Drop 'size' argument from bio_endio and bi_end_io
[linux-2.6/mini2440.git] / fs / xfs / linux-2.6 / xfs_aops.c
blob3f13519436afc983ed5b1a62a4433387964b39d4
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include <linux/mpage.h>
41 #include <linux/pagevec.h>
42 #include <linux/writeback.h>
44 STATIC void
45 xfs_count_page_state(
46 struct page *page,
47 int *delalloc,
48 int *unmapped,
49 int *unwritten)
51 struct buffer_head *bh, *head;
53 *delalloc = *unmapped = *unwritten = 0;
55 bh = head = page_buffers(page);
56 do {
57 if (buffer_uptodate(bh) && !buffer_mapped(bh))
58 (*unmapped) = 1;
59 else if (buffer_unwritten(bh))
60 (*unwritten) = 1;
61 else if (buffer_delay(bh))
62 (*delalloc) = 1;
63 } while ((bh = bh->b_this_page) != head);
66 #if defined(XFS_RW_TRACE)
67 void
68 xfs_page_trace(
69 int tag,
70 struct inode *inode,
71 struct page *page,
72 unsigned long pgoff)
74 xfs_inode_t *ip;
75 bhv_vnode_t *vp = vn_from_inode(inode);
76 loff_t isize = i_size_read(inode);
77 loff_t offset = page_offset(page);
78 int delalloc = -1, unmapped = -1, unwritten = -1;
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
83 ip = xfs_vtoi(vp);
84 if (!ip->i_rwtrace)
85 return;
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
92 (void *)pgoff,
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
102 (void *)((unsigned long)current_pid()),
103 (void *)NULL);
105 #else
106 #define xfs_page_trace(tag, inode, page, pgoff)
107 #endif
110 * Schedule IO completion handling on a xfsdatad if this was
111 * the final hold on this ioend. If we are asked to wait,
112 * flush the workqueue.
114 STATIC void
115 xfs_finish_ioend(
116 xfs_ioend_t *ioend,
117 int wait)
119 if (atomic_dec_and_test(&ioend->io_remaining)) {
120 queue_work(xfsdatad_workqueue, &ioend->io_work);
121 if (wait)
122 flush_workqueue(xfsdatad_workqueue);
127 * We're now finished for good with this ioend structure.
128 * Update the page state via the associated buffer_heads,
129 * release holds on the inode and bio, and finally free
130 * up memory. Do not use the ioend after this.
132 STATIC void
133 xfs_destroy_ioend(
134 xfs_ioend_t *ioend)
136 struct buffer_head *bh, *next;
138 for (bh = ioend->io_buffer_head; bh; bh = next) {
139 next = bh->b_private;
140 bh->b_end_io(bh, !ioend->io_error);
142 if (unlikely(ioend->io_error))
143 vn_ioerror(ioend->io_vnode, ioend->io_error, __FILE__,__LINE__);
144 vn_iowake(ioend->io_vnode);
145 mempool_free(ioend, xfs_ioend_pool);
149 * Update on-disk file size now that data has been written to disk.
150 * The current in-memory file size is i_size. If a write is beyond
151 * eof io_new_size will be the intended file size until i_size is
152 * updated. If this write does not extend all the way to the valid
153 * file size then restrict this update to the end of the write.
155 STATIC void
156 xfs_setfilesize(
157 xfs_ioend_t *ioend)
159 xfs_inode_t *ip;
160 xfs_fsize_t isize;
161 xfs_fsize_t bsize;
163 ip = xfs_vtoi(ioend->io_vnode);
164 if (!ip)
165 return;
167 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
168 ASSERT(ioend->io_type != IOMAP_READ);
170 if (unlikely(ioend->io_error))
171 return;
173 bsize = ioend->io_offset + ioend->io_size;
175 xfs_ilock(ip, XFS_ILOCK_EXCL);
177 isize = MAX(ip->i_size, ip->i_iocore.io_new_size);
178 isize = MIN(isize, bsize);
180 if (ip->i_d.di_size < isize) {
181 ip->i_d.di_size = isize;
182 ip->i_update_core = 1;
183 ip->i_update_size = 1;
184 mark_inode_dirty_sync(vn_to_inode(ioend->io_vnode));
187 xfs_iunlock(ip, XFS_ILOCK_EXCL);
191 * Buffered IO write completion for delayed allocate extents.
193 STATIC void
194 xfs_end_bio_delalloc(
195 struct work_struct *work)
197 xfs_ioend_t *ioend =
198 container_of(work, xfs_ioend_t, io_work);
200 xfs_setfilesize(ioend);
201 xfs_destroy_ioend(ioend);
205 * Buffered IO write completion for regular, written extents.
207 STATIC void
208 xfs_end_bio_written(
209 struct work_struct *work)
211 xfs_ioend_t *ioend =
212 container_of(work, xfs_ioend_t, io_work);
214 xfs_setfilesize(ioend);
215 xfs_destroy_ioend(ioend);
219 * IO write completion for unwritten extents.
221 * Issue transactions to convert a buffer range from unwritten
222 * to written extents.
