {
7232 sched_domain_debug(sd
, cpu
);
7234 rq_attach_root(rq
, rd
);
7235 rcu_assign_pointer(rq
->sd
, sd
);
7238 /* cpus with isolated domains */
7239 static cpumask_var_t cpu_isolated_map
;
7241 /* Setup the mask of cpus configured for isolated domains */
7242 static int __init
isolated_cpu_setup(char *str
)
7244 cpulist_parse(str
, cpu_isolated_map
);
7248 __setup("isolcpus=", isolated_cpu_setup
);
7251 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7252 * to a function which identifies what group(along with sched group) a CPU
7253 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7254 * (due to the fact that we keep track of groups covered with a struct cpumask).
7256 * init_sched_build_groups will build a circular linked list of the groups
7257 * covered by the given span, and will set each group's ->cpumask correctly,
7258 * and ->cpu_power to 0.
7261 init_sched_build_groups(const struct cpumask
*span
,
7262 const struct cpumask
*cpu_map
,
7263 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7264 struct sched_group
**sg
,
7265 struct cpumask
*tmpmask
),
7266 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7268 struct sched_group
*first
= NULL
, *last
= NULL
;
7271 cpumask_clear(covered
);
7273 for_each_cpu(i
, span
) {
7274 struct sched_group
*sg
;
7275 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7278 if (cpumask_test_cpu(i
, covered
))
7281 cpumask_clear(sched_group_cpus(sg
));
7282 sg
->__cpu_power
= 0;
7284 for_each_cpu(j
, span
) {
7285 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7288 cpumask_set_cpu(j
, covered
);
7289 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7300 #define SD_NODES_PER_DOMAIN 16
7305 * find_next_best_node - find the next node to include in a sched_domain
7306 * @node: node whose sched_domain we're building
7307 * @used_nodes: nodes already in the sched_domain
7309 * Find the next node to include in a given scheduling domain. Simply
7310 * finds the closest node not already in the @used_nodes map.
7312 * Should use nodemask_t.
7314 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7316 int i
, n
, val
, min_val
, best_node
= 0;
7320 for (i
= 0; i
< nr_node_ids
; i
++) {
7321 /* Start at @node */
7322 n
= (node
+ i
) % nr_node_ids
;
7324 if (!nr_cpus_node(n
))
7327 /* Skip already used nodes */
7328 if (node_isset(n
, *used_nodes
))
7331 /* Simple min distance search */
7332 val
= node_distance(node
, n
);
7334 if (val
< min_val
) {
7340 node_set(best_node
, *used_nodes
);
7345 * sched_domain_node_span - get a cpumask for a node's sched_domain
7346 * @node: node whose cpumask we're constructing
7347 * @span: resulting cpumask
7349 * Given a node, construct a good cpumask for its sched_domain to span. It
7350 * should be one that prevents unnecessary balancing, but also spreads tasks
7353 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7355 nodemask_t used_nodes
;
7358 cpumask_clear(span
);
7359 nodes_clear(used_nodes
);
7361 cpumask_or(span
, span
, cpumask_of_node(node
));
7362 node_set(node
, used_nodes
);
7364 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7365 int next_node
= find_next_best_node(node
, &used_nodes
);
7367 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7370 #endif /* CONFIG_NUMA */
7372 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7375 * The cpus mask in sched_group and sched_domain hangs off the end.
7376 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7377 * for nr_cpu_ids < CONFIG_NR_CPUS.
7379 struct static_sched_group
{
7380 struct sched_group sg
;
7381 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
7384 struct static_sched_domain
{
7385 struct sched_domain sd
;
7386 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
7390 * SMT sched-domains:
7392 #ifdef CONFIG_SCHED_SMT
7393 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
7394 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
7397 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
7398 struct sched_group
**sg
, struct cpumask
*unused
)
7401 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
7404 #endif /* CONFIG_SCHED_SMT */
7407 * multi-core sched-domains:
7409 #ifdef CONFIG_SCHED_MC
7410 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
7411 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
7412 #endif /* CONFIG_SCHED_MC */
7414 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7416 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7417 struct sched_group
**sg
, struct cpumask
*mask
)
7421 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7422 group
= cpumask_first(mask
);
7424 *sg
= &per_cpu(sched_group_core
, group
).sg
;
7427 #elif defined(CONFIG_SCHED_MC)
7429 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7430 struct sched_group
**sg
, struct cpumask
*unused
)
7433 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
7438 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
7439 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
7442 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
7443 struct sched_group
**sg
, struct cpumask
*mask
)
7446 #ifdef CONFIG_SCHED_MC
7447 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
7448 group
= cpumask_first(mask
);
7449 #elif defined(CONFIG_SCHED_SMT)
7450 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7451 group
= cpumask_first(mask
);
7456 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
7462 * The init_sched_build_groups can't handle what we want to do with node
7463 * groups, so roll our own. Now each node has its own list of groups which
7464 * gets dynamically allocated.
7466 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
7467 static struct sched_group
***sched_group_nodes_bycpu
;
7469 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
7470 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
7472 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
7473 struct sched_group
**sg
,
7474 struct cpumask
*nodemask
)
7478 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
7479 group
= cpumask_first(nodemask
);
7482 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7486 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7488 struct sched_group
*sg
= group_head
;
7494 for_each_cpu(j
, sched_group_cpus(sg
)) {
7495 struct sched_domain
*sd
;
7497 sd
= &per_cpu(phys_domains
, j
).sd
;
7498 if (j
!= cpumask_first(sched_group_cpus(sd
->groups
))) {
7500 * Only add "power" once for each
7506 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7509 } while (sg
!= group_head
);
7511 #endif /* CONFIG_NUMA */
7514 /* Free memory allocated for various sched_group structures */
7515 static void free_sched_groups(const struct cpumask
*cpu_map
,
7516 struct cpumask
*nodemask
)
7520 for_each_cpu(cpu
, cpu_map
) {
7521 struct sched_group
**sched_group_nodes
7522 = sched_group_nodes_bycpu
[cpu
];
7524 if (!sched_group_nodes
)
7527 for (i
= 0; i
< nr_node_ids
; i
++) {
7528 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7530 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7531 if (cpumask_empty(nodemask
))
7541 if (oldsg
!= sched_group_nodes
[i
])
7544 kfree(sched_group_nodes
);
7545 sched_group_nodes_bycpu
[cpu
] = NULL
;
7548 #else /* !CONFIG_NUMA */
7549 static void free_sched_groups(const struct cpumask
*cpu_map
,
7550 struct cpumask
*nodemask
)
7553 #endif /* CONFIG_NUMA */
7556 * Initialize sched groups cpu_power.
7558 * cpu_power indicates the capacity of sched group, which is used while
7559 * distributing the load between different sched groups in a sched domain.
7560 * Typically cpu_power for all the groups in a sched domain will be same unless
7561 * there are asymmetries in the topology. If there are asymmetries, group
7562 * having more cpu_power will pickup more load compared to the group having
7565 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7566 * the maximum number of tasks a group can handle in the presence of other idle
7567 * or lightly loaded groups in the same sched domain.
