libata: reimplement ACPI invocation
[linux-2.6/mini2440.git] / drivers / ata / libata-core.c
blob90ed2b9a34de5ff546d3786729d414a6ac3460da
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
119 * LOCKING:
120 * Inherited from caller.
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
159 * LOCKING:
160 * Inherited from caller.
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
208 ATA_CMD_WRITE_FUA_EXT
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
219 * LOCKING:
220 * caller.
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
224 u8 cmd;
226 int index, fua, lba48, write;
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
249 return -1;
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
257 * LOCKING:
258 * None.
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
264 * RETURNS:
265 * Block address read from @tf.
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
269 u64 block = 0;
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
292 return block;
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
304 * LOCKING:
305 * None.
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
310 * RETURNS:
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
362 tf->hob_nsect = (n_block >> 8) & 0xff;
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
374 tf->nsect = n_block & 0xff;
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
415 return 0;
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
427 * LOCKING:
428 * None.
430 * RETURNS:
431 * Packed xfer_mask.
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
482 * LOCKING:
483 * None.
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
503 * Return matching xfer_mask for @xfer_mode.
505 * LOCKING:
506 * None.
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
513 const struct ata_xfer_ent *ent;
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_shift for @xfer_mode.
527 * LOCKING:
528 * None.
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
535 const struct ata_xfer_ent *ent;
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
550 * LOCKING:
551 * None.
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
557 static const char *ata_mode_string(unsigned int xfer_mask)
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
581 int highbit;
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
589 static const char *sata_spd_string(unsigned int spd)
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
601 void ata_dev_disable(struct ata_device *dev)
603 if (ata_dev_enabled(dev)) {
604 if (ata_msg_drv(dev->ap))
605 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 ATA_DNXFER_QUIET);
608 dev->class++;
613 * ata_devchk - PATA device presence detection
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
626 * LOCKING:
627 * caller.
630 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
632 struct ata_ioports *ioaddr = &ap->ioaddr;
633 u8 nsect, lbal;
635 ap->ops->dev_select(ap, device);
637 iowrite8(0x55, ioaddr->nsect_addr);
638 iowrite8(0xaa, ioaddr->lbal_addr);
640 iowrite8(0xaa, ioaddr->nsect_addr);
641 iowrite8(0x55, ioaddr->lbal_addr);
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
646 nsect = ioread8(ioaddr->nsect_addr);
647 lbal = ioread8(ioaddr->lbal_addr);
649 if ((nsect == 0x55) && (lbal == 0xaa))
650 return 1; /* we found a device */
652 return 0; /* nothing found */
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
663 * LOCKING:
664 * None.
666 * RETURNS:
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
671 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
678 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
681 return ATA_DEV_ATA;
684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI;
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN;
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
698 * @r_err: Value of error register on completion
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
703 * and diagnostics.
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
709 * LOCKING:
710 * caller.
712 * RETURNS:
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
716 unsigned int
717 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
719 struct ata_taskfile tf;
720 unsigned int class;
721 u8 err;
723 ap->ops->dev_select(ap, device);
725 memset(&tf, 0, sizeof(tf));
727 ap->ops->tf_read(ap, &tf);
728 err = tf.feature;
729 if (r_err)
730 *r_err = err;
732 /* see if device passed diags: if master then continue and warn later */
733 if (err == 0 && device == 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 else if (err == 1)
737 /* do nothing */ ;
738 else if ((device == 0) && (err == 0x81))
739 /* do nothing */ ;
740 else
741 return ATA_DEV_NONE;
743 /* determine if device is ATA or ATAPI */
744 class = ata_dev_classify(&tf);
746 if (class == ATA_DEV_UNKNOWN)
747 return ATA_DEV_NONE;
748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
749 return ATA_DEV_NONE;
750 return class;
754 * ata_id_string - Convert IDENTIFY DEVICE page into string
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
764 * LOCKING:
765 * caller.
768 void ata_id_string(const u16 *id, unsigned char *s,
769 unsigned int ofs, unsigned int len)
771 unsigned int c;
773 while (len > 0) {
774 c = id[ofs] >> 8;
775 *s = c;
776 s++;
778 c = id[ofs] & 0xff;
779 *s = c;
780 s++;
782 ofs++;
783 len -= 2;
788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
794 * This function is identical to ata_id_string except that it
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
798 * LOCKING:
799 * caller.
801 void ata_id_c_string(const u16 *id, unsigned char *s,
802 unsigned int ofs, unsigned int len)
804 unsigned char *p;
806 WARN_ON(!(len & 1));
808 ata_id_string(id, s, ofs, len - 1);
810 p = s + strnlen(s, len - 1);
811 while (p > s && p[-1] == ' ')
812 p--;
813 *p = '\0';
816 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
818 u64 sectors = 0;
820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 sectors |= (tf->hob_lbal & 0xff) << 24;
823 sectors |= (tf->lbah & 0xff) << 16;
824 sectors |= (tf->lbam & 0xff) << 8;
825 sectors |= (tf->lbal & 0xff);
827 return ++sectors;
830 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
832 u64 sectors = 0;
834 sectors |= (tf->device & 0x0f) << 24;
835 sectors |= (tf->lbah & 0xff) << 16;
836 sectors |= (tf->lbam & 0xff) << 8;
837 sectors |= (tf->lbal & 0xff);
839 return ++sectors;
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
850 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
852 unsigned int err;
853 struct ata_taskfile tf;
855 ata_tf_init(dev, &tf);
857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 tf.protocol |= ATA_PROT_NODATA;
860 tf.device |= 0x40;
862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 if (err)
864 return 0;
866 return ata_tf_to_lba48(&tf);
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
877 static u64 ata_read_native_max_address(struct ata_device *dev)
879 unsigned int err;
880 struct ata_taskfile tf;
882 ata_tf_init(dev, &tf);
884 tf.command = ATA_CMD_READ_NATIVE_MAX;
885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 tf.protocol |= ATA_PROT_NODATA;
887 tf.device |= 0x40;
889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 if (err)
891 return 0;
893 return ata_tf_to_lba(&tf);
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
899 * @new_sectors: new max sectors value to set for the device
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
905 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
907 unsigned int err;
908 struct ata_taskfile tf;
910 new_sectors--;
912 ata_tf_init(dev, &tf);
914 tf.command = ATA_CMD_SET_MAX_EXT;
915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 tf.protocol |= ATA_PROT_NODATA;
917 tf.device |= 0x40;
919 tf.lbal = (new_sectors >> 0) & 0xff;
920 tf.lbam = (new_sectors >> 8) & 0xff;
921 tf.lbah = (new_sectors >> 16) & 0xff;
923 tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 tf.hob_lbah = (new_sectors >> 40) & 0xff;
927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 if (err)
929 return 0;
931 return ata_tf_to_lba48(&tf);
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
937 * @new_sectors: new max sectors value to set for the device
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
943 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
945 unsigned int err;
946 struct ata_taskfile tf;
948 new_sectors--;
950 ata_tf_init(dev, &tf);
952 tf.command = ATA_CMD_SET_MAX;
953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 tf.protocol |= ATA_PROT_NODATA;
956 tf.lbal = (new_sectors >> 0) & 0xff;
957 tf.lbam = (new_sectors >> 8) & 0xff;
958 tf.lbah = (new_sectors >> 16) & 0xff;
959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 if (err)
963 return 0;
965 return ata_tf_to_lba(&tf);
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
977 static u64 ata_hpa_resize(struct ata_device *dev)
979 u64 sectors = dev->n_sectors;
980 u64 hpa_sectors;
982 if (ata_id_has_lba48(dev->id))
983 hpa_sectors = ata_read_native_max_address_ext(dev);
984 else
985 hpa_sectors = ata_read_native_max_address(dev);
987 if (hpa_sectors > sectors) {
988 ata_dev_printk(dev, KERN_INFO,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
992 (long long)sectors, (long long)hpa_sectors);
994 if (ata_ignore_hpa) {
995 if (ata_id_has_lba48(dev->id))
996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 else
998 hpa_sectors = ata_set_native_max_address(dev,
999 hpa_sectors);
1001 if (hpa_sectors) {
1002 ata_dev_printk(dev, KERN_INFO, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors);
1005 return hpa_sectors;
1008 } else if (hpa_sectors < sectors)
1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 (long long)hpa_sectors, (long long)sectors);
1013 return sectors;
1016 static u64 ata_id_n_sectors(const u16 *id)
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1048 unsigned int mask;
1049 u8 mode;
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1078 * This function performs no actual function.
1080 * May be used as the dev_select() entry in ata_port_operations.
1082 * LOCKING:
1083 * caller.
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1099 * May be used as the dev_select() entry in ata_port_operations.
1101 * LOCKING:
1102 * caller.
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1107 u8 tmp;
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1133 * LOCKING:
1134 * caller.
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1144 if (wait)
1145 ata_wait_idle(ap);
1147 ap->ops->dev_select(ap, device);
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1163 * LOCKING:
1164 * caller.
1167 static inline void ata_dump_id(const u16 *id)
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
1191 id[88],
1192 id[93]);
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1202 * FIXME: pre IDE drive timing (do we care ?).
1204 * LOCKING:
1205 * None.
1207 * RETURNS:
1208 * Computed xfermask
1210 static unsigned int ata_id_xfermask(const u16 *id)
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1240 if (ata_id_is_cfa(id)) {
1242 * Process compact flash extended modes
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1280 * LOCKING:
1281 * Inherited from caller.
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1286 int rc;
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 return;
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1310 void ata_port_flush_task(struct ata_port *ap)
1312 unsigned long flags;
1314 DPRINTK("ENTER\n");
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
1332 cancel_work_sync(&ap->port_task.work);
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1345 struct completion *waiting = qc->private_data;
1347 complete(waiting);
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1384 int rc;
1386 spin_lock_irqsave(ap->lock, flags);
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1394 /* initialize internal qc */
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1407 BUG();
1408 qc = __ata_qc_from_tag(ap, tag);
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
1423 /* prepare & issue qc */
1424 qc->tf = *tf;
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1442 ata_qc_issue(qc);
1444 spin_unlock_irqrestore(ap->lock, flags);
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1448 ata_port_flush_task(ap);
1450 if (!rc) {
1451 spin_lock_irqsave(ap->lock, flags);
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1471 spin_unlock_irqrestore(ap->lock, flags);
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1490 /* finish up */
1491 spin_lock_irqsave(ap->lock, flags);
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1496 ata_qc_free(qc);
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1510 * Kill the following code as soon as those drivers are fixed.
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1517 spin_unlock_irqrestore(ap->lock, flags);
1519 return err_mask;
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1573 struct ata_taskfile tf;
1575 ata_tf_init(dev, &tf);
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 return 0;
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1603 return 1;
1604 return 0;
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1628 return 3 << ATA_SHIFT_PIO;
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1643 * LOCKING:
1644 * Kernel thread context (may sleep)
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1656 const char *reason;
1657 int may_fallback = 1, tried_spinup = 0;
1658 int rc;
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664 retry:
1665 ata_tf_init(dev, &tf);
1667 switch (class) {
1668 case ATA_DEV_ATA:
1669 tf.command = ATA_CMD_ID_ATA;
1670 break;
1671 case ATA_DEV_ATAPI:
1672 tf.command = ATA_CMD_ID_ATAPI;
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1680 tf.protocol = ATA_PROT_PIO;
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1690 tf.flags |= ATA_TFLAG_POLLING;
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1694 if (err_mask) {
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1698 return -ENOENT;
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1716 rc = -EIO;
1717 reason = "I/O error";
1718 goto err_out;
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1724 may_fallback = 0;
1726 swap_buf_le16(id, ATA_ID_WORDS);
1728 /* sanity check */
1729 rc = -EINVAL;
1730 reason = "device reports invalid type";
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1762 if (id[2] == 0x37c8)
1763 goto retry;
1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1786 flags &= ~ATA_READID_POSTRESET;
1787 goto retry;
1791 *p_class = class;
1793 return 0;
1795 err_out:
1796 if (ata_msg_warn(ap))
1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 return rc;
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1821 if (ap->flags & ATA_FLAG_NCQ) {
1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 dev->flags |= ATA_DFLAG_NCQ;
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1839 * LOCKING:
1840 * Kernel thread context (may sleep)
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
1845 int ata_dev_configure(struct ata_device *dev)
1847 struct ata_port *ap = dev->ap;
1848 struct ata_eh_context *ehc = &ap->eh_context;
1849 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1850 const u16 *id = dev->id;
1851 unsigned int xfer_mask;
1852 char revbuf[7]; /* XYZ-99\0 */
1853 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1854 char modelbuf[ATA_ID_PROD_LEN+1];
1855 int rc;
1857 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1858 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1859 __FUNCTION__);
1860 return 0;
1863 if (ata_msg_probe(ap))
1864 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1866 /* let ACPI work its magic */
1867 rc = ata_acpi_on_devcfg(dev);
1868 if (rc)
1869 return rc;
1871 /* print device capabilities */
1872 if (ata_msg_probe(ap))
1873 ata_dev_printk(dev, KERN_DEBUG,
1874 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1875 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1876 __FUNCTION__,
1877 id[49], id[82], id[83], id[84],
1878 id[85], id[86], id[87], id[88]);
1880 /* initialize to-be-configured parameters */
1881 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1882 dev->max_sectors = 0;
1883 dev->cdb_len = 0;
1884 dev->n_sectors = 0;
1885 dev->cylinders = 0;
1886 dev->heads = 0;
1887 dev->sectors = 0;
1890 * common ATA, ATAPI feature tests
1893 /* find max transfer mode; for printk only */
1894 xfer_mask = ata_id_xfermask(id);
1896 if (ata_msg_probe(ap))
1897 ata_dump_id(id);
1899 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1900 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1901 sizeof(fwrevbuf));
1903 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1904 sizeof(modelbuf));
1906 /* ATA-specific feature tests */
1907 if (dev->class == ATA_DEV_ATA) {
1908 if (ata_id_is_cfa(id)) {
1909 if (id[162] & 1) /* CPRM may make this media unusable */
1910 ata_dev_printk(dev, KERN_WARNING,
1911 "supports DRM functions and may "
1912 "not be fully accessable.\n");
1913 snprintf(revbuf, 7, "CFA");
1915 else
1916 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1918 dev->n_sectors = ata_id_n_sectors(id);
1920 if (dev->id[59] & 0x100)
1921 dev->multi_count = dev->id[59] & 0xff;
1923 if (ata_id_has_lba(id)) {
1924 const char *lba_desc;
1925 char ncq_desc[20];
1927 lba_desc = "LBA";
1928 dev->flags |= ATA_DFLAG_LBA;
1929 if (ata_id_has_lba48(id)) {
1930 dev->flags |= ATA_DFLAG_LBA48;
1931 lba_desc = "LBA48";
1933 if (dev->n_sectors >= (1UL << 28) &&
1934 ata_id_has_flush_ext(id))
1935 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1938 if (ata_id_hpa_enabled(dev->id))
1939 dev->n_sectors = ata_hpa_resize(dev);
1941 /* config NCQ */
1942 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1944 /* print device info to dmesg */
1945 if (ata_msg_drv(ap) && print_info) {
1946 ata_dev_printk(dev, KERN_INFO,
1947 "%s: %s, %s, max %s\n",
1948 revbuf, modelbuf, fwrevbuf,
1949 ata_mode_string(xfer_mask));
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%Lu sectors, multi %u: %s %s\n",
1952 (unsigned long long)dev->n_sectors,
1953 dev->multi_count, lba_desc, ncq_desc);
1955 } else {
1956 /* CHS */
1958 /* Default translation */
1959 dev->cylinders = id[1];
1960 dev->heads = id[3];
1961 dev->sectors = id[6];
1963 if (ata_id_current_chs_valid(id)) {
1964 /* Current CHS translation is valid. */
1965 dev->cylinders = id[54];
1966 dev->heads = id[55];
1967 dev->sectors = id[56];
1970 /* print device info to dmesg */
1971 if (ata_msg_drv(ap) && print_info) {
1972 ata_dev_printk(dev, KERN_INFO,
1973 "%s: %s, %s, max %s\n",
1974 revbuf, modelbuf, fwrevbuf,
1975 ata_mode_string(xfer_mask));
1976 ata_dev_printk(dev, KERN_INFO,
1977 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1978 (unsigned long long)dev->n_sectors,
1979 dev->multi_count, dev->cylinders,
1980 dev->heads, dev->sectors);
1984 dev->cdb_len = 16;
1987 /* ATAPI-specific feature tests */
1988 else if (dev->class == ATA_DEV_ATAPI) {
1989 char *cdb_intr_string = "";
1991 rc = atapi_cdb_len(id);
1992 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1993 if (ata_msg_warn(ap))
1994 ata_dev_printk(dev, KERN_WARNING,
1995 "unsupported CDB len\n");
1996 rc = -EINVAL;
1997 goto err_out_nosup;
1999 dev->cdb_len = (unsigned int) rc;
2001 if (ata_id_cdb_intr(dev->id)) {
2002 dev->flags |= ATA_DFLAG_CDB_INTR;
2003 cdb_intr_string = ", CDB intr";
2006 /* print device info to dmesg */
2007 if (ata_msg_drv(ap) && print_info)
2008 ata_dev_printk(dev, KERN_INFO,
2009 "ATAPI: %s, %s, max %s%s\n",
2010 modelbuf, fwrevbuf,
2011 ata_mode_string(xfer_mask),
2012 cdb_intr_string);
2015 /* determine max_sectors */
2016 dev->max_sectors = ATA_MAX_SECTORS;
2017 if (dev->flags & ATA_DFLAG_LBA48)
2018 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2020 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2021 /* Let the user know. We don't want to disallow opens for
2022 rescue purposes, or in case the vendor is just a blithering
2023 idiot */
2024 if (print_info) {
2025 ata_dev_printk(dev, KERN_WARNING,
2026 "Drive reports diagnostics failure. This may indicate a drive\n");
2027 ata_dev_printk(dev, KERN_WARNING,
2028 "fault or invalid emulation. Contact drive vendor for information.\n");
2032 /* limit bridge transfers to udma5, 200 sectors */
2033 if (ata_dev_knobble(dev)) {
2034 if (ata_msg_drv(ap) && print_info)
2035 ata_dev_printk(dev, KERN_INFO,
2036 "applying bridge limits\n");
2037 dev->udma_mask &= ATA_UDMA5;
2038 dev->max_sectors = ATA_MAX_SECTORS;
2041 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2042 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2043 dev->max_sectors);
2045 if (ap->ops->dev_config)
2046 ap->ops->dev_config(dev);
2048 if (ata_msg_probe(ap))
2049 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2050 __FUNCTION__, ata_chk_status(ap));
2051 return 0;
2053 err_out_nosup:
2054 if (ata_msg_probe(ap))
2055 ata_dev_printk(dev, KERN_DEBUG,
2056 "%s: EXIT, err\n", __FUNCTION__);
2057 return rc;
2061 * ata_cable_40wire - return 40 wire cable type
2062 * @ap: port
2064 * Helper method for drivers which want to hardwire 40 wire cable
2065 * detection.
