drm/i915: Fix sync to vblank when VGA output is turned off
[linux-2.6/mini2440.git] / drivers / gpu / drm / i915 / intel_display.c
blob3ac3b7c49869d7efc3222363b3378c6c817ee0f7
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/i2c.h>
28 #include <linux/kernel.h>
29 #include "drmP.h"
30 #include "intel_drv.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "intel_dp.h"
35 #include "drm_crtc_helper.h"
37 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
39 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
40 static void intel_update_watermarks(struct drm_device *dev);
42 typedef struct {
43 /* given values */
44 int n;
45 int m1, m2;
46 int p1, p2;
47 /* derived values */
48 int dot;
49 int vco;
50 int m;
51 int p;
52 } intel_clock_t;
54 typedef struct {
55 int min, max;
56 } intel_range_t;
58 typedef struct {
59 int dot_limit;
60 int p2_slow, p2_fast;
61 } intel_p2_t;
63 #define INTEL_P2_NUM 2
64 typedef struct intel_limit intel_limit_t;
65 struct intel_limit {
66 intel_range_t dot, vco, n, m, m1, m2, p, p1;
67 intel_p2_t p2;
68 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
69 int, int, intel_clock_t *);
72 #define I8XX_DOT_MIN 25000
73 #define I8XX_DOT_MAX 350000
74 #define I8XX_VCO_MIN 930000
75 #define I8XX_VCO_MAX 1400000
76 #define I8XX_N_MIN 3
77 #define I8XX_N_MAX 16
78 #define I8XX_M_MIN 96
79 #define I8XX_M_MAX 140
80 #define I8XX_M1_MIN 18
81 #define I8XX_M1_MAX 26
82 #define I8XX_M2_MIN 6
83 #define I8XX_M2_MAX 16
84 #define I8XX_P_MIN 4
85 #define I8XX_P_MAX 128
86 #define I8XX_P1_MIN 2
87 #define I8XX_P1_MAX 33
88 #define I8XX_P1_LVDS_MIN 1
89 #define I8XX_P1_LVDS_MAX 6
90 #define I8XX_P2_SLOW 4
91 #define I8XX_P2_FAST 2
92 #define I8XX_P2_LVDS_SLOW 14
93 #define I8XX_P2_LVDS_FAST 7
94 #define I8XX_P2_SLOW_LIMIT 165000
96 #define I9XX_DOT_MIN 20000
97 #define I9XX_DOT_MAX 400000
98 #define I9XX_VCO_MIN 1400000
99 #define I9XX_VCO_MAX 2800000
100 #define IGD_VCO_MIN 1700000
101 #define IGD_VCO_MAX 3500000
102 #define I9XX_N_MIN 1
103 #define I9XX_N_MAX 6
104 /* IGD's Ncounter is a ring counter */
105 #define IGD_N_MIN 3
106 #define IGD_N_MAX 6
107 #define I9XX_M_MIN 70
108 #define I9XX_M_MAX 120
109 #define IGD_M_MIN 2
110 #define IGD_M_MAX 256
111 #define I9XX_M1_MIN 10
112 #define I9XX_M1_MAX 22
113 #define I9XX_M2_MIN 5
114 #define I9XX_M2_MAX 9
115 /* IGD M1 is reserved, and must be 0 */
116 #define IGD_M1_MIN 0
117 #define IGD_M1_MAX 0
118 #define IGD_M2_MIN 0
119 #define IGD_M2_MAX 254
120 #define I9XX_P_SDVO_DAC_MIN 5
121 #define I9XX_P_SDVO_DAC_MAX 80
122 #define I9XX_P_LVDS_MIN 7
123 #define I9XX_P_LVDS_MAX 98
124 #define IGD_P_LVDS_MIN 7
125 #define IGD_P_LVDS_MAX 112
126 #define I9XX_P1_MIN 1
127 #define I9XX_P1_MAX 8
128 #define I9XX_P2_SDVO_DAC_SLOW 10
129 #define I9XX_P2_SDVO_DAC_FAST 5
130 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
131 #define I9XX_P2_LVDS_SLOW 14
132 #define I9XX_P2_LVDS_FAST 7
133 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
135 /*The parameter is for SDVO on G4x platform*/
136 #define G4X_DOT_SDVO_MIN 25000
137 #define G4X_DOT_SDVO_MAX 270000
138 #define G4X_VCO_MIN 1750000
139 #define G4X_VCO_MAX 3500000
140 #define G4X_N_SDVO_MIN 1
141 #define G4X_N_SDVO_MAX 4
142 #define G4X_M_SDVO_MIN 104
143 #define G4X_M_SDVO_MAX 138
144 #define G4X_M1_SDVO_MIN 17
145 #define G4X_M1_SDVO_MAX 23
146 #define G4X_M2_SDVO_MIN 5
147 #define G4X_M2_SDVO_MAX 11
148 #define G4X_P_SDVO_MIN 10
149 #define G4X_P_SDVO_MAX 30
150 #define G4X_P1_SDVO_MIN 1
151 #define G4X_P1_SDVO_MAX 3
152 #define G4X_P2_SDVO_SLOW 10
153 #define G4X_P2_SDVO_FAST 10
154 #define G4X_P2_SDVO_LIMIT 270000
156 /*The parameter is for HDMI_DAC on G4x platform*/
157 #define G4X_DOT_HDMI_DAC_MIN 22000
158 #define G4X_DOT_HDMI_DAC_MAX 400000
159 #define G4X_N_HDMI_DAC_MIN 1
160 #define G4X_N_HDMI_DAC_MAX 4
161 #define G4X_M_HDMI_DAC_MIN 104
162 #define G4X_M_HDMI_DAC_MAX 138
163 #define G4X_M1_HDMI_DAC_MIN 16
164 #define G4X_M1_HDMI_DAC_MAX 23
165 #define G4X_M2_HDMI_DAC_MIN 5
166 #define G4X_M2_HDMI_DAC_MAX 11
167 #define G4X_P_HDMI_DAC_MIN 5
168 #define G4X_P_HDMI_DAC_MAX 80
169 #define G4X_P1_HDMI_DAC_MIN 1
170 #define G4X_P1_HDMI_DAC_MAX 8
171 #define G4X_P2_HDMI_DAC_SLOW 10
172 #define G4X_P2_HDMI_DAC_FAST 5
173 #define G4X_P2_HDMI_DAC_LIMIT 165000
175 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
176 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
177 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
178 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
179 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
180 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
181 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
182 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
183 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
184 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
185 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
186 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
187 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
188 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
189 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
190 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
191 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
192 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
194 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
195 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
196 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
197 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
198 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
199 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
200 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
201 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
202 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
203 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
204 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
205 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
206 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
207 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
208 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
209 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
210 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
211 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
213 /*The parameter is for DISPLAY PORT on G4x platform*/
214 #define G4X_DOT_DISPLAY_PORT_MIN 161670
215 #define G4X_DOT_DISPLAY_PORT_MAX 227000
216 #define G4X_N_DISPLAY_PORT_MIN 1
217 #define G4X_N_DISPLAY_PORT_MAX 2
218 #define G4X_M_DISPLAY_PORT_MIN 97
219 #define G4X_M_DISPLAY_PORT_MAX 108
220 #define G4X_M1_DISPLAY_PORT_MIN 0x10
221 #define G4X_M1_DISPLAY_PORT_MAX 0x12
222 #define G4X_M2_DISPLAY_PORT_MIN 0x05
223 #define G4X_M2_DISPLAY_PORT_MAX 0x06
224 #define G4X_P_DISPLAY_PORT_MIN 10
225 #define G4X_P_DISPLAY_PORT_MAX 20
226 #define G4X_P1_DISPLAY_PORT_MIN 1
227 #define G4X_P1_DISPLAY_PORT_MAX 2
228 #define G4X_P2_DISPLAY_PORT_SLOW 10
229 #define G4X_P2_DISPLAY_PORT_FAST 10
230 #define G4X_P2_DISPLAY_PORT_LIMIT 0
232 /* IGDNG */
233 /* as we calculate clock using (register_value + 2) for
234 N/M1/M2, so here the range value for them is (actual_value-2).
236 #define IGDNG_DOT_MIN 25000
237 #define IGDNG_DOT_MAX 350000
238 #define IGDNG_VCO_MIN 1760000
239 #define IGDNG_VCO_MAX 3510000
240 #define IGDNG_N_MIN 1
241 #define IGDNG_N_MAX 5
242 #define IGDNG_M_MIN 79
243 #define IGDNG_M_MAX 118
244 #define IGDNG_M1_MIN 12
245 #define IGDNG_M1_MAX 23
246 #define IGDNG_M2_MIN 5
247 #define IGDNG_M2_MAX 9
248 #define IGDNG_P_SDVO_DAC_MIN 5
249 #define IGDNG_P_SDVO_DAC_MAX 80
250 #define IGDNG_P_LVDS_MIN 28
251 #define IGDNG_P_LVDS_MAX 112
252 #define IGDNG_P1_MIN 1
253 #define IGDNG_P1_MAX 8
254 #define IGDNG_P2_SDVO_DAC_SLOW 10
255 #define IGDNG_P2_SDVO_DAC_FAST 5
256 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
257 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
258 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
260 static bool
261 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