7569 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7571 struct sched_domain
*child
;
7572 struct sched_group
*group
;
7574 WARN_ON(!sd
|| !sd
->groups
);
7576 if (cpu
!= cpumask_first(sched_group_cpus(sd
->groups
)))
7581 sd
->groups
->__cpu_power
= 0;
7584 * For perf policy, if the groups in child domain share resources
7585 * (for example cores sharing some portions of the cache hierarchy
7586 * or SMT), then set this domain groups cpu_power such that each group
7587 * can handle only one task, when there are other idle groups in the
7588 * same sched domain.
7590 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7592 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7593 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7598 * add cpu_power of each child group to this groups cpu_power
7600 group
= child
->groups
;
7602 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7603 group
= group
->next
;
7604 } while (group
!= child
->groups
);
7608 * Initializers for schedule domains
7609 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7612 #ifdef CONFIG_SCHED_DEBUG
7613 # define SD_INIT_NAME(sd, type) sd->name = #type
7615 # define SD_INIT_NAME(sd, type) do { } while (0)
7618 #define SD_INIT(sd, type) sd_init_##type(sd)
7620 #define SD_INIT_FUNC(type) \
7621 static noinline void sd_init_##type(struct sched_domain *sd) \
7623 memset(sd, 0, sizeof(*sd)); \
7624 *sd = SD_##type##_INIT; \
7625 sd->level = SD_LV_##type; \
7626 SD_INIT_NAME(sd, type); \
7631 SD_INIT_FUNC(ALLNODES
)
7634 #ifdef CONFIG_SCHED_SMT
7635 SD_INIT_FUNC(SIBLING
)
7637 #ifdef CONFIG_SCHED_MC
7641 static int default_relax_domain_level
= -1;
7643 static int __init
setup_relax_domain_level(char *str
)
7647 val
= simple_strtoul(str
, NULL
, 0);
7648 if (val
< SD_LV_MAX
)
7649 default_relax_domain_level
= val
;
7653 __setup("relax_domain_level=", setup_relax_domain_level
);
7655 static void set_domain_attribute(struct sched_domain
*sd
,
7656 struct sched_domain_attr
*attr
)
7660 if (!attr
|| attr
->relax_domain_level
< 0) {
7661 if (default_relax_domain_level
< 0)
7664 request
= default_relax_domain_level
;
7666 request
= attr
->relax_domain_level
;
7667 if (request
< sd
->level
) {
7668 /* turn off idle balance on this domain */
7669 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7671 /* turn on idle balance on this domain */
7672 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7677 * Build sched domains for a given set of cpus and attach the sched domains
7678 * to the individual cpus
7680 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7681 struct sched_domain_attr
*attr
)
7683 int i
, err
= -ENOMEM
;
7684 struct root_domain
*rd
;
7685 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
7688 cpumask_var_t domainspan
, covered
, notcovered
;
7689 struct sched_group
**sched_group_nodes
= NULL
;
7690 int sd_allnodes
= 0;
7692 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
7694 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
7695 goto free_domainspan
;
7696 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
7700 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
7701 goto free_notcovered
;
7702 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
7704 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
7705 goto free_this_sibling_map
;
7706 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
7707 goto free_this_core_map
;
7708 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
7709 goto free_send_covered
;
7713 * Allocate the per-node list of sched groups
7715 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7717 if (!sched_group_nodes
) {
7718 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7723 rd
= alloc_rootdomain();
7725 printk(KERN_WARNING
"Cannot alloc root domain\n");
7726 goto free_sched_groups
;
7730 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
7734 * Set up domains for cpus specified by the cpu_map.
7736 for_each_cpu(i
, cpu_map
) {
7737 struct sched_domain
*sd
= NULL
, *p
;
7739 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(i
)), cpu_map
);
7742 if (cpumask_weight(cpu_map
) >
7743 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
7744 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7745 SD_INIT(sd
, ALLNODES
);
7746 set_domain_attribute(sd
, attr
);
7747 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7748 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7754 sd
= &per_cpu(node_domains
, i
).sd
;
7756 set_domain_attribute(sd
, attr
);
7757 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7761 cpumask_and(sched_domain_span(sd
),
7762 sched_domain_span(sd
), cpu_map
);
7766 sd
= &per_cpu(phys_domains
, i
).sd
;
7768 set_domain_attribute(sd
, attr
);
7769 cpumask_copy(sched_domain_span(sd
), nodemask
);
7773 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7775 #ifdef CONFIG_SCHED_MC
7777 sd
= &per_cpu(core_domains
, i
).sd
;
7779 set_domain_attribute(sd
, attr
);
7780 cpumask_and(sched_domain_span(sd
), cpu_map
,
7781 cpu_coregroup_mask(i
));
7784 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7787 #ifdef CONFIG_SCHED_SMT
7789 sd
= &per_cpu(cpu_domains
, i
).sd
;
7790 SD_INIT(sd
, SIBLING
);
7791 set_domain_attribute(sd
, attr
);
7792 cpumask_and(sched_domain_span(sd
),
7793 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7796 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7800 #ifdef CONFIG_SCHED_SMT
7801 /* Set up CPU (sibling) groups */
7802 for_each_cpu(i
, cpu_map
) {
7803 cpumask_and(this_sibling_map
,
7804 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7805 if (i
!= cpumask_first(this_sibling_map
))
7808 init_sched_build_groups(this_sibling_map
, cpu_map
,
7810 send_covered
, tmpmask
);
7814 #ifdef CONFIG_SCHED_MC
7815 /* Set up multi-core groups */
7816 for_each_cpu(i
, cpu_map
) {
7817 cpumask_and(this_core_map
, cpu_coregroup_mask(i
), cpu_map
);
7818 if (i
!= cpumask_first(this_core_map
))
7821 init_sched_build_groups(this_core_map
, cpu_map
,
7823 send_covered
, tmpmask
);
7827 /* Set up physical groups */
7828 for (i
= 0; i
< nr_node_ids
; i
++) {
7829 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7830 if (cpumask_empty(nodemask
))
7833 init_sched_build_groups(nodemask
, cpu_map
,
7835 send_covered
, tmpmask
);
7839 /* Set up node groups */
7841 init_sched_build_groups(cpu_map
, cpu_map
,
7842 &cpu_to_allnodes_group
,
7843 send_covered
, tmpmask
);
7846 for (i
= 0; i
< nr_node_ids
; i
++) {
7847 /* Set up node groups */
7848 struct sched_group
*sg
, *prev
;
7851 cpumask_clear(covered
);
7852 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7853 if (cpumask_empty(nodemask
)) {
7854 sched_group_nodes
[i
] = NULL
;
7858 sched_domain_node_span(i
, domainspan
);
7859 cpumask_and(domainspan
, domainspan
, cpu_map
);
7861 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7864 printk(KERN_WARNING
"Can not alloc domain group for "
7868 sched_group_nodes
[i
] = sg
;
7869 for_each_cpu(j
, nodemask
) {
7870 struct sched_domain
*sd
;
7872 sd
= &per_cpu(node_domains
, j
).sd
;
7875 sg
->__cpu_power
= 0;
7876 cpumask_copy(sched_group_cpus(sg
), nodemask
);
7878 cpumask_or(covered
, covered
, nodemask
);
7881 for (j
= 0; j
< nr_node_ids
; j
++) {
7882 int n
= (i
+ j
) % nr_node_ids
;
7884 cpumask_complement(notcovered
, covered
);
7885 cpumask_and(tmpmask
, notcovered
, cpu_map
);
7886 cpumask_and(tmpmask
, tmpmask
, domainspan
);
7887 if (cpumask_empty(tmpmask