224 STATIC void
225 xfs_end_bio_unwritten(
226 struct work_struct *work)
228 xfs_ioend_t *ioend =
229 container_of(work, xfs_ioend_t, io_work);
230 bhv_vnode_t *vp = ioend->io_vnode;
231 xfs_off_t offset = ioend->io_offset;
232 size_t size = ioend->io_size;
234 if (likely(!ioend->io_error)) {
235 bhv_vop_bmap(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL);
236 xfs_setfilesize(ioend);
238 xfs_destroy_ioend(ioend);
242 * IO read completion for regular, written extents.
244 STATIC void
245 xfs_end_bio_read(
246 struct work_struct *work)
248 xfs_ioend_t *ioend =
249 container_of(work, xfs_ioend_t, io_work);
251 xfs_destroy_ioend(ioend);
255 * Allocate and initialise an IO completion structure.
256 * We need to track unwritten extent write completion here initially.
257 * We'll need to extend this for updating the ondisk inode size later
258 * (vs. incore size).
260 STATIC xfs_ioend_t *
261 xfs_alloc_ioend(
262 struct inode *inode,
263 unsigned int type)
265 xfs_ioend_t *ioend;
267 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
270 * Set the count to 1 initially, which will prevent an I/O
271 * completion callback from happening before we have started
272 * all the I/O from calling the completion routine too early.
274 atomic_set(&ioend->io_remaining, 1);
275 ioend->io_error = 0;
276 ioend->io_list = NULL;
277 ioend->io_type = type;
278 ioend->io_vnode = vn_from_inode(inode);
279 ioend->io_buffer_head = NULL;
280 ioend->io_buffer_tail = NULL;
281 atomic_inc(&ioend->io_vnode->v_iocount);
282 ioend->io_offset = 0;
283 ioend->io_size = 0;
285 if (type == IOMAP_UNWRITTEN)
286 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
287 else if (type == IOMAP_DELAY)
288 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
289 else if (type == IOMAP_READ)
290 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
291 else
292 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
294 return ioend;
297 STATIC int
298 xfs_map_blocks(
299 struct inode *inode,
300 loff_t offset,
301 ssize_t count,
302 xfs_iomap_t *mapp,
303 int flags)
305 bhv_vnode_t *vp = vn_from_inode(inode);
306 int error, nmaps = 1;
308 error = bhv_vop_bmap(vp, offset, count, flags, mapp, &nmaps);
309 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
310 VMODIFY(vp);
311 return -error;
314 STATIC_INLINE int
315 xfs_iomap_valid(
316 xfs_iomap_t *iomapp,
317 loff_t offset)
319 return offset >= iomapp->iomap_offset &&
320 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
324 * BIO completion handler for buffered IO.
326 STATIC int
327 xfs_end_bio(
328 struct bio *bio,
329 int error)
331 xfs_ioend_t *ioend = bio->bi_private;
333 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
334 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
336 /* Toss bio and pass work off to an xfsdatad thread */
337 bio->bi_private = NULL;
338 bio->bi_end_io = NULL;
339 bio_put(bio);
341 xfs_finish_ioend(ioend, 0);
342 return 0;
345 STATIC void
346 xfs_submit_ioend_bio(
347 xfs_ioend_t *ioend,
348 struct bio *bio)
350 atomic_inc(&ioend->io_remaining);
352 bio->bi_private = ioend;
353 bio->bi_end_io = xfs_end_bio;
355 submit_bio(WRITE, bio);
356 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
357 bio_put(bio);
360 STATIC struct bio *
361 xfs_alloc_ioend_bio(
362 struct buffer_head *bh)
364 struct bio *bio;
365 int nvecs = bio_get_nr_vecs(bh->b_bdev);
367 do {
368 bio = bio_alloc(GFP_NOIO, nvecs);
369 nvecs >>= 1;
370 } while (!bio);
372 ASSERT(bio->bi_private == NULL);
373 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
374 bio->bi_bdev = bh->b_bdev;
375 bio_get(bio);
376 return bio;
379 STATIC void
380 xfs_start_buffer_writeback(
381 struct buffer_head *bh)
383 ASSERT(buffer_mapped(bh));
384 ASSERT(buffer_locked(bh));
385 ASSERT(!buffer_delay(bh));
386 ASSERT(!buffer_unwritten(bh));
388 mark_buffer_async_write(bh);
389 set_buffer_uptodate(bh);
390 clear_buffer_dirty(bh);
393 STATIC void
394 xfs_start_page_writeback(
395 struct page *page,
396 struct writeback_control *wbc,
397 int clear_dirty,
398 int buffers)
400 ASSERT(PageLocked(page));
401 ASSERT(!PageWriteback(page));
402 if (clear_dirty)
403 clear_page_dirty_for_io(page);
404 set_page_writeback(page);
405 unlock_page(page);
406 if (!buffers) {
407 end_page_writeback(page);
408 wbc->pages_skipped++; /* We didn't write this page */
412 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
414 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
418 * Submit all of the bios for all of the ioends we have saved up, covering the
419 * initial writepage page and also any probed pages.
421 * Because we may have multiple ioends spanning a page, we need to start
422 * writeback on all the buffers before we submit them for I/O. If we mark the
423 * buffers as we got, then we can end up with a page that only has buffers
424 * marked async write and I/O complete on can occur before we mark the other
425 * buffers async write.
427 * The end result of this is that we trip a bug in end_page_writeback() because
428 * we call it twice for the one page as the code in end_buffer_async_write()
429 * assumes that all buffers on the page are started at the same time.