2068 int ata_cable_40wire(struct ata_port *ap)
2070 return ATA_CBL_PATA40;
2074 * ata_cable_80wire - return 80 wire cable type
2075 * @ap: port
2077 * Helper method for drivers which want to hardwire 80 wire cable
2078 * detection.
2081 int ata_cable_80wire(struct ata_port *ap)
2083 return ATA_CBL_PATA80;
2087 * ata_cable_unknown - return unknown PATA cable.
2088 * @ap: port
2090 * Helper method for drivers which have no PATA cable detection.
2093 int ata_cable_unknown(struct ata_port *ap)
2095 return ATA_CBL_PATA_UNK;
2099 * ata_cable_sata - return SATA cable type
2100 * @ap: port
2102 * Helper method for drivers which have SATA cables
2105 int ata_cable_sata(struct ata_port *ap)
2107 return ATA_CBL_SATA;
2111 * ata_bus_probe - Reset and probe ATA bus
2112 * @ap: Bus to probe
2114 * Master ATA bus probing function. Initiates a hardware-dependent
2115 * bus reset, then attempts to identify any devices found on
2116 * the bus.
2118 * LOCKING:
2119 * PCI/etc. bus probe sem.
2121 * RETURNS:
2122 * Zero on success, negative errno otherwise.
2125 int ata_bus_probe(struct ata_port *ap)
2127 unsigned int classes[ATA_MAX_DEVICES];
2128 int tries[ATA_MAX_DEVICES];
2129 int i, rc;
2130 struct ata_device *dev;
2132 ata_port_probe(ap);
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 tries[i] = ATA_PROBE_MAX_TRIES;
2137 retry:
2138 /* reset and determine device classes */
2139 ap->ops->phy_reset(ap);
2141 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2142 dev = &ap->device[i];
2144 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2145 dev->class != ATA_DEV_UNKNOWN)
2146 classes[dev->devno] = dev->class;
2147 else
2148 classes[dev->devno] = ATA_DEV_NONE;
2150 dev->class = ATA_DEV_UNKNOWN;
2153 ata_port_probe(ap);
2155 /* after the reset the device state is PIO 0 and the controller
2156 state is undefined. Record the mode */
2158 for (i = 0; i < ATA_MAX_DEVICES; i++)
2159 ap->device[i].pio_mode = XFER_PIO_0;
2161 /* read IDENTIFY page and configure devices. We have to do the identify
2162 specific sequence bass-ackwards so that PDIAG- is released by
2163 the slave device */
2165 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2166 dev = &ap->device[i];
2168 if (tries[i])
2169 dev->class = classes[i];
2171 if (!ata_dev_enabled(dev))
2172 continue;
2174 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2175 dev->id);
2176 if (rc)
2177 goto fail;
2180 /* Now ask for the cable type as PDIAG- should have been released */
2181 if (ap->ops->cable_detect)
2182 ap->cbl = ap->ops->cable_detect(ap);
2184 /* After the identify sequence we can now set up the devices. We do
2185 this in the normal order so that the user doesn't get confused */
2187 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2188 dev = &ap->device[i];
2189 if (!ata_dev_enabled(dev))
2190 continue;
2192 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2193 rc = ata_dev_configure(dev);
2194 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2195 if (rc)
2196 goto fail;
2199 /* configure transfer mode */
2200 rc = ata_set_mode(ap, &dev);
2201 if (rc)
2202 goto fail;
2204 for (i = 0; i < ATA_MAX_DEVICES; i++)
2205 if (ata_dev_enabled(&ap->device[i]))
2206 return 0;
2208 /* no device present, disable port */
2209 ata_port_disable(ap);
2210 ap->ops->port_disable(ap);
2211 return -ENODEV;
2213 fail:
2214 tries[dev->devno]--;
2216 switch (rc) {
2217 case -EINVAL:
2218 /* eeek, something went very wrong, give up */
2219 tries[dev->devno] = 0;
2220 break;
2222 case -ENODEV:
2223 /* give it just one more chance */
2224 tries[dev->devno] = min(tries[dev->devno], 1);
2225 case -EIO:
2226 if (tries[dev->devno] == 1) {
2227 /* This is the last chance, better to slow
2228 * down than lose it.
2230 sata_down_spd_limit(ap);
2231 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2235 if (!tries[dev->devno])
2236 ata_dev_disable(dev);
2238 goto retry;
2242 * ata_port_probe - Mark port as enabled
2243 * @ap: Port for which we indicate enablement
2245 * Modify @ap data structure such that the system
2246 * thinks that the entire port is enabled.
2248 * LOCKING: host lock, or some other form of
2249 * serialization.
2252 void ata_port_probe(struct ata_port *ap)
2254 ap->flags &= ~ATA_FLAG_DISABLED;
2258 * sata_print_link_status - Print SATA link status
2259 * @ap: SATA port to printk link status about
2261 * This function prints link speed and status of a SATA link.
2263 * LOCKING:
2264 * None.
2266 void sata_print_link_status(struct ata_port *ap)
2268 u32 sstatus, scontrol, tmp;
2270 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2271 return;
2272 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2274 if (ata_port_online(ap)) {
2275 tmp = (sstatus >> 4) & 0xf;
2276 ata_port_printk(ap, KERN_INFO,
2277 "SATA link up %s (SStatus %X SControl %X)\n",
2278 sata_spd_string(tmp), sstatus, scontrol);
2279 } else {
2280 ata_port_printk(ap, KERN_INFO,
2281 "SATA link down (SStatus %X SControl %X)\n",
2282 sstatus, scontrol);
2287 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2288 * @ap: SATA port associated with target SATA PHY.
2290 * This function issues commands to standard SATA Sxxx
2291 * PHY registers, to wake up the phy (and device), and
2292 * clear any reset condition.
2294 * LOCKING:
2295 * PCI/etc. bus probe sem.
2298 void __sata_phy_reset(struct ata_port *ap)
2300 u32 sstatus;
2301 unsigned long timeout = jiffies + (HZ * 5);
2303 if (ap->flags & ATA_FLAG_SATA_RESET) {
2304 /* issue phy wake/reset */
2305 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2306 /* Couldn't find anything in SATA I/II specs, but
2307 * AHCI-1.1 10.4.2 says at least 1 ms. */
2308 mdelay(1);
2310 /* phy wake/clear reset */
2311 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2313 /* wait for phy to become ready, if necessary */
2314 do {
2315 msleep(200);
2316 sata_scr_read(ap, SCR_STATUS, &sstatus);
2317 if ((sstatus & 0xf) != 1)
2318 break;
2319 } while (time_before(jiffies, timeout));
2321 /* print link status */
2322 sata_print_link_status(ap);
2324 /* TODO: phy layer with polling, timeouts, etc. */
2325 if (!ata_port_offline(ap))
2326 ata_port_probe(ap);
2327 else
2328 ata_port_disable(ap);
2330 if (ap->flags & ATA_FLAG_DISABLED)
2331 return;
2333 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2334 ata_port_disable(ap);
2335 return;
2338 ap->cbl = ATA_CBL_SATA;
2342 * sata_phy_reset - Reset SATA bus.
2343 * @ap: SATA port associated with target SATA PHY.
2345 * This function resets the SATA bus, and then probes
2346 * the bus for devices.
2348 * LOCKING:
2349 * PCI/etc. bus probe sem.
2352 void sata_phy_reset(struct ata_port *ap)
2354 __sata_phy_reset(ap);
2355 if (ap->flags & ATA_FLAG_DISABLED)
2356 return;
2357 ata_bus_reset(ap);
2361 * ata_dev_pair - return other device on cable
2362 * @adev: device
2364 * Obtain the other device on the same cable, or if none is
2365 * present NULL is returned
2368 struct ata_device *ata_dev_pair(struct ata_device *adev)
2370 struct ata_port *ap = adev->ap;
2371 struct ata_device *pair = &ap->device[1 - adev->devno];
2372 if (!ata_dev_enabled(pair))
2373 return NULL;
2374 return pair;
2378 * ata_port_disable - Disable port.
2379 * @ap: Port to be disabled.
2381 * Modify @ap data structure such that the system
2382 * thinks that the entire port is disabled, and should
2383 * never attempt to probe or communicate with devices
2384 * on this port.
2386 * LOCKING: host lock, or some other form of
2387 * serialization.
2390 void ata_port_disable(struct ata_port *ap)
2392 ap->device[0].class = ATA_DEV_NONE;
2393 ap->device[1].class = ATA_DEV_NONE;
2394 ap->flags |= ATA_FLAG_DISABLED;
2398 * sata_down_spd_limit - adjust SATA spd limit downward
2399 * @ap: Port to adjust SATA spd limit for
2401 * Adjust SATA spd limit of @ap downward. Note that this
2402 * function only adjusts the limit. The change must be applied
2403 * using sata_set_spd().
2405 * LOCKING:
2406 * Inherited from caller.
2408 * RETURNS:
2409 * 0 on success, negative errno on failure
2411 int sata_down_spd_limit(struct ata_port *ap)
2413 u32 sstatus, spd, mask;
2414 int rc, highbit;
2416 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2417 if (rc)
2418 return rc;
2420 mask = ap->sata_spd_limit;
2421 if (mask <= 1)
2422 return -EINVAL;
2423 highbit = fls(mask) - 1;
2424 mask &= ~(1 << highbit);
2426 spd = (sstatus >> 4) & 0xf;
2427 if (spd <= 1)
2428 return -EINVAL;
2429 spd--;
2430 mask &= (1 << spd) - 1;
2431 if (!mask)
2432 return -EINVAL;
2434 ap->sata_spd_limit = mask;
2436 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2437 sata_spd_string(fls(mask)));
2439 return 0;
2442 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2444 u32 spd, limit;
2446 if (ap->sata_spd_limit == UINT_MAX)
2447 limit = 0;
2448 else
2449 limit = fls(ap->sata_spd_limit);
2451 spd = (*scontrol >> 4) & 0xf;
2452 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2454 return spd != limit;
2458 * sata_set_spd_needed - is SATA spd configuration needed
2459 * @ap: Port in question
2461 * Test whether the spd limit in SControl matches
2462 * @ap->sata_spd_limit. This function is used to determine
2463 * whether hardreset is necessary to apply SATA spd
2464 * configuration.
2466 * LOCKING:
2467 * Inherited from caller.
2469 * RETURNS:
2470 * 1 if SATA spd configuration is needed, 0 otherwise.
2472 int sata_set_spd_needed(struct ata_port *ap)
2474 u32 scontrol;
2476 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2477 return 0;
2479 return __sata_set_spd_needed(ap, &scontrol);
2483 * sata_set_spd - set SATA spd according to spd limit
2484 * @ap: Port to set SATA spd for
2486 * Set SATA spd of @ap according to sata_spd_limit.
2488 * LOCKING:
2489 * Inherited from caller.
2491 * RETURNS:
2492 * 0 if spd doesn't need to be changed, 1 if spd has been
2493 * changed. Negative errno if SCR registers are inaccessible.
2495 int sata_set_spd(struct ata_port *ap)
2497 u32 scontrol;
2498 int rc;
2500 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2501 return rc;
2503 if (!__sata_set_spd_needed(ap, &scontrol))
2504 return 0;
2506 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2507 return rc;
2509 return 1;
2513 * This mode timing computation functionality is ported over from
2514 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2517 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2518 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2519 * for UDMA6, which is currently supported only by Maxtor drives.
2521 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2524 static const struct ata_timing ata_timing[] = {
2526 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2527 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2528 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2529 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2531 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2532 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2533 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2534 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2535 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2537 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2539 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2540 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2541 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2543 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2544 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2545 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2547 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2548 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2549 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2550 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2552 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2553 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2554 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2556 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2558 { 0xFF }
2561 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2562 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2564 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2566 q->setup = EZ(t->setup * 1000, T);
2567 q->act8b = EZ(t->act8b * 1000, T);
2568 q->rec8b = EZ(t->rec8b * 1000, T);
2569 q->cyc8b = EZ(t->cyc8b * 1000, T);
2570 q->active = EZ(t->active * 1000, T);
2571 q->recover = EZ(t->recover * 1000, T);
2572 q->cycle = EZ(t->cycle * 1000, T);
2573 q->udma = EZ(t->udma * 1000, UT);
2576 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2577 struct ata_timing *m, unsigned int what)
2579 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2580 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2581 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2582 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2583 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2584 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2585 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2586 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2589 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2591 const struct ata_timing *t;
2593 for (t = ata_timing; t->mode != speed; t++)
2594 if (t->mode == 0xFF)
2595 return NULL;
2596 return t;
2599 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2600 struct ata_timing *t, int T, int UT)
2602 const struct ata_timing *s;
2603 struct ata_timing p;
2606 * Find the mode.
2609 if (!(s = ata_timing_find_mode(speed)))
2610 return -EINVAL;
2612 memcpy(t, s, sizeof(*s));
2615 * If the drive is an EIDE drive, it can tell us it needs extended
2616 * PIO/MW_DMA cycle timing.
2619 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2620 memset(&p, 0, sizeof(p));
2621 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2622 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2623 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2624 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2625 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2627 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2631 * Convert the timing to bus clock counts.
2634 ata_timing_quantize(t, t, T, UT);
2637 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2638 * S.M.A.R.T * and some other commands. We have to ensure that the
2639 * DMA cycle timing is slower/equal than the fastest PIO timing.
2642 if (speed > XFER_PIO_6) {
2643 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2644 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2648 * Lengthen active & recovery time so that cycle time is correct.
2651 if (t->act8b + t->rec8b < t->cyc8b) {
2652 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2653 t->rec8b = t->cyc8b - t->act8b;
2656 if (t->active + t->recover < t->cycle) {
2657 t->active += (t->cycle - (t->active + t->recover)) / 2;
2658 t->recover = t->cycle - t->active;
2661 /* In a few cases quantisation may produce enough errors to
2662 leave t->cycle too low for the sum of active and recovery
2663 if so we must correct this */
2664 if (t->active + t->recover > t->cycle)
2665 t->cycle = t->active + t->recover;
2667 return 0;
2671 * ata_down_xfermask_limit - adjust dev xfer masks downward
2672 * @dev: Device to adjust xfer masks
2673 * @sel: ATA_DNXFER_* selector
2675 * Adjust xfer masks of @dev downward. Note that this function
2676 * does not apply the change. Invoking ata_set_mode() afterwards
2677 * will apply the limit.
2679 * LOCKING:
2680 * Inherited from caller.
2682 * RETURNS:
2683 * 0 on success, negative errno on failure
2685 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2687 char buf[32];
2688 unsigned int orig_mask, xfer_mask;
2689 unsigned int pio_mask, mwdma_mask, udma_mask;
2690 int quiet, highbit;
2692 quiet = !!(sel & ATA_DNXFER_QUIET);
2693 sel &= ~ATA_DNXFER_QUIET;
2695 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2696 dev->mwdma_mask,
2697 dev->udma_mask);
2698 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2700 switch (sel) {
2701 case ATA_DNXFER_PIO:
2702 highbit = fls(pio_mask) - 1;
2703 pio_mask &= ~(1 << highbit);
2704 break;
2706 case ATA_DNXFER_DMA:
2707 if (udma_mask) {
2708 highbit = fls(udma_mask) - 1;
2709 udma_mask &= ~(1 << highbit);
2710 if (!udma_mask)
2711 return -ENOENT;
2712 } else if (mwdma_mask) {
2713 highbit = fls(mwdma_mask) - 1;
2714 mwdma_mask &= ~(1 << highbit);
2715 if (!mwdma_mask)
2716 return -ENOENT;
2718 break;
2720 case ATA_DNXFER_40C:
2721 udma_mask &= ATA_UDMA_MASK_40C;
2722 break;
2724 case ATA_DNXFER_FORCE_PIO0:
2725 pio_mask &= 1;
2726 case ATA_DNXFER_FORCE_PIO:
2727 mwdma_mask = 0;
2728 udma_mask = 0;
2729 break;
2731 default:
2732 BUG();
2735 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2737 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2738 return -ENOENT;
2740 if (!quiet) {
2741 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2742 snprintf(buf, sizeof(buf), "%s:%s",
2743 ata_mode_string(xfer_mask),
2744 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2745 else
2746 snprintf(buf, sizeof(buf), "%s",
2747 ata_mode_string(xfer_mask));
2749 ata_dev_printk(dev, KERN_WARNING,
2750 "limiting speed to %s\n", buf);
2753 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2754 &dev->udma_mask);
2756 return 0;
2759 static int ata_dev_set_mode(struct ata_device *dev)
2761 struct ata_eh_context *ehc = &dev->ap->eh_context;
2762 unsigned int err_mask;
2763 int rc;
2765 dev->flags &= ~ATA_DFLAG_PIO;
2766 if (dev->xfer_shift == ATA_SHIFT_PIO)
2767 dev->flags |= ATA_DFLAG_PIO;
2769 err_mask = ata_dev_set_xfermode(dev);
2770 /* Old CFA may refuse this command, which is just fine */
2771 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2772 err_mask &= ~AC_ERR_DEV;
2774 if (err_mask) {
2775 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2776 "(err_mask=0x%x)\n", err_mask);
2777 return -EIO;
2780 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2781 rc = ata_dev_revalidate(dev, 0);
2782 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2783 if (rc)
2784 return rc;
2786 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2787 dev->xfer_shift, (int)dev->xfer_mode);
2789 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2790 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2791 return 0;
2795 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2796 * @ap: port on which timings will be programmed
2797 * @r_failed_dev: out paramter for failed device
2799 * Standard implementation of the function used to tune and set
2800 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2801 * ata_dev_set_mode() fails, pointer to the failing device is
2802 * returned in @r_failed_dev.