))
7890 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(n
));
7891 if (cpumask_empty(tmpmask
))
7894 sg
= kmalloc_node(sizeof(struct sched_group
) +
7899 "Can not alloc domain group for node %d\n", j
);
7902 sg
->__cpu_power
= 0;
7903 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
7904 sg
->next
= prev
->next
;
7905 cpumask_or(covered
, covered
, tmpmask
);
7912 /* Calculate CPU power for physical packages and nodes */
7913 #ifdef CONFIG_SCHED_SMT
7914 for_each_cpu(i
, cpu_map
) {
7915 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
7917 init_sched_groups_power(i
, sd
);
7920 #ifdef CONFIG_SCHED_MC
7921 for_each_cpu(i
, cpu_map
) {
7922 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
7924 init_sched_groups_power(i
, sd
);
7928 for_each_cpu(i
, cpu_map
) {
7929 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
7931 init_sched_groups_power(i
, sd
);
7935 for (i
= 0; i
< nr_node_ids
; i
++)
7936 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7939 struct sched_group
*sg
;
7941 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7943 init_numa_sched_groups_power(sg
);
7947 /* Attach the domains */
7948 for_each_cpu(i
, cpu_map
) {
7949 struct sched_domain
*sd
;
7950 #ifdef CONFIG_SCHED_SMT
7951 sd
= &per_cpu(cpu_domains
, i
).sd
;
7952 #elif defined(CONFIG_SCHED_MC)
7953 sd
= &per_cpu(core_domains
, i
).sd
;
7955 sd
= &per_cpu(phys_domains
, i
).sd
;
7957 cpu_attach_domain(sd
, rd
, i
);
7963 free_cpumask_var(tmpmask
);
7965 free_cpumask_var(send_covered
);
7967 free_cpumask_var(this_core_map
);
7968 free_this_sibling_map
:
7969 free_cpumask_var(this_sibling_map
);
7971 free_cpumask_var(nodemask
);
7974 free_cpumask_var(notcovered
);
7976 free_cpumask_var(covered
);
7978 free_cpumask_var(domainspan
);
7985 kfree(sched_group_nodes
);
7991 free_sched_groups(cpu_map
, tmpmask
);
7992 free_rootdomain(rd
);
7997 static int build_sched_domains(const struct cpumask
*cpu_map
)
7999 return __build_sched_domains(cpu_map
, NULL
);
8002 static struct cpumask
*doms_cur
; /* current sched domains */
8003 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8004 static struct sched_domain_attr
*dattr_cur
;
8005 /* attribues of custom domains in 'doms_cur' */
8008 * Special case: If a kmalloc of a doms_cur partition (array of
8009 * cpumask) fails, then fallback to a single sched domain,
8010 * as determined by the single cpumask fallback_doms.
8012 static cpumask_var_t fallback_doms
;
8015 * arch_update_cpu_topology lets virtualized architectures update the
8016 * cpu core maps. It is supposed to return 1 if the topology changed
8017 * or 0 if it stayed the same.
8019 int __attribute__((weak
)) arch_update_cpu_topology(void)
8025 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8026 * For now this just excludes isolated cpus, but could be used to
8027 * exclude other special cases in the future.
8029 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
8033 arch_update_cpu_topology();
8035 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
8037 doms_cur
= fallback_doms
;
8038 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
8040 err
= build_sched_domains(doms_cur
);
8041 register_sched_domain_sysctl();
8046 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
8047 struct cpumask
*tmpmask
)
8049 free_sched_groups(cpu_map
, tmpmask
);
8053 * Detach sched domains from a group of cpus specified in cpu_map
8054 * These cpus will now be attached to the NULL domain
8056 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
8058 /* Save because hotplug lock held. */
8059 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
8062 for_each_cpu(i
, cpu_map
)
8063 cpu_attach_domain(NULL
, &def_root_domain
, i
);
8064 synchronize_sched();
8065 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
8068 /* handle null as "default" */
8069 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
8070 struct sched_domain_attr
*new, int idx_new
)
8072 struct sched_domain_attr tmp
;
8079 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
8080 new ? (new + idx_new
) : &tmp
,
8081 sizeof(struct sched_domain_attr
));
8085 * Partition sched domains as specified by the 'ndoms_new'
8086 * cpumasks in the array doms_new[] of cpumasks. This compares
8087 * doms_new[] to the current sched domain partitioning, doms_cur[].
8088 * It destroys each deleted domain and builds each new domain.
8090 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8091 * The masks don't intersect (don't overlap.) We should setup one
8092 * sched domain for each mask. CPUs not in any of the cpumasks will
8093 * not be load balanced. If the same cpumask appears both in the
8094 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8097 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8098 * ownership of it and will kfree it when done with it. If the caller
8099 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8100 * ndoms_new == 1, and partition_sched_domains() will fallback to
8101 * the single partition 'fallback_doms', it also forces the domains
8104 * If doms_new == NULL it will be replaced with cpu_online_mask.
8105 * ndoms_new == 0 is a special case for destroying existing domains,
8106 * and it will not create the default domain.
8108 * Call with hotplug lock held
8110 /* FIXME: Change to struct cpumask *doms_new[] */
8111 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
8112 struct sched_domain_attr
*dattr_new
)
8117 mutex_lock(&sched_domains_mutex
);
8119 /* always unregister in case we don't destroy any domains */
8120 unregister_sched_domain_sysctl();
8122 /* Let architecture update cpu core mappings. */
8123 new_topology
= arch_update_cpu_topology();
8125 n
= doms_new
? ndoms_new
: 0;
8127 /* Destroy deleted domains */
8128 for (i
= 0; i
< ndoms_cur
; i
++) {
8129 for (j
= 0; j
< n
&& !new_topology
; j
++) {
8130 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
8131 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
8134 /* no match - a current sched domain not in new doms_new[] */
8135 detach_destroy_domains(doms_cur
+ i
);
8140 if (doms_new
== NULL
) {
8142 doms_new
= fallback_doms
;
8143 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
8144 WARN_ON_ONCE(dattr_new
);
8147 /* Build new domains */
8148 for (i
= 0; i
< ndoms_new
; i
++) {
8149 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
8150 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
8151 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
8154 /* no match - add a new doms_new */
8155 __build_sched_domains(doms_new
+ i
,
8156 dattr_new
? dattr_new
+ i
: NULL
);
8161 /* Remember the new sched domains */
8162 if (doms_cur
!= fallback_doms
)
8164 kfree(dattr_cur
); /* kfree(NULL) is safe */
8165 doms_cur
= doms_new
;
8166 dattr_cur
= dattr_new
;
8167 ndoms_cur
= ndoms_new
;
8169 register_sched_domain_sysctl();
8171 mutex_unlock(&sched_domains_mutex
);
8174 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8175 static void arch_reinit_sched_domains(void)
8179 /* Destroy domains first to force the rebuild */
8180 partition_sched_domains(0, NULL
, NULL
);
8182 rebuild_sched_domains();
8186 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8188 unsigned int level
= 0;
8190 if (sscanf(buf
, "%u", &level
) != 1)
8194 * level is always be positive so don't check for
8195 * level < POWERSAVINGS_BALANCE_NONE which is 0
8196 * What happens on 0 or 1 byte write,
8197 * need to check for count as well?