431 * The fix is two passes across the ioend list - one to start writeback on the
432 * buffer_heads, and then submit them for I/O on the second pass.
434 STATIC void
435 xfs_submit_ioend(
436 xfs_ioend_t *ioend)
438 xfs_ioend_t *head = ioend;
439 xfs_ioend_t *next;
440 struct buffer_head *bh;
441 struct bio *bio;
442 sector_t lastblock = 0;
444 /* Pass 1 - start writeback */
445 do {
446 next = ioend->io_list;
447 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
448 xfs_start_buffer_writeback(bh);
450 } while ((ioend = next) != NULL);
452 /* Pass 2 - submit I/O */
453 ioend = head;
454 do {
455 next = ioend->io_list;
456 bio = NULL;
458 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
460 if (!bio) {
461 retry:
462 bio = xfs_alloc_ioend_bio(bh);
463 } else if (bh->b_blocknr != lastblock + 1) {
464 xfs_submit_ioend_bio(ioend, bio);
465 goto retry;
468 if (bio_add_buffer(bio, bh) != bh->b_size) {
469 xfs_submit_ioend_bio(ioend, bio);
470 goto retry;
473 lastblock = bh->b_blocknr;
475 if (bio)
476 xfs_submit_ioend_bio(ioend, bio);
477 xfs_finish_ioend(ioend, 0);
478 } while ((ioend = next) != NULL);
482 * Cancel submission of all buffer_heads so far in this endio.
483 * Toss the endio too. Only ever called for the initial page
484 * in a writepage request, so only ever one page.
486 STATIC void
487 xfs_cancel_ioend(
488 xfs_ioend_t *ioend)
490 xfs_ioend_t *next;
491 struct buffer_head *bh, *next_bh;
493 do {
494 next = ioend->io_list;
495 bh = ioend->io_buffer_head;
496 do {
497 next_bh = bh->b_private;
498 clear_buffer_async_write(bh);
499 unlock_buffer(bh);
500 } while ((bh = next_bh) != NULL);
502 vn_iowake(ioend->io_vnode);
503 mempool_free(ioend, xfs_ioend_pool);
504 } while ((ioend = next) != NULL);
508 * Test to see if we've been building up a completion structure for
509 * earlier buffers -- if so, we try to append to this ioend if we
510 * can, otherwise we finish off any current ioend and start another.
511 * Return true if we've finished the given ioend.
513 STATIC void
514 xfs_add_to_ioend(
515 struct inode *inode,
516 struct buffer_head *bh,
517 xfs_off_t offset,
518 unsigned int type,
519 xfs_ioend_t **result,
520 int need_ioend)
522 xfs_ioend_t *ioend = *result;
524 if (!ioend || need_ioend || type != ioend->io_type) {
525 xfs_ioend_t *previous = *result;
527 ioend = xfs_alloc_ioend(inode, type);
528 ioend->io_offset = offset;
529 ioend->io_buffer_head = bh;
530 ioend->io_buffer_tail = bh;
531 if (previous)
532 previous->io_list = ioend;
533 *result = ioend;
534 } else {
535 ioend->io_buffer_tail->b_private = bh;
536 ioend->io_buffer_tail = bh;
539 bh->b_private = NULL;
540 ioend->io_size += bh->b_size;
543 STATIC void
544 xfs_map_buffer(
545 struct buffer_head *bh,
546 xfs_iomap_t *mp,
547 xfs_off_t offset,
548 uint block_bits)
550 sector_t bn;
552 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
554 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
555 ((offset - mp->iomap_offset) >> block_bits);
557 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
559 bh->b_blocknr = bn;
560 set_buffer_mapped(bh);
563 STATIC void
564 xfs_map_at_offset(
565 struct buffer_head *bh,
566 loff_t offset,
567 int block_bits,
568 xfs_iomap_t *iomapp)
570 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
571 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
573 lock_buffer(bh);
574 xfs_map_buffer(bh, iomapp, offset, block_bits);
575 bh->b_bdev = iomapp->iomap_target->bt_bdev;
576 set_buffer_mapped(bh);
577 clear_buffer_delay(bh);
578 clear_buffer_unwritten(bh);
582 * Look for a page at index that is suitable for clustering.
