Drop 'size' argument from bio_endio and bi_end_io
[linux-2.6/mini2440.git] / drivers / md / dm-crypt.c
blob8216a6f75be57fcd234e50a21b3491c6054d9a80
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
25 #include "dm.h"
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
31 * per bio private data
33 struct dm_crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct work_struct work;
37 atomic_t pending;
38 int error;
39 int post_process;
43 * context holding the current state of a multi-part conversion
45 struct convert_context {
46 struct bio *bio_in;
47 struct bio *bio_out;
48 unsigned int offset_in;
49 unsigned int offset_out;
50 unsigned int idx_in;
51 unsigned int idx_out;
52 sector_t sector;
53 int write;
56 struct crypt_config;
58 struct crypt_iv_operations {
59 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
60 const char *opts);
61 void (*dtr)(struct crypt_config *cc);
62 const char *(*status)(struct crypt_config *cc);
63 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
67 * Crypt: maps a linear range of a block device
68 * and encrypts / decrypts at the same time.
70 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
71 struct crypt_config {
72 struct dm_dev *dev;
73 sector_t start;
76 * pool for per bio private data and
77 * for encryption buffer pages
79 mempool_t *io_pool;
80 mempool_t *page_pool;
81 struct bio_set *bs;
84 * crypto related data
86 struct crypt_iv_operations *iv_gen_ops;
87 char *iv_mode;
88 union {
89 struct crypto_cipher *essiv_tfm;
90 int benbi_shift;
91 } iv_gen_private;
92 sector_t iv_offset;
93 unsigned int iv_size;
95 char cipher[CRYPTO_MAX_ALG_NAME];
96 char chainmode[CRYPTO_MAX_ALG_NAME];
97 struct crypto_blkcipher *tfm;
98 unsigned long flags;
99 unsigned int key_size;
100 u8 key[0];
103 #define MIN_IOS 16
104 #define MIN_POOL_PAGES 32
105 #define MIN_BIO_PAGES 8
107 static struct kmem_cache *_crypt_io_pool;
109 static void clone_init(struct dm_crypt_io *, struct bio *);
112 * Different IV generation algorithms:
114 * plain: the initial vector is the 32-bit little-endian version of the sector
115 * number, padded with zeros if neccessary.
117 * essiv: "encrypted sector|salt initial vector", the sector number is
118 * encrypted with the bulk cipher using a salt as key. The salt
119 * should be derived from the bulk cipher's key via hashing.
121 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
122 * (needed for LRW-32-AES and possible other narrow block modes)
124 * null: the initial vector is always zero. Provides compatibility with
125 * obsolete loop_fish2 devices. Do not use for new devices.
127 * plumb: unimplemented, see:
128 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
131 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
133 memset(iv, 0, cc->iv_size);
134 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
136 return 0;
139 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
140 const char *opts)
142 struct crypto_cipher *essiv_tfm;
143 struct crypto_hash *hash_tfm;
144 struct hash_desc desc;
145 struct scatterlist sg;
146 unsigned int saltsize;
147 u8 *salt;
148 int err;
150 if (opts == NULL) {
151 ti->error = "Digest algorithm missing for ESSIV mode";
152 return -EINVAL;
155 /* Hash the cipher key with the given hash algorithm */
156 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
157 if (IS_ERR(hash_tfm)) {
158 ti->error = "Error initializing ESSIV hash";
159 return PTR_ERR(hash_tfm);
162 saltsize = crypto_hash_digestsize(hash_tfm);
163 salt = kmalloc(saltsize, GFP_KERNEL);
164 if (salt == NULL) {
165 ti->error = "Error kmallocing salt storage in ESSIV";
166 crypto_free_hash(hash_tfm);
167 return -ENOMEM;
170 sg_set_buf(&sg, cc->key, cc->key_size);
171 desc.tfm = hash_tfm;
172 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
173 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
174 crypto_free_hash(hash_tfm);
176 if (err) {
177 ti->error = "Error calculating hash in ESSIV";
178 return err;
181 /* Setup the essiv_tfm with the given salt */
182 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
183 if (IS_ERR(essiv_tfm)) {
184 ti->error = "Error allocating crypto tfm for ESSIV";
185 kfree(salt);
186 return PTR_ERR(essiv_tfm);
188 if (crypto_cipher_blocksize(essiv_tfm) !=
189 crypto_blkcipher_ivsize(cc->tfm)) {
190 ti->error = "Block size of ESSIV cipher does "
191 "not match IV size of block cipher";
192 crypto_free_cipher(essiv_tfm);
193 kfree(salt);
194 return -EINVAL;
196 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