2804 * LOCKING:
2805 * PCI/etc. bus probe sem.
2807 * RETURNS:
2808 * 0 on success, negative errno otherwise
2811 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2813 struct ata_device *dev;
2814 int i, rc = 0, used_dma = 0, found = 0;
2817 /* step 1: calculate xfer_mask */
2818 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2819 unsigned int pio_mask, dma_mask;
2821 dev = &ap->device[i];
2823 if (!ata_dev_enabled(dev))
2824 continue;
2826 ata_dev_xfermask(dev);
2828 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2829 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2830 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2831 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2833 found = 1;
2834 if (dev->dma_mode)
2835 used_dma = 1;
2837 if (!found)
2838 goto out;
2840 /* step 2: always set host PIO timings */
2841 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2842 dev = &ap->device[i];
2843 if (!ata_dev_enabled(dev))
2844 continue;
2846 if (!dev->pio_mode) {
2847 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2848 rc = -EINVAL;
2849 goto out;
2852 dev->xfer_mode = dev->pio_mode;
2853 dev->xfer_shift = ATA_SHIFT_PIO;
2854 if (ap->ops->set_piomode)
2855 ap->ops->set_piomode(ap, dev);
2858 /* step 3: set host DMA timings */
2859 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2860 dev = &ap->device[i];
2862 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2863 continue;
2865 dev->xfer_mode = dev->dma_mode;
2866 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2867 if (ap->ops->set_dmamode)
2868 ap->ops->set_dmamode(ap, dev);
2871 /* step 4: update devices' xfer mode */
2872 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2873 dev = &ap->device[i];
2875 /* don't update suspended devices' xfer mode */
2876 if (!ata_dev_enabled(dev))
2877 continue;
2879 rc = ata_dev_set_mode(dev);
2880 if (rc)
2881 goto out;
2884 /* Record simplex status. If we selected DMA then the other
2885 * host channels are not permitted to do so.
2887 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2888 ap->host->simplex_claimed = ap;
2890 out:
2891 if (rc)
2892 *r_failed_dev = dev;
2893 return rc;
2897 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2898 * @ap: port on which timings will be programmed
2899 * @r_failed_dev: out paramter for failed device
2901 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2902 * ata_set_mode() fails, pointer to the failing device is
2903 * returned in @r_failed_dev.
2905 * LOCKING:
2906 * PCI/etc. bus probe sem.
2908 * RETURNS:
2909 * 0 on success, negative errno otherwise
2911 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2913 /* has private set_mode? */
2914 if (ap->ops->set_mode)
2915 return ap->ops->set_mode(ap, r_failed_dev);
2916 return ata_do_set_mode(ap, r_failed_dev);
2920 * ata_tf_to_host - issue ATA taskfile to host controller
2921 * @ap: port to which command is being issued
2922 * @tf: ATA taskfile register set
2924 * Issues ATA taskfile register set to ATA host controller,
2925 * with proper synchronization with interrupt handler and
2926 * other threads.
2928 * LOCKING:
2929 * spin_lock_irqsave(host lock)
2932 static inline void ata_tf_to_host(struct ata_port *ap,
2933 const struct ata_taskfile *tf)
2935 ap->ops->tf_load(ap, tf);
2936 ap->ops->exec_command(ap, tf);
2940 * ata_busy_sleep - sleep until BSY clears, or timeout
2941 * @ap: port containing status register to be polled
2942 * @tmout_pat: impatience timeout
2943 * @tmout: overall timeout
2945 * Sleep until ATA Status register bit BSY clears,
2946 * or a timeout occurs.
2948 * LOCKING:
2949 * Kernel thread context (may sleep).
2951 * RETURNS:
2952 * 0 on success, -errno otherwise.
2954 int ata_busy_sleep(struct ata_port *ap,
2955 unsigned long tmout_pat, unsigned long tmout)
2957 unsigned long timer_start, timeout;
2958 u8 status;
2960 status = ata_busy_wait(ap, ATA_BUSY, 300);
2961 timer_start = jiffies;
2962 timeout = timer_start + tmout_pat;
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
2965 msleep(50);
2966 status = ata_busy_wait(ap, ATA_BUSY, 3);
2969 if (status != 0xff && (status & ATA_BUSY))
2970 ata_port_printk(ap, KERN_WARNING,
2971 "port is slow to respond, please be patient "
2972 "(Status 0x%x)\n", status);
2974 timeout = timer_start + tmout;
2975 while (status != 0xff && (status & ATA_BUSY) &&
2976 time_before(jiffies, timeout)) {
2977 msleep(50);
2978 status = ata_chk_status(ap);
2981 if (status == 0xff)
2982 return -ENODEV;
2984 if (status & ATA_BUSY) {
2985 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2986 "(%lu secs, Status 0x%x)\n",
2987 tmout / HZ, status);
2988 return -EBUSY;
2991 return 0;
2995 * ata_wait_ready - sleep until BSY clears, or timeout
2996 * @ap: port containing status register to be polled
2997 * @deadline: deadline jiffies for the operation
2999 * Sleep until ATA Status register bit BSY clears, or timeout
3000 * occurs.
3002 * LOCKING:
3003 * Kernel thread context (may sleep).
3005 * RETURNS:
3006 * 0 on success, -errno otherwise.
3008 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3010 unsigned long start = jiffies;
3011 int warned = 0;
3013 while (1) {
3014 u8 status = ata_chk_status(ap);
3015 unsigned long now = jiffies;
3017 if (!(status & ATA_BUSY))
3018 return 0;
3019 if (!ata_port_online(ap) && status == 0xff)
3020 return -ENODEV;
3021 if (time_after(now, deadline))
3022 return -EBUSY;
3024 if (!warned && time_after(now, start + 5 * HZ) &&
3025 (deadline - now > 3 * HZ)) {
3026 ata_port_printk(ap, KERN_WARNING,
3027 "port is slow to respond, please be patient "
3028 "(Status 0x%x)\n", status);
3029 warned = 1;
3032 msleep(50);
3036 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3037 unsigned long deadline)
3039 struct ata_ioports *ioaddr = &ap->ioaddr;
3040 unsigned int dev0 = devmask & (1 << 0);
3041 unsigned int dev1 = devmask & (1 << 1);
3042 int rc, ret = 0;
3044 /* if device 0 was found in ata_devchk, wait for its
3045 * BSY bit to clear
3047 if (dev0) {
3048 rc = ata_wait_ready(ap, deadline);
3049 if (rc) {
3050 if (rc != -ENODEV)
3051 return rc;
3052 ret = rc;
3056 /* if device 1 was found in ata_devchk, wait for register
3057 * access briefly, then wait for BSY to clear.
3059 if (dev1) {
3060 int i;
3062 ap->ops->dev_select(ap, 1);
3064 /* Wait for register access. Some ATAPI devices fail
3065 * to set nsect/lbal after reset, so don't waste too
3066 * much time on it. We're gonna wait for !BSY anyway.
3068 for (i = 0; i < 2; i++) {
3069 u8 nsect, lbal;
3071 nsect = ioread8(ioaddr->nsect_addr);
3072 lbal = ioread8(ioaddr->lbal_addr);
3073 if ((nsect == 1) && (lbal == 1))
3074 break;
3075 msleep(50); /* give drive a breather */
3078 rc = ata_wait_ready(ap, deadline);
3079 if (rc) {
3080 if (rc != -ENODEV)
3081 return rc;
3082 ret = rc;
3086 /* is all this really necessary? */
3087 ap->ops->dev_select(ap, 0);
3088 if (dev1)
3089 ap->ops->dev_select(ap, 1);
3090 if (dev0)
3091 ap->ops->dev_select(ap, 0);
3093 return ret;
3096 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3097 unsigned long deadline)
3099 struct ata_ioports *ioaddr = &ap->ioaddr;
3101 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3103 /* software reset. causes dev0 to be selected */
3104 iowrite8(ap->ctl, ioaddr->ctl_addr);
3105 udelay(20); /* FIXME: flush */
3106 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
3110 /* spec mandates ">= 2ms" before checking status.
3111 * We wait 150ms, because that was the magic delay used for
3112 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3113 * between when the ATA command register is written, and then
3114 * status is checked. Because waiting for "a while" before
3115 * checking status is fine, post SRST, we perform this magic
3116 * delay here as well.
3118 * Old drivers/ide uses the 2mS rule and then waits for ready
3120 msleep(150);
3122 /* Before we perform post reset processing we want to see if
3123 * the bus shows 0xFF because the odd clown forgets the D7
3124 * pulldown resistor.
3126 if (ata_check_status(ap) == 0xFF)
3127 return -ENODEV;
3129 return ata_bus_post_reset(ap, devmask, deadline);
3133 * ata_bus_reset - reset host port and associated ATA channel
3134 * @ap: port to reset
3136 * This is typically the first time we actually start issuing
3137 * commands to the ATA channel. We wait for BSY to clear, then
3138 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3139 * result. Determine what devices, if any, are on the channel
3140 * by looking at the device 0/1 error register. Look at the signature
3141 * stored in each device's taskfile registers, to determine if
3142 * the device is ATA or ATAPI.
3144 * LOCKING:
3145 * PCI/etc. bus probe sem.
3146 * Obtains host lock.
3148 * SIDE EFFECTS:
3149 * Sets ATA_FLAG_DISABLED if bus reset fails.
3152 void ata_bus_reset(struct ata_port *ap)
3154 struct ata_ioports *ioaddr = &ap->ioaddr;
3155 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3156 u8 err;
3157 unsigned int dev0, dev1 = 0, devmask = 0;
3158 int rc;
3160 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3162 /* determine if device 0/1 are present */
3163 if (ap->flags & ATA_FLAG_SATA_RESET)
3164 dev0 = 1;
3165 else {
3166 dev0 = ata_devchk(ap, 0);
3167 if (slave_possible)
3168 dev1 = ata_devchk(ap, 1);
3171 if (dev0)
3172 devmask |= (1 << 0);
3173 if (dev1)
3174 devmask |= (1 << 1);
3176 /* select device 0 again */
3177 ap->ops->dev_select(ap, 0);
3179 /* issue bus reset */
3180 if (ap->flags & ATA_FLAG_SRST) {
3181 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3182 if (rc && rc != -ENODEV)
3183 goto err_out;
3187 * determine by signature whether we have ATA or ATAPI devices
3189 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3190 if ((slave_possible) && (err != 0x81))
3191 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3193 /* re-enable interrupts */
3194 ap->ops->irq_on(ap);
3196 /* is double-select really necessary? */
3197 if (ap->device[1].class != ATA_DEV_NONE)
3198 ap->ops->dev_select(ap, 1);
3199 if (ap->device[0].class != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 0);
3202 /* if no devices were detected, disable this port */
3203 if ((ap->device[0].class == ATA_DEV_NONE) &&
3204 (ap->device[1].class == ATA_DEV_NONE))
3205 goto err_out;
3207 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3208 /* set up device control for ATA_FLAG_SATA_RESET */
3209 iowrite8(ap->ctl, ioaddr->ctl_addr);
3212 DPRINTK("EXIT\n");
3213 return;
3215 err_out:
3216 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3217 ap->ops->port_disable(ap);
3219 DPRINTK("EXIT\n");
3223 * sata_phy_debounce - debounce SATA phy status
3224 * @ap: ATA port to debounce SATA phy status for
3225 * @params: timing parameters { interval, duratinon, timeout } in msec
3226 * @deadline: deadline jiffies for the operation
3228 * Make sure SStatus of @ap reaches stable state, determined by
3229 * holding the same value where DET is not 1 for @duration polled
3230 * every @interval, before @timeout. Timeout constraints the
3231 * beginning of the stable state. Because DET gets stuck at 1 on
3232 * some controllers after hot unplugging, this functions waits
3233 * until timeout then returns 0 if DET is stable at 1.
3235 * @timeout is further limited by @deadline. The sooner of the
3236 * two is used.
3238 * LOCKING:
3239 * Kernel thread context (may sleep)
3241 * RETURNS:
3242 * 0 on success, -errno on failure.
3244 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3245 unsigned long deadline)
3247 unsigned long interval_msec = params[0];
3248 unsigned long duration = msecs_to_jiffies(params[1]);
3249 unsigned long last_jiffies, t;
3250 u32 last, cur;
3251 int rc;
3253 t = jiffies + msecs_to_jiffies(params[2]);
3254 if (time_before(t, deadline))
3255 deadline = t;
3257 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3258 return rc;
3259 cur &= 0xf;
3261 last = cur;
3262 last_jiffies = jiffies;
3264 while (1) {
3265 msleep(interval_msec);
3266 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3267 return rc;
3268 cur &= 0xf;
3270 /* DET stable? */
3271 if (cur == last) {
3272 if (cur == 1 && time_before(jiffies, deadline))
3273 continue;
3274 if (time_after(jiffies, last_jiffies + duration))
3275 return 0;
3276 continue;
3279 /* unstable, start over */
3280 last = cur;
3281 last_jiffies = jiffies;
3283 /* check deadline */
3284 if (time_after(jiffies, deadline))
3285 return -EBUSY;
3290 * sata_phy_resume - resume SATA phy
3291 * @ap: ATA port to resume SATA phy for
3292 * @params: timing parameters { interval, duratinon, timeout } in msec
3293 * @deadline: deadline jiffies for the operation
3295 * Resume SATA phy of @ap and debounce it.
3297 * LOCKING:
3298 * Kernel thread context (may sleep)
3300 * RETURNS:
3301 * 0 on success, -errno on failure.
3303 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3304 unsigned long deadline)
3306 u32 scontrol;
3307 int rc;
3309 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3310 return rc;
3312 scontrol = (scontrol & 0x0f0) | 0x300;
3314 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3315 return rc;
3317 /* Some PHYs react badly if SStatus is pounded immediately
3318 * after resuming. Delay 200ms before debouncing.
3320 msleep(200);
3322 return sata_phy_debounce(ap, params, deadline);
3326 * ata_std_prereset - prepare for reset
3327 * @ap: ATA port to be reset
3328 * @deadline: deadline jiffies for the operation
3330 * @ap is about to be reset. Initialize it. Failure from
3331 * prereset makes libata abort whole reset sequence and give up
3332 * that port, so prereset should be best-effort. It does its
3333 * best to prepare for reset sequence but if things go wrong, it
3334 * should just whine, not fail.
3336 * LOCKING:
3337 * Kernel thread context (may sleep)
3339 * RETURNS:
3340 * 0 on success, -errno otherwise.
3342 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3344 struct ata_eh_context *ehc = &ap->eh_context;
3345 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3346 int rc;
3348 /* handle link resume */
3349 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3350 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3351 ehc->i.action |= ATA_EH_HARDRESET;
3353 /* if we're about to do hardreset, nothing more to do */
3354 if (ehc->i.action & ATA_EH_HARDRESET)
3355 return 0;
3357 /* if SATA, resume phy */
3358 if (ap->cbl == ATA_CBL_SATA) {
3359 rc = sata_phy_resume(ap, timing, deadline);
3360 /* whine about phy resume failure but proceed */
3361 if (rc && rc != -EOPNOTSUPP)
3362 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3363 "link for reset (errno=%d)\n", rc);
3366 /* Wait for !BSY if the controller can wait for the first D2H
3367 * Reg FIS and we don't know that no device is attached.
3369 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3370 rc = ata_wait_ready(ap, deadline);
3371 if (rc && rc != -ENODEV) {
3372 ata_port_printk(ap, KERN_WARNING, "device not ready "
3373 "(errno=%d), forcing hardreset\n", rc);
3374 ehc->i.action |= ATA_EH_HARDRESET;
3378 return 0;
3382 * ata_std_softreset - reset host port via ATA SRST
3383 * @ap: port to reset
3384 * @classes: resulting classes of attached devices
3385 * @deadline: deadline jiffies for the operation
3387 * Reset host port using ATA SRST.
3389 * LOCKING:
3390 * Kernel thread context (may sleep)
3392 * RETURNS:
3393 * 0 on success, -errno otherwise.
3395 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3396 unsigned long deadline)
3398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3399 unsigned int devmask = 0;
3400 int rc;
3401 u8 err;
3403 DPRINTK("ENTER\n");
3405 if (ata_port_offline(ap)) {
3406 classes[0] = ATA_DEV_NONE;
3407 goto out;
3410 /* determine if device 0/1 are present */
3411 if (ata_devchk(ap, 0))
3412 devmask |= (1 << 0);
3413 if (slave_possible && ata_devchk(ap, 1))
3414 devmask |= (1 << 1);
3416 /* select device 0 again */
3417 ap->ops->dev_select(ap, 0);
3419 /* issue bus reset */
3420 DPRINTK("about to softreset, devmask=%x\n", devmask);
3421 rc = ata_bus_softreset(ap, devmask, deadline);
3422 /* if link is occupied, -ENODEV too is an error */
3423 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3424 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3425 return rc;
3428 /* determine by signature whether we have ATA or ATAPI devices */
3429 classes[0] = ata_dev_try_classify(ap, 0, &err);
3430 if (slave_possible && err != 0x81)
3431 classes[1] = ata_dev_try_classify(ap, 1, &err);
3433 out:
3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3435 return 0;
3439 * sata_port_hardreset - reset port via SATA phy reset
3440 * @ap: port to reset
3441 * @timing: timing parameters { interval, duratinon, timeout } in msec
3442 * @deadline: deadline jiffies for the operation
3444 * SATA phy-reset host port using DET bits of SControl register.
3446 * LOCKING:
3447 * Kernel thread context (may sleep)
3449 * RETURNS:
3450 * 0 on success, -errno otherwise.