584 STATIC unsigned int
585 xfs_probe_page(
586 struct page *page,
587 unsigned int pg_offset,
588 int mapped)
590 int ret = 0;
592 if (PageWriteback(page))
593 return 0;
595 if (page->mapping && PageDirty(page)) {
596 if (page_has_buffers(page)) {
597 struct buffer_head *bh, *head;
599 bh = head = page_buffers(page);
600 do {
601 if (!buffer_uptodate(bh))
602 break;
603 if (mapped != buffer_mapped(bh))
604 break;
605 ret += bh->b_size;
606 if (ret >= pg_offset)
607 break;
608 } while ((bh = bh->b_this_page) != head);
609 } else
610 ret = mapped ? 0 : PAGE_CACHE_SIZE;
613 return ret;
616 STATIC size_t
617 xfs_probe_cluster(
618 struct inode *inode,
619 struct page *startpage,
620 struct buffer_head *bh,
621 struct buffer_head *head,
622 int mapped)
624 struct pagevec pvec;
625 pgoff_t tindex, tlast, tloff;
626 size_t total = 0;
627 int done = 0, i;
629 /* First sum forwards in this page */
630 do {
631 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
632 return total;
633 total += bh->b_size;
634 } while ((bh = bh->b_this_page) != head);
636 /* if we reached the end of the page, sum forwards in following pages */
637 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
638 tindex = startpage->index + 1;
640 /* Prune this back to avoid pathological behavior */
641 tloff = min(tlast, startpage->index + 64);
643 pagevec_init(&pvec, 0);
644 while (!done && tindex <= tloff) {
645 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
647 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
648 break;
650 for (i = 0; i < pagevec_count(&pvec); i++) {
651 struct page *page = pvec.pages[i];
652 size_t pg_offset, pg_len = 0;
654 if (tindex == tlast) {
655 pg_offset =
656 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
657 if (!pg_offset) {
658 done = 1;
659 break;
661 } else
662 pg_offset = PAGE_CACHE_SIZE;
664 if (page->index == tindex && !TestSetPageLocked(page)) {
665 pg_len = xfs_probe_page(page, pg_offset, mapped);
666 unlock_page(page);
669 if (!pg_len) {
670 done = 1;
671 break;
674 total += pg_len;
675 tindex++;
678 pagevec_release(&pvec);
679 cond_resched();
682 return total;
686 * Test if a given page is suitable for writing as part of an unwritten
687 * or delayed allocate extent.
689 STATIC int
690 xfs_is_delayed_page(
691 struct page *page,
692 unsigned int type)
694 if (PageWriteback(page))
695 return 0;
697 if (page->mapping && page_has_buffers(page)) {
698 struct buffer_head *bh, *head;
699 int acceptable = 0;
701 bh = head = page_buffers(page);
702 do {
703 if (buffer_unwritten(bh))
704 acceptable = (type == IOMAP_UNWRITTEN);
705 else if (buffer_delay(bh))
706 acceptable = (type == IOMAP_DELAY);
707 else if (buffer_dirty(bh) && buffer_mapped(bh))
708 acceptable = (type == IOMAP_NEW);
709 else
710 break;
711 } while ((bh = bh->b_this_page) != head);
713 if (acceptable)
714 return 1;
717 return 0;
721 * Allocate & map buffers for page given the extent map. Write it out.
722 * except for the original page of a writepage, this is called on
723 * delalloc/unwritten pages only, for the original page it is possible
724 * that the page has no mapping at all.
726 STATIC int
727 xfs_convert_page(
728 struct inode *inode,
729 struct page *page,
730 loff_t tindex,
731 xfs_iomap_t *mp,
732 xfs_ioend_t **ioendp,
733 struct writeback_control *wbc,
734 int startio,
735 int all_bh)
737 struct buffer_head *bh, *head;
738 xfs_off_t end_offset;
739 unsigned long p_offset;
740 unsigned int type;
741 int bbits = inode->i_blkbits;
742 int len, page_dirty;
743 int count = 0, done = 0, uptodate = 1;
744 xfs_off_t offset = page_offset(page);
746 if (page->index != tindex)
747 goto fail;
748 if (TestSetPageLocked(page))
749 goto fail;
750 if (PageWriteback(page))
751 goto fail_unlock_page;
752 if (page->mapping != inode->i_mapping)
753 goto fail_unlock_page;
754 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
755 goto fail_unlock_page;
758 * page_dirty is initially a count of buffers on the page before
759 * EOF and is decremented as we move each into a cleanable state.
761 * Derivation:
763 * End offset is the highest offset that this page should represent.
764 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
765 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
766 * hence give us the correct page_dirty count. On any other page,
767 * it will be zero and in that case we need page_dirty to be the
768 * count of buffers on the page.
770 end_offset = min_t(unsigned long long,
771 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
772 i_size_read(inode));
774 len = 1 << inode->i_blkbits;
775 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
776 PAGE_CACHE_SIZE);
777 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
778 page_dirty = p_offset / len;
780 bh = head = page_buffers(page);
781 do {
782 if (offset >= end_offset)
783 break;
784 if (!buffer_uptodate(bh))
785 uptodate = 0;
786 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
787 done = 1;
788 continue;
791 if (buffer_unwritten(bh) || buffer_delay(bh)) {
792 if (buffer_unwritten(bh))
793 type = IOMAP_UNWRITTEN;
794 else
795 type = IOMAP_DELAY;
797 if (!xfs_iomap_valid(mp, offset)) {
798 done = 1;
799 continue;
802 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
803 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
805 xfs_map_at_offset(bh, offset, bbits, mp);
806 if (startio) {
807 xfs_add_to_ioend(inode, bh, offset,
808 type, ioendp, done);
809 } else {
810 set_buffer_dirty(bh);
811 unlock_buffer(bh);
812 mark_buffer_dirty(bh);
814 page_dirty--;
815 count++;
816 } else {
817 type = IOMAP_NEW;
818 if (buffer_mapped(bh) && all_bh && startio) {
819 lock_buffer(bh);
820 xfs_add_to_ioend(inode, bh, offset,
821 type, ioendp, done);
822 count++;
823 page_dirty--;
824 } else {
825 done = 1;
828 } while (offset += len, (bh = bh->b_this_page) != head);
830 if (uptodate && bh == head)
831 SetPageUptodate(page);
833 if (startio) {
834 if (count) {
835 struct backing_dev_info *bdi;
837 bdi = inode->i_mapping->backing_dev_info;
838 wbc->nr_to_write--;
839 if (bdi_write_congested(bdi)) {
840 wbc->encountered_congestion = 1;
841 done = 1;
842 } else if (wbc->nr_to_write <= 0) {
843 done = 1;
846 xfs_start_page_writeback(page, wbc, !page_dirty, count);
849 return done;
850 fail_unlock_page:
851 unlock_page(page);
852 fail:
853 return 1;
857 * Convert & write out a cluster of pages in the same extent as defined
858 * by mp and following the start page.