197 if (err) {
198 ti->error = "Failed to set key for ESSIV cipher";
199 crypto_free_cipher(essiv_tfm);
200 kfree(salt);
201 return err;
203 kfree(salt);
205 cc->iv_gen_private.essiv_tfm = essiv_tfm;
206 return 0;
209 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
211 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
212 cc->iv_gen_private.essiv_tfm = NULL;
215 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
217 memset(iv, 0, cc->iv_size);
218 *(u64 *)iv = cpu_to_le64(sector);
219 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
220 return 0;
223 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
224 const char *opts)
226 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
227 int log = ilog2(bs);
229 /* we need to calculate how far we must shift the sector count
230 * to get the cipher block count, we use this shift in _gen */
232 if (1 << log != bs) {
233 ti->error = "cypher blocksize is not a power of 2";
234 return -EINVAL;
237 if (log > 9) {
238 ti->error = "cypher blocksize is > 512";
239 return -EINVAL;
242 cc->iv_gen_private.benbi_shift = 9 - log;
244 return 0;
247 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
251 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
253 __be64 val;
255 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
257 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
258 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
260 return 0;
263 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
265 memset(iv, 0, cc->iv_size);
267 return 0;
270 static struct crypt_iv_operations crypt_iv_plain_ops = {
271 .generator = crypt_iv_plain_gen
274 static struct crypt_iv_operations crypt_iv_essiv_ops = {
275 .ctr = crypt_iv_essiv_ctr,
276 .dtr = crypt_iv_essiv_dtr,
277 .generator = crypt_iv_essiv_gen
280 static struct crypt_iv_operations crypt_iv_benbi_ops = {
281 .ctr = crypt_iv_benbi_ctr,
282 .dtr = crypt_iv_benbi_dtr,
283 .generator = crypt_iv_benbi_gen
286 static struct crypt_iv_operations crypt_iv_null_ops = {
287 .generator = crypt_iv_null_gen
290 static int
291 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
292 struct scatterlist *in, unsigned int length,
293 int write, sector_t sector)
295 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
296 struct blkcipher_desc desc = {
297 .tfm = cc->tfm,
298 .info = iv,
299 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
301 int r;
303 if (cc->iv_gen_ops) {
304 r = cc->iv_gen_ops->generator(cc, iv, sector);
305 if (r < 0)
306 return r;
308 if (write)
309 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
310 else
311 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
312 } else {
313 if (write)
314 r = crypto_blkcipher_encrypt(&desc, out, in, length);
315 else
316 r = crypto_blkcipher_decrypt(&desc, out, in, length);
319 return r;
322 static void
323 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
324 struct bio *bio_out, struct bio *bio_in,
325 sector_t sector, int write)
327 ctx->bio_in = bio_in;
328 ctx->bio_out = bio_out;
329 ctx->offset_in = 0;
330 ctx->offset_out = 0;
331 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
332 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
333 ctx->sector = sector + cc->iv_offset;
334 ctx->write = write;
338 * Encrypt / decrypt data from one bio to another one (can be the same one)
340 static int crypt_convert(struct crypt_config *cc,
341 struct convert_context *ctx)
343 int r = 0;
345 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
346 ctx->idx_out < ctx->bio_out->bi_vcnt) {
347 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
348 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
349 struct scatterlist sg_in = {
350 .page = bv_in->bv_page,
351 .offset = bv_in->bv_offset + ctx->offset_in,
352 .length = 1 << SECTOR_SHIFT
354 struct scatterlist sg_out = {
355 .page = bv_out->bv_page,
356 .offset = bv_out->bv_offset + ctx->offset_out,
357 .length = 1 << SECTOR_SHIFT
360 ctx->offset_in += sg_in.length;
361 if (ctx->offset_in >= bv_in->bv_len) {
362 ctx->offset_in = 0;
363 ctx->idx_in++;
366 ctx->offset_out += sg_out.length;
367 if (ctx->offset_out >= bv_out->bv_len) {
368 ctx->offset_out = 0;
369 ctx->idx_out++;
372 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
373 ctx->write, ctx->sector);
374 if (r < 0)
375 break;
377 ctx->sector++;
380 return r;
383 static void dm_crypt_bio_destructor(struct bio *bio)
385 struct dm_crypt_io *io = bio->bi_private;