3452 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3453 unsigned long deadline)
3455 u32 scontrol;
3456 int rc;
3458 DPRINTK("ENTER\n");
3460 if (sata_set_spd_needed(ap)) {
3461 /* SATA spec says nothing about how to reconfigure
3462 * spd. To be on the safe side, turn off phy during
3463 * reconfiguration. This works for at least ICH7 AHCI
3464 * and Sil3124.
3466 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3467 goto out;
3469 scontrol = (scontrol & 0x0f0) | 0x304;
3471 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3472 goto out;
3474 sata_set_spd(ap);
3477 /* issue phy wake/reset */
3478 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3479 goto out;
3481 scontrol = (scontrol & 0x0f0) | 0x301;
3483 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3484 goto out;
3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3487 * 10.4.2 says at least 1 ms.
3489 msleep(1);
3491 /* bring phy back */
3492 rc = sata_phy_resume(ap, timing, deadline);
3493 out:
3494 DPRINTK("EXIT, rc=%d\n", rc);
3495 return rc;
3499 * sata_std_hardreset - reset host port via SATA phy reset
3500 * @ap: port to reset
3501 * @class: resulting class of attached device
3502 * @deadline: deadline jiffies for the operation
3504 * SATA phy-reset host port using DET bits of SControl register,
3505 * wait for !BSY and classify the attached device.
3507 * LOCKING:
3508 * Kernel thread context (may sleep)
3510 * RETURNS:
3511 * 0 on success, -errno otherwise.
3513 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3514 unsigned long deadline)
3516 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3517 int rc;
3519 DPRINTK("ENTER\n");
3521 /* do hardreset */
3522 rc = sata_port_hardreset(ap, timing, deadline);
3523 if (rc) {
3524 ata_port_printk(ap, KERN_ERR,
3525 "COMRESET failed (errno=%d)\n", rc);
3526 return rc;
3529 /* TODO: phy layer with polling, timeouts, etc. */
3530 if (ata_port_offline(ap)) {
3531 *class = ATA_DEV_NONE;
3532 DPRINTK("EXIT, link offline\n");
3533 return 0;
3536 /* wait a while before checking status, see SRST for more info */
3537 msleep(150);
3539 rc = ata_wait_ready(ap, deadline);
3540 /* link occupied, -ENODEV too is an error */
3541 if (rc) {
3542 ata_port_printk(ap, KERN_ERR,
3543 "COMRESET failed (errno=%d)\n", rc);
3544 return rc;
3547 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3549 *class = ata_dev_try_classify(ap, 0, NULL);
3551 DPRINTK("EXIT, class=%u\n", *class);
3552 return 0;
3556 * ata_std_postreset - standard postreset callback
3557 * @ap: the target ata_port
3558 * @classes: classes of attached devices
3560 * This function is invoked after a successful reset. Note that
3561 * the device might have been reset more than once using
3562 * different reset methods before postreset is invoked.
3564 * LOCKING:
3565 * Kernel thread context (may sleep)
3567 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3569 u32 serror;
3571 DPRINTK("ENTER\n");
3573 /* print link status */
3574 sata_print_link_status(ap);
3576 /* clear SError */
3577 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3578 sata_scr_write(ap, SCR_ERROR, serror);
3580 /* re-enable interrupts */
3581 if (!ap->ops->error_handler)
3582 ap->ops->irq_on(ap);
3584 /* is double-select really necessary? */
3585 if (classes[0] != ATA_DEV_NONE)
3586 ap->ops->dev_select(ap, 1);
3587 if (classes[1] != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 0);
3590 /* bail out if no device is present */
3591 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3592 DPRINTK("EXIT, no device\n");
3593 return;
3596 /* set up device control */
3597 if (ap->ioaddr.ctl_addr)
3598 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3600 DPRINTK("EXIT\n");
3604 * ata_dev_same_device - Determine whether new ID matches configured device
3605 * @dev: device to compare against
3606 * @new_class: class of the new device
3607 * @new_id: IDENTIFY page of the new device
3609 * Compare @new_class and @new_id against @dev and determine
3610 * whether @dev is the device indicated by @new_class and
3611 * @new_id.
3613 * LOCKING:
3614 * None.
3616 * RETURNS:
3617 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3619 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3620 const u16 *new_id)
3622 const u16 *old_id = dev->id;
3623 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3624 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3626 if (dev->class != new_class) {
3627 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3628 dev->class, new_class);
3629 return 0;
3632 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3633 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3634 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3635 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3637 if (strcmp(model[0], model[1])) {
3638 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3639 "'%s' != '%s'\n", model[0], model[1]);
3640 return 0;
3643 if (strcmp(serial[0], serial[1])) {
3644 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3645 "'%s' != '%s'\n", serial[0], serial[1]);
3646 return 0;
3649 return 1;
3653 * ata_dev_reread_id - Re-read IDENTIFY data
3654 * @dev: target ATA device
3655 * @readid_flags: read ID flags
3657 * Re-read IDENTIFY page and make sure @dev is still attached to
3658 * the port.
3660 * LOCKING:
3661 * Kernel thread context (may sleep)
3663 * RETURNS:
3664 * 0 on success, negative errno otherwise
3666 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3668 unsigned int class = dev->class;
3669 u16 *id = (void *)dev->ap->sector_buf;
3670 int rc;
3672 /* read ID data */
3673 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3674 if (rc)
3675 return rc;
3677 /* is the device still there? */
3678 if (!ata_dev_same_device(dev, class, id))
3679 return -ENODEV;
3681 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3682 return 0;
3686 * ata_dev_revalidate - Revalidate ATA device
3687 * @dev: device to revalidate
3688 * @readid_flags: read ID flags
3690 * Re-read IDENTIFY page, make sure @dev is still attached to the
3691 * port and reconfigure it according to the new IDENTIFY page.
3693 * LOCKING:
3694 * Kernel thread context (may sleep)
3696 * RETURNS:
3697 * 0 on success, negative errno otherwise
3699 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3701 u64 n_sectors = dev->n_sectors;
3702 int rc;
3704 if (!ata_dev_enabled(dev))
3705 return -ENODEV;
3707 /* re-read ID */
3708 rc = ata_dev_reread_id(dev, readid_flags);
3709 if (rc)
3710 goto fail;
3712 /* configure device according to the new ID */
3713 rc = ata_dev_configure(dev);
3714 if (rc)
3715 goto fail;
3717 /* verify n_sectors hasn't changed */
3718 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3719 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3720 "%llu != %llu\n",
3721 (unsigned long long)n_sectors,
3722 (unsigned long long)dev->n_sectors);
3723 rc = -ENODEV;
3724 goto fail;
3727 return 0;
3729 fail:
3730 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3731 return rc;
3734 struct ata_blacklist_entry {
3735 const char *model_num;
3736 const char *model_rev;
3737 unsigned long horkage;
3740 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3741 /* Devices with DMA related problems under Linux */
3742 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3743 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3744 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3745 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3748 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3749 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3750 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3751 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3752 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3754 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3755 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3756 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3757 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3758 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3759 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3760 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3761 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3762 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3763 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3764 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3765 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3766 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3767 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3768 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3769 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3771 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3772 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3774 /* Weird ATAPI devices */
3775 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3777 /* Devices we expect to fail diagnostics */
3779 /* Devices where NCQ should be avoided */
3780 /* NCQ is slow */
3781 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3782 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3783 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3784 /* NCQ is broken */
3785 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3786 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3787 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3788 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3789 /* Blacklist entries taken from Silicon Image 3124/3132
3790 Windows driver .inf file - also several Linux problem reports */
3791 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3792 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3793 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3794 /* Drives which do spurious command completion */
3795 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3796 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3797 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3798 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3800 /* Devices with NCQ limits */
3802 /* End Marker */
3806 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3808 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3809 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3810 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3812 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3813 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3815 while (ad->model_num) {
3816 if (!strcmp(ad->model_num, model_num)) {
3817 if (ad->model_rev == NULL)
3818 return ad->horkage;
3819 if (!strcmp(ad->model_rev, model_rev))
3820 return ad->horkage;
3822 ad++;
3824 return 0;
3827 static int ata_dma_blacklisted(const struct ata_device *dev)
3829 /* We don't support polling DMA.
3830 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3831 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3833 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3834 (dev->flags & ATA_DFLAG_CDB_INTR))
3835 return 1;
3836 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3840 * ata_dev_xfermask - Compute supported xfermask of the given device
3841 * @dev: Device to compute xfermask for
3843 * Compute supported xfermask of @dev and store it in
3844 * dev->*_mask. This function is responsible for applying all
3845 * known limits including host controller limits, device
3846 * blacklist, etc...
3848 * LOCKING:
3849 * None.
3851 static void ata_dev_xfermask(struct ata_device *dev)
3853 struct ata_port *ap = dev->ap;
3854 struct ata_host *host = ap->host;
3855 unsigned long xfer_mask;
3857 /* controller modes available */
3858 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3859 ap->mwdma_mask, ap->udma_mask);
3861 /* drive modes available */
3862 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3863 dev->mwdma_mask, dev->udma_mask);
3864 xfer_mask &= ata_id_xfermask(dev->id);
3867 * CFA Advanced TrueIDE timings are not allowed on a shared
3868 * cable
3870 if (ata_dev_pair(dev)) {
3871 /* No PIO5 or PIO6 */
3872 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3873 /* No MWDMA3 or MWDMA 4 */
3874 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3877 if (ata_dma_blacklisted(dev)) {
3878 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3879 ata_dev_printk(dev, KERN_WARNING,
3880 "device is on DMA blacklist, disabling DMA\n");
3883 if ((host->flags & ATA_HOST_SIMPLEX) &&
3884 host->simplex_claimed && host->simplex_claimed != ap) {
3885 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3886 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3887 "other device, disabling DMA\n");
3890 if (ap->flags & ATA_FLAG_NO_IORDY)
3891 xfer_mask &= ata_pio_mask_no_iordy(dev);
3893 if (ap->ops->mode_filter)
3894 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3896 /* Apply cable rule here. Don't apply it early because when
3897 * we handle hot plug the cable type can itself change.
3898 * Check this last so that we know if the transfer rate was
3899 * solely limited by the cable.
3900 * Unknown or 80 wire cables reported host side are checked
3901 * drive side as well. Cases where we know a 40wire cable
3902 * is used safely for 80 are not checked here.
3904 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3905 /* UDMA/44 or higher would be available */
3906 if((ap->cbl == ATA_CBL_PATA40) ||
3907 (ata_drive_40wire(dev->id) &&
3908 (ap->cbl == ATA_CBL_PATA_UNK ||
3909 ap->cbl == ATA_CBL_PATA80))) {
3910 ata_dev_printk(dev, KERN_WARNING,
3911 "limited to UDMA/33 due to 40-wire cable\n");
3912 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3915 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3916 &dev->mwdma_mask, &dev->udma_mask);
3920 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3921 * @dev: Device to which command will be sent
3923 * Issue SET FEATURES - XFER MODE command to device @dev
3924 * on port @ap.
3926 * LOCKING:
3927 * PCI/etc. bus probe sem.
3929 * RETURNS:
3930 * 0 on success, AC_ERR_* mask otherwise.
3933 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3935 struct ata_taskfile tf;
3936 unsigned int err_mask;
3938 /* set up set-features taskfile */
3939 DPRINTK("set features - xfer mode\n");
3941 /* Some controllers and ATAPI devices show flaky interrupt
3942 * behavior after setting xfer mode. Use polling instead.
3944 ata_tf_init(dev, &tf);
3945 tf.command = ATA_CMD_SET_FEATURES;
3946 tf.feature = SETFEATURES_XFER;
3947 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3948 tf.protocol = ATA_PROT_NODATA;
3949 tf.nsect = dev->xfer_mode;
3951 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3953 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3954 return err_mask;
3958 * ata_dev_init_params - Issue INIT DEV PARAMS command
3959 * @dev: Device to which command will be sent
3960 * @heads: Number of heads (taskfile parameter)
3961 * @sectors: Number of sectors (taskfile parameter)
3963 * LOCKING:
3964 * Kernel thread context (may sleep)
3966 * RETURNS:
3967 * 0 on success, AC_ERR_* mask otherwise.
3969 static unsigned int ata_dev_init_params(struct ata_device *dev,
3970 u16 heads, u16 sectors)
3972 struct ata_taskfile tf;
3973 unsigned int err_mask;
3975 /* Number of sectors per track 1-255. Number of heads 1-16 */
3976 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3977 return AC_ERR_INVALID;
3979 /* set up init dev params taskfile */
3980 DPRINTK("init dev params \n");
3982 ata_tf_init(dev, &tf);
3983 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3984 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3985 tf.protocol = ATA_PROT_NODATA;
3986 tf.nsect = sectors;
3987 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3989 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3991 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3992 return err_mask;
3996 * ata_sg_clean - Unmap DMA memory associated with command
3997 * @qc: Command containing DMA memory to be released
3999 * Unmap all mapped DMA memory associated with this command.
4001 * LOCKING:
4002 * spin_lock_irqsave(host lock)
4004 void ata_sg_clean(struct ata_queued_cmd *qc)
4006 struct ata_port *ap = qc->ap;
4007 struct scatterlist *sg = qc->__sg;
4008 int dir = qc->dma_dir;
4009 void *pad_buf = NULL;
4011 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4012 WARN_ON(sg == NULL);
4014 if (qc->flags & ATA_QCFLAG_SINGLE)
4015 WARN_ON(qc->n_elem > 1);
4017 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4019 /* if we padded the buffer out to 32-bit bound, and data
4020 * xfer direction is from-device, we must copy from the
4021 * pad buffer back into the supplied buffer
4023 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4024 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4026 if (qc->flags & ATA_QCFLAG_SG) {
4027 if (qc->n_elem)
4028 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4029 /* restore last sg */
4030 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4031 if (pad_buf) {
4032 struct scatterlist *psg = &qc->pad_sgent;
4033 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4034 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4035 kunmap_atomic(addr, KM_IRQ0);
4037 } else {
4038 if (qc->n_elem)
4039 dma_unmap_single(ap->dev,
4040 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4041 dir);
4042 /* restore sg */
4043 sg->length += qc->pad_len;
4044 if (pad_buf)
4045 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4046 pad_buf, qc->pad_len);
4049 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4050 qc->__sg = NULL;
4054 * ata_fill_sg - Fill PCI IDE PRD table
4055 * @qc: Metadata associated with taskfile to be transferred
4057 * Fill PCI IDE PRD (scatter-gather) table with segments
4058 * associated with the current disk command.
4060 * LOCKING:
4061 * spin_lock_irqsave(host lock)
4064 static void ata_fill_sg(struct ata_queued_cmd *qc)
4066 struct ata_port *ap = qc->ap;
4067 struct scatterlist *sg;
4068 unsigned int idx;
4070 WARN_ON(qc->__sg == NULL);
4071 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4073 idx = 0;
4074 ata_for_each_sg(sg, qc) {
4075 u32 addr, offset;
4076 u32 sg_len, len;
4078 /* determine if physical DMA addr spans 64K boundary.
4079 * Note h/w doesn't support 64-bit, so we unconditionally
4080 * truncate dma_addr_t to u32.
4082 addr = (u32) sg_dma_address(sg);
4083 sg_len = sg_dma_len(sg);
4085 while (sg_len) {
4086 offset = addr & 0xffff;
4087 len = sg_len;
4088 if ((offset + sg_len) > 0x10000)
4089 len = 0x10000 - offset;
4091 ap->prd[idx].addr = cpu_to_le32(addr);
4092 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4093 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4095 idx++;
4096 sg_len -= len;
4097 addr += len;
4101 if (idx)
4102 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4106 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4107 * @qc: Metadata associated with taskfile to check
4109 * Allow low-level driver to filter ATA PACKET commands, returning
4110 * a status indicating whether or not it is OK to use DMA for the
4111 * supplied PACKET command.
4113 * LOCKING:
4114 * spin_lock_irqsave(host lock)
4116 * RETURNS: 0 when ATAPI DMA can be used
4117 * nonzero otherwise
4119 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4121 struct ata_port *ap = qc->ap;
4123 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4124 * few ATAPI devices choke on such DMA requests.
4126 if (unlikely(qc->nbytes & 15))
4127 return 1;
4129 if (ap->ops->check_atapi_dma)
4130 return ap->ops->check_atapi_dma(qc);
4132 return 0;
4136 * ata_qc_prep - Prepare taskfile for submission
4137 * @qc: Metadata associated with taskfile to be prepared
4139 * Prepare ATA taskfile for submission.
4141 * LOCKING:
4142 * spin_lock_irqsave(host lock)
4144 void ata_qc_prep(struct ata_queued_cmd *qc)
4146 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4147 return;
4149 ata_fill_sg(qc);
4152 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4155 * ata_sg_init_one - Associate command with memory buffer
4156 * @qc: Command to be associated
4157 * @buf: Memory buffer
4158 * @buflen: Length of memory buffer, in bytes.
4160 * Initialize the data-related elements of queued_cmd @qc
4161 * to point to a single memory buffer, @buf of byte length @buflen.
4163 * LOCKING:
4164 * spin_lock_irqsave(host lock)
4167 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4169 qc->flags |= ATA_QCFLAG_SINGLE;
4171 qc->__sg = &qc->sgent;
4172 qc->n_elem = 1;
4173 qc->orig_n_elem = 1;
4174 qc->buf_virt = buf;
4175 qc->nbytes = buflen;
4177 sg_init_one(&qc->sgent, buf, buflen);
4181 * ata_sg_init - Associate command with scatter-gather table.
4182 * @qc: Command to be associated
4183 * @sg: Scatter-gather table.
4184 * @n_elem: Number of elements in s/g table.
4186 * Initialize the data-related elements of queued_cmd @qc
4187 * to point to a scatter-gather table @sg, containing @n_elem
4188 * elements.
4190 * LOCKING:
4191 * spin_lock_irqsave(host lock)
4194 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4195 unsigned int n_elem)
4197 qc->flags |= ATA_QCFLAG_SG;
4198 qc->__sg = sg;
4199 qc->n_elem = n_elem;
4200 qc->orig_n_elem = n_elem;
4204 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4205 * @qc: Command with memory buffer to be mapped.
4207 * DMA-map the memory buffer associated with queued_cmd @qc.