860 STATIC void
861 xfs_cluster_write(
862 struct inode *inode,
863 pgoff_t tindex,
864 xfs_iomap_t *iomapp,
865 xfs_ioend_t **ioendp,
866 struct writeback_control *wbc,
867 int startio,
868 int all_bh,
869 pgoff_t tlast)
871 struct pagevec pvec;
872 int done = 0, i;
874 pagevec_init(&pvec, 0);
875 while (!done && tindex <= tlast) {
876 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
878 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
879 break;
881 for (i = 0; i < pagevec_count(&pvec); i++) {
882 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
883 iomapp, ioendp, wbc, startio, all_bh);
884 if (done)
885 break;
888 pagevec_release(&pvec);
889 cond_resched();
894 * Calling this without startio set means we are being asked to make a dirty
895 * page ready for freeing it's buffers. When called with startio set then
896 * we are coming from writepage.
898 * When called with startio set it is important that we write the WHOLE
899 * page if possible.
900 * The bh->b_state's cannot know if any of the blocks or which block for
901 * that matter are dirty due to mmap writes, and therefore bh uptodate is
902 * only valid if the page itself isn't completely uptodate. Some layers
903 * may clear the page dirty flag prior to calling write page, under the
904 * assumption the entire page will be written out; by not writing out the
905 * whole page the page can be reused before all valid dirty data is
906 * written out. Note: in the case of a page that has been dirty'd by
907 * mapwrite and but partially setup by block_prepare_write the
908 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
909 * valid state, thus the whole page must be written out thing.
912 STATIC int
913 xfs_page_state_convert(
914 struct inode *inode,
915 struct page *page,
916 struct writeback_control *wbc,
917 int startio,
918 int unmapped) /* also implies page uptodate */
920 struct buffer_head *bh, *head;
921 xfs_iomap_t iomap;
922 xfs_ioend_t *ioend = NULL, *iohead = NULL;
923 loff_t offset;
924 unsigned long p_offset = 0;
925 unsigned int type;
926 __uint64_t end_offset;
927 pgoff_t end_index, last_index, tlast;
928 ssize_t size, len;
929 int flags, err, iomap_valid = 0, uptodate = 1;
930 int page_dirty, count = 0;
931 int trylock = 0;
932 int all_bh = unmapped;
934 if (startio) {
935 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
936 trylock |= BMAPI_TRYLOCK;
939 /* Is this page beyond the end of the file? */
940 offset = i_size_read(inode);
941 end_index = offset >> PAGE_CACHE_SHIFT;
942 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
943 if (page->index >= end_index) {
944 if ((page->index >= end_index + 1) ||
945 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
946 if (startio)
947 unlock_page(page);
948 return 0;
953 * page_dirty is initially a count of buffers on the page before
954 * EOF and is decremented as we move each into a cleanable state.
956 * Derivation:
958 * End offset is the highest offset that this page should represent.
959 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
960 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
961 * hence give us the correct page_dirty count. On any other page,
962 * it will be zero and in that case we need page_dirty to be the
963 * count of buffers on the page.
965 end_offset = min_t(unsigned long long,
966 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
967 len = 1 << inode->i_blkbits;
968 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
969 PAGE_CACHE_SIZE);
970 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
971 page_dirty = p_offset / len;
973 bh = head = page_buffers(page);
974 offset = page_offset(page);
975 flags = BMAPI_READ;
976 type = IOMAP_NEW;
978 /* TODO: cleanup count and page_dirty */
980 do {
981 if (offset >= end_offset)
982 break;
983 if (!buffer_uptodate(bh))
984 uptodate = 0;
985 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
987 * the iomap is actually still valid, but the ioend
988 * isn't. shouldn't happen too often.
990 iomap_valid = 0;
991 continue;
994 if (iomap_valid)
995 iomap_valid = xfs_iomap_valid(&iomap, offset);
998 * First case, map an unwritten extent and prepare for
999 * extent state conversion transaction on completion.
1001 * Second case, allocate space for a delalloc buffer.
1002 * We can return EAGAIN here in the release page case.
1004 * Third case, an unmapped buffer was found, and we are
1005 * in a path where we need to write the whole page out.
1007 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1008 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1009 !buffer_mapped(bh) && (unmapped || startio))) {
1010 int new_ioend = 0;
1013 * Make sure we don't use a read-only iomap
1015 if (flags == BMAPI_READ)
1016 iomap_valid = 0;
1018 if (buffer_unwritten(bh)) {
1019 type = IOMAP_UNWRITTEN;
1020 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1021 } else if (buffer_delay(bh)) {
1022 type = IOMAP_DELAY;
1023 flags = BMAPI_ALLOCATE | trylock;
1024 } else {
1025 type = IOMAP_NEW;
1026 flags = BMAPI_WRITE | BMAPI_MMAP;
1029 if (!iomap_valid) {
1031 * if we didn't have a valid mapping then we
1032 * need to ensure that we put the new mapping
1033 * in a new ioend structure. This needs to be
1034 * done to ensure that the ioends correctly
1035 * reflect the block mappings at io completion
1036 * for unwritten extent conversion.