386 struct crypt_config *cc = io->target->private;
388 bio_free(bio, cc->bs);
392 * Generate a new unfragmented bio with the given size
393 * This should never violate the device limitations
394 * May return a smaller bio when running out of pages
396 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
398 struct crypt_config *cc = io->target->private;
399 struct bio *clone;
400 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
401 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
402 unsigned int i;
404 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
405 if (!clone)
406 return NULL;
408 clone_init(io, clone);
410 for (i = 0; i < nr_iovecs; i++) {
411 struct bio_vec *bv = bio_iovec_idx(clone, i);
413 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
414 if (!bv->bv_page)
415 break;
418 * if additional pages cannot be allocated without waiting,
419 * return a partially allocated bio, the caller will then try
420 * to allocate additional bios while submitting this partial bio
422 if (i == (MIN_BIO_PAGES - 1))
423 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
425 bv->bv_offset = 0;
426 if (size > PAGE_SIZE)
427 bv->bv_len = PAGE_SIZE;
428 else
429 bv->bv_len = size;
431 clone->bi_size += bv->bv_len;
432 clone->bi_vcnt++;
433 size -= bv->bv_len;
436 if (!clone->bi_size) {
437 bio_put(clone);
438 return NULL;
441 return clone;
444 static void crypt_free_buffer_pages(struct crypt_config *cc,
445 struct bio *clone, unsigned int bytes)
447 unsigned int i, start, end;
448 struct bio_vec *bv;
451 * This is ugly, but Jens Axboe thinks that using bi_idx in the
452 * endio function is too dangerous at the moment, so I calculate the
453 * correct position using bi_vcnt and bi_size.
454 * The bv_offset and bv_len fields might already be modified but we
455 * know that we always allocated whole pages.
456 * A fix to the bi_idx issue in the kernel is in the works, so
457 * we will hopefully be able to revert to the cleaner solution soon.
459 i = clone->bi_vcnt - 1;
460 bv = bio_iovec_idx(clone, i);
461 end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
462 start = end - bytes;
464 start >>= PAGE_SHIFT;
465 if (!clone->bi_size)
466 end = clone->bi_vcnt;
467 else
468 end >>= PAGE_SHIFT;
470 for (i = start; i < end; i++) {
471 bv = bio_iovec_idx(clone, i);
472 BUG_ON(!bv->bv_page);
473 mempool_free(bv->bv_page, cc->page_pool);
474 bv->bv_page = NULL;
479 * One of the bios was finished. Check for completion of
480 * the whole request and correctly clean up the buffer.
482 static void dec_pending(struct dm_crypt_io *io, int error)
484 struct crypt_config *cc = (struct crypt_config *) io->target->private;
486 if (error < 0)
487 io->error = error;
489 if (!atomic_dec_and_test(&io->pending))
490 return;
492 bio_endio(io->base_bio, io->error);
494 mempool_free(io, cc->io_pool);
498 * kcryptd:
500 * Needed because it would be very unwise to do decryption in an
501 * interrupt context.
503 static struct workqueue_struct *_kcryptd_workqueue;
504 static void kcryptd_do_work(struct work_struct *work);
506 static void kcryptd_queue_io(struct dm_crypt_io *io)
508 INIT_WORK(&io->work, kcryptd_do_work);
509 queue_work(_kcryptd_workqueue, &io->work);
512 static void crypt_endio(struct bio *clone, int error)
514 struct dm_crypt_io *io = clone->bi_private;
515 struct crypt_config *cc = io->target->private;
516 unsigned read_io = bio_data_dir(clone) == READ;
519 * free the processed pages
521 if (!read_io) {
522 crypt_free_buffer_pages(cc, clone, clone->bi_size);
523 goto out;
526 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
527 error = -EIO;
528 goto out;
531 bio_put(clone);
532 io->post_process = 1;
533 kcryptd_queue_io(io);
534 return;
536 out:
537 bio_put(clone);
538 dec_pending(io, error);
541 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
543 struct crypt_config *cc = io->target->private;
545 clone->bi_private = io;
546 clone->bi_end_io = crypt_endio;
547 clone->bi_bdev = cc->dev->bdev;
548 clone->bi_rw = io->base_bio->bi_rw;
549 clone->bi_destructor = dm_crypt_bio_destructor;
552 static void process_read(struct dm_crypt_io *io)
554 struct crypt_config *cc = io->target->private;
555 struct bio *base_bio = io->base_bio;
556 struct bio *clone;
557 sector_t sector = base_bio->bi_sector - io->target->begin;
559 atomic_inc(&io->pending);
562 * The block layer might modify the bvec array, so always
563 * copy the required bvecs because we need the original
564 * one in order to decrypt the whole bio data *afterwards*.