262 int target, int refclk, intel_clock_t *best_clock);
263 static bool
264 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
265 int target, int refclk, intel_clock_t *best_clock);
266 static bool
267 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
268 int target, int refclk, intel_clock_t *best_clock);
270 static bool
271 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
272 int target, int refclk, intel_clock_t *best_clock);
273 static bool
274 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
275 int target, int refclk, intel_clock_t *best_clock);
277 static const intel_limit_t intel_limits_i8xx_dvo = {
278 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
279 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
280 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
281 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
282 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
283 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
284 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
285 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
286 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
287 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
288 .find_pll = intel_find_best_PLL,
291 static const intel_limit_t intel_limits_i8xx_lvds = {
292 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
293 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
294 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
295 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
296 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
297 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
298 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
299 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
300 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
301 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
302 .find_pll = intel_find_best_PLL,
305 static const intel_limit_t intel_limits_i9xx_sdvo = {
306 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
307 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
308 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
309 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
310 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
311 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
312 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
313 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
314 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
315 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
316 .find_pll = intel_find_best_PLL,
319 static const intel_limit_t intel_limits_i9xx_lvds = {
320 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
321 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
322 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
323 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
324 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
325 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
326 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
327 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
328 /* The single-channel range is 25-112Mhz, and dual-channel
329 * is 80-224Mhz. Prefer single channel as much as possible.
331 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
332 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
333 .find_pll = intel_find_best_PLL,
336 /* below parameter and function is for G4X Chipset Family*/
337 static const intel_limit_t intel_limits_g4x_sdvo = {
338 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
339 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
340 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
341 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
342 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
343 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
344 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
345 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
346 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
347 .p2_slow = G4X_P2_SDVO_SLOW,
348 .p2_fast = G4X_P2_SDVO_FAST
350 .find_pll = intel_g4x_find_best_PLL,
353 static const intel_limit_t intel_limits_g4x_hdmi = {
354 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
355 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
356 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
357 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
358 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
359 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
360 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
361 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
362 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
363 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
364 .p2_fast = G4X_P2_HDMI_DAC_FAST
366 .find_pll = intel_g4x_find_best_PLL,
369 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
370 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
371 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
372 .vco = { .min = G4X_VCO_MIN,
373 .max = G4X_VCO_MAX },
374 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
375 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
376 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
377 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
378 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
379 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
380 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
381 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
382 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
383 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
384 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
386 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
387 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
388 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
390 .find_pll = intel_g4x_find_best_PLL,
393 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
394 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
395 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
396 .vco = { .min = G4X_VCO_MIN,
397 .max = G4X_VCO_MAX },
398 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
399 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
400 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
401 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
402 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
403 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
404 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
405 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
406 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
407 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
408 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
409 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
410 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
411 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
412 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
414 .find_pll = intel_g4x_find_best_PLL,
417 static const intel_limit_t intel_limits_g4x_display_port = {
418 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
419 .max = G4X_DOT_DISPLAY_PORT_MAX },
420 .vco = { .min = G4X_VCO_MIN,
421 .max = G4X_VCO_MAX},
422 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
423 .max = G4X_N_DISPLAY_PORT_MAX },
424 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
425 .max = G4X_M_DISPLAY_PORT_MAX },
426 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
427 .max = G4X_M1_DISPLAY_PORT_MAX },
428 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
429 .max = G4X_M2_DISPLAY_PORT_MAX },
430 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
431 .max = G4X_P_DISPLAY_PORT_MAX },
432 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
433 .max = G4X_P1_DISPLAY_PORT_MAX},
434 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
435 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
436 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
437 .find_pll = intel_find_pll_g4x_dp,