1038 new_ioend = 1;
1039 if (type == IOMAP_NEW) {
1040 size = xfs_probe_cluster(inode,
1041 page, bh, head, 0);
1042 } else {
1043 size = len;
1046 err = xfs_map_blocks(inode, offset, size,
1047 &iomap, flags);
1048 if (err)
1049 goto error;
1050 iomap_valid = xfs_iomap_valid(&iomap, offset);
1052 if (iomap_valid) {
1053 xfs_map_at_offset(bh, offset,
1054 inode->i_blkbits, &iomap);
1055 if (startio) {
1056 xfs_add_to_ioend(inode, bh, offset,
1057 type, &ioend,
1058 new_ioend);
1059 } else {
1060 set_buffer_dirty(bh);
1061 unlock_buffer(bh);
1062 mark_buffer_dirty(bh);
1064 page_dirty--;
1065 count++;
1067 } else if (buffer_uptodate(bh) && startio) {
1069 * we got here because the buffer is already mapped.
1070 * That means it must already have extents allocated
1071 * underneath it. Map the extent by reading it.
1073 if (!iomap_valid || flags != BMAPI_READ) {
1074 flags = BMAPI_READ;
1075 size = xfs_probe_cluster(inode, page, bh,
1076 head, 1);
1077 err = xfs_map_blocks(inode, offset, size,
1078 &iomap, flags);
1079 if (err)
1080 goto error;
1081 iomap_valid = xfs_iomap_valid(&iomap, offset);
1085 * We set the type to IOMAP_NEW in case we are doing a
1086 * small write at EOF that is extending the file but
1087 * without needing an allocation. We need to update the
1088 * file size on I/O completion in this case so it is
1089 * the same case as having just allocated a new extent
1090 * that we are writing into for the first time.
1092 type = IOMAP_NEW;
1093 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1094 ASSERT(buffer_mapped(bh));
1095 if (iomap_valid)
1096 all_bh = 1;
1097 xfs_add_to_ioend(inode, bh, offset, type,
1098 &ioend, !iomap_valid);
1099 page_dirty--;
1100 count++;
1101 } else {
1102 iomap_valid = 0;
1104 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1105 (unmapped || startio)) {
1106 iomap_valid = 0;
1109 if (!iohead)
1110 iohead = ioend;
1112 } while (offset += len, ((bh = bh->b_this_page) != head));
1114 if (uptodate && bh == head)
1115 SetPageUptodate(page);
1117 if (startio)
1118 xfs_start_page_writeback(page, wbc, 1, count);
1120 if (ioend && iomap_valid) {
1121 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1122 PAGE_CACHE_SHIFT;
1123 tlast = min_t(pgoff_t, offset, last_index);
1124 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1125 wbc, startio, all_bh, tlast);
1128 if (iohead)
1129 xfs_submit_ioend(iohead);
1131 return page_dirty;
1133 error:
1134 if (iohead)
1135 xfs_cancel_ioend(iohead);
1138 * If it's delalloc and we have nowhere to put it,
1139 * throw it away, unless the lower layers told
1140 * us to try again.
1142 if (err != -EAGAIN) {
1143 if (!unmapped)
1144 block_invalidatepage(page, 0);
1145 ClearPageUptodate(page);
1147 return err;
1151 * writepage: Called from one of two places:
1153 * 1. we are flushing a delalloc buffer head.
1155 * 2. we are writing out a dirty page. Typically the page dirty
1156 * state is cleared before we get here. In this case is it
1157 * conceivable we have no buffer heads.
1159 * For delalloc space on the page we need to allocate space and
1160 * flush it. For unmapped buffer heads on the page we should
1161 * allocate space if the page is uptodate. For any other dirty
1162 * buffer heads on the page we should flush them.
1164 * If we detect that a transaction would be required to flush
1165 * the page, we have to check the process flags first, if we
1166 * are already in a transaction or disk I/O during allocations
1167 * is off, we need to fail the writepage and redirty the page.
1170 STATIC int
1171 xfs_vm_writepage(
1172 struct page *page,
1173 struct writeback_control *wbc)
1175 int error;
1176 int need_trans;
1177 int delalloc, unmapped, unwritten;
1178 struct inode *inode = page->mapping->host;
1180 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1183 * We need a transaction if:
1184 * 1. There are delalloc buffers on the page
1185 * 2. The page is uptodate and we have unmapped buffers
1186 * 3. The page is uptodate and we have no buffers
1187 * 4. There are unwritten buffers on the page
1190 if (!page_has_buffers(page)) {
1191 unmapped = 1;
1192 need_trans = 1;
1193 } else {
1194 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1195 if (!PageUptodate(page))
1196 unmapped = 0;
1197 need_trans = delalloc + unmapped + unwritten;
1201 * If we need a transaction and the process flags say
1202 * we are already in a transaction, or no IO is allowed
1203 * then mark the page dirty again and leave the page
1204 * as is.