8200 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8204 sched_smt_power_savings
= level
;
8206 sched_mc_power_savings
= level
;
8208 arch_reinit_sched_domains();
8213 #ifdef CONFIG_SCHED_MC
8214 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8217 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8219 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8220 const char *buf
, size_t count
)
8222 return sched_power_savings_store(buf
, count
, 0);
8224 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8225 sched_mc_power_savings_show
,
8226 sched_mc_power_savings_store
);
8229 #ifdef CONFIG_SCHED_SMT
8230 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8233 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8235 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8236 const char *buf
, size_t count
)
8238 return sched_power_savings_store(buf
, count
, 1);
8240 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8241 sched_smt_power_savings_show
,
8242 sched_smt_power_savings_store
);
8245 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8249 #ifdef CONFIG_SCHED_SMT
8251 err
= sysfs_create_file(&cls
->kset
.kobj
,
8252 &attr_sched_smt_power_savings
.attr
);
8254 #ifdef CONFIG_SCHED_MC
8255 if (!err
&& mc_capable())
8256 err
= sysfs_create_file(&cls
->kset
.kobj
,
8257 &attr_sched_mc_power_savings
.attr
);
8261 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8263 #ifndef CONFIG_CPUSETS
8265 * Add online and remove offline CPUs from the scheduler domains.
8266 * When cpusets are enabled they take over this function.
8268 static int update_sched_domains(struct notifier_block
*nfb
,
8269 unsigned long action
, void *hcpu
)
8273 case CPU_ONLINE_FROZEN
:
8275 case CPU_DEAD_FROZEN
:
8276 partition_sched_domains(1, NULL
, NULL
);
8285 static int update_runtime(struct notifier_block
*nfb
,
8286 unsigned long action
, void *hcpu
)
8288 int cpu
= (int)(long)hcpu
;
8291 case CPU_DOWN_PREPARE
:
8292 case CPU_DOWN_PREPARE_FROZEN
:
8293 disable_runtime(cpu_rq(cpu
));
8296 case CPU_DOWN_FAILED
:
8297 case CPU_DOWN_FAILED_FROZEN
:
8299 case CPU_ONLINE_FROZEN
:
8300 enable_runtime(cpu_rq(cpu
));
8308 void __init
sched_init_smp(void)
8310 cpumask_var_t non_isolated_cpus
;
8312 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8314 #if defined(CONFIG_NUMA)
8315 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8317 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8320 mutex_lock(&sched_domains_mutex
);
8321 arch_init_sched_domains(cpu_online_mask
);
8322 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8323 if (cpumask_empty(non_isolated_cpus
))
8324 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8325 mutex_unlock(&sched_domains_mutex
);
8328 #ifndef CONFIG_CPUSETS
8329 /* XXX: Theoretical race here - CPU may be hotplugged now */
8330 hotcpu_notifier(update_sched_domains
, 0);
8333 /* RT runtime code needs to handle some hotplug events */
8334 hotcpu_notifier(update_runtime
, 0);
8338 /* Move init over to a non-isolated CPU */
8339 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8341 sched_init_granularity();
8342 free_cpumask_var(non_isolated_cpus
);
8344 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8345 init_sched_rt_class();
8348 void __init
sched_init_smp(void)
8350 sched_init_granularity();
8352 #endif /* CONFIG_SMP */
8354 int in_sched_functions(unsigned long addr
)
8356 return in_lock_functions(addr
) ||
8357 (addr
>= (unsigned long)__sched_text_start
8358 && addr
< (unsigned long)__sched_text_end
);
8361 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8363 cfs_rq
->tasks_timeline
= RB_ROOT
;
8364 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8365 #ifdef CONFIG_FAIR_GROUP_SCHED
8368 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8371 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8373 struct rt_prio_array
*array
;
8376 array
= &rt_rq
->active
;
8377 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8378 INIT_LIST_HEAD(array
->queue
+ i
);
8379 __clear_bit(i
, array
->bitmap
);
8381 /* delimiter for bitsearch: */
8382 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8385 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8387 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
8391 rt_rq
->rt_nr_migratory
= 0;
8392 rt_rq
->overloaded
= 0;
8393 plist_head_init(&rq
->rt
.pushable_tasks
, &rq
->lock
);
8397 rt_rq
->rt_throttled
= 0;
8398 rt_rq
->rt_runtime
= 0;
8399 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8401 #ifdef CONFIG_RT_GROUP_SCHED
8402 rt_rq
->rt_nr_boosted
= 0;
8407 #ifdef CONFIG_FAIR_GROUP_SCHED
8408 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8409 struct sched_entity
*se
, int cpu
, int add
,
8410 struct sched_entity
*parent
)
8412 struct rq
*rq
= cpu_rq(cpu
);
8413 tg
->cfs_rq
[cpu
] = cfs_rq
;
8414 init_cfs_rq(cfs_rq
, rq
);
8417 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8420 /* se could be NULL for init_task_group */
8425 se
->cfs_rq
= &rq
->cfs
;
8427 se
->cfs_rq
= parent
->my_q
;
8430 se
->load
.weight
= tg
->shares
;
8431 se
->load
.inv_weight
= 0;
8432 se
->parent
= parent
;
8436 #ifdef CONFIG_RT_GROUP_SCHED
8437 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8438 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8439 struct sched_rt_entity
*parent
)
8441 struct rq
*rq
= cpu_rq(cpu
);
8443 tg
->rt_rq
[cpu
] = rt_rq
;
8444 init_rt_rq(rt_rq
, rq
);
8446 rt_rq
->rt_se
= rt_se
;
8447 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8449 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8451 tg
->rt_se
[cpu
] = rt_se
;
8456 rt_se
->rt_rq
= &rq
->rt
;
8458 rt_se
->rt_rq
= parent
->my_q
;
8460 rt_se
->my_q
= rt_rq
;
8461 rt_se
->parent
= parent
;
8462 INIT_LIST_HEAD(&rt_se
->run_list
);
8466 void __init
sched_init(void)
8469 unsigned long alloc_size
= 0, ptr
;
8471 #ifdef CONFIG_FAIR_GROUP_SCHED
8472 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8474 #ifdef CONFIG_RT_GROUP_SCHED
8475 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8477 #ifdef CONFIG_USER_SCHED
8481 * As sched_init() is called before page_alloc is setup,
8482 * we use alloc_bootmem().