440 static const intel_limit_t intel_limits_igd_sdvo = {
441 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
442 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
443 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
444 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
445 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
446 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
447 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
448 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
449 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
450 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
451 .find_pll = intel_find_best_PLL,
454 static const intel_limit_t intel_limits_igd_lvds = {
455 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
456 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
457 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
458 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
459 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
460 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
461 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
462 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
463 /* IGD only supports single-channel mode. */
464 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
465 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
466 .find_pll = intel_find_best_PLL,
469 static const intel_limit_t intel_limits_igdng_sdvo = {
470 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
471 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
472 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
473 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
474 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
475 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
476 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
477 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
478 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
479 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
480 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
481 .find_pll = intel_igdng_find_best_PLL,
484 static const intel_limit_t intel_limits_igdng_lvds = {
485 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
486 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
487 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
488 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
489 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
490 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
491 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
492 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
493 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
494 .p2_slow = IGDNG_P2_LVDS_SLOW,
495 .p2_fast = IGDNG_P2_LVDS_FAST },
496 .find_pll = intel_igdng_find_best_PLL,
499 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
501 const intel_limit_t *limit;
502 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
503 limit = &intel_limits_igdng_lvds;
504 else
505 limit = &intel_limits_igdng_sdvo;
507 return limit;
510 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
512 struct drm_device *dev = crtc->dev;
513 struct drm_i915_private *dev_priv = dev->dev_private;
514 const intel_limit_t *limit;
516 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
517 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
518 LVDS_CLKB_POWER_UP)
519 /* LVDS with dual channel */
520 limit = &intel_limits_g4x_dual_channel_lvds;
521 else
522 /* LVDS with dual channel */
523 limit = &intel_limits_g4x_single_channel_lvds;
524 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
525 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
526 limit = &intel_limits_g4x_hdmi;
527 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
528 limit = &intel_limits_g4x_sdvo;
529 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
530 limit = &intel_limits_g4x_display_port;
531 } else /* The option is for other outputs */
532 limit = &intel_limits_i9xx_sdvo;
534 return limit;
537 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
539 struct drm_device *dev = crtc->dev;
540 const intel_limit_t *limit;
542 if (IS_IGDNG(dev))
543 limit = intel_igdng_limit(crtc);
544 else if (IS_G4X(dev)) {
545 limit = intel_g4x_limit(crtc);
546 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
547 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
548 limit = &intel_limits_i9xx_lvds;
549 else
550 limit = &intel_limits_i9xx_sdvo;
551 } else if (IS_IGD(dev)) {
552 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
553 limit = &intel_limits_igd_lvds;
554 else
555 limit = &intel_limits_igd_sdvo;
556 } else {
557 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
558 limit = &intel_limits_i8xx_lvds;
559 else
560 limit = &intel_limits_i8xx_dvo;
562 return limit;
565 /* m1 is reserved as 0 in IGD, n is a ring counter */
566 static void igd_clock(int refclk, intel_clock_t *clock)
568 clock->m = clock->m2 + 2;
569 clock->p = clock->p1 * clock->p2;
570 clock->vco = refclk * clock->m / clock->n;
571 clock->dot = clock->vco / clock->p;
574 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
576 if (IS_IGD(dev)) {
577 igd_clock(refclk, clock);
578 return;
580 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
581 clock->p = clock->p1 * clock->p2;
582 clock->vco = refclk * clock->m / (clock->n + 2);
583 clock->dot = clock->vco / clock->p;
587 * Returns whether any output on the specified pipe is of the specified type
589 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
591 struct drm_device *dev = crtc->dev;
592 struct drm_mode_config *mode_config = &dev->mode_config;
593 struct drm_connector *l_entry;
595 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
596 if (l_entry->encoder &&
597 l_entry->encoder->crtc == crtc) {
598 struct intel_output *intel_output = to_intel_output(l_entry);
599 if (intel_output->type == type)
600 return true;
603 return false;
606 struct drm_connector *
607 intel_pipe_get_output (struct drm_crtc *crtc)
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry, *ret = NULL;
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 ret = l_entry;
617 break;
620 return ret;
623 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
625 * Returns whether the given set of divisors are valid for a given refclk with
626 * the given connectors.
629 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
631 const intel_limit_t *limit = intel_limit (crtc);
632 struct drm_device *dev = crtc->dev;
634 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
635 INTELPllInvalid ("p1 out of range\n");
636 if (clock->p < limit->p.min || limit->p.max < clock->p)
637 INTELPllInvalid ("p out of range\n");
638 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
639 INTELPllInvalid ("m2 out of range\n");
640 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
641 INTELPllInvalid ("m1 out of range\n");
642 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
643 INTELPllInvalid ("m1 <= m2\n");
644 if (clock->m < limit->m.min || limit->m.max < clock->m)
645 INTELPllInvalid ("m out of range\n");
646 if (clock->n < limit->n.min || limit->n.max < clock->n)
647 INTELPllInvalid ("n out of range\n");
648 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
649 INTELPllInvalid ("vco out of range\n");
650 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
651 * connector, etc., rather than just a single range.
653 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
654 INTELPllInvalid ("dot out of range\n");
656 return true;
659 static bool
660 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
661 int target, int refclk, intel_clock_t *best_clock)
664 struct drm_device *dev = crtc->dev;
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 intel_clock_t clock;
667 int err = target;
669 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
670 (I915_READ(LVDS)) != 0) {
672 * For LVDS, if the panel is on, just rely on its current
673 * settings for dual-channel. We haven't figured out how to
674 * reliably set up different single/dual channel state, if we
675 * even can.