1206 if (current_test_flags(PF_FSTRANS) && need_trans)
1207 goto out_fail;
1210 * Delay hooking up buffer heads until we have
1211 * made our go/no-go decision.
1213 if (!page_has_buffers(page))
1214 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1217 * Convert delayed allocate, unwritten or unmapped space
1218 * to real space and flush out to disk.
1220 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1221 if (error == -EAGAIN)
1222 goto out_fail;
1223 if (unlikely(error < 0))
1224 goto out_unlock;
1226 return 0;
1228 out_fail:
1229 redirty_page_for_writepage(wbc, page);
1230 unlock_page(page);
1231 return 0;
1232 out_unlock:
1233 unlock_page(page);
1234 return error;
1237 STATIC int
1238 xfs_vm_writepages(
1239 struct address_space *mapping,
1240 struct writeback_control *wbc)
1242 struct bhv_vnode *vp = vn_from_inode(mapping->host);
1244 if (VN_TRUNC(vp))
1245 VUNTRUNCATE(vp);
1246 return generic_writepages(mapping, wbc);
1250 * Called to move a page into cleanable state - and from there
1251 * to be released. Possibly the page is already clean. We always
1252 * have buffer heads in this call.
1254 * Returns 0 if the page is ok to release, 1 otherwise.
1256 * Possible scenarios are:
1258 * 1. We are being called to release a page which has been written
1259 * to via regular I/O. buffer heads will be dirty and possibly
1260 * delalloc. If no delalloc buffer heads in this case then we
1261 * can just return zero.
1263 * 2. We are called to release a page which has been written via
1264 * mmap, all we need to do is ensure there is no delalloc
1265 * state in the buffer heads, if not we can let the caller
1266 * free them and we should come back later via writepage.
1268 STATIC int
1269 xfs_vm_releasepage(
1270 struct page *page,
1271 gfp_t gfp_mask)
1273 struct inode *inode = page->mapping->host;
1274 int dirty, delalloc, unmapped, unwritten;
1275 struct writeback_control wbc = {
1276 .sync_mode = WB_SYNC_ALL,
1277 .nr_to_write = 1,
1280 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1282 if (!page_has_buffers(page))
1283 return 0;
1285 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1286 if (!delalloc && !unwritten)
1287 goto free_buffers;
1289 if (!(gfp_mask & __GFP_FS))
1290 return 0;
1292 /* If we are already inside a transaction or the thread cannot
1293 * do I/O, we cannot release this page.
1295 if (current_test_flags(PF_FSTRANS))
1296 return 0;
1299 * Convert delalloc space to real space, do not flush the
1300 * data out to disk, that will be done by the caller.
1301 * Never need to allocate space here - we will always
1302 * come back to writepage in that case.
1304 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1305 if (dirty == 0 && !unwritten)
1306 goto free_buffers;
1307 return 0;
1309 free_buffers:
1310 return try_to_free_buffers(page);
1313 STATIC int
1314 __xfs_get_blocks(
1315 struct inode *inode,
1316 sector_t iblock,
1317 struct buffer_head *bh_result,
1318 int create,
1319 int direct,
1320 bmapi_flags_t flags)
1322 bhv_vnode_t *vp = vn_from_inode(inode);
1323 xfs_iomap_t iomap;
1324 xfs_off_t offset;
1325 ssize_t size;
1326 int niomap = 1;
1327 int error;
1329 offset = (xfs_off_t)iblock << inode->i_blkbits;
1330 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1331 size = bh_result->b_size;
1332 error = bhv_vop_bmap(vp, offset, size,
1333 create ? flags : BMAPI_READ, &iomap, &niomap);
1334 if (error)
1335 return -error;
1336 if (niomap == 0)
1337 return 0;
1339 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1341 * For unwritten extents do not report a disk address on
1342 * the read case (treat as if we're reading into a hole).
1344 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1345 xfs_map_buffer(bh_result, &iomap, offset,
1346 inode->i_blkbits);
1348 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1349 if (direct)
1350 bh_result->b_private = inode;
1351 set_buffer_unwritten(bh_result);
1356 * If this is a realtime file, data may be on a different device.
1357 * to that pointed to from the buffer_head b_bdev currently.
1359 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1362 * If we previously allocated a block out beyond eof and we are now
1363 * coming back to use it then we will need to flag it as new even if it
1364 * has a disk address.
1366 * With sub-block writes into unwritten extents we also need to mark
1367 * the buffer as new so that the unwritten parts of the buffer gets
1368 * correctly zeroed.
1370 if (create &&
1371 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1372 (offset >= i_size_read(inode)) ||
1373 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1374 set_buffer_new(bh_result);
1376 if (iomap.iomap_flags & IOMAP_DELAY) {
1377 BUG_ON(direct);
1378 if (create) {
1379 set_buffer_uptodate(bh_result);
1380 set_buffer_mapped(bh_result);
1381 set_buffer_delay(bh_result);
1385 if (direct || size > (1 << inode->i_blkbits)) {
1386 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1387 offset = min_t(xfs_off_t,
1388 iomap.iomap_bsize - iomap.iomap_delta, size);
1389 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1392 return 0;
1396 xfs_get_blocks(
1397 struct inode *inode,
1398 sector_t iblock,
1399 struct buffer_head *bh_result,
1400 int create)
1402 return __xfs_get_blocks(inode, iblock,
1403 bh_result, create, 0, BMAPI_WRITE);
1406 STATIC int
1407 xfs_get_blocks_direct(
1408 struct inode *inode,
1409 sector_t iblock,
1410 struct buffer_head *bh_result,
1411 int create)
1413 return __xfs_get_blocks(inode, iblock,
1414 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1417 STATIC void
1418 xfs_end_io_direct(
1419 struct kiocb *iocb,
1420 loff_t offset,
1421 ssize_t size,
1422 void *private)
1424 xfs_ioend_t *ioend = iocb->private;
1427 * Non-NULL private data means we need to issue a transaction to
1428 * convert a range from unwritten to written extents. This needs
1429 * to happen from process context but aio+dio I/O completion
1430 * happens from irq context so we need to defer it to a workqueue.