566 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
567 if (unlikely(!clone)) {
568 dec_pending(io, -ENOMEM);
569 return;
572 clone_init(io, clone);
573 clone->bi_idx = 0;
574 clone->bi_vcnt = bio_segments(base_bio);
575 clone->bi_size = base_bio->bi_size;
576 clone->bi_sector = cc->start + sector;
577 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
578 sizeof(struct bio_vec) * clone->bi_vcnt);
580 generic_make_request(clone);
583 static void process_write(struct dm_crypt_io *io)
585 struct crypt_config *cc = io->target->private;
586 struct bio *base_bio = io->base_bio;
587 struct bio *clone;
588 struct convert_context ctx;
589 unsigned remaining = base_bio->bi_size;
590 sector_t sector = base_bio->bi_sector - io->target->begin;
592 atomic_inc(&io->pending);
594 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
597 * The allocated buffers can be smaller than the whole bio,
598 * so repeat the whole process until all the data can be handled.
600 while (remaining) {
601 clone = crypt_alloc_buffer(io, remaining);
602 if (unlikely(!clone)) {
603 dec_pending(io, -ENOMEM);
604 return;
607 ctx.bio_out = clone;
608 ctx.idx_out = 0;
610 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
611 crypt_free_buffer_pages(cc, clone, clone->bi_size);
612 bio_put(clone);
613 dec_pending(io, -EIO);
614 return;
617 /* crypt_convert should have filled the clone bio */
618 BUG_ON(ctx.idx_out < clone->bi_vcnt);
620 clone->bi_sector = cc->start + sector;
621 remaining -= clone->bi_size;
622 sector += bio_sectors(clone);
624 /* Grab another reference to the io struct
625 * before we kick off the request */
626 if (remaining)
627 atomic_inc(&io->pending);
629 generic_make_request(clone);
631 /* Do not reference clone after this - it
632 * may be gone already. */
634 /* out of memory -> run queues */
635 if (remaining)
636 congestion_wait(WRITE, HZ/100);
640 static void process_read_endio(struct dm_crypt_io *io)
642 struct crypt_config *cc = io->target->private;
643 struct convert_context ctx;
645 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
646 io->base_bio->bi_sector - io->target->begin, 0);
648 dec_pending(io, crypt_convert(cc, &ctx));
651 static void kcryptd_do_work(struct work_struct *work)
653 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
655 if (io->post_process)
656 process_read_endio(io);
657 else if (bio_data_dir(io->base_bio) == READ)
658 process_read(io);
659 else
660 process_write(io);
664 * Decode key from its hex representation
666 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
668 char buffer[3];
669 char *endp;
670 unsigned int i;
672 buffer[2] = '\0';
674 for (i = 0; i < size; i++) {
675 buffer[0] = *hex++;
676 buffer[1] = *hex++;
678 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
680 if (endp != &buffer[2])
681 return -EINVAL;
684 if (*hex != '\0')
685 return -EINVAL;
687 return 0;
691 * Encode key into its hex representation
693 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
695 unsigned int i;
697 for (i = 0; i < size; i++) {
698 sprintf(hex, "%02x", *key);
699 hex += 2;
700 key++;
704 static int crypt_set_key(struct crypt_config *cc, char *key)
706 unsigned key_size = strlen(key) >> 1;
708 if (cc->key_size && cc->key_size != key_size)
709 return -EINVAL;
711 cc->key_size = key_size; /* initial settings */
713 if ((!key_size && strcmp(key, "-")) ||
714 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
715 return -EINVAL;
717 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
719 return 0;
722 static int crypt_wipe_key(struct crypt_config *cc)
724 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
725 memset(&cc->key, 0, cc->key_size * sizeof(u8));
726 return 0;
730 * Construct an encryption mapping:
731 * <cipher> <key> <iv_offset> <dev_path> <start>
733 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
735 struct crypt_config *cc;
736 struct crypto_blkcipher *tfm;
737 char *tmp;
738 char *cipher;
739 char *chainmode;
740 char *ivmode;
741 char *ivopts;
742 unsigned int key_size;
743 unsigned long long tmpll;
745 if (argc != 5) {
746 ti->error = "Not enough arguments";
747 return -EINVAL;
750 tmp = argv[0];
751 cipher = strsep(&tmp, "-");