8485 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8487 #ifdef CONFIG_FAIR_GROUP_SCHED
8488 init_task_group
.se
= (struct sched_entity
**)ptr
;
8489 ptr
+= nr_cpu_ids
* sizeof(void **);
8491 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8492 ptr
+= nr_cpu_ids
* sizeof(void **);
8494 #ifdef CONFIG_USER_SCHED
8495 root_task_group
.se
= (struct sched_entity
**)ptr
;
8496 ptr
+= nr_cpu_ids
* sizeof(void **);
8498 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8499 ptr
+= nr_cpu_ids
* sizeof(void **);
8500 #endif /* CONFIG_USER_SCHED */
8501 #endif /* CONFIG_FAIR_GROUP_SCHED */
8502 #ifdef CONFIG_RT_GROUP_SCHED
8503 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8504 ptr
+= nr_cpu_ids
* sizeof(void **);
8506 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8507 ptr
+= nr_cpu_ids
* sizeof(void **);
8509 #ifdef CONFIG_USER_SCHED
8510 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8511 ptr
+= nr_cpu_ids
* sizeof(void **);
8513 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8514 ptr
+= nr_cpu_ids
* sizeof(void **);
8515 #endif /* CONFIG_USER_SCHED */
8516 #endif /* CONFIG_RT_GROUP_SCHED */
8520 init_defrootdomain();
8523 init_rt_bandwidth(&def_rt_bandwidth
,
8524 global_rt_period(), global_rt_runtime());
8526 #ifdef CONFIG_RT_GROUP_SCHED
8527 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8528 global_rt_period(), global_rt_runtime());
8529 #ifdef CONFIG_USER_SCHED
8530 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8531 global_rt_period(), RUNTIME_INF
);
8532 #endif /* CONFIG_USER_SCHED */
8533 #endif /* CONFIG_RT_GROUP_SCHED */
8535 #ifdef CONFIG_GROUP_SCHED
8536 list_add(&init_task_group
.list
, &task_groups
);
8537 INIT_LIST_HEAD(&init_task_group
.children
);
8539 #ifdef CONFIG_USER_SCHED
8540 INIT_LIST_HEAD(&root_task_group
.children
);
8541 init_task_group
.parent
= &root_task_group
;
8542 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8543 #endif /* CONFIG_USER_SCHED */
8544 #endif /* CONFIG_GROUP_SCHED */
8546 for_each_possible_cpu(i
) {
8550 spin_lock_init(&rq
->lock
);
8552 init_cfs_rq(&rq
->cfs
, rq
);
8553 init_rt_rq(&rq
->rt
, rq
);
8554 #ifdef CONFIG_FAIR_GROUP_SCHED
8555 init_task_group
.shares
= init_task_group_load
;
8556 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8557 #ifdef CONFIG_CGROUP_SCHED
8559 * How much cpu bandwidth does init_task_group get?
8561 * In case of task-groups formed thr' the cgroup filesystem, it
8562 * gets 100% of the cpu resources in the system. This overall
8563 * system cpu resource is divided among the tasks of
8564 * init_task_group and its child task-groups in a fair manner,
8565 * based on each entity's (task or task-group's) weight
8566 * (se->load.weight).
8568 * In other words, if init_task_group has 10 tasks of weight
8569 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8570 * then A0's share of the cpu resource is:
8572 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8574 * We achieve this by letting init_task_group's tasks sit
8575 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8577 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8578 #elif defined CONFIG_USER_SCHED
8579 root_task_group
.shares
= NICE_0_LOAD
;
8580 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8582 * In case of task-groups formed thr' the user id of tasks,
8583 * init_task_group represents tasks belonging to root user.
8584 * Hence it forms a sibling of all subsequent groups formed.
8585 * In this case, init_task_group gets only a fraction of overall
8586 * system cpu resource, based on the weight assigned to root
8587 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8588 * by letting tasks of init_task_group sit in a separate cfs_rq
8589 * (init_cfs_rq) and having one entity represent this group of
8590 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8592 init_tg_cfs_entry(&init_task_group
,
8593 &per_cpu(init_cfs_rq
, i
),
8594 &per_cpu(init_sched_entity
, i
), i
, 1,
8595 root_task_group
.se
[i
]);
8598 #endif /* CONFIG_FAIR_GROUP_SCHED */
8600 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8601 #ifdef CONFIG_RT_GROUP_SCHED
8602 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8603 #ifdef CONFIG_CGROUP_SCHED
8604 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8605 #elif defined CONFIG_USER_SCHED
8606 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8607 init_tg_rt_entry(&init_task_group
,
8608 &per_cpu(init_rt_rq
, i
),
8609 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8610 root_task_group
.rt_se
[i
]);
8614 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8615 rq
->cpu_load
[j
] = 0;
8619 rq
->active_balance
= 0;
8620 rq
->next_balance
= jiffies
;
8624 rq
->migration_thread
= NULL
;
8625 INIT_LIST_HEAD(&rq
->migration_queue
);
8626 rq_attach_root(rq
, &def_root_domain
);
8629 atomic_set(&rq
->nr_iowait
, 0);
8632 set_load_weight(&init_task
);
8634 #ifdef CONFIG_PREEMPT_NOTIFIERS
8635 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8639 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8642 #ifdef CONFIG_RT_MUTEXES
8643 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8647 * The boot idle thread does lazy MMU switching as well:
8649 atomic_inc(&init_mm
.mm_count
);
8650 enter_lazy_tlb(&init_mm
, current
);
8653 * Make us the idle thread. Technically, schedule() should not be
8654 * called from this thread, however somewhere below it might be,
8655 * but because we are the idle thread, we just pick up running again
8656 * when this runqueue becomes "idle".