4209 * LOCKING:
4210 * spin_lock_irqsave(host lock)
4212 * RETURNS:
4213 * Zero on success, negative on error.
4216 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4218 struct ata_port *ap = qc->ap;
4219 int dir = qc->dma_dir;
4220 struct scatterlist *sg = qc->__sg;
4221 dma_addr_t dma_address;
4222 int trim_sg = 0;
4224 /* we must lengthen transfers to end on a 32-bit boundary */
4225 qc->pad_len = sg->length & 3;
4226 if (qc->pad_len) {
4227 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4228 struct scatterlist *psg = &qc->pad_sgent;
4230 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4232 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4234 if (qc->tf.flags & ATA_TFLAG_WRITE)
4235 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4236 qc->pad_len);
4238 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4239 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4240 /* trim sg */
4241 sg->length -= qc->pad_len;
4242 if (sg->length == 0)
4243 trim_sg = 1;
4245 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4246 sg->length, qc->pad_len);
4249 if (trim_sg) {
4250 qc->n_elem--;
4251 goto skip_map;
4254 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4255 sg->length, dir);
4256 if (dma_mapping_error(dma_address)) {
4257 /* restore sg */
4258 sg->length += qc->pad_len;
4259 return -1;
4262 sg_dma_address(sg) = dma_address;
4263 sg_dma_len(sg) = sg->length;
4265 skip_map:
4266 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4267 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4269 return 0;
4273 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4274 * @qc: Command with scatter-gather table to be mapped.
4276 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4278 * LOCKING:
4279 * spin_lock_irqsave(host lock)
4281 * RETURNS:
4282 * Zero on success, negative on error.
4286 static int ata_sg_setup(struct ata_queued_cmd *qc)
4288 struct ata_port *ap = qc->ap;
4289 struct scatterlist *sg = qc->__sg;
4290 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4291 int n_elem, pre_n_elem, dir, trim_sg = 0;
4293 VPRINTK("ENTER, ata%u\n", ap->print_id);
4294 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4296 /* we must lengthen transfers to end on a 32-bit boundary */
4297 qc->pad_len = lsg->length & 3;
4298 if (qc->pad_len) {
4299 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4300 struct scatterlist *psg = &qc->pad_sgent;
4301 unsigned int offset;
4303 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4305 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4308 * psg->page/offset are used to copy to-be-written
4309 * data in this function or read data in ata_sg_clean.
4311 offset = lsg->offset + lsg->length - qc->pad_len;
4312 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4313 psg->offset = offset_in_page(offset);
4315 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4316 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4317 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4318 kunmap_atomic(addr, KM_IRQ0);
4321 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4322 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4323 /* trim last sg */
4324 lsg->length -= qc->pad_len;
4325 if (lsg->length == 0)
4326 trim_sg = 1;
4328 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4329 qc->n_elem - 1, lsg->length, qc->pad_len);
4332 pre_n_elem = qc->n_elem;
4333 if (trim_sg && pre_n_elem)
4334 pre_n_elem--;
4336 if (!pre_n_elem) {
4337 n_elem = 0;
4338 goto skip_map;
4341 dir = qc->dma_dir;
4342 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4343 if (n_elem < 1) {
4344 /* restore last sg */
4345 lsg->length += qc->pad_len;
4346 return -1;
4349 DPRINTK("%d sg elements mapped\n", n_elem);
4351 skip_map:
4352 qc->n_elem = n_elem;
4354 return 0;
4358 * swap_buf_le16 - swap halves of 16-bit words in place
4359 * @buf: Buffer to swap
4360 * @buf_words: Number of 16-bit words in buffer.
4362 * Swap halves of 16-bit words if needed to convert from
4363 * little-endian byte order to native cpu byte order, or
4364 * vice-versa.
4366 * LOCKING:
4367 * Inherited from caller.
4369 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4371 #ifdef __BIG_ENDIAN
4372 unsigned int i;
4374 for (i = 0; i < buf_words; i++)
4375 buf[i] = le16_to_cpu(buf[i]);
4376 #endif /* __BIG_ENDIAN */
4380 * ata_data_xfer - Transfer data by PIO
4381 * @adev: device to target
4382 * @buf: data buffer
4383 * @buflen: buffer length
4384 * @write_data: read/write
4386 * Transfer data from/to the device data register by PIO.
4388 * LOCKING:
4389 * Inherited from caller.
4391 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4392 unsigned int buflen, int write_data)
4394 struct ata_port *ap = adev->ap;
4395 unsigned int words = buflen >> 1;
4397 /* Transfer multiple of 2 bytes */
4398 if (write_data)
4399 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4400 else
4401 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4403 /* Transfer trailing 1 byte, if any. */
4404 if (unlikely(buflen & 0x01)) {
4405 u16 align_buf[1] = { 0 };
4406 unsigned char *trailing_buf = buf + buflen - 1;
4408 if (write_data) {
4409 memcpy(align_buf, trailing_buf, 1);
4410 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4411 } else {
4412 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4413 memcpy(trailing_buf, align_buf, 1);
4419 * ata_data_xfer_noirq - Transfer data by PIO
4420 * @adev: device to target
4421 * @buf: data buffer
4422 * @buflen: buffer length
4423 * @write_data: read/write
4425 * Transfer data from/to the device data register by PIO. Do the
4426 * transfer with interrupts disabled.
4428 * LOCKING:
4429 * Inherited from caller.
4431 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4432 unsigned int buflen, int write_data)
4434 unsigned long flags;
4435 local_irq_save(flags);
4436 ata_data_xfer(adev, buf, buflen, write_data);
4437 local_irq_restore(flags);
4442 * ata_pio_sector - Transfer a sector of data.
4443 * @qc: Command on going
4445 * Transfer qc->sect_size bytes of data from/to the ATA device.
4447 * LOCKING:
4448 * Inherited from caller.
4451 static void ata_pio_sector(struct ata_queued_cmd *qc)
4453 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4454 struct scatterlist *sg = qc->__sg;
4455 struct ata_port *ap = qc->ap;
4456 struct page *page;
4457 unsigned int offset;
4458 unsigned char *buf;
4460 if (qc->curbytes == qc->nbytes - qc->sect_size)
4461 ap->hsm_task_state = HSM_ST_LAST;
4463 page = sg[qc->cursg].page;
4464 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4466 /* get the current page and offset */
4467 page = nth_page(page, (offset >> PAGE_SHIFT));
4468 offset %= PAGE_SIZE;
4470 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4472 if (PageHighMem(page)) {
4473 unsigned long flags;
4475 /* FIXME: use a bounce buffer */
4476 local_irq_save(flags);
4477 buf = kmap_atomic(page, KM_IRQ0);
4479 /* do the actual data transfer */
4480 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4482 kunmap_atomic(buf, KM_IRQ0);
4483 local_irq_restore(flags);
4484 } else {
4485 buf = page_address(page);
4486 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4489 qc->curbytes += qc->sect_size;
4490 qc->cursg_ofs += qc->sect_size;
4492 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4493 qc->cursg++;
4494 qc->cursg_ofs = 0;
4499 * ata_pio_sectors - Transfer one or many sectors.
4500 * @qc: Command on going
4502 * Transfer one or many sectors of data from/to the
4503 * ATA device for the DRQ request.
4505 * LOCKING:
4506 * Inherited from caller.
4509 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4511 if (is_multi_taskfile(&qc->tf)) {
4512 /* READ/WRITE MULTIPLE */
4513 unsigned int nsect;
4515 WARN_ON(qc->dev->multi_count == 0);
4517 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4518 qc->dev->multi_count);
4519 while (nsect--)
4520 ata_pio_sector(qc);
4521 } else
4522 ata_pio_sector(qc);
4526 * atapi_send_cdb - Write CDB bytes to hardware
4527 * @ap: Port to which ATAPI device is attached.
4528 * @qc: Taskfile currently active
4530 * When device has indicated its readiness to accept
4531 * a CDB, this function is called. Send the CDB.
4533 * LOCKING:
4534 * caller.
4537 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4539 /* send SCSI cdb */
4540 DPRINTK("send cdb\n");
4541 WARN_ON(qc->dev->cdb_len < 12);
4543 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4544 ata_altstatus(ap); /* flush */
4546 switch (qc->tf.protocol) {
4547 case ATA_PROT_ATAPI:
4548 ap->hsm_task_state = HSM_ST;
4549 break;
4550 case ATA_PROT_ATAPI_NODATA:
4551 ap->hsm_task_state = HSM_ST_LAST;
4552 break;
4553 case ATA_PROT_ATAPI_DMA:
4554 ap->hsm_task_state = HSM_ST_LAST;
4555 /* initiate bmdma */
4556 ap->ops->bmdma_start(qc);
4557 break;
4562 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4563 * @qc: Command on going
4564 * @bytes: number of bytes
4566 * Transfer Transfer data from/to the ATAPI device.
4568 * LOCKING:
4569 * Inherited from caller.
4573 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4575 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4576 struct scatterlist *sg = qc->__sg;
4577 struct ata_port *ap = qc->ap;
4578 struct page *page;
4579 unsigned char *buf;
4580 unsigned int offset, count;
4582 if (qc->curbytes + bytes >= qc->nbytes)
4583 ap->hsm_task_state = HSM_ST_LAST;
4585 next_sg:
4586 if (unlikely(qc->cursg >= qc->n_elem)) {
4588 * The end of qc->sg is reached and the device expects
4589 * more data to transfer. In order not to overrun qc->sg
4590 * and fulfill length specified in the byte count register,
4591 * - for read case, discard trailing data from the device
4592 * - for write case, padding zero data to the device
4594 u16 pad_buf[1] = { 0 };
4595 unsigned int words = bytes >> 1;
4596 unsigned int i;
4598 if (words) /* warning if bytes > 1 */
4599 ata_dev_printk(qc->dev, KERN_WARNING,
4600 "%u bytes trailing data\n", bytes);
4602 for (i = 0; i < words; i++)
4603 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4605 ap->hsm_task_state = HSM_ST_LAST;
4606 return;
4609 sg = &qc->__sg[qc->cursg];
4611 page = sg->page;
4612 offset = sg->offset + qc->cursg_ofs;
4614 /* get the current page and offset */
4615 page = nth_page(page, (offset >> PAGE_SHIFT));
4616 offset %= PAGE_SIZE;
4618 /* don't overrun current sg */
4619 count = min(sg->length - qc->cursg_ofs, bytes);
4621 /* don't cross page boundaries */
4622 count = min(count, (unsigned int)PAGE_SIZE - offset);
4624 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4626 if (PageHighMem(page)) {
4627 unsigned long flags;
4629 /* FIXME: use bounce buffer */
4630 local_irq_save(flags);
4631 buf = kmap_atomic(page, KM_IRQ0);
4633 /* do the actual data transfer */
4634 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4636 kunmap_atomic(buf, KM_IRQ0);
4637 local_irq_restore(flags);
4638 } else {
4639 buf = page_address(page);
4640 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4643 bytes -= count;
4644 qc->curbytes += count;
4645 qc->cursg_ofs += count;
4647 if (qc->cursg_ofs == sg->length) {
4648 qc->cursg++;
4649 qc->cursg_ofs = 0;
4652 if (bytes)
4653 goto next_sg;
4657 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4658 * @qc: Command on going
4660 * Transfer Transfer data from/to the ATAPI device.
4662 * LOCKING:
4663 * Inherited from caller.
4666 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4668 struct ata_port *ap = qc->ap;
4669 struct ata_device *dev = qc->dev;
4670 unsigned int ireason, bc_lo, bc_hi, bytes;
4671 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4673 /* Abuse qc->result_tf for temp storage of intermediate TF
4674 * here to save some kernel stack usage.
4675 * For normal completion, qc->result_tf is not relevant. For
4676 * error, qc->result_tf is later overwritten by ata_qc_complete().
4677 * So, the correctness of qc->result_tf is not affected.
4679 ap->ops->tf_read(ap, &qc->result_tf);
4680 ireason = qc->result_tf.nsect;
4681 bc_lo = qc->result_tf.lbam;
4682 bc_hi = qc->result_tf.lbah;
4683 bytes = (bc_hi << 8) | bc_lo;
4685 /* shall be cleared to zero, indicating xfer of data */
4686 if (ireason & (1 << 0))
4687 goto err_out;
4689 /* make sure transfer direction matches expected */
4690 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4691 if (do_write != i_write)
4692 goto err_out;
4694 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4696 __atapi_pio_bytes(qc, bytes);
4698 return;
4700 err_out:
4701 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4702 qc->err_mask |= AC_ERR_HSM;
4703 ap->hsm_task_state = HSM_ST_ERR;
4707 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4708 * @ap: the target ata_port
4709 * @qc: qc on going
4711 * RETURNS:
4712 * 1 if ok in workqueue, 0 otherwise.
4715 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4717 if (qc->tf.flags & ATA_TFLAG_POLLING)
4718 return 1;
4720 if (ap->hsm_task_state == HSM_ST_FIRST) {
4721 if (qc->tf.protocol == ATA_PROT_PIO &&
4722 (qc->tf.flags & ATA_TFLAG_WRITE))
4723 return 1;
4725 if (is_atapi_taskfile(&qc->tf) &&
4726 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4727 return 1;
4730 return 0;
4734 * ata_hsm_qc_complete - finish a qc running on standard HSM
4735 * @qc: Command to complete
4736 * @in_wq: 1 if called from workqueue, 0 otherwise
4738 * Finish @qc which is running on standard HSM.
4740 * LOCKING:
4741 * If @in_wq is zero, spin_lock_irqsave(host lock).
4742 * Otherwise, none on entry and grabs host lock.
4744 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4746 struct ata_port *ap = qc->ap;
4747 unsigned long flags;
4749 if (ap->ops->error_handler) {
4750 if (in_wq) {
4751 spin_lock_irqsave(ap->lock, flags);
4753 /* EH might have kicked in while host lock is
4754 * released.
4756 qc = ata_qc_from_tag(ap, qc->tag);
4757 if (qc) {
4758 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4759 ap->ops->irq_on(ap);
4760 ata_qc_complete(qc);
4761 } else
4762 ata_port_freeze(ap);
4765 spin_unlock_irqrestore(ap->lock, flags);
4766 } else {
4767 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4768 ata_qc_complete(qc);
4769 else
4770 ata_port_freeze(ap);
4772 } else {
4773 if (in_wq) {
4774 spin_lock_irqsave(ap->lock, flags);
4775 ap->ops->irq_on(ap);
4776 ata_qc_complete(qc);
4777 spin_unlock_irqrestore(ap->lock, flags);
4778 } else
4779 ata_qc_complete(qc);
4784 * ata_hsm_move - move the HSM to the next state.
4785 * @ap: the target ata_port
4786 * @qc: qc on going
4787 * @status: current device status
4788 * @in_wq: 1 if called from workqueue, 0 otherwise
4790 * RETURNS:
4791 * 1 when poll next status needed, 0 otherwise.
4793 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4794 u8 status, int in_wq)
4796 unsigned long flags = 0;
4797 int poll_next;
4799 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4801 /* Make sure ata_qc_issue_prot() does not throw things
4802 * like DMA polling into the workqueue. Notice that
4803 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4805 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4807 fsm_start:
4808 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4809 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4811 switch (ap->hsm_task_state) {
4812 case HSM_ST_FIRST:
4813 /* Send first data block or PACKET CDB */
4815 /* If polling, we will stay in the work queue after
4816 * sending the data. Otherwise, interrupt handler
4817 * takes over after sending the data.
4819 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4821 /* check device status */
4822 if (unlikely((status & ATA_DRQ) == 0)) {
4823 /* handle BSY=0, DRQ=0 as error */
4824 if (likely(status & (ATA_ERR | ATA_DF)))
4825 /* device stops HSM for abort/error */
4826 qc->err_mask |= AC_ERR_DEV;
4827 else
4828 /* HSM violation. Let EH handle this */
4829 qc->err_mask |= AC_ERR_HSM;
4831 ap->hsm_task_state = HSM_ST_ERR;
4832 goto fsm_start;
4835 /* Device should not ask for data transfer (DRQ=1)
4836 * when it finds something wrong.
4837 * We ignore DRQ here and stop the HSM by
4838 * changing hsm_task_state to HSM_ST_ERR and
4839 * let the EH abort the command or reset the device.
4841 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4842 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4843 "error, dev_stat 0x%X\n", status);
4844 qc->err_mask |= AC_ERR_HSM;
4845 ap->hsm_task_state = HSM_ST_ERR;
4846 goto fsm_start;
4849 /* Send the CDB (atapi) or the first data block (ata pio out).
4850 * During the state transition, interrupt handler shouldn't
4851 * be invoked before the data transfer is complete and
4852 * hsm_task_state is changed. Hence, the following locking.
4854 if (in_wq)
4855 spin_lock_irqsave(ap->lock, flags);
4857 if (qc->tf.protocol == ATA_PROT_PIO) {
4858 /* PIO data out protocol.
4859 * send first data block.
4862 /* ata_pio_sectors() might change the state
4863 * to HSM_ST_LAST. so, the state is changed here
4864 * before ata_pio_sectors().
4866 ap->hsm_task_state = HSM_ST;
4867 ata_pio_sectors(qc);
4868 ata_altstatus(ap); /* flush */
4869 } else
4870 /* send CDB */
4871 atapi_send_cdb(ap, qc);
4873 if (in_wq)
4874 spin_unlock_irqrestore(ap->lock, flags);
4876 /* if polling, ata_pio_task() handles the rest.
4877 * otherwise, interrupt handler takes over from here.
4879 break;
4881 case HSM_ST:
4882 /* complete command or read/write the data register */
4883 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4884 /* ATAPI PIO protocol */
4885 if ((status & ATA_DRQ) == 0) {
4886 /* No more data to transfer or device error.
4887 * Device error will be tagged in HSM_ST_LAST.
4889 ap->hsm_task_state = HSM_ST_LAST;
4890 goto fsm_start;
4893 /* Device should not ask for data transfer (DRQ=1)
4894 * when it finds something wrong.
4895 * We ignore DRQ here and stop the HSM by
4896 * changing hsm_task_state to HSM_ST_ERR and
4897 * let the EH abort the command or reset the device.