677 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
678 LVDS_CLKB_POWER_UP)
679 clock.p2 = limit->p2.p2_fast;
680 else
681 clock.p2 = limit->p2.p2_slow;
682 } else {
683 if (target < limit->p2.dot_limit)
684 clock.p2 = limit->p2.p2_slow;
685 else
686 clock.p2 = limit->p2.p2_fast;
689 memset (best_clock, 0, sizeof (*best_clock));
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
693 /* m1 is always 0 in IGD */
694 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
695 break;
696 for (clock.n = limit->n.min; clock.n <= limit->n.max;
697 clock.n++) {
698 for (clock.p1 = limit->p1.min;
699 clock.p1 <= limit->p1.max; clock.p1++) {
700 int this_err;
702 intel_clock(dev, refclk, &clock);
704 if (!intel_PLL_is_valid(crtc, &clock))
705 continue;
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
717 return (err != target);
720 static bool
721 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
722 int target, int refclk, intel_clock_t *best_clock)
724 struct drm_device *dev = crtc->dev;
725 struct drm_i915_private *dev_priv = dev->dev_private;
726 intel_clock_t clock;
727 int max_n;
728 bool found;
729 /* approximately equals target * 0.00488 */
730 int err_most = (target >> 8) + (target >> 10);
731 found = false;
733 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
734 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
735 LVDS_CLKB_POWER_UP)
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
748 /* based on hardware requriment prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirment prefere larger m1,m2, p1 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
759 intel_clock(dev, refclk, &clock);
760 if (!intel_PLL_is_valid(crtc, &clock))
761 continue;
762 this_err = abs(clock.dot - target) ;
763 if (this_err < err_most) {
764 *best_clock = clock;
765 err_most = this_err;
766 max_n = clock.n;
767 found = true;
773 return found;
776 static bool
777 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
778 int target, int refclk, intel_clock_t *best_clock)
780 struct drm_device *dev = crtc->dev;
781 intel_clock_t clock;
782 if (target < 200000) {
783 clock.n = 1;
784 clock.p1 = 2;
785 clock.p2 = 10;
786 clock.m1 = 12;
787 clock.m2 = 9;
788 } else {
789 clock.n = 2;
790 clock.p1 = 1;
791 clock.p2 = 10;
792 clock.m1 = 14;
793 clock.m2 = 8;
795 intel_clock(dev, refclk, &clock);
796 memcpy(best_clock, &clock, sizeof(intel_clock_t));
797 return true;
800 static bool
801 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
802 int target, int refclk, intel_clock_t *best_clock)
804 struct drm_device *dev = crtc->dev;
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 intel_clock_t clock;
807 int max_n;
808 bool found;
809 int err_most = 47;
810 found = false;
812 /* eDP has only 2 clock choice, no n/m/p setting */
813 if (HAS_eDP)
814 return true;
816 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
817 return intel_find_pll_igdng_dp(limit, crtc, target,
818 refclk, best_clock);
820 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
821 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
822 LVDS_CLKB_POWER_UP)
823 clock.p2 = limit->p2.p2_fast;
824 else
825 clock.p2 = limit->p2.p2_slow;
826 } else {
827 if (target < limit->p2.dot_limit)
828 clock.p2 = limit->p2.p2_slow;
829 else
830 clock.p2 = limit->p2.p2_fast;
833 memset(best_clock, 0, sizeof(*best_clock));
834 max_n = limit->n.max;
835 /* based on hardware requriment prefer smaller n to precision */
836 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
837 /* based on hardware requirment prefere larger m1,m2, p1 */
838 for (clock.m1 = limit->m1.max;
839 clock.m1 >= limit->m1.min; clock.m1--) {
840 for (clock.m2 = limit->m2.max;
841 clock.m2 >= limit->m2.min; clock.m2--) {
842 for (clock.p1 = limit->p1.max;
843 clock.p1 >= limit->p1.min; clock.p1--) {
844 int this_err;
846 intel_clock(dev, refclk, &clock);
847 if (!intel_PLL_is_valid(crtc, &clock))
848 continue;
849 this_err = abs((10000 - (target*10000/clock.dot)));
850 if (this_err < err_most) {
851 *best_clock = clock;
852 err_most = this_err;
853 max_n = clock.n;
854 found = true;
855 /* found on first matching */
856 goto out;
862 out:
863 return found;
866 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
867 static bool
868 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
869 int target, int refclk, intel_clock_t *best_clock)
871 intel_clock_t clock;
872 if (target < 200000) {
873 clock.p1 = 2;
874 clock.p2 = 10;
875 clock.n = 2;
876 clock.m1 = 23;
877 clock.m2 = 8;
878 } else {
879 clock.p1 = 1;
880 clock.p2 = 10;
881 clock.n = 1;
882 clock.m1 = 14;
883 clock.m2 = 2;
885 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
886 clock.p = (clock.p1 * clock.p2);
887 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
888 memcpy(best_clock, &clock, sizeof(intel_clock_t));
889 return true;
892 void
893 intel_wait_for_vblank(struct drm_device *dev)
895 /* Wait for 20ms, i.e. one cycle at 50hz. */
896 mdelay(20);
899 static int
900 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
901 struct drm_framebuffer *old_fb)
903 struct drm_device *dev = crtc->dev;
904 struct drm_i915_private *dev_priv = dev->dev_private;
905 struct drm_i915_master_private *master_priv;
906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
907 struct intel_framebuffer *intel_fb;
908 struct drm_i915_gem_object *obj_priv;
909 struct drm_gem_object *obj;
910 int pipe = intel_crtc->pipe;
911 unsigned long Start, Offset;
912 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
913 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
914 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
915 int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
916 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
917 u32 dspcntr, alignment;
918 int ret;
920 /* no fb bound */
921 if (!crtc->fb) {
922 DRM_DEBUG("No FB bound\n");
923 return 0;
926 switch (pipe) {
927 case 0:
928 case 1:
929 break;
930 default:
931 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
932 return -EINVAL;
935 intel_fb = to_intel_framebuffer(crtc->fb);
936 obj = intel_fb->obj;
937 obj_priv = obj->driver_private;
939 switch (obj_priv->tiling_mode) {
940 case I915_TILING_NONE:
941 alignment = 64 * 1024;
942 break;
943 case I915_TILING_X:
944 /* pin() will align the object as required by fence */
945 alignment = 0;
946 break;
947 case I915_TILING_Y:
948 /* FIXME: Is this true? */
949 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
950 return -EINVAL;
951 default:
952 BUG();
955 mutex_lock(&dev->struct_mutex);
956 ret = i915_gem_object_pin(obj, alignment);
957 if (ret != 0) {
958 mutex_unlock(&dev->struct_mutex);
959 return ret;
962 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
963 if (ret != 0) {
964 i915_gem_object_unpin(obj);
965 mutex_unlock(&dev->struct_mutex);
966 return ret;
969 /* Pre-i965 needs to install a fence for tiled scan-out */
970 if (!IS_I965G(dev) &&
971 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
972 obj_priv->tiling_mode != I915_TILING_NONE) {
973 ret = i915_gem_object_get_fence_reg(obj);
974 if (ret != 0) {
975 i915_gem_object_unpin(obj);