1431 * This is not necessary for synchronous direct I/O, but we do
1432 * it anyway to keep the code uniform and simpler.
1434 * Well, if only it were that simple. Because synchronous direct I/O
1435 * requires extent conversion to occur *before* we return to userspace,
1436 * we have to wait for extent conversion to complete. Look at the
1437 * iocb that has been passed to us to determine if this is AIO or
1438 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1439 * workqueue and wait for it to complete.
1441 * The core direct I/O code might be changed to always call the
1442 * completion handler in the future, in which case all this can
1443 * go away.
1445 ioend->io_offset = offset;
1446 ioend->io_size = size;
1447 if (ioend->io_type == IOMAP_READ) {
1448 xfs_finish_ioend(ioend, 0);
1449 } else if (private && size > 0) {
1450 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1451 } else {
1453 * A direct I/O write ioend starts it's life in unwritten
1454 * state in case they map an unwritten extent. This write
1455 * didn't map an unwritten extent so switch it's completion
1456 * handler.
1458 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1459 xfs_finish_ioend(ioend, 0);
1463 * blockdev_direct_IO can return an error even after the I/O
1464 * completion handler was called. Thus we need to protect
1465 * against double-freeing.
1467 iocb->private = NULL;
1470 STATIC ssize_t
1471 xfs_vm_direct_IO(
1472 int rw,
1473 struct kiocb *iocb,
1474 const struct iovec *iov,
1475 loff_t offset,
1476 unsigned long nr_segs)
1478 struct file *file = iocb->ki_filp;
1479 struct inode *inode = file->f_mapping->host;
1480 bhv_vnode_t *vp = vn_from_inode(inode);
1481 xfs_iomap_t iomap;
1482 int maps = 1;
1483 int error;
1484 ssize_t ret;
1486 error = bhv_vop_bmap(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps);
1487 if (error)
1488 return -error;
1490 if (rw == WRITE) {
1491 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1492 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1493 iomap.iomap_target->bt_bdev,
1494 iov, offset, nr_segs,
1495 xfs_get_blocks_direct,
1496 xfs_end_io_direct);
1497 } else {
1498 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1499 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1500 iomap.iomap_target->bt_bdev,
1501 iov, offset, nr_segs,
1502 xfs_get_blocks_direct,
1503 xfs_end_io_direct);
1506 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1507 xfs_destroy_ioend(iocb->private);
1508 return ret;
1511 STATIC int
1512 xfs_vm_prepare_write(
1513 struct file *file,
1514 struct page *page,
1515 unsigned int from,
1516 unsigned int to)
1518 return block_prepare_write(page, from, to, xfs_get_blocks);
1521 STATIC sector_t
1522 xfs_vm_bmap(
1523 struct address_space *mapping,
1524 sector_t block)
1526 struct inode *inode = (struct inode *)mapping->host;
1527 bhv_vnode_t *vp = vn_from_inode(inode);
1529 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
1530 bhv_vop_rwlock(vp, VRWLOCK_READ);
1531 bhv_vop_flush_pages(vp, (xfs_off_t)0, -1, 0, FI_REMAPF);
1532 bhv_vop_rwunlock(vp, VRWLOCK_READ);
1533 return generic_block_bmap(mapping, block, xfs_get_blocks);
1536 STATIC int
1537 xfs_vm_readpage(
1538 struct file *unused,
1539 struct page *page)
1541 return mpage_readpage(page, xfs_get_blocks);
1544 STATIC int
1545 xfs_vm_readpages(
1546 struct file *unused,
1547 struct address_space *mapping,
1548 struct list_head *pages,
1549 unsigned nr_pages)
1551 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1554 STATIC void
1555 xfs_vm_invalidatepage(
1556 struct page *page,
1557 unsigned long offset)
1559 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1560 page->mapping->host, page, offset);
1561 block_invalidatepage(page, offset);
1564 const struct address_space_operations xfs_address_space_operations = {
1565 .readpage = xfs_vm_readpage,
1566 .readpages = xfs_vm_readpages,
1567 .writepage = xfs_vm_writepage,
1568 .writepages = xfs_vm_writepages,
1569 .sync_page = block_sync_page,
1570 .releasepage = xfs_vm_releasepage,
1571 .invalidatepage = xfs_vm_invalidatepage,
1572 .prepare_write = xfs_vm_prepare_write,
1573 .commit_write = generic_commit_write,
1574 .bmap = xfs_vm_bmap,
1575 .direct_IO = xfs_vm_direct_IO,
1576 .migratepage = buffer_migrate_page,