4899 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4900 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4901 "device error, dev_stat 0x%X\n",
4902 status);
4903 qc->err_mask |= AC_ERR_HSM;
4904 ap->hsm_task_state = HSM_ST_ERR;
4905 goto fsm_start;
4908 atapi_pio_bytes(qc);
4910 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4911 /* bad ireason reported by device */
4912 goto fsm_start;
4914 } else {
4915 /* ATA PIO protocol */
4916 if (unlikely((status & ATA_DRQ) == 0)) {
4917 /* handle BSY=0, DRQ=0 as error */
4918 if (likely(status & (ATA_ERR | ATA_DF)))
4919 /* device stops HSM for abort/error */
4920 qc->err_mask |= AC_ERR_DEV;
4921 else
4922 /* HSM violation. Let EH handle this.
4923 * Phantom devices also trigger this
4924 * condition. Mark hint.
4926 qc->err_mask |= AC_ERR_HSM |
4927 AC_ERR_NODEV_HINT;
4929 ap->hsm_task_state = HSM_ST_ERR;
4930 goto fsm_start;
4933 /* For PIO reads, some devices may ask for
4934 * data transfer (DRQ=1) alone with ERR=1.
4935 * We respect DRQ here and transfer one
4936 * block of junk data before changing the
4937 * hsm_task_state to HSM_ST_ERR.
4939 * For PIO writes, ERR=1 DRQ=1 doesn't make
4940 * sense since the data block has been
4941 * transferred to the device.
4943 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4944 /* data might be corrputed */
4945 qc->err_mask |= AC_ERR_DEV;
4947 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4948 ata_pio_sectors(qc);
4949 ata_altstatus(ap);
4950 status = ata_wait_idle(ap);
4953 if (status & (ATA_BUSY | ATA_DRQ))
4954 qc->err_mask |= AC_ERR_HSM;
4956 /* ata_pio_sectors() might change the
4957 * state to HSM_ST_LAST. so, the state
4958 * is changed after ata_pio_sectors().
4960 ap->hsm_task_state = HSM_ST_ERR;
4961 goto fsm_start;
4964 ata_pio_sectors(qc);
4966 if (ap->hsm_task_state == HSM_ST_LAST &&
4967 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4968 /* all data read */
4969 ata_altstatus(ap);
4970 status = ata_wait_idle(ap);
4971 goto fsm_start;
4975 ata_altstatus(ap); /* flush */
4976 poll_next = 1;
4977 break;
4979 case HSM_ST_LAST:
4980 if (unlikely(!ata_ok(status))) {
4981 qc->err_mask |= __ac_err_mask(status);
4982 ap->hsm_task_state = HSM_ST_ERR;
4983 goto fsm_start;
4986 /* no more data to transfer */
4987 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4988 ap->print_id, qc->dev->devno, status);
4990 WARN_ON(qc->err_mask);
4992 ap->hsm_task_state = HSM_ST_IDLE;
4994 /* complete taskfile transaction */
4995 ata_hsm_qc_complete(qc, in_wq);
4997 poll_next = 0;
4998 break;
5000 case HSM_ST_ERR:
5001 /* make sure qc->err_mask is available to
5002 * know what's wrong and recover
5004 WARN_ON(qc->err_mask == 0);
5006 ap->hsm_task_state = HSM_ST_IDLE;
5008 /* complete taskfile transaction */
5009 ata_hsm_qc_complete(qc, in_wq);
5011 poll_next = 0;
5012 break;
5013 default:
5014 poll_next = 0;
5015 BUG();
5018 return poll_next;
5021 static void ata_pio_task(struct work_struct *work)
5023 struct ata_port *ap =
5024 container_of(work, struct ata_port, port_task.work);
5025 struct ata_queued_cmd *qc = ap->port_task_data;
5026 u8 status;
5027 int poll_next;
5029 fsm_start:
5030 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5033 * This is purely heuristic. This is a fast path.
5034 * Sometimes when we enter, BSY will be cleared in
5035 * a chk-status or two. If not, the drive is probably seeking
5036 * or something. Snooze for a couple msecs, then
5037 * chk-status again. If still busy, queue delayed work.
5039 status = ata_busy_wait(ap, ATA_BUSY, 5);
5040 if (status & ATA_BUSY) {
5041 msleep(2);
5042 status = ata_busy_wait(ap, ATA_BUSY, 10);
5043 if (status & ATA_BUSY) {
5044 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5045 return;
5049 /* move the HSM */
5050 poll_next = ata_hsm_move(ap, qc, status, 1);
5052 /* another command or interrupt handler
5053 * may be running at this point.
5055 if (poll_next)
5056 goto fsm_start;
5060 * ata_qc_new - Request an available ATA command, for queueing
5061 * @ap: Port associated with device @dev
5062 * @dev: Device from whom we request an available command structure
5064 * LOCKING:
5065 * None.
5068 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5070 struct ata_queued_cmd *qc = NULL;
5071 unsigned int i;
5073 /* no command while frozen */
5074 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5075 return NULL;
5077 /* the last tag is reserved for internal command. */
5078 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5079 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5080 qc = __ata_qc_from_tag(ap, i);
5081 break;
5084 if (qc)
5085 qc->tag = i;
5087 return qc;
5091 * ata_qc_new_init - Request an available ATA command, and initialize it
5092 * @dev: Device from whom we request an available command structure
5094 * LOCKING:
5095 * None.
5098 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5100 struct ata_port *ap = dev->ap;
5101 struct ata_queued_cmd *qc;
5103 qc = ata_qc_new(ap);
5104 if (qc) {
5105 qc->scsicmd = NULL;
5106 qc->ap = ap;
5107 qc->dev = dev;
5109 ata_qc_reinit(qc);
5112 return qc;
5116 * ata_qc_free - free unused ata_queued_cmd
5117 * @qc: Command to complete
5119 * Designed to free unused ata_queued_cmd object
5120 * in case something prevents using it.
5122 * LOCKING:
5123 * spin_lock_irqsave(host lock)
5125 void ata_qc_free(struct ata_queued_cmd *qc)
5127 struct ata_port *ap = qc->ap;
5128 unsigned int tag;
5130 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5132 qc->flags = 0;
5133 tag = qc->tag;
5134 if (likely(ata_tag_valid(tag))) {
5135 qc->tag = ATA_TAG_POISON;
5136 clear_bit(tag, &ap->qc_allocated);
5140 void __ata_qc_complete(struct ata_queued_cmd *qc)
5142 struct ata_port *ap = qc->ap;
5144 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5145 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5147 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5148 ata_sg_clean(qc);
5150 /* command should be marked inactive atomically with qc completion */
5151 if (qc->tf.protocol == ATA_PROT_NCQ)
5152 ap->sactive &= ~(1 << qc->tag);
5153 else
5154 ap->active_tag = ATA_TAG_POISON;
5156 /* atapi: mark qc as inactive to prevent the interrupt handler
5157 * from completing the command twice later, before the error handler
5158 * is called. (when rc != 0 and atapi request sense is needed)
5160 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5161 ap->qc_active &= ~(1 << qc->tag);
5163 /* call completion callback */
5164 qc->complete_fn(qc);
5167 static void fill_result_tf(struct ata_queued_cmd *qc)
5169 struct ata_port *ap = qc->ap;
5171 qc->result_tf.flags = qc->tf.flags;
5172 ap->ops->tf_read(ap, &qc->result_tf);
5176 * ata_qc_complete - Complete an active ATA command
5177 * @qc: Command to complete
5178 * @err_mask: ATA Status register contents
5180 * Indicate to the mid and upper layers that an ATA
5181 * command has completed, with either an ok or not-ok status.
5183 * LOCKING:
5184 * spin_lock_irqsave(host lock)
5186 void ata_qc_complete(struct ata_queued_cmd *qc)
5188 struct ata_port *ap = qc->ap;
5190 /* XXX: New EH and old EH use different mechanisms to
5191 * synchronize EH with regular execution path.
5193 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5194 * Normal execution path is responsible for not accessing a
5195 * failed qc. libata core enforces the rule by returning NULL
5196 * from ata_qc_from_tag() for failed qcs.
5198 * Old EH depends on ata_qc_complete() nullifying completion
5199 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5200 * not synchronize with interrupt handler. Only PIO task is
5201 * taken care of.
5203 if (ap->ops->error_handler) {
5204 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5206 if (unlikely(qc->err_mask))
5207 qc->flags |= ATA_QCFLAG_FAILED;
5209 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5210 if (!ata_tag_internal(qc->tag)) {
5211 /* always fill result TF for failed qc */
5212 fill_result_tf(qc);
5213 ata_qc_schedule_eh(qc);
5214 return;
5218 /* read result TF if requested */
5219 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5220 fill_result_tf(qc);
5222 __ata_qc_complete(qc);
5223 } else {
5224 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5225 return;
5227 /* read result TF if failed or requested */
5228 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5229 fill_result_tf(qc);
5231 __ata_qc_complete(qc);
5236 * ata_qc_complete_multiple - Complete multiple qcs successfully
5237 * @ap: port in question
5238 * @qc_active: new qc_active mask
5239 * @finish_qc: LLDD callback invoked before completing a qc
5241 * Complete in-flight commands. This functions is meant to be
5242 * called from low-level driver's interrupt routine to complete
5243 * requests normally. ap->qc_active and @qc_active is compared
5244 * and commands are completed accordingly.
5246 * LOCKING:
5247 * spin_lock_irqsave(host lock)
5249 * RETURNS:
5250 * Number of completed commands on success, -errno otherwise.
5252 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5253 void (*finish_qc)(struct ata_queued_cmd *))
5255 int nr_done = 0;
5256 u32 done_mask;
5257 int i;
5259 done_mask = ap->qc_active ^ qc_active;
5261 if (unlikely(done_mask & qc_active)) {
5262 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5263 "(%08x->%08x)\n", ap->qc_active, qc_active);
5264 return -EINVAL;
5267 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5268 struct ata_queued_cmd *qc;
5270 if (!(done_mask & (1 << i)))
5271 continue;
5273 if ((qc = ata_qc_from_tag(ap, i))) {
5274 if (finish_qc)
5275 finish_qc(qc);
5276 ata_qc_complete(qc);
5277 nr_done++;
5281 return nr_done;
5284 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5286 struct ata_port *ap = qc->ap;
5288 switch (qc->tf.protocol) {
5289 case ATA_PROT_NCQ:
5290 case ATA_PROT_DMA:
5291 case ATA_PROT_ATAPI_DMA:
5292 return 1;
5294 case ATA_PROT_ATAPI:
5295 case ATA_PROT_PIO:
5296 if (ap->flags & ATA_FLAG_PIO_DMA)
5297 return 1;
5299 /* fall through */
5301 default:
5302 return 0;
5305 /* never reached */
5309 * ata_qc_issue - issue taskfile to device
5310 * @qc: command to issue to device
5312 * Prepare an ATA command to submission to device.
5313 * This includes mapping the data into a DMA-able
5314 * area, filling in the S/G table, and finally
5315 * writing the taskfile to hardware, starting the command.
5317 * LOCKING:
5318 * spin_lock_irqsave(host lock)
5320 void ata_qc_issue(struct ata_queued_cmd *qc)
5322 struct ata_port *ap = qc->ap;
5324 /* Make sure only one non-NCQ command is outstanding. The
5325 * check is skipped for old EH because it reuses active qc to
5326 * request ATAPI sense.
5328 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5330 if (qc->tf.protocol == ATA_PROT_NCQ) {
5331 WARN_ON(ap->sactive & (1 << qc->tag));
5332 ap->sactive |= 1 << qc->tag;
5333 } else {
5334 WARN_ON(ap->sactive);
5335 ap->active_tag = qc->tag;
5338 qc->flags |= ATA_QCFLAG_ACTIVE;
5339 ap->qc_active |= 1 << qc->tag;
5341 if (ata_should_dma_map(qc)) {
5342 if (qc->flags & ATA_QCFLAG_SG) {
5343 if (ata_sg_setup(qc))
5344 goto sg_err;
5345 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5346 if (ata_sg_setup_one(qc))
5347 goto sg_err;
5349 } else {
5350 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5353 ap->ops->qc_prep(qc);
5355 qc->err_mask |= ap->ops->qc_issue(qc);
5356 if (unlikely(qc->err_mask))
5357 goto err;
5358 return;
5360 sg_err:
5361 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5362 qc->err_mask |= AC_ERR_SYSTEM;
5363 err:
5364 ata_qc_complete(qc);
5368 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5369 * @qc: command to issue to device
5371 * Using various libata functions and hooks, this function
5372 * starts an ATA command. ATA commands are grouped into
5373 * classes called "protocols", and issuing each type of protocol
5374 * is slightly different.
5376 * May be used as the qc_issue() entry in ata_port_operations.
5378 * LOCKING:
5379 * spin_lock_irqsave(host lock)
5381 * RETURNS:
5382 * Zero on success, AC_ERR_* mask on failure
5385 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5387 struct ata_port *ap = qc->ap;
5389 /* Use polling pio if the LLD doesn't handle
5390 * interrupt driven pio and atapi CDB interrupt.
5392 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5393 switch (qc->tf.protocol) {
5394 case ATA_PROT_PIO:
5395 case ATA_PROT_NODATA:
5396 case ATA_PROT_ATAPI:
5397 case ATA_PROT_ATAPI_NODATA:
5398 qc->tf.flags |= ATA_TFLAG_POLLING;
5399 break;
5400 case ATA_PROT_ATAPI_DMA:
5401 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5402 /* see ata_dma_blacklisted() */
5403 BUG();
5404 break;
5405 default:
5406 break;
5410 /* select the device */
5411 ata_dev_select(ap, qc->dev->devno, 1, 0);
5413 /* start the command */
5414 switch (qc->tf.protocol) {
5415 case ATA_PROT_NODATA:
5416 if (qc->tf.flags & ATA_TFLAG_POLLING)
5417 ata_qc_set_polling(qc);
5419 ata_tf_to_host(ap, &qc->tf);
5420 ap->hsm_task_state = HSM_ST_LAST;
5422 if (qc->tf.flags & ATA_TFLAG_POLLING)
5423 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5425 break;
5427 case ATA_PROT_DMA:
5428 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5430 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5431 ap->ops->bmdma_setup(qc); /* set up bmdma */
5432 ap->ops->bmdma_start(qc); /* initiate bmdma */
5433 ap->hsm_task_state = HSM_ST_LAST;
5434 break;
5436 case ATA_PROT_PIO:
5437 if (qc->tf.flags & ATA_TFLAG_POLLING)
5438 ata_qc_set_polling(qc);
5440 ata_tf_to_host(ap, &qc->tf);
5442 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5443 /* PIO data out protocol */
5444 ap->hsm_task_state = HSM_ST_FIRST;
5445 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5447 /* always send first data block using
5448 * the ata_pio_task() codepath.
5450 } else {
5451 /* PIO data in protocol */
5452 ap->hsm_task_state = HSM_ST;
5454 if (qc->tf.flags & ATA_TFLAG_POLLING)
5455 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5457 /* if polling, ata_pio_task() handles the rest.
5458 * otherwise, interrupt handler takes over from here.
5462 break;
5464 case ATA_PROT_ATAPI:
5465 case ATA_PROT_ATAPI_NODATA:
5466 if (qc->tf.flags & ATA_TFLAG_POLLING)
5467 ata_qc_set_polling(qc);
5469 ata_tf_to_host(ap, &qc->tf);
5471 ap->hsm_task_state = HSM_ST_FIRST;
5473 /* send cdb by polling if no cdb interrupt */
5474 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5475 (qc->tf.flags & ATA_TFLAG_POLLING))
5476 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5477 break;
5479 case ATA_PROT_ATAPI_DMA:
5480 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5482 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5483 ap->ops->bmdma_setup(qc); /* set up bmdma */
5484 ap->hsm_task_state = HSM_ST_FIRST;
5486 /* send cdb by polling if no cdb interrupt */
5487 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5488 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5489 break;
5491 default:
5492 WARN_ON(1);
5493 return AC_ERR_SYSTEM;
5496 return 0;
5500 * ata_host_intr - Handle host interrupt for given (port, task)
5501 * @ap: Port on which interrupt arrived (possibly...)
5502 * @qc: Taskfile currently active in engine
5504 * Handle host interrupt for given queued command. Currently,
5505 * only DMA interrupts are handled. All other commands are
5506 * handled via polling with interrupts disabled (nIEN bit).
5508 * LOCKING:
5509 * spin_lock_irqsave(host lock)
5511 * RETURNS:
5512 * One if interrupt was handled, zero if not (shared irq).
5515 inline unsigned int ata_host_intr (struct ata_port *ap,
5516 struct ata_queued_cmd *qc)
5518 struct ata_eh_info *ehi = &ap->eh_info;
5519 u8 status, host_stat = 0;
5521 VPRINTK("ata%u: protocol %d task_state %d\n",
5522 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5524 /* Check whether we are expecting interrupt in this state */
5525 switch (ap->hsm_task_state) {
5526 case HSM_ST_FIRST:
5527 /* Some pre-ATAPI-4 devices assert INTRQ
5528 * at this state when ready to receive CDB.
5531 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5532 * The flag was turned on only for atapi devices.
5533 * No need to check is_atapi_taskfile(&qc->tf) again.