8658 init_idle(current
, smp_processor_id());
8660 * During early bootup we pretend to be a normal task:
8662 current
->sched_class
= &fair_sched_class
;
8664 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8665 alloc_bootmem_cpumask_var(&nohz_cpu_mask
);
8668 alloc_bootmem_cpumask_var(&nohz
.cpu_mask
);
8670 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8673 scheduler_running
= 1;
8676 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8677 void __might_sleep(char *file
, int line
)
8680 static unsigned long prev_jiffy
; /* ratelimiting */
8682 if ((!in_atomic() && !irqs_disabled()) ||
8683 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8685 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8687 prev_jiffy
= jiffies
;
8690 "BUG: sleeping function called from invalid context at %s:%d\n",
8693 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8694 in_atomic(), irqs_disabled(),
8695 current
->pid
, current
->comm
);
8697 debug_show_held_locks(current
);
8698 if (irqs_disabled())
8699 print_irqtrace_events(current
);
8703 EXPORT_SYMBOL(__might_sleep
);
8706 #ifdef CONFIG_MAGIC_SYSRQ
8707 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8711 update_rq_clock(rq
);
8712 on_rq
= p
->se
.on_rq
;
8714 deactivate_task(rq
, p
, 0);
8715 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8717 activate_task(rq
, p
, 0);
8718 resched_task(rq
->curr
);
8722 void normalize_rt_tasks(void)
8724 struct task_struct
*g
, *p
;
8725 unsigned long flags
;
8728 read_lock_irqsave(&tasklist_lock
, flags
);
8729 do_each_thread(g
, p
) {
8731 * Only normalize user tasks:
8736 p
->se
.exec_start
= 0;
8737 #ifdef CONFIG_SCHEDSTATS
8738 p
->se
.wait_start
= 0;
8739 p
->se
.sleep_start
= 0;
8740 p
->se
.block_start
= 0;
8745 * Renice negative nice level userspace
8748 if (TASK_NICE(p
) < 0 && p
->mm
)
8749 set_user_nice(p
, 0);
8753 spin_lock(&p
->pi_lock
);
8754 rq
= __task_rq_lock(p
);
8756 normalize_task(rq
, p
);
8758 __task_rq_unlock(rq
);
8759 spin_unlock(&p
->pi_lock
);
8760 } while_each_thread(g
, p
);
8762 read_unlock_irqrestore(&tasklist_lock
, flags
);
8765 #endif /* CONFIG_MAGIC_SYSRQ */
8769 * These functions are only useful for the IA64 MCA handling.
8771 * They can only be called when the whole system has been
8772 * stopped - every CPU needs to be quiescent, and no scheduling
8773 * activity can take place. Using them for anything else would
8774 * be a serious bug, and as a result, they aren't even visible
8775 * under any other configuration.
8779 * curr_task - return the current task for a given cpu.
8780 * @cpu: the processor in question.
8782 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8784 struct task_struct
*curr_task(int cpu
)
8786 return cpu_curr(cpu
);
8790 * set_curr_task - set the current task for a given cpu.
8791 * @cpu: the processor in question.
8792 * @p: the task pointer to set.
8794 * Description: This function must only be used when non-maskable interrupts
8795 * are serviced on a separate stack. It allows the architecture to switch the
8796 * notion of the current task on a cpu in a non-blocking manner. This function
8797 * must be called with all CPU's synchronized, and interrupts disabled, the
8798 * and caller must save the original value of the current task (see
8799 * curr_task() above) and restore that value before reenabling interrupts and
8800 * re-starting the system.
8802 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8804 void set_curr_task(int cpu
, struct task_struct
*p
)
8811 #ifdef CONFIG_FAIR_GROUP_SCHED
8812 static void free_fair_sched_group(struct task_group
*tg
)
8816 for_each_possible_cpu(i
) {
8818 kfree(tg
->cfs_rq
[i
]);
8828 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8830 struct cfs_rq
*cfs_rq
;
8831 struct sched_entity
*se
;
8835 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8838 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8842 tg
->shares
= NICE_0_LOAD
;
8844 for_each_possible_cpu(i
) {
8847 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8848 GFP_KERNEL
, cpu_to_node(i
));
8852 se
= kzalloc_node(sizeof(struct sched_entity
),
8853 GFP_KERNEL
, cpu_to_node(i
));
8857 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8866 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8868 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8869 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8872 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8874 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8876 #else /* !CONFG_FAIR_GROUP_SCHED */
8877 static inline void free_fair_sched_group(struct task_group
*tg
)
8882 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8887 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8891 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8894 #endif /* CONFIG_FAIR_GROUP_SCHED */
8896 #ifdef CONFIG_RT_GROUP_SCHED
8897 static void free_rt_sched_group(struct task_group
*tg
)
8901 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8903 for_each_possible_cpu(i
) {
8905 kfree(tg
->rt_rq
[i
]);
8907 kfree(tg
->rt_se
[i
]);
8915 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8917 struct rt_rq
*rt_rq
;
8918 struct sched_rt_entity
*rt_se
;
8922 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8925 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8929 init_rt_bandwidth(&tg
->rt_bandwidth
,
8930 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8932 for_each_possible_cpu(i
) {
8935 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8936 GFP_KERNEL
, cpu_to_node(i
));
8940 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8941 GFP_KERNEL
, cpu_to_node(i
));
8945 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8954 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8956 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8957 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8960 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8962 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8964 #else /* !CONFIG_RT_GROUP_SCHED */
8965 static inline void free_rt_sched_group(struct task_group
*tg
)
8970 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8975 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8979 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8982 #endif /* CONFIG_RT_GROUP_SCHED */
8984 #ifdef CONFIG_GROUP_SCHED
8985 static void free_sched_group(struct task_group
*tg
)
8987 free_fair_sched_group(tg
);
8988 free_rt_sched_group(tg
);
8992 /* allocate runqueue etc for a new task group */
8993 struct task_group
*sched_create_group(struct task_group
*parent
)
8995 struct task_group
*tg
;
8996 unsigned long flags
;
8999 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
9001 return ERR_PTR(-ENOMEM
);
9003 if (!alloc_fair_sched_group(tg
, parent
))
9006 if (!alloc_rt_sched_group(tg
, parent
))
9009 spin_lock_irqsave(&task_group_lock
, flags
);
9010 for_each_possible_cpu(i
) {
9011 register_fair_sched_group(tg
, i
);
9012 register_rt_sched_group(tg
, i
);
9014 list_add_rcu(&tg
->list
, &task_groups
);
9016 WARN_ON(!parent
); /* root should already exist */
9018 tg
->parent
= parent
;
9019 INIT_LIST_HEAD(&tg
->children
);
9020 list_add_rcu(&tg
->siblings
, &parent
->children
);
9021 spin_unlock_irqrestore(&task_group_lock
, flags
);
9026 free_sched_group(tg
);
9027 return ERR_PTR(-ENOMEM
);
9030 /* rcu callback to free various structures associated with a task group */
9031 static void free_sched_group_rcu(struct rcu_head
*rhp
)
9033 /* now it should be safe to free those cfs_rqs */
9034 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
9037 /* Destroy runqueue etc associated with a task group */
9038 void sched_destroy_group(struct task_group
*tg
)
9040 unsigned long flags
;
9043 spin_lock_irqsave(&task_group_lock
, flags
);
9044 for_each_possible_cpu(i
) {
9045 unregister_fair_sched_group(tg
, i
);
9046 unregister_rt_sched_group(tg
, i
);
9048 list_del_rcu(&tg
->list
);
9049 list_del_rcu(&tg
->siblings
);
9050 spin_unlock_irqrestore(&task_group_lock
, flags
);
9052 /* wait for possible concurrent references to cfs_rqs complete */
9053 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
9056 /* change task's runqueue when it moves between groups.
9057 * The caller of this function should have put the task in its new group
9058 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9059 * reflect its new group.