752 chainmode = strsep(&tmp, "-");
753 ivopts = strsep(&tmp, "-");
754 ivmode = strsep(&ivopts, ":");
756 if (tmp)
757 DMWARN("Unexpected additional cipher options");
759 key_size = strlen(argv[1]) >> 1;
761 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
762 if (cc == NULL) {
763 ti->error =
764 "Cannot allocate transparent encryption context";
765 return -ENOMEM;
768 if (crypt_set_key(cc, argv[1])) {
769 ti->error = "Error decoding key";
770 goto bad1;
773 /* Compatiblity mode for old dm-crypt cipher strings */
774 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
775 chainmode = "cbc";
776 ivmode = "plain";
779 if (strcmp(chainmode, "ecb") && !ivmode) {
780 ti->error = "This chaining mode requires an IV mechanism";
781 goto bad1;
784 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
785 cipher) >= CRYPTO_MAX_ALG_NAME) {
786 ti->error = "Chain mode + cipher name is too long";
787 goto bad1;
790 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
791 if (IS_ERR(tfm)) {
792 ti->error = "Error allocating crypto tfm";
793 goto bad1;
796 strcpy(cc->cipher, cipher);
797 strcpy(cc->chainmode, chainmode);
798 cc->tfm = tfm;
801 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
802 * See comments at iv code
805 if (ivmode == NULL)
806 cc->iv_gen_ops = NULL;
807 else if (strcmp(ivmode, "plain") == 0)
808 cc->iv_gen_ops = &crypt_iv_plain_ops;
809 else if (strcmp(ivmode, "essiv") == 0)
810 cc->iv_gen_ops = &crypt_iv_essiv_ops;
811 else if (strcmp(ivmode, "benbi") == 0)
812 cc->iv_gen_ops = &crypt_iv_benbi_ops;
813 else if (strcmp(ivmode, "null") == 0)
814 cc->iv_gen_ops = &crypt_iv_null_ops;
815 else {
816 ti->error = "Invalid IV mode";
817 goto bad2;
820 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
821 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
822 goto bad2;
824 cc->iv_size = crypto_blkcipher_ivsize(tfm);
825 if (cc->iv_size)
826 /* at least a 64 bit sector number should fit in our buffer */
827 cc->iv_size = max(cc->iv_size,
828 (unsigned int)(sizeof(u64) / sizeof(u8)));
829 else {
830 if (cc->iv_gen_ops) {
831 DMWARN("Selected cipher does not support IVs");
832 if (cc->iv_gen_ops->dtr)
833 cc->iv_gen_ops->dtr(cc);
834 cc->iv_gen_ops = NULL;
838 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
839 if (!cc->io_pool) {
840 ti->error = "Cannot allocate crypt io mempool";
841 goto bad3;
844 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
845 if (!cc->page_pool) {
846 ti->error = "Cannot allocate page mempool";
847 goto bad4;
850 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
851 if (!cc->bs) {
852 ti->error = "Cannot allocate crypt bioset";
853 goto bad_bs;
856 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
857 ti->error = "Error setting key";
858 goto bad5;
861 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
862 ti->error = "Invalid iv_offset sector";
863 goto bad5;
865 cc->iv_offset = tmpll;
867 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
868 ti->error = "Invalid device sector";
869 goto bad5;
871 cc->start = tmpll;
873 if (dm_get_device(ti, argv[3], cc->start, ti->len,
874 dm_table_get_mode(ti->table), &cc->dev)) {
875 ti->error = "Device lookup failed";
876 goto bad5;
879 if (ivmode && cc->iv_gen_ops) {
880 if (ivopts)
881 *(ivopts - 1) = ':';
882 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
883 if (!cc->iv_mode) {
884 ti->error = "Error kmallocing iv_mode string";
885 goto bad5;
887 strcpy(cc->iv_mode, ivmode);
888 } else
889 cc->iv_mode = NULL;
891 ti->private = cc;
892 return 0;
894 bad5:
895 bioset_free(cc->bs);
896 bad_bs:
897 mempool_destroy(cc->page_pool);
898 bad4:
899 mempool_destroy(cc->io_pool);
900 bad3:
901 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
902 cc->iv_gen_ops->dtr(cc);
903 bad2:
904 crypto_free_blkcipher(tfm);
905 bad1:
906 /* Must zero key material before freeing */
907 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
908 kfree(cc);
909 return -EINVAL;
912 static void crypt_dtr(struct dm_target *ti)
914 struct crypt_config *cc = (struct crypt_config *) ti->private;
916 flush_workqueue(_kcryptd_workqueue);
918 bioset_free(cc->bs);
919 mempool_destroy(cc->page_pool);