5535 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5536 goto idle_irq;
5537 break;
5538 case HSM_ST_LAST:
5539 if (qc->tf.protocol == ATA_PROT_DMA ||
5540 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5541 /* check status of DMA engine */
5542 host_stat = ap->ops->bmdma_status(ap);
5543 VPRINTK("ata%u: host_stat 0x%X\n",
5544 ap->print_id, host_stat);
5546 /* if it's not our irq... */
5547 if (!(host_stat & ATA_DMA_INTR))
5548 goto idle_irq;
5550 /* before we do anything else, clear DMA-Start bit */
5551 ap->ops->bmdma_stop(qc);
5553 if (unlikely(host_stat & ATA_DMA_ERR)) {
5554 /* error when transfering data to/from memory */
5555 qc->err_mask |= AC_ERR_HOST_BUS;
5556 ap->hsm_task_state = HSM_ST_ERR;
5559 break;
5560 case HSM_ST:
5561 break;
5562 default:
5563 goto idle_irq;
5566 /* check altstatus */
5567 status = ata_altstatus(ap);
5568 if (status & ATA_BUSY)
5569 goto idle_irq;
5571 /* check main status, clearing INTRQ */
5572 status = ata_chk_status(ap);
5573 if (unlikely(status & ATA_BUSY))
5574 goto idle_irq;
5576 /* ack bmdma irq events */
5577 ap->ops->irq_clear(ap);
5579 ata_hsm_move(ap, qc, status, 0);
5581 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5582 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5583 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5585 return 1; /* irq handled */
5587 idle_irq:
5588 ap->stats.idle_irq++;
5590 #ifdef ATA_IRQ_TRAP
5591 if ((ap->stats.idle_irq % 1000) == 0) {
5592 ap->ops->irq_ack(ap, 0); /* debug trap */
5593 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5594 return 1;
5596 #endif
5597 return 0; /* irq not handled */
5601 * ata_interrupt - Default ATA host interrupt handler
5602 * @irq: irq line (unused)
5603 * @dev_instance: pointer to our ata_host information structure
5605 * Default interrupt handler for PCI IDE devices. Calls
5606 * ata_host_intr() for each port that is not disabled.
5608 * LOCKING:
5609 * Obtains host lock during operation.
5611 * RETURNS:
5612 * IRQ_NONE or IRQ_HANDLED.
5615 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5617 struct ata_host *host = dev_instance;
5618 unsigned int i;
5619 unsigned int handled = 0;
5620 unsigned long flags;
5622 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5623 spin_lock_irqsave(&host->lock, flags);
5625 for (i = 0; i < host->n_ports; i++) {
5626 struct ata_port *ap;
5628 ap = host->ports[i];
5629 if (ap &&
5630 !(ap->flags & ATA_FLAG_DISABLED)) {
5631 struct ata_queued_cmd *qc;
5633 qc = ata_qc_from_tag(ap, ap->active_tag);
5634 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5635 (qc->flags & ATA_QCFLAG_ACTIVE))
5636 handled |= ata_host_intr(ap, qc);
5640 spin_unlock_irqrestore(&host->lock, flags);
5642 return IRQ_RETVAL(handled);
5646 * sata_scr_valid - test whether SCRs are accessible
5647 * @ap: ATA port to test SCR accessibility for
5649 * Test whether SCRs are accessible for @ap.
5651 * LOCKING:
5652 * None.
5654 * RETURNS:
5655 * 1 if SCRs are accessible, 0 otherwise.
5657 int sata_scr_valid(struct ata_port *ap)
5659 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5663 * sata_scr_read - read SCR register of the specified port
5664 * @ap: ATA port to read SCR for
5665 * @reg: SCR to read
5666 * @val: Place to store read value
5668 * Read SCR register @reg of @ap into *@val. This function is
5669 * guaranteed to succeed if the cable type of the port is SATA
5670 * and the port implements ->scr_read.
5672 * LOCKING:
5673 * None.
5675 * RETURNS:
5676 * 0 on success, negative errno on failure.
5678 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5680 if (sata_scr_valid(ap)) {
5681 *val = ap->ops->scr_read(ap, reg);
5682 return 0;
5684 return -EOPNOTSUPP;
5688 * sata_scr_write - write SCR register of the specified port
5689 * @ap: ATA port to write SCR for
5690 * @reg: SCR to write
5691 * @val: value to write
5693 * Write @val to SCR register @reg of @ap. This function is
5694 * guaranteed to succeed if the cable type of the port is SATA
5695 * and the port implements ->scr_read.
5697 * LOCKING:
5698 * None.
5700 * RETURNS:
5701 * 0 on success, negative errno on failure.
5703 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5705 if (sata_scr_valid(ap)) {
5706 ap->ops->scr_write(ap, reg, val);
5707 return 0;
5709 return -EOPNOTSUPP;
5713 * sata_scr_write_flush - write SCR register of the specified port and flush
5714 * @ap: ATA port to write SCR for
5715 * @reg: SCR to write
5716 * @val: value to write
5718 * This function is identical to sata_scr_write() except that this
5719 * function performs flush after writing to the register.
5721 * LOCKING:
5722 * None.
5724 * RETURNS:
5725 * 0 on success, negative errno on failure.
5727 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5729 if (sata_scr_valid(ap)) {
5730 ap->ops->scr_write(ap, reg, val);
5731 ap->ops->scr_read(ap, reg);
5732 return 0;
5734 return -EOPNOTSUPP;
5738 * ata_port_online - test whether the given port is online
5739 * @ap: ATA port to test
5741 * Test whether @ap is online. Note that this function returns 0
5742 * if online status of @ap cannot be obtained, so
5743 * ata_port_online(ap) != !ata_port_offline(ap).
5745 * LOCKING:
5746 * None.
5748 * RETURNS:
5749 * 1 if the port online status is available and online.
5751 int ata_port_online(struct ata_port *ap)
5753 u32 sstatus;
5755 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5756 return 1;
5757 return 0;
5761 * ata_port_offline - test whether the given port is offline
5762 * @ap: ATA port to test
5764 * Test whether @ap is offline. Note that this function returns
5765 * 0 if offline status of @ap cannot be obtained, so
5766 * ata_port_online(ap) != !ata_port_offline(ap).
5768 * LOCKING:
5769 * None.
5771 * RETURNS:
5772 * 1 if the port offline status is available and offline.
5774 int ata_port_offline(struct ata_port *ap)
5776 u32 sstatus;
5778 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5779 return 1;
5780 return 0;
5783 int ata_flush_cache(struct ata_device *dev)
5785 unsigned int err_mask;
5786 u8 cmd;
5788 if (!ata_try_flush_cache(dev))
5789 return 0;
5791 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5792 cmd = ATA_CMD_FLUSH_EXT;
5793 else
5794 cmd = ATA_CMD_FLUSH;
5796 err_mask = ata_do_simple_cmd(dev, cmd);
5797 if (err_mask) {
5798 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5799 return -EIO;
5802 return 0;
5805 #ifdef CONFIG_PM
5806 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5807 unsigned int action, unsigned int ehi_flags,
5808 int wait)
5810 unsigned long flags;
5811 int i, rc;
5813 for (i = 0; i < host->n_ports; i++) {
5814 struct ata_port *ap = host->ports[i];
5816 /* Previous resume operation might still be in
5817 * progress. Wait for PM_PENDING to clear.
5819 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5820 ata_port_wait_eh(ap);
5821 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5824 /* request PM ops to EH */
5825 spin_lock_irqsave(ap->lock, flags);
5827 ap->pm_mesg = mesg;
5828 if (wait) {
5829 rc = 0;
5830 ap->pm_result = &rc;
5833 ap->pflags |= ATA_PFLAG_PM_PENDING;
5834 ap->eh_info.action |= action;
5835 ap->eh_info.flags |= ehi_flags;
5837 ata_port_schedule_eh(ap);
5839 spin_unlock_irqrestore(ap->lock, flags);
5841 /* wait and check result */
5842 if (wait) {
5843 ata_port_wait_eh(ap);
5844 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5845 if (rc)
5846 return rc;
5850 return 0;
5854 * ata_host_suspend - suspend host
5855 * @host: host to suspend
5856 * @mesg: PM message
5858 * Suspend @host. Actual operation is performed by EH. This
5859 * function requests EH to perform PM operations and waits for EH
5860 * to finish.
5862 * LOCKING:
5863 * Kernel thread context (may sleep).
5865 * RETURNS:
5866 * 0 on success, -errno on failure.
5868 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5870 int rc;
5872 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5873 if (rc == 0)
5874 host->dev->power.power_state = mesg;
5875 return rc;
5879 * ata_host_resume - resume host
5880 * @host: host to resume
5882 * Resume @host. Actual operation is performed by EH. This
5883 * function requests EH to perform PM operations and returns.
5884 * Note that all resume operations are performed parallely.
5886 * LOCKING:
5887 * Kernel thread context (may sleep).
5889 void ata_host_resume(struct ata_host *host)
5891 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5892 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5893 host->dev->power.power_state = PMSG_ON;
5895 #endif
5898 * ata_port_start - Set port up for dma.
5899 * @ap: Port to initialize
5901 * Called just after data structures for each port are
5902 * initialized. Allocates space for PRD table.
5904 * May be used as the port_start() entry in ata_port_operations.
5906 * LOCKING:
5907 * Inherited from caller.
5909 int ata_port_start(struct ata_port *ap)
5911 struct device *dev = ap->dev;
5912 int rc;
5914 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5915 GFP_KERNEL);
5916 if (!ap->prd)
5917 return -ENOMEM;
5919 rc = ata_pad_alloc(ap, dev);
5920 if (rc)
5921 return rc;
5923 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5924 (unsigned long long)ap->prd_dma);
5925 return 0;
5929 * ata_dev_init - Initialize an ata_device structure
5930 * @dev: Device structure to initialize
5932 * Initialize @dev in preparation for probing.
5934 * LOCKING:
5935 * Inherited from caller.
5937 void ata_dev_init(struct ata_device *dev)
5939 struct ata_port *ap = dev->ap;
5940 unsigned long flags;
5942 /* SATA spd limit is bound to the first device */
5943 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5945 /* High bits of dev->flags are used to record warm plug
5946 * requests which occur asynchronously. Synchronize using
5947 * host lock.
5949 spin_lock_irqsave(ap->lock, flags);
5950 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5951 spin_unlock_irqrestore(ap->lock, flags);
5953 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5954 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5955 dev->pio_mask = UINT_MAX;
5956 dev->mwdma_mask = UINT_MAX;
5957 dev->udma_mask = UINT_MAX;
5961 * ata_port_alloc - allocate and initialize basic ATA port resources
5962 * @host: ATA host this allocated port belongs to
5964 * Allocate and initialize basic ATA port resources.
5966 * RETURNS:
5967 * Allocate ATA port on success, NULL on failure.
5969 * LOCKING:
5970 * Inherited from calling layer (may sleep).
5972 struct ata_port *ata_port_alloc(struct ata_host *host)
5974 struct ata_port *ap;
5975 unsigned int i;
5977 DPRINTK("ENTER\n");
5979 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5980 if (!ap)
5981 return NULL;
5983 ap->pflags |= ATA_PFLAG_INITIALIZING;
5984 ap->lock = &host->lock;
5985 ap->flags = ATA_FLAG_DISABLED;
5986 ap->print_id = -1;
5987 ap->ctl = ATA_DEVCTL_OBS;
5988 ap->host = host;
5989 ap->dev = host->dev;
5991 ap->hw_sata_spd_limit = UINT_MAX;
5992 ap->active_tag = ATA_TAG_POISON;
5993 ap->last_ctl = 0xFF;
5995 #if defined(ATA_VERBOSE_DEBUG)
5996 /* turn on all debugging levels */
5997 ap->msg_enable = 0x00FF;
5998 #elif defined(ATA_DEBUG)
5999 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6000 #else
6001 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6002 #endif
6004 INIT_DELAYED_WORK(&ap->port_task, NULL);
6005 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6006 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6007 INIT_LIST_HEAD(&ap->eh_done_q);
6008 init_waitqueue_head(&ap->eh_wait_q);
6010 ap->cbl = ATA_CBL_NONE;
6012 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6013 struct ata_device *dev = &ap->device[i];
6014 dev->ap = ap;
6015 dev->devno = i;
6016 ata_dev_init(dev);
6019 #ifdef ATA_IRQ_TRAP
6020 ap->stats.unhandled_irq = 1;
6021 ap->stats.idle_irq = 1;
6022 #endif
6023 return ap;
6026 static void ata_host_release(struct device *gendev, void *res)
6028 struct ata_host *host = dev_get_drvdata(gendev);
6029 int i;
6031 for (i = 0; i < host->n_ports; i++) {
6032 struct ata_port *ap = host->ports[i];
6034 if (!ap)
6035 continue;
6037 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6038 ap->ops->port_stop(ap);
6041 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6042 host->ops->host_stop(host);
6044 for (i = 0; i < host->n_ports; i++) {
6045 struct ata_port *ap = host->ports[i];
6047 if (!ap)
6048 continue;
6050 if (ap->scsi_host)
6051 scsi_host_put(ap->scsi_host);
6053 kfree(ap);
6054 host->ports[i] = NULL;
6057 dev_set_drvdata(gendev, NULL);
6061 * ata_host_alloc - allocate and init basic ATA host resources
6062 * @dev: generic device this host is associated with
6063 * @max_ports: maximum number of ATA ports associated with this host
6065 * Allocate and initialize basic ATA host resources. LLD calls
6066 * this function to allocate a host, initializes it fully and
6067 * attaches it using ata_host_register().
6069 * @max_ports ports are allocated and host->n_ports is
6070 * initialized to @max_ports. The caller is allowed to decrease
6071 * host->n_ports before calling ata_host_register(). The unused
6072 * ports will be automatically freed on registration.
6074 * RETURNS:
6075 * Allocate ATA host on success, NULL on failure.
6077 * LOCKING:
6078 * Inherited from calling layer (may sleep).
6080 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6082 struct ata_host *host;
6083 size_t sz;
6084 int i;
6086 DPRINTK("ENTER\n");
6088 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6089 return NULL;
6091 /* alloc a container for our list of ATA ports (buses) */
6092 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6093 /* alloc a container for our list of ATA ports (buses) */
6094 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6095 if (!host)
6096 goto err_out;
6098 devres_add(dev, host);
6099 dev_set_drvdata(dev, host);
6101 spin_lock_init(&host->lock);
6102 host->dev = dev;
6103 host->n_ports = max_ports;
6105 /* allocate ports bound to this host */
6106 for (i = 0; i < max_ports; i++) {
6107 struct ata_port *ap;
6109 ap = ata_port_alloc(host);
6110 if (!ap)
6111 goto err_out;
6113 ap->port_no = i;
6114 host->ports[i] = ap;
6117 devres_remove_group(dev, NULL);
6118 return host;
6120 err_out:
6121 devres_release_group(dev, NULL);
6122 return NULL;
6126 * ata_host_alloc_pinfo - alloc host and init with port_info array
6127 * @dev: generic device this host is associated with
6128 * @ppi: array of ATA port_info to initialize host with
6129 * @n_ports: number of ATA ports attached to this host
6131 * Allocate ATA host and initialize with info from @ppi. If NULL
6132 * terminated, @ppi may contain fewer entries than @n_ports. The
6133 * last entry will be used for the remaining ports.
6135 * RETURNS:
6136 * Allocate ATA host on success, NULL on failure.
6138 * LOCKING:
6139 * Inherited from calling layer (may sleep).
6141 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6142 const struct ata_port_info * const * ppi,
6143 int n_ports)
6145 const struct ata_port_info *pi;
6146 struct ata_host *host;
6147 int i, j;
6149 host = ata_host_alloc(dev, n_ports);
6150 if (!host)
6151 return NULL;
6153 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6154 struct ata_port *ap = host->ports[i];
6156 if (ppi[j])
6157 pi = ppi[j++];
6159 ap->pio_mask = pi->pio_mask;
6160 ap->mwdma_mask = pi->mwdma_mask;
6161 ap->udma_mask = pi->udma_mask;
6162 ap->flags |= pi->flags;
6163 ap->ops = pi->port_ops;
6165 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6166 host->ops = pi->port_ops;
6167 if (!host->private_data && pi->private_data)
6168 host->private_data = pi->private_data;
6171 return host;
6175 * ata_host_start - start and freeze ports of an ATA host
6176 * @host: ATA host to start ports for
6178 * Start and then freeze ports of @host. Started status is
6179 * recorded in host->flags, so this function can be called
6180 * multiple times. Ports are guaranteed to get started only
6181 * once. If host->ops isn't initialized yet, its set to the
6182 * first non-dummy port ops.
6184 * LOCKING:
6185 * Inherited from calling layer (may sleep).
6187 * RETURNS:
6188 * 0 if all ports are started successfully, -errno otherwise.
6190 int ata_host_start(struct ata_host *host)
6192 int i, rc;
6194 if (host->flags & ATA_HOST_STARTED)
6195 return 0;
6197 for (i = 0; i < host->n_ports; i++) {
6198 struct ata_port *ap = host->ports[i];
6200 if (!host->ops && !ata_port_is_dummy(ap))
6201 host->ops = ap->ops;
6203 if (ap->ops->port_start) {
6204 rc = ap->ops->port_start(ap);
6205 if (rc) {
6206 ata_port_printk(ap, KERN_ERR, "failed to "
6207 "start port (errno=%d)\n", rc);
6208 goto err_out;
6212 ata_eh_freeze_port(ap);
6215 host->flags |= ATA_HOST_STARTED;
6216 return 0;
6218 err_out:
6219 while (--i >= 0) {
6220 struct ata_port *ap = host->ports[i];
6222 if (ap->ops->port_stop)
6223 ap->ops->port_stop(ap);
6225 return rc;
6229 * ata_sas_host_init - Initialize a host struct
6230 * @host: host to initialize
6231 * @dev: device host is attached to
6232 * @flags: host flags
6233 * @ops: port_ops
6235 * LOCKING:
6236 * PCI/etc. bus probe sem.
6239 /* KILLME - the only user left is ipr */
6240 void ata_host_init(struct ata_host *host, struct device *dev,
6241 unsigned long flags, const struct ata_port_operations *ops)
6243 spin_lock_init(&host->lock);
6244 host->dev = dev;
6245 host->flags = flags;
6246 host->ops = ops;
6250 * ata_host_register - register initialized ATA host
6251 * @host: ATA host to register
6252 * @sht: template for SCSI host
6254 * Register initialized ATA host. @host is allocated using
6255 * ata_host_alloc() and fully initialized by LLD. This function
6256 * starts ports, registers @host with ATA and SCSI layers and
6257 * probe registered devices.
6259 * LOCKING:
6260 * Inherited from calling layer (may sleep).
6262 * RETURNS:
6263 * 0 on success, -errno otherwise.
6265 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6267 int i, rc;
6269 /* host must have been started */
6270 if (!(host->flags & ATA_HOST_STARTED)) {
6271 dev_printk(KERN_ERR, host->dev,
6272 "BUG: trying to register unstarted host\n");
6273 WARN_ON(1);
6274 return -EINVAL;
6277 /* Blow away unused ports. This happens when LLD can't
6278 * determine the exact number of ports to allocate at
6279 * allocation time.