9061 void sched_move_task(struct task_struct
*tsk
)
9064 unsigned long flags
;
9067 rq
= task_rq_lock(tsk
, &flags
);
9069 update_rq_clock(rq
);
9071 running
= task_current(rq
, tsk
);
9072 on_rq
= tsk
->se
.on_rq
;
9075 dequeue_task(rq
, tsk
, 0);
9076 if (unlikely(running
))
9077 tsk
->sched_class
->put_prev_task(rq
, tsk
);
9079 set_task_rq(tsk
, task_cpu(tsk
));
9081 #ifdef CONFIG_FAIR_GROUP_SCHED
9082 if (tsk
->sched_class
->moved_group
)
9083 tsk
->sched_class
->moved_group(tsk
);
9086 if (unlikely(running
))
9087 tsk
->sched_class
->set_curr_task(rq
);
9089 enqueue_task(rq
, tsk
, 0);
9091 task_rq_unlock(rq
, &flags
);
9093 #endif /* CONFIG_GROUP_SCHED */
9095 #ifdef CONFIG_FAIR_GROUP_SCHED
9096 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9098 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9103 dequeue_entity(cfs_rq
, se
, 0);
9105 se
->load
.weight
= shares
;
9106 se
->load
.inv_weight
= 0;
9109 enqueue_entity(cfs_rq
, se
, 0);
9112 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9114 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9115 struct rq
*rq
= cfs_rq
->rq
;
9116 unsigned long flags
;
9118 spin_lock_irqsave(&rq
->lock
, flags
);
9119 __set_se_shares(se
, shares
);
9120 spin_unlock_irqrestore(&rq
->lock
, flags
);
9123 static DEFINE_MUTEX(shares_mutex
);
9125 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9128 unsigned long flags
;
9131 * We can't change the weight of the root cgroup.
9136 if (shares
< MIN_SHARES
)
9137 shares
= MIN_SHARES
;
9138 else if (shares
> MAX_SHARES
)
9139 shares
= MAX_SHARES
;
9141 mutex_lock(&shares_mutex
);
9142 if (tg
->shares
== shares
)
9145 spin_lock_irqsave(&task_group_lock
, flags
);
9146 for_each_possible_cpu(i
)
9147 unregister_fair_sched_group(tg
, i
);
9148 list_del_rcu(&tg
->siblings
);
9149 spin_unlock_irqrestore(&task_group_lock
, flags
);
9151 /* wait for any ongoing reference to this group to finish */
9152 synchronize_sched();
9155 * Now we are free to modify the group's share on each cpu
9156 * w/o tripping rebalance_share or load_balance_fair.
9158 tg
->shares
= shares
;
9159 for_each_possible_cpu(i
) {
9163 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
9164 set_se_shares(tg
->se
[i
], shares
);
9168 * Enable load balance activity on this group, by inserting it back on
9169 * each cpu's rq->leaf_cfs_rq_list.
9171 spin_lock_irqsave(&task_group_lock
, flags
);
9172 for_each_possible_cpu(i
)
9173 register_fair_sched_group(tg
, i
);
9174 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
9175 spin_unlock_irqrestore(&task_group_lock
, flags
);
9177 mutex_unlock(&shares_mutex
);
9181 unsigned long sched_group_shares(struct task_group
*tg
)
9187 #ifdef CONFIG_RT_GROUP_SCHED
9189 * Ensure that the real time constraints are schedulable.
9191 static DEFINE_MUTEX(rt_constraints_mutex
);
9193 static unsigned long to_ratio(u64 period
, u64 runtime
)
9195 if (runtime
== RUNTIME_INF
)
9198 return div64_u64(runtime
<< 20, period
);
9201 /* Must be called with tasklist_lock held */
9202 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9204 struct task_struct
*g
, *p
;
9206 do_each_thread(g
, p
) {
9207 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9209 } while_each_thread(g
, p
);
9214 struct rt_schedulable_data
{
9215 struct task_group
*tg
;
9220 static int tg_schedulable(struct task_group
*tg
, void *data
)
9222 struct rt_schedulable_data
*d
= data
;
9223 struct task_group
*child
;
9224 unsigned long total
, sum
= 0;
9225 u64 period
, runtime
;
9227 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9228 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9231 period
= d
->rt_period
;
9232 runtime
= d
->rt_runtime
;
9235 #ifdef CONFIG_USER_SCHED
9236 if (tg
== &root_task_group
) {
9237 period
= global_rt_period();
9238 runtime
= global_rt_runtime();
9243 * Cannot have more runtime than the period.
9245 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9249 * Ensure we don't starve existing RT tasks.
9251 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9254 total
= to_ratio(period
, runtime
);
9257 * Nobody can have more than the global setting allows.
9259 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9263 * The sum of our children's runtime should not exceed our own.
9265 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9266 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9267 runtime
= child
->rt_bandwidth
.rt_runtime
;
9269 if (child
== d
->tg
) {
9270 period
= d
->rt_period
;
9271 runtime
= d
->rt_runtime
;
9274 sum
+= to_ratio(period
, runtime
);
9283 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9285 struct rt_schedulable_data data
= {
9287 .rt_period
= period
,
9288 .rt_runtime
= runtime
,
9291 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9294 static int tg_set_bandwidth(struct task_group
*tg
,
9295 u64 rt_period
, u64 rt_runtime
)
9299 mutex_lock(&rt_constraints_mutex
);
9300 read_lock(&tasklist_lock
);
9301 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9305 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9306 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
9307 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
9309 for_each_possible_cpu(i
) {
9310 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
9312 spin_lock(&rt_rq
->rt_runtime_lock
);
9313 rt_rq
->rt_runtime
= rt_runtime
;
9314 spin_unlock(&rt_rq
->rt_runtime_lock
);
9316 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9318 read_unlock(&tasklist_lock
);
9319 mutex_unlock(&rt_constraints_mutex
);
9324 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
9326 u64 rt_runtime
, rt_period
;
9328 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9329 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
9330 if (rt_runtime_us
< 0)
9331 rt_runtime
= RUNTIME_INF
;
9333 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9336 long sched_group_rt_runtime(struct task_group
*tg
)
9340 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
9343 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
9344 do_div(rt_runtime_us
, NSEC_PER_USEC
);
9345 return rt_runtime_us
;
9348 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9350 u64 rt_runtime
, rt_period
;
9352 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9353 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9358 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9361 long sched_group_rt_period(struct task_group
*tg
)
9365 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9366 do_div(rt_period_us
, NSEC_PER_USEC
);
9367 return rt_period_us
;
9370 static int sched_rt_global_constraints(void)
9372 u64 runtime
, period
;
9375 if (sysctl_sched_rt_period
<= 0)
9378 runtime
= global_rt_runtime();
9379 period
= global_rt_period();
9382 * Sanity check on the sysctl variables.