920 mempool_destroy(cc->io_pool);
922 kfree(cc->iv_mode);
923 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
924 cc->iv_gen_ops->dtr(cc);
925 crypto_free_blkcipher(cc->tfm);
926 dm_put_device(ti, cc->dev);
928 /* Must zero key material before freeing */
929 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
930 kfree(cc);
933 static int crypt_map(struct dm_target *ti, struct bio *bio,
934 union map_info *map_context)
936 struct crypt_config *cc = ti->private;
937 struct dm_crypt_io *io;
939 io = mempool_alloc(cc->io_pool, GFP_NOIO);
940 io->target = ti;
941 io->base_bio = bio;
942 io->error = io->post_process = 0;
943 atomic_set(&io->pending, 0);
944 kcryptd_queue_io(io);
946 return DM_MAPIO_SUBMITTED;
949 static int crypt_status(struct dm_target *ti, status_type_t type,
950 char *result, unsigned int maxlen)
952 struct crypt_config *cc = (struct crypt_config *) ti->private;
953 unsigned int sz = 0;
955 switch (type) {
956 case STATUSTYPE_INFO:
957 result[0] = '\0';
958 break;
960 case STATUSTYPE_TABLE:
961 if (cc->iv_mode)
962 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
963 cc->iv_mode);
964 else
965 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
967 if (cc->key_size > 0) {
968 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
969 return -ENOMEM;
971 crypt_encode_key(result + sz, cc->key, cc->key_size);
972 sz += cc->key_size << 1;
973 } else {
974 if (sz >= maxlen)
975 return -ENOMEM;
976 result[sz++] = '-';
979 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
980 cc->dev->name, (unsigned long long)cc->start);
981 break;
983 return 0;
986 static void crypt_postsuspend(struct dm_target *ti)
988 struct crypt_config *cc = ti->private;
990 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
993 static int crypt_preresume(struct dm_target *ti)
995 struct crypt_config *cc = ti->private;
997 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
998 DMERR("aborting resume - crypt key is not set.");
999 return -EAGAIN;
1002 return 0;
1005 static void crypt_resume(struct dm_target *ti)
1007 struct crypt_config *cc = ti->private;
1009 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1012 /* Message interface
1013 * key set <key>
1014 * key wipe
1016 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1018 struct crypt_config *cc = ti->private;
1020 if (argc < 2)
1021 goto error;
1023 if (!strnicmp(argv[0], MESG_STR("key"))) {
1024 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1025 DMWARN("not suspended during key manipulation.");
1026 return -EINVAL;
1028 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1029 return crypt_set_key(cc, argv[2]);
1030 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1031 return crypt_wipe_key(cc);
1034 error:
1035 DMWARN("unrecognised message received.");
1036 return -EINVAL;
1039 static struct target_type crypt_target = {
1040 .name = "crypt",
1041 .version= {1, 5, 0},
1042 .module = THIS_MODULE,
1043 .ctr = crypt_ctr,
1044 .dtr = crypt_dtr,
1045 .map = crypt_map,
1046 .status = crypt_status,
1047 .postsuspend = crypt_postsuspend,
1048 .preresume = crypt_preresume,
1049 .resume = crypt_resume,
1050 .message = crypt_message,
1053 static int __init dm_crypt_init(void)
1055 int r;
1057 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1058 if (!_crypt_io_pool)
1059 return -ENOMEM;
1061 _kcryptd_workqueue = create_workqueue("kcryptd");
1062 if (!_kcryptd_workqueue) {
1063 r = -ENOMEM;
1064 DMERR("couldn't create kcryptd");
1065 goto bad1;
1068 r = dm_register_target(&crypt_target);
1069 if (r < 0) {
1070 DMERR("register failed %d", r);
1071 goto bad2;
1074 return 0;
1076 bad2:
1077 destroy_workqueue(_kcryptd_workqueue);
1078 bad1:
1079 kmem_cache_destroy(_crypt_io_pool);
1080 return r;
1083 static void __exit dm_crypt_exit(void)
1085 int r = dm_unregister_target(&crypt_target);
1087 if (r < 0)
1088 DMERR("unregister failed %d", r);
1090 destroy_workqueue(_kcryptd_workqueue);
1091 kmem_cache_destroy(_crypt_io_pool);
1094 module_init(dm_crypt_init);
1095 module_exit(dm_crypt_exit);
1097 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1098 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1099 MODULE_LICENSE("GPL");