976 mutex_unlock(&dev->struct_mutex);
977 return ret;
981 dspcntr = I915_READ(dspcntr_reg);
982 /* Mask out pixel format bits in case we change it */
983 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
984 switch (crtc->fb->bits_per_pixel) {
985 case 8:
986 dspcntr |= DISPPLANE_8BPP;
987 break;
988 case 16:
989 if (crtc->fb->depth == 15)
990 dspcntr |= DISPPLANE_15_16BPP;
991 else
992 dspcntr |= DISPPLANE_16BPP;
993 break;
994 case 24:
995 case 32:
996 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
997 break;
998 default:
999 DRM_ERROR("Unknown color depth\n");
1000 i915_gem_object_unpin(obj);
1001 mutex_unlock(&dev->struct_mutex);
1002 return -EINVAL;
1004 if (IS_I965G(dev)) {
1005 if (obj_priv->tiling_mode != I915_TILING_NONE)
1006 dspcntr |= DISPPLANE_TILED;
1007 else
1008 dspcntr &= ~DISPPLANE_TILED;
1011 if (IS_IGDNG(dev))
1012 /* must disable */
1013 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1015 I915_WRITE(dspcntr_reg, dspcntr);
1017 Start = obj_priv->gtt_offset;
1018 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1020 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1021 I915_WRITE(dspstride, crtc->fb->pitch);
1022 if (IS_I965G(dev)) {
1023 I915_WRITE(dspbase, Offset);
1024 I915_READ(dspbase);
1025 I915_WRITE(dspsurf, Start);
1026 I915_READ(dspsurf);
1027 I915_WRITE(dsptileoff, (y << 16) | x);
1028 } else {
1029 I915_WRITE(dspbase, Start + Offset);
1030 I915_READ(dspbase);
1033 intel_wait_for_vblank(dev);
1035 if (old_fb) {
1036 intel_fb = to_intel_framebuffer(old_fb);
1037 i915_gem_object_unpin(intel_fb->obj);
1039 mutex_unlock(&dev->struct_mutex);
1041 if (!dev->primary->master)
1042 return 0;
1044 master_priv = dev->primary->master->driver_priv;
1045 if (!master_priv->sarea_priv)
1046 return 0;
1048 if (pipe) {
1049 master_priv->sarea_priv->pipeB_x = x;
1050 master_priv->sarea_priv->pipeB_y = y;
1051 } else {
1052 master_priv->sarea_priv->pipeA_x = x;
1053 master_priv->sarea_priv->pipeA_y = y;
1056 return 0;
1059 /* Disable the VGA plane that we never use */
1060 static void i915_disable_vga (struct drm_device *dev)
1062 struct drm_i915_private *dev_priv = dev->dev_private;
1063 u8 sr1;
1064 u32 vga_reg;
1066 if (IS_IGDNG(dev))
1067 vga_reg = CPU_VGACNTRL;
1068 else
1069 vga_reg = VGACNTRL;
1071 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1072 return;
1074 I915_WRITE8(VGA_SR_INDEX, 1);
1075 sr1 = I915_READ8(VGA_SR_DATA);
1076 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1077 udelay(100);
1079 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1082 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1084 struct drm_device *dev = crtc->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086 u32 dpa_ctl;
1088 DRM_DEBUG("\n");
1089 dpa_ctl = I915_READ(DP_A);
1090 dpa_ctl &= ~DP_PLL_ENABLE;
1091 I915_WRITE(DP_A, dpa_ctl);
1094 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1096 struct drm_device *dev = crtc->dev;
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 u32 dpa_ctl;
1100 dpa_ctl = I915_READ(DP_A);
1101 dpa_ctl |= DP_PLL_ENABLE;
1102 I915_WRITE(DP_A, dpa_ctl);
1103 udelay(200);
1107 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1109 struct drm_device *dev = crtc->dev;
1110 struct drm_i915_private *dev_priv = dev->dev_private;
1111 u32 dpa_ctl;
1113 DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1114 dpa_ctl = I915_READ(DP_A);
1115 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1117 if (clock < 200000) {
1118 u32 temp;
1119 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1120 /* workaround for 160Mhz:
1121 1) program 0x4600c bits 15:0 = 0x8124
1122 2) program 0x46010 bit 0 = 1
1123 3) program 0x46034 bit 24 = 1
1124 4) program 0x64000 bit 14 = 1
1126 temp = I915_READ(0x4600c);
1127 temp &= 0xffff0000;
1128 I915_WRITE(0x4600c, temp | 0x8124);
1130 temp = I915_READ(0x46010);
1131 I915_WRITE(0x46010, temp | 1);
1133 temp = I915_READ(0x46034);
1134 I915_WRITE(0x46034, temp | (1 << 24));
1135 } else {
1136 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1138 I915_WRITE(DP_A, dpa_ctl);
1140 udelay(500);
1143 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1145 struct drm_device *dev = crtc->dev;
1146 struct drm_i915_private *dev_priv = dev->dev_private;
1147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1148 int pipe = intel_crtc->pipe;
1149 int plane = intel_crtc->plane;
1150 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1151 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1152 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1153 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1154 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1155 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1156 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1157 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1158 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1159 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1160 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1161 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1162 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1163 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1164 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1165 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1166 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1167 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1168 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1169 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1170 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1171 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1172 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1173 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1174 u32 temp;
1175 int tries = 5, j, n;
1177 /* XXX: When our outputs are all unaware of DPMS modes other than off
1178 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1180 switch (mode) {
1181 case DRM_MODE_DPMS_ON:
1182 case DRM_MODE_DPMS_STANDBY:
1183 case DRM_MODE_DPMS_SUSPEND:
1184 DRM_DEBUG("crtc %d dpms on\n", pipe);
1186 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1187 temp = I915_READ(PCH_LVDS);
1188 if ((temp & LVDS_PORT_EN) == 0) {
1189 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1190 POSTING_READ(PCH_LVDS);
1194 if (HAS_eDP) {
1195 /* enable eDP PLL */
1196 igdng_enable_pll_edp(crtc);
1197 } else {
1198 /* enable PCH DPLL */
1199 temp = I915_READ(pch_dpll_reg);
1200 if ((temp & DPLL_VCO_ENABLE) == 0) {
1201 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1202 I915_READ(pch_dpll_reg);
1205 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1206 temp = I915_READ(fdi_rx_reg);
1207 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1208 FDI_SEL_PCDCLK |
1209 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1210 I915_READ(fdi_rx_reg);
1211 udelay(200);
1213 /* Enable CPU FDI TX PLL, always on for IGDNG */
1214 temp = I915_READ(fdi_tx_reg);
1215 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1216 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1217 I915_READ(fdi_tx_reg);
1218 udelay(100);