9384 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9387 mutex_lock(&rt_constraints_mutex
);
9388 read_lock(&tasklist_lock
);
9389 ret
= __rt_schedulable(NULL
, 0, 0);
9390 read_unlock(&tasklist_lock
);
9391 mutex_unlock(&rt_constraints_mutex
);
9396 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
9398 /* Don't accept realtime tasks when there is no way for them to run */
9399 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
9405 #else /* !CONFIG_RT_GROUP_SCHED */
9406 static int sched_rt_global_constraints(void)
9408 unsigned long flags
;
9411 if (sysctl_sched_rt_period
<= 0)
9414 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9415 for_each_possible_cpu(i
) {
9416 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9418 spin_lock(&rt_rq
->rt_runtime_lock
);
9419 rt_rq
->rt_runtime
= global_rt_runtime();
9420 spin_unlock(&rt_rq
->rt_runtime_lock
);
9422 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9426 #endif /* CONFIG_RT_GROUP_SCHED */
9428 int sched_rt_handler(struct ctl_table
*table
, int write
,
9429 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9433 int old_period
, old_runtime
;
9434 static DEFINE_MUTEX(mutex
);
9437 old_period
= sysctl_sched_rt_period
;
9438 old_runtime
= sysctl_sched_rt_runtime
;
9440 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9442 if (!ret
&& write
) {
9443 ret
= sched_rt_global_constraints();
9445 sysctl_sched_rt_period
= old_period
;
9446 sysctl_sched_rt_runtime
= old_runtime
;
9448 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9449 def_rt_bandwidth
.rt_period
=
9450 ns_to_ktime(global_rt_period());
9453 mutex_unlock(&mutex
);
9458 #ifdef CONFIG_CGROUP_SCHED
9460 /* return corresponding task_group object of a cgroup */
9461 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9463 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9464 struct task_group
, css
);
9467 static struct cgroup_subsys_state
*
9468 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9470 struct task_group
*tg
, *parent
;
9472 if (!cgrp
->parent
) {
9473 /* This is early initialization for the top cgroup */
9474 return &init_task_group
.css
;
9477 parent
= cgroup_tg(cgrp
->parent
);
9478 tg
= sched_create_group(parent
);
9480 return ERR_PTR(-ENOMEM
);
9486 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9488 struct task_group
*tg
= cgroup_tg(cgrp
);
9490 sched_destroy_group(tg
);
9494 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9495 struct task_struct
*tsk
)
9497 #ifdef CONFIG_RT_GROUP_SCHED
9498 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9501 /* We don't support RT-tasks being in separate groups */
9502 if (tsk
->sched_class
!= &fair_sched_class
)
9510 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9511 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9513 sched_move_task(tsk
);
9516 #ifdef CONFIG_FAIR_GROUP_SCHED
9517 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9520 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9523 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9525 struct task_group
*tg
= cgroup_tg(cgrp
);
9527 return (u64
) tg
->shares
;
9529 #endif /* CONFIG_FAIR_GROUP_SCHED */
9531 #ifdef CONFIG_RT_GROUP_SCHED
9532 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9535 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9538 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9540 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9543 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9546 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9549 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9551 return sched_group_rt_period(cgroup_tg(cgrp
));
9553 #endif /* CONFIG_RT_GROUP_SCHED */
9555 static struct cftype cpu_files
[] = {
9556 #ifdef CONFIG_FAIR_GROUP_SCHED
9559 .read_u64
= cpu_shares_read_u64
,
9560 .write_u64
= cpu_shares_write_u64
,
9563 #ifdef CONFIG_RT_GROUP_SCHED
9565 .name
= "rt_runtime_us",
9566 .read_s64
= cpu_rt_runtime_read
,
9567 .write_s64
= cpu_rt_runtime_write
,
9570 .name
= "rt_period_us",
9571 .read_u64
= cpu_rt_period_read_uint
,
9572 .write_u64
= cpu_rt_period_write_uint
,
9577 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9579 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9582 struct cgroup_subsys cpu_cgroup_subsys
= {
9584 .create
= cpu_cgroup_create
,
9585 .destroy
= cpu_cgroup_destroy
,
9586 .can_attach
= cpu_cgroup_can_attach
,
9587 .attach
= cpu_cgroup_attach
,
9588 .populate
= cpu_cgroup_populate
,
9589 .subsys_id
= cpu_cgroup_subsys_id
,
9593 #endif /* CONFIG_CGROUP_SCHED */
9595 #ifdef CONFIG_CGROUP_CPUACCT
9598 * CPU accounting code for task groups.
9600 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9601 * (balbir@in.ibm.com).
9604 /* track cpu usage of a group of tasks and its child groups */
9606 struct cgroup_subsys_state css
;
9607 /* cpuusage holds pointer to a u64-type object on every cpu */
9609 struct cpuacct
*parent
;
9612 struct cgroup_subsys cpuacct_subsys
;
9614 /* return cpu accounting group corresponding to this container */
9615 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9617 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9618 struct cpuacct
, css
);
9621 /* return cpu accounting group to which this task belongs */
9622 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9624 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9625 struct cpuacct
, css
);
9628 /* create a new cpu accounting group */
9629 static struct cgroup_subsys_state
*cpuacct_create(
9630 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9632 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9635 return ERR_PTR(-ENOMEM
);
9637 ca
->cpuusage
= alloc_percpu(u64
);
9638 if (!ca
->cpuusage
) {
9640 return ERR_PTR(-ENOMEM
);
9644 ca
->parent
= cgroup_ca(cgrp
->parent
);
9649 /* destroy an existing cpu accounting group */
9651 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9653 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9655 free_percpu(ca
->cpuusage
);
9659 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9661 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9664 #ifndef CONFIG_64BIT
9666 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9668 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9670 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9678 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9680 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9682 #ifndef CONFIG_64BIT
9684 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9686 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9688 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9694 /* return total cpu usage (in nanoseconds) of a group */
9695 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9697 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9698 u64 totalcpuusage
= 0;
9701 for_each_present_cpu(i
)
9702 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9704 return totalcpuusage
;
9707 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9710 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9719 for_each_present_cpu(i
)
9720 cpuacct_cpuusage_write(ca
, i
, 0);
9726 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9729 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9733 for_each_present_cpu(i
) {
9734 percpu
= cpuacct_cpuusage_read(ca
, i
);
9735 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9737 seq_printf(m
, "\n");
9741 static struct cftype files
[] = {
9744 .read_u64
= cpuusage_read
,
9745 .write_u64
= cpuusage_write
,
9748 .name
= "usage_percpu",
9749 .read_seq_string
= cpuacct_percpu_seq_read
,
9754 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9756 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9760 * charge this task's execution time to its accounting group.
9762 * called with rq->lock held.
9764 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9769 if (unlikely(!cpuacct_subsys
.active
))
9772 cpu
= task_cpu(tsk
);
9775 for (; ca
; ca
= ca
->parent
) {
9776 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9777 *cpuusage
+= cputime
;
9781 struct cgroup_subsys cpuacct_subsys
= {
9783 .create
= cpuacct_create
,
9784 .destroy
= cpuacct_destroy
,
9785 .populate
= cpuacct_populate
,
9786 .subsys_id
= cpuacct_subsys_id
,
9788 #endif /* CONFIG_CGROUP_CPUACCT */