6281 for (i = host->n_ports; host->ports[i]; i++)
6282 kfree(host->ports[i]);
6284 /* give ports names and add SCSI hosts */
6285 for (i = 0; i < host->n_ports; i++)
6286 host->ports[i]->print_id = ata_print_id++;
6288 rc = ata_scsi_add_hosts(host, sht);
6289 if (rc)
6290 return rc;
6292 /* associate with ACPI nodes */
6293 ata_acpi_associate(host);
6295 /* set cable, sata_spd_limit and report */
6296 for (i = 0; i < host->n_ports; i++) {
6297 struct ata_port *ap = host->ports[i];
6298 int irq_line;
6299 u32 scontrol;
6300 unsigned long xfer_mask;
6302 /* set SATA cable type if still unset */
6303 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6304 ap->cbl = ATA_CBL_SATA;
6306 /* init sata_spd_limit to the current value */
6307 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6308 int spd = (scontrol >> 4) & 0xf;
6309 if (spd)
6310 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6312 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6314 /* report the secondary IRQ for second channel legacy */
6315 irq_line = host->irq;
6316 if (i == 1 && host->irq2)
6317 irq_line = host->irq2;
6319 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6320 ap->udma_mask);
6322 /* print per-port info to dmesg */
6323 if (!ata_port_is_dummy(ap))
6324 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6325 "ctl 0x%p bmdma 0x%p irq %d\n",
6326 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6327 ata_mode_string(xfer_mask),
6328 ap->ioaddr.cmd_addr,
6329 ap->ioaddr.ctl_addr,
6330 ap->ioaddr.bmdma_addr,
6331 irq_line);
6332 else
6333 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6336 /* perform each probe synchronously */
6337 DPRINTK("probe begin\n");
6338 for (i = 0; i < host->n_ports; i++) {
6339 struct ata_port *ap = host->ports[i];
6340 int rc;
6342 /* probe */
6343 if (ap->ops->error_handler) {
6344 struct ata_eh_info *ehi = &ap->eh_info;
6345 unsigned long flags;
6347 ata_port_probe(ap);
6349 /* kick EH for boot probing */
6350 spin_lock_irqsave(ap->lock, flags);
6352 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6353 ehi->action |= ATA_EH_SOFTRESET;
6354 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6356 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6357 ap->pflags |= ATA_PFLAG_LOADING;
6358 ata_port_schedule_eh(ap);
6360 spin_unlock_irqrestore(ap->lock, flags);
6362 /* wait for EH to finish */
6363 ata_port_wait_eh(ap);
6364 } else {
6365 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6366 rc = ata_bus_probe(ap);
6367 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6369 if (rc) {
6370 /* FIXME: do something useful here?
6371 * Current libata behavior will
6372 * tear down everything when
6373 * the module is removed
6374 * or the h/w is unplugged.
6380 /* probes are done, now scan each port's disk(s) */
6381 DPRINTK("host probe begin\n");
6382 for (i = 0; i < host->n_ports; i++) {
6383 struct ata_port *ap = host->ports[i];
6385 ata_scsi_scan_host(ap);
6388 return 0;
6392 * ata_host_activate - start host, request IRQ and register it
6393 * @host: target ATA host
6394 * @irq: IRQ to request
6395 * @irq_handler: irq_handler used when requesting IRQ
6396 * @irq_flags: irq_flags used when requesting IRQ
6397 * @sht: scsi_host_template to use when registering the host
6399 * After allocating an ATA host and initializing it, most libata
6400 * LLDs perform three steps to activate the host - start host,
6401 * request IRQ and register it. This helper takes necessasry
6402 * arguments and performs the three steps in one go.
6404 * LOCKING:
6405 * Inherited from calling layer (may sleep).
6407 * RETURNS:
6408 * 0 on success, -errno otherwise.
6410 int ata_host_activate(struct ata_host *host, int irq,
6411 irq_handler_t irq_handler, unsigned long irq_flags,
6412 struct scsi_host_template *sht)
6414 int rc;
6416 rc = ata_host_start(host);
6417 if (rc)
6418 return rc;
6420 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6421 dev_driver_string(host->dev), host);
6422 if (rc)
6423 return rc;
6425 /* Used to print device info at probe */
6426 host->irq = irq;
6428 rc = ata_host_register(host, sht);
6429 /* if failed, just free the IRQ and leave ports alone */
6430 if (rc)
6431 devm_free_irq(host->dev, irq, host);
6433 return rc;
6437 * ata_port_detach - Detach ATA port in prepration of device removal
6438 * @ap: ATA port to be detached
6440 * Detach all ATA devices and the associated SCSI devices of @ap;
6441 * then, remove the associated SCSI host. @ap is guaranteed to
6442 * be quiescent on return from this function.
6444 * LOCKING:
6445 * Kernel thread context (may sleep).
6447 void ata_port_detach(struct ata_port *ap)
6449 unsigned long flags;
6450 int i;
6452 if (!ap->ops->error_handler)
6453 goto skip_eh;
6455 /* tell EH we're leaving & flush EH */
6456 spin_lock_irqsave(ap->lock, flags);
6457 ap->pflags |= ATA_PFLAG_UNLOADING;
6458 spin_unlock_irqrestore(ap->lock, flags);
6460 ata_port_wait_eh(ap);
6462 /* EH is now guaranteed to see UNLOADING, so no new device
6463 * will be attached. Disable all existing devices.
6465 spin_lock_irqsave(ap->lock, flags);
6467 for (i = 0; i < ATA_MAX_DEVICES; i++)
6468 ata_dev_disable(&ap->device[i]);
6470 spin_unlock_irqrestore(ap->lock, flags);
6472 /* Final freeze & EH. All in-flight commands are aborted. EH
6473 * will be skipped and retrials will be terminated with bad
6474 * target.
6476 spin_lock_irqsave(ap->lock, flags);
6477 ata_port_freeze(ap); /* won't be thawed */
6478 spin_unlock_irqrestore(ap->lock, flags);
6480 ata_port_wait_eh(ap);
6482 /* Flush hotplug task. The sequence is similar to
6483 * ata_port_flush_task().
6485 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6486 cancel_delayed_work(&ap->hotplug_task);
6487 cancel_work_sync(&ap->hotplug_task.work);
6489 skip_eh:
6490 /* remove the associated SCSI host */
6491 scsi_remove_host(ap->scsi_host);
6495 * ata_host_detach - Detach all ports of an ATA host
6496 * @host: Host to detach
6498 * Detach all ports of @host.
6500 * LOCKING:
6501 * Kernel thread context (may sleep).
6503 void ata_host_detach(struct ata_host *host)
6505 int i;
6507 for (i = 0; i < host->n_ports; i++)
6508 ata_port_detach(host->ports[i]);
6512 * ata_std_ports - initialize ioaddr with standard port offsets.
6513 * @ioaddr: IO address structure to be initialized
6515 * Utility function which initializes data_addr, error_addr,
6516 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6517 * device_addr, status_addr, and command_addr to standard offsets
6518 * relative to cmd_addr.
6520 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6523 void ata_std_ports(struct ata_ioports *ioaddr)
6525 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6526 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6527 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6528 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6529 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6530 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6531 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6532 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6533 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6534 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6538 #ifdef CONFIG_PCI
6541 * ata_pci_remove_one - PCI layer callback for device removal
6542 * @pdev: PCI device that was removed
6544 * PCI layer indicates to libata via this hook that hot-unplug or
6545 * module unload event has occurred. Detach all ports. Resource
6546 * release is handled via devres.
6548 * LOCKING:
6549 * Inherited from PCI layer (may sleep).
6551 void ata_pci_remove_one(struct pci_dev *pdev)
6553 struct device *dev = pci_dev_to_dev(pdev);
6554 struct ata_host *host = dev_get_drvdata(dev);
6556 ata_host_detach(host);
6559 /* move to PCI subsystem */
6560 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6562 unsigned long tmp = 0;
6564 switch (bits->width) {
6565 case 1: {
6566 u8 tmp8 = 0;
6567 pci_read_config_byte(pdev, bits->reg, &tmp8);
6568 tmp = tmp8;
6569 break;
6571 case 2: {
6572 u16 tmp16 = 0;
6573 pci_read_config_word(pdev, bits->reg, &tmp16);
6574 tmp = tmp16;
6575 break;
6577 case 4: {
6578 u32 tmp32 = 0;
6579 pci_read_config_dword(pdev, bits->reg, &tmp32);
6580 tmp = tmp32;
6581 break;
6584 default:
6585 return -EINVAL;
6588 tmp &= bits->mask;
6590 return (tmp == bits->val) ? 1 : 0;
6593 #ifdef CONFIG_PM
6594 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6596 pci_save_state(pdev);
6597 pci_disable_device(pdev);
6599 if (mesg.event == PM_EVENT_SUSPEND)
6600 pci_set_power_state(pdev, PCI_D3hot);
6603 int ata_pci_device_do_resume(struct pci_dev *pdev)
6605 int rc;
6607 pci_set_power_state(pdev, PCI_D0);
6608 pci_restore_state(pdev);
6610 rc = pcim_enable_device(pdev);
6611 if (rc) {
6612 dev_printk(KERN_ERR, &pdev->dev,
6613 "failed to enable device after resume (%d)\n", rc);
6614 return rc;
6617 pci_set_master(pdev);
6618 return 0;
6621 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6623 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6624 int rc = 0;
6626 rc = ata_host_suspend(host, mesg);
6627 if (rc)
6628 return rc;
6630 ata_pci_device_do_suspend(pdev, mesg);
6632 return 0;
6635 int ata_pci_device_resume(struct pci_dev *pdev)
6637 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6638 int rc;
6640 rc = ata_pci_device_do_resume(pdev);
6641 if (rc == 0)
6642 ata_host_resume(host);
6643 return rc;
6645 #endif /* CONFIG_PM */
6647 #endif /* CONFIG_PCI */
6650 static int __init ata_init(void)
6652 ata_probe_timeout *= HZ;
6653 ata_wq = create_workqueue("ata");
6654 if (!ata_wq)
6655 return -ENOMEM;
6657 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6658 if (!ata_aux_wq) {
6659 destroy_workqueue(ata_wq);
6660 return -ENOMEM;
6663 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6664 return 0;
6667 static void __exit ata_exit(void)
6669 destroy_workqueue(ata_wq);
6670 destroy_workqueue(ata_aux_wq);
6673 subsys_initcall(ata_init);
6674 module_exit(ata_exit);
6676 static unsigned long ratelimit_time;
6677 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6679 int ata_ratelimit(void)
6681 int rc;
6682 unsigned long flags;
6684 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6686 if (time_after(jiffies, ratelimit_time)) {
6687 rc = 1;
6688 ratelimit_time = jiffies + (HZ/5);
6689 } else
6690 rc = 0;
6692 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6694 return rc;
6698 * ata_wait_register - wait until register value changes
6699 * @reg: IO-mapped register
6700 * @mask: Mask to apply to read register value
6701 * @val: Wait condition
6702 * @interval_msec: polling interval in milliseconds
6703 * @timeout_msec: timeout in milliseconds
6705 * Waiting for some bits of register to change is a common
6706 * operation for ATA controllers. This function reads 32bit LE
6707 * IO-mapped register @reg and tests for the following condition.
6709 * (*@reg & mask) != val
6711 * If the condition is met, it returns; otherwise, the process is
6712 * repeated after @interval_msec until timeout.
6714 * LOCKING:
6715 * Kernel thread context (may sleep)
6717 * RETURNS:
6718 * The final register value.
6720 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6721 unsigned long interval_msec,
6722 unsigned long timeout_msec)
6724 unsigned long timeout;
6725 u32 tmp;
6727 tmp = ioread32(reg);
6729 /* Calculate timeout _after_ the first read to make sure
6730 * preceding writes reach the controller before starting to
6731 * eat away the timeout.
6733 timeout = jiffies + (timeout_msec * HZ) / 1000;
6735 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6736 msleep(interval_msec);
6737 tmp = ioread32(reg);
6740 return tmp;
6744 * Dummy port_ops
6746 static void ata_dummy_noret(struct ata_port *ap) { }
6747 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6748 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6750 static u8 ata_dummy_check_status(struct ata_port *ap)
6752 return ATA_DRDY;
6755 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6757 return AC_ERR_SYSTEM;
6760 const struct ata_port_operations ata_dummy_port_ops = {
6761 .port_disable = ata_port_disable,
6762 .check_status = ata_dummy_check_status,
6763 .check_altstatus = ata_dummy_check_status,
6764 .dev_select = ata_noop_dev_select,
6765 .qc_prep = ata_noop_qc_prep,
6766 .qc_issue = ata_dummy_qc_issue,
6767 .freeze = ata_dummy_noret,
6768 .thaw = ata_dummy_noret,
6769 .error_handler = ata_dummy_noret,
6770 .post_internal_cmd = ata_dummy_qc_noret,
6771 .irq_clear = ata_dummy_noret,
6772 .port_start = ata_dummy_ret0,
6773 .port_stop = ata_dummy_noret,
6776 const struct ata_port_info ata_dummy_port_info = {
6777 .port_ops = &ata_dummy_port_ops,
6781 * libata is essentially a library of internal helper functions for
6782 * low-level ATA host controller drivers. As such, the API/ABI is
6783 * likely to change as new drivers are added and updated.
6784 * Do not depend on ABI/API stability.
6787 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6788 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6789 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6790 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6791 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6792 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6793 EXPORT_SYMBOL_GPL(ata_std_ports);
6794 EXPORT_SYMBOL_GPL(ata_host_init);
6795 EXPORT_SYMBOL_GPL(ata_host_alloc);
6796 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6797 EXPORT_SYMBOL_GPL(ata_host_start);
6798 EXPORT_SYMBOL_GPL(ata_host_register);
6799 EXPORT_SYMBOL_GPL(ata_host_activate);
6800 EXPORT_SYMBOL_GPL(ata_host_detach);
6801 EXPORT_SYMBOL_GPL(ata_sg_init);
6802 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6803 EXPORT_SYMBOL_GPL(ata_hsm_move);
6804 EXPORT_SYMBOL_GPL(ata_qc_complete);
6805 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6806 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6807 EXPORT_SYMBOL_GPL(ata_tf_load);
6808 EXPORT_SYMBOL_GPL(ata_tf_read);
6809 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6810 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6811 EXPORT_SYMBOL_GPL(sata_print_link_status);
6812 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6813 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6814 EXPORT_SYMBOL_GPL(ata_check_status);
6815 EXPORT_SYMBOL_GPL(ata_altstatus);
6816 EXPORT_SYMBOL_GPL(ata_exec_command);
6817 EXPORT_SYMBOL_GPL(ata_port_start);
6818 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6819 EXPORT_SYMBOL_GPL(ata_interrupt);
6820 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6821 EXPORT_SYMBOL_GPL(ata_data_xfer);
6822 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6823 EXPORT_SYMBOL_GPL(ata_qc_prep);
6824 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6825 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6826 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6827 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6828 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6829 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6830 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6831 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6832 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6833 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6834 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6835 EXPORT_SYMBOL_GPL(ata_port_probe);
6836 EXPORT_SYMBOL_GPL(ata_dev_disable);
6837 EXPORT_SYMBOL_GPL(sata_set_spd);
6838 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6839 EXPORT_SYMBOL_GPL(sata_phy_resume);
6840 EXPORT_SYMBOL_GPL(sata_phy_reset);
6841 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6842 EXPORT_SYMBOL_GPL(ata_bus_reset);
6843 EXPORT_SYMBOL_GPL(ata_std_prereset);
6844 EXPORT_SYMBOL_GPL(ata_std_softreset);
6845 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6846 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6847 EXPORT_SYMBOL_GPL(ata_std_postreset);
6848 EXPORT_SYMBOL_GPL(ata_dev_classify);
6849 EXPORT_SYMBOL_GPL(ata_dev_pair);
6850 EXPORT_SYMBOL_GPL(ata_port_disable);
6851 EXPORT_SYMBOL_GPL(ata_ratelimit);
6852 EXPORT_SYMBOL_GPL(ata_wait_register);
6853 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6854 EXPORT_SYMBOL_GPL(ata_wait_ready);
6855 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6856 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6857 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6858 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6859 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6860 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6861 EXPORT_SYMBOL_GPL(ata_host_intr);
6862 EXPORT_SYMBOL_GPL(sata_scr_valid);
6863 EXPORT_SYMBOL_GPL(sata_scr_read);
6864 EXPORT_SYMBOL_GPL(sata_scr_write);
6865 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6866 EXPORT_SYMBOL_GPL(ata_port_online);
6867 EXPORT_SYMBOL_GPL(ata_port_offline);
6868 #ifdef CONFIG_PM
6869 EXPORT_SYMBOL_GPL(ata_host_suspend);
6870 EXPORT_SYMBOL_GPL(ata_host_resume);
6871 #endif /* CONFIG_PM */
6872 EXPORT_SYMBOL_GPL(ata_id_string);
6873 EXPORT_SYMBOL_GPL(ata_id_c_string);
6874 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6875 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6876 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6878 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6879 EXPORT_SYMBOL_GPL(ata_timing_compute);
6880 EXPORT_SYMBOL_GPL(ata_timing_merge);
6882 #ifdef CONFIG_PCI
6883 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6884 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6885 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6886 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6887 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6888 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6889 #ifdef CONFIG_PM
6890 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6891 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6892 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6893 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6894 #endif /* CONFIG_PM */
6895 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6896 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6897 #endif /* CONFIG_PCI */
6899 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6900 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6901 EXPORT_SYMBOL_GPL(ata_port_abort);
6902 EXPORT_SYMBOL_GPL(ata_port_freeze);
6903 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6904 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6905 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6906 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6907 EXPORT_SYMBOL_GPL(ata_do_eh);
6908 EXPORT_SYMBOL_GPL(ata_irq_on);
6909 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6910 EXPORT_SYMBOL_GPL(ata_irq_ack);
6911 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6912 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6914 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6915 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6916 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6917 EXPORT_SYMBOL_GPL(ata_cable_sata);