1222 /* Enable panel fitting for LVDS */
1223 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1224 temp = I915_READ(pf_ctl_reg);
1225 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1227 /* currently full aspect */
1228 I915_WRITE(pf_win_pos, 0);
1230 I915_WRITE(pf_win_size,
1231 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1232 (dev_priv->panel_fixed_mode->vdisplay));
1235 /* Enable CPU pipe */
1236 temp = I915_READ(pipeconf_reg);
1237 if ((temp & PIPEACONF_ENABLE) == 0) {
1238 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1239 I915_READ(pipeconf_reg);
1240 udelay(100);
1243 /* configure and enable CPU plane */
1244 temp = I915_READ(dspcntr_reg);
1245 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1246 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1247 /* Flush the plane changes */
1248 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1251 if (!HAS_eDP) {
1252 /* enable CPU FDI TX and PCH FDI RX */
1253 temp = I915_READ(fdi_tx_reg);
1254 temp |= FDI_TX_ENABLE;
1255 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1256 temp &= ~FDI_LINK_TRAIN_NONE;
1257 temp |= FDI_LINK_TRAIN_PATTERN_1;
1258 I915_WRITE(fdi_tx_reg, temp);
1259 I915_READ(fdi_tx_reg);
1261 temp = I915_READ(fdi_rx_reg);
1262 temp &= ~FDI_LINK_TRAIN_NONE;
1263 temp |= FDI_LINK_TRAIN_PATTERN_1;
1264 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1265 I915_READ(fdi_rx_reg);
1267 udelay(150);
1269 /* Train FDI. */
1270 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1271 for train result */
1272 temp = I915_READ(fdi_rx_imr_reg);
1273 temp &= ~FDI_RX_SYMBOL_LOCK;
1274 temp &= ~FDI_RX_BIT_LOCK;
1275 I915_WRITE(fdi_rx_imr_reg, temp);
1276 I915_READ(fdi_rx_imr_reg);
1277 udelay(150);
1279 temp = I915_READ(fdi_rx_iir_reg);
1280 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1282 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1283 for (j = 0; j < tries; j++) {
1284 temp = I915_READ(fdi_rx_iir_reg);
1285 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1286 if (temp & FDI_RX_BIT_LOCK)
1287 break;
1288 udelay(200);
1290 if (j != tries)
1291 I915_WRITE(fdi_rx_iir_reg,
1292 temp | FDI_RX_BIT_LOCK);
1293 else
1294 DRM_DEBUG("train 1 fail\n");
1295 } else {
1296 I915_WRITE(fdi_rx_iir_reg,
1297 temp | FDI_RX_BIT_LOCK);
1298 DRM_DEBUG("train 1 ok 2!\n");
1300 temp = I915_READ(fdi_tx_reg);
1301 temp &= ~FDI_LINK_TRAIN_NONE;
1302 temp |= FDI_LINK_TRAIN_PATTERN_2;
1303 I915_WRITE(fdi_tx_reg, temp);
1305 temp = I915_READ(fdi_rx_reg);
1306 temp &= ~FDI_LINK_TRAIN_NONE;
1307 temp |= FDI_LINK_TRAIN_PATTERN_2;
1308 I915_WRITE(fdi_rx_reg, temp);
1310 udelay(150);
1312 temp = I915_READ(fdi_rx_iir_reg);
1313 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1315 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1316 for (j = 0; j < tries; j++) {
1317 temp = I915_READ(fdi_rx_iir_reg);
1318 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1319 if (temp & FDI_RX_SYMBOL_LOCK)
1320 break;
1321 udelay(200);
1323 if (j != tries) {
1324 I915_WRITE(fdi_rx_iir_reg,
1325 temp | FDI_RX_SYMBOL_LOCK);
1326 DRM_DEBUG("train 2 ok 1!\n");
1327 } else
1328 DRM_DEBUG("train 2 fail\n");
1329 } else {
1330 I915_WRITE(fdi_rx_iir_reg,
1331 temp | FDI_RX_SYMBOL_LOCK);
1332 DRM_DEBUG("train 2 ok 2!\n");
1334 DRM_DEBUG("train done\n");
1336 /* set transcoder timing */
1337 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1338 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1339 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1341 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1342 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1343 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1345 /* enable PCH transcoder */
1346 temp = I915_READ(transconf_reg);
1347 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1348 I915_READ(transconf_reg);
1350 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1353 /* enable normal */
1355 temp = I915_READ(fdi_tx_reg);
1356 temp &= ~FDI_LINK_TRAIN_NONE;
1357 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1358 FDI_TX_ENHANCE_FRAME_ENABLE);
1359 I915_READ(fdi_tx_reg);
1361 temp = I915_READ(fdi_rx_reg);
1362 temp &= ~FDI_LINK_TRAIN_NONE;
1363 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1364 FDI_RX_ENHANCE_FRAME_ENABLE);
1365 I915_READ(fdi_rx_reg);
1367 /* wait one idle pattern time */
1368 udelay(100);
1372 intel_crtc_load_lut(crtc);
1374 break;
1375 case DRM_MODE_DPMS_OFF:
1376 DRM_DEBUG("crtc %d dpms off\n", pipe);
1378 /* Disable display plane */
1379 temp = I915_READ(dspcntr_reg);
1380 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1381 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1382 /* Flush the plane changes */
1383 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1384 I915_READ(dspbase_reg);
1387 i915_disable_vga(dev);
1389 /* disable cpu pipe, disable after all planes disabled */
1390 temp = I915_READ(pipeconf_reg);
1391 if ((temp & PIPEACONF_ENABLE) != 0) {
1392 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1393 I915_READ(pipeconf_reg);
1394 n = 0;
1395 /* wait for cpu pipe off, pipe state */
1396 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1397 n++;
1398 if (n < 60) {
1399 udelay(500);
1400 continue;
1401 } else {
1402 DRM_DEBUG("pipe %d off delay\n", pipe);
1403 break;
1406 } else
1407 DRM_DEBUG("crtc %d is disabled\n", pipe);
1409 udelay(100);
1411 /* Disable PF */
1412 temp = I915_READ(pf_ctl_reg);
1413 if ((temp & PF_ENABLE) != 0) {
1414 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1415 I915_READ(pf_ctl_reg);
1417 I915_WRITE(pf_win_size, 0);
1419 /* disable CPU FDI tx and PCH FDI rx */
1420 temp = I915_READ(fdi_tx_reg);
1421 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1422 I915_READ(fdi_tx_reg);
1424 temp = I915_READ(fdi_rx_reg);
1425 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1426 I915_READ(fdi_rx_reg);
1428 udelay(100);
1430 /* still set train pattern 1 */
1431 temp = I915_READ(fdi_tx_reg);
1432 temp &= ~FDI_LINK_TRAIN_NONE;
1433 temp |= FDI_LINK_TRAIN_PATTERN_1;
1434 I915_WRITE(fdi_tx_reg, temp);
1436 temp = I915_READ(fdi_rx_reg);
1437 temp &= ~FDI_LINK_TRAIN_NONE;
1438 temp |= FDI_LINK_TRAIN_PATTERN_1;
1439 I915_WRITE(fdi_rx_reg, temp);
1441 udelay(100);
1443 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1444 temp = I915_READ(PCH_LVDS);
1445 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
1446 I915_READ(PCH_LVDS);
1447 udelay(100);
1450 /* disable PCH transcoder */
1451 temp = I915_READ(transconf_reg);
1452 if ((temp & TRANS_ENABLE) != 0) {
1453 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1454 I915_READ(transconf_reg);
1455 n = 0;
1456 /* wait for PCH transcoder off, transcoder state */
1457 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1458 n++;
1459 if (n < 60) {
1460 udelay(500);
1461 continue;
1462 } else {
1463 DRM_DEBUG("transcoder %d off delay\n", pipe);
1464 break;
1469 udelay(100);
1471 /* disable PCH DPLL */
1472 temp = I915_READ(pch_dpll_reg);
1473 if ((temp & DPLL_VCO_ENABLE) != 0) {
1474 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1475 I915_READ(pch_dpll_reg);
1478 if (HAS_eDP) {
1479 igdng_disable_pll_edp(crtc);
1482 temp = I915_READ(fdi_rx_reg);
1483 temp &= ~FDI_SEL_PCDCLK;
1484 I915_WRITE(fdi_rx_reg, temp);
1485 I915_READ(fdi_rx_reg);
1487 temp = I915_READ(fdi_rx_reg);
1488 temp &= ~FDI_RX_PLL_ENABLE;
1489 I915_WRITE(fdi_rx_reg, temp);
1490 I915_READ(fdi_rx_reg);
1492 /* Disable CPU FDI TX PLL */
1493 temp = I915_READ(fdi_tx_reg);
1494 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1495 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1496 I915_READ(fdi_tx_reg);
1497 udelay(100);
1500 /* Wait for the clocks to turn off. */
1501 udelay(100);
1502 break;
1506 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1508 struct drm_device *dev = crtc->dev;
1509 struct drm_i915_private *dev_priv = dev->dev_private;
1510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1511 int pipe = intel_crtc->pipe;
1512 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1513 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1514 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1515 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1516 u32 temp;
1518 /* XXX: When our outputs are all unaware of DPMS modes other than off
1519 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1521 switch (mode) {
1522 case DRM_MODE_DPMS_ON:
1523 case DRM_MODE_DPMS_STANDBY:
1524 case DRM_MODE_DPMS_SUSPEND:
1525 /* Enable the DPLL */
1526 temp = I915_READ(dpll_reg);
1527 if ((temp & DPLL_VCO_ENABLE) == 0) {
1528 I915_WRITE(dpll_reg, temp);
1529 I915_READ(dpll_reg);
1530 /* Wait for the clocks to stabilize. */
1531 udelay(150);
1532 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1533 I915_READ(dpll_reg);
1534 /* Wait for the clocks to stabilize. */
1535 udelay(150);
1536 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1537 I915_READ(dpll_reg);
1538 /* Wait for the clocks to stabilize. */
1539 udelay(150);
1542 /* Enable the pipe */
1543 temp = I915_READ(pipeconf_reg);
1544 if ((temp & PIPEACONF_ENABLE) == 0)
1545 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1547 /* Enable the plane */
1548 temp = I915_READ(dspcntr_reg);
1549 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1550 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1551 /* Flush the plane changes */
1552 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1555 intel_crtc_load_lut(crtc);
1557 /* Give the overlay scaler a chance to enable if it's on this pipe */
1558 //intel_crtc_dpms_video(crtc, true); TODO
1559 intel_update_watermarks(dev);
1560 break;
1561 case DRM_MODE_DPMS_OFF:
1562 intel_update_watermarks(dev);
1563 /* Give the overlay scaler a chance to disable if it's on this pipe */
1564 //intel_crtc_dpms_video(crtc, FALSE); TODO
1565 drm_vblank_off(dev, pipe);
1567 /* Disable the VGA plane that we never use */
1568 i915_disable_vga(dev);
1570 /* Disable display plane */
1571 temp = I915_READ(dspcntr_reg);
1572 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1573 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1574 /* Flush the plane changes */
1575 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1576 I915_READ(dspbase_reg);
1579 if (!IS_I9XX(dev)) {
1580 /* Wait for vblank for the disable to take effect */
1581 intel_wait_for_vblank(dev);
1584 /* Next, disable display pipes */
1585 temp = I915_READ(pipeconf_reg);
1586 if ((temp & PIPEACONF_ENABLE) != 0) {
1587 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1588 I915_READ(pipeconf_reg);
1591 /* Wait for vblank for the disable to take effect. */
1592 intel_wait_for_vblank(dev);
1594 temp = I915_READ(dpll_reg);
1595 if ((temp & DPLL_VCO_ENABLE) != 0) {
1596 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1597 I915_READ(dpll_reg);
1600 /* Wait for the clocks to turn off. */
1601 udelay(150);
1602 break;
1607 * Sets the power management mode of the pipe and plane.
1609 * This code should probably grow support for turning the cursor off and back
1610 * on appropriately at the same time as we're turning the pipe off/on.
1612 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1614 struct drm_device *dev = crtc->dev;
1615 struct drm_i915_master_private *master_priv;
1616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1617 int pipe = intel_crtc->pipe;
1618 bool enabled;
1620 if (IS_IGDNG(dev))
1621 igdng_crtc_dpms(crtc, mode);
1622 else
1623 i9xx_crtc_dpms(crtc, mode);
1625 if (!dev->primary->master)
1626 return;
1628 master_priv = dev->primary->master->driver_priv;
1629 if (!master_priv->sarea_priv)
1630 return;
1632 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1634 switch (pipe) {
1635 case 0:
1636 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1637 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1638 break;
1639 case 1:
1640 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1641 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1642 break;
1643 default:
1644 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1645 break;
1648 intel_crtc->dpms_mode = mode;
1651 static void intel_crtc_prepare (struct drm_crtc *crtc)
1653 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1654 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1657 static void intel_crtc_commit (struct drm_crtc *crtc)
1659 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1660 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1663 void intel_encoder_prepare (struct drm_encoder *encoder)
1665 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1666 /* lvds has its own version of prepare see intel_lvds_prepare */
1667 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1670 void intel_encoder_commit (struct drm_encoder *encoder)
1672 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1673 /* lvds has its own version of commit see intel_lvds_commit */
1674 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1677 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1678 struct drm_display_mode *mode,
1679 struct drm_display_mode *adjusted_mode)
1681 struct drm_device *dev = crtc->dev;
1682 if (IS_IGDNG(dev)) {
1683 /* FDI link clock is fixed at 2.7G */
1684 if (mode->clock * 3 > 27000 * 4)
1685 return MODE_CLOCK_HIGH;
1687 return true;
1691 /** Returns the core display clock speed for i830 - i945 */
1692 static int intel_get_core_clock_speed(struct drm_device *dev)
1695 /* Core clock values taken from the published datasheets.
1696 * The 830 may go up to 166 Mhz, which we should check.
1698 if (IS_I945G(dev))
1699 return 400000;
1700 else if (IS_I915G(dev))
1701 return 333000;
1702 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1703 return 200000;
1704 else if (IS_I915GM(dev)) {
1705 u16 gcfgc = 0;
1707 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1709 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1710 return 133000;
1711 else {
1712 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1713 case GC_DISPLAY_CLOCK_333_MHZ:
1714 return 333000;
1715 default:
1716 case GC_DISPLAY_CLOCK_190_200_MHZ:
1717 return 190000;
1720 } else if (IS_I865G(dev))
1721 return 266000;
1722 else if (IS_I855(dev)) {
1723 u16 hpllcc = 0;
1724 /* Assume that the hardware is in the high speed state. This
1725 * should be the default.
1727 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1728 case GC_CLOCK_133_200:
1729 case GC_CLOCK_100_200:
1730 return 200000;
1731 case GC_CLOCK_166_250:
1732 return 250000;
1733 case GC_CLOCK_100_133:
1734 return 133000;
1736 } else /* 852, 830 */
1737 return 133000;
1739 return 0; /* Silence gcc warning */
1743 * Return the pipe currently connected to the panel fitter,
1744 * or -1 if the panel fitter is not present or not in use
1746 static int intel_panel_fitter_pipe (struct drm_device *dev)
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749 u32 pfit_control;
1751 /* i830 doesn't have a panel fitter */
1752 if (IS_I830(dev))
1753 return -1;
1755 pfit_control = I915_READ(PFIT_CONTROL);
1757 /* See if the panel fitter is in use */
1758 if ((pfit_control & PFIT_ENABLE) == 0)
1759 return -1;
1761 /* 965 can place panel fitter on either pipe */
1762 if (IS_I965G(dev))
1763 return (pfit_control >> 29) & 0x3;
1765 /* older chips can only use pipe 1 */
1766 return 1;
1769 struct fdi_m_n {
1770 u32 tu;
1771 u32 gmch_m;
1772 u32 gmch_n;
1773 u32 link_m;
1774 u32 link_n;
1777 static void
1778 fdi_reduce_ratio(u32 *num, u32 *den)
1780 while (*num > 0xffffff || *den > 0xffffff) {
1781 *num >>= 1;
1782 *den >>= 1;
1786 #define DATA_N 0x800000
1787 #define LINK_N 0x80000
1789 static void
1790 igdng_compute_m_n(int bits_per_pixel, int nlanes,
1791 int pixel_clock, int link_clock,
1792 struct fdi_m_n *m_n)
1794 u64 temp;
1796 m_n->tu = 64; /* default size */
1798 temp = (u64) DATA_N * pixel_clock;
1799 temp = div_u64(temp, link_clock);
1800 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
1801 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
1802 m_n->gmch_n = DATA_N;
1803 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1805 temp = (u64) LINK_N * pixel_clock;
1806 m_n->link_m = div_u64(temp, link_clock);
1807 m_n->link_n = LINK_N;
1808 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1812 struct intel_watermark_params {
1813 unsigned long fifo_size;
1814 unsigned long max_wm;
1815 unsigned long default_wm;
1816 unsigned long guard_size;
1817 unsigned long cacheline_size;
1820 /* IGD has different values for various configs */
1821 static struct intel_watermark_params igd_display_wm = {
1822 IGD_DISPLAY_FIFO,
1823 IGD_MAX_WM,
1824 IGD_DFT_WM,
1825 IGD_GUARD_WM,
1826 IGD_FIFO_LINE_SIZE
1828 static struct intel_watermark_params igd_display_hplloff_wm = {
1829 IGD_DISPLAY_FIFO,
1830 IGD_MAX_WM,
1831 IGD_DFT_HPLLOFF_WM,
1832 IGD_GUARD_WM,
1833 IGD_FIFO_LINE_SIZE
1835 static struct intel_watermark_params igd_cursor_wm = {
1836 IGD_CURSOR_FIFO,
1837 IGD_CURSOR_MAX_WM,
1838 IGD_CURSOR_DFT_WM,
1839 IGD_CURSOR_GUARD_WM,
1840 IGD_FIFO_LINE_SIZE,
1842 static struct intel_watermark_params igd_cursor_hplloff_wm = {
1843 IGD_CURSOR_FIFO,
1844 IGD_CURSOR_MAX_WM,
1845 IGD_CURSOR_DFT_WM,
1846 IGD_CURSOR_GUARD_WM,
1847 IGD_FIFO_LINE_SIZE
1849 static struct intel_watermark_params i945_wm_info = {
1850 I945_FIFO_SIZE,
1851 I915_MAX_WM,
1854 I915_FIFO_LINE_SIZE
1856 static struct intel_watermark_params i915_wm_info = {
1857 I915_FIFO_SIZE,
1858 I915_MAX_WM,
1861 I915_FIFO_LINE_SIZE
1863 static struct intel_watermark_params i855_wm_info = {
1864 I855GM_FIFO_SIZE,
1865 I915_MAX_WM,
1868 I830_FIFO_LINE_SIZE
1870 static struct intel_watermark_params i830_wm_info = {
1871 I830_FIFO_SIZE,
1872 I915_MAX_WM,
1875 I830_FIFO_LINE_SIZE
1879 * intel_calculate_wm - calculate watermark level
1880 * @clock_in_khz: pixel clock
1881 * @wm: chip FIFO params
1882 * @pixel_size: display pixel size
1883 * @latency_ns: memory latency for the platform
1885 * Calculate the watermark level (the level at which the display plane will
1886 * start fetching from memory again). Each chip has a different display
1887 * FIFO size and allocation, so the caller needs to figure that out and pass
1888 * in the correct intel_watermark_params structure.
1890 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1891 * on the pixel size. When it reaches the watermark level, it'll start
1892 * fetching FIFO line sized based chunks from memory until the FIFO fills
1893 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1894 * will occur, and a display engine hang could result.
1896 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1897 struct intel_watermark_params *wm,
1898 int pixel_size,
1899 unsigned long latency_ns)
1901 long entries_required, wm_size;
1904 * Note: we need to make sure we don't overflow for various clock &
1905 * latency values.
1906 * clocks go from a few thousand to several hundred thousand.
1907 * latency is usually a few thousand
1909 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1910 1000;
1911 entries_required /= wm->cacheline_size;
1913 DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
1915 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
1917 DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
1919 /* Don't promote wm_size to unsigned... */
1920 if (wm_size > (long)wm->max_wm)
1921 wm_size = wm->max_wm;
1922 if (wm_size <= 0)
1923 wm_size = wm->default_wm;
1924 return wm_size;
1927 struct cxsr_latency {
1928 int is_desktop;
1929 unsigned long fsb_freq;
1930 unsigned long mem_freq;
1931 unsigned long display_sr;
1932 unsigned long display_hpll_disable;
1933 unsigned long cursor_sr;
1934 unsigned long cursor_hpll_disable;
1937 static struct cxsr_latency cxsr_latency_table[] = {
1938 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
1939 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
1940 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
1942 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
1943 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
1944 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
1946 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
1947 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
1948 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
1950 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
1951 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
1952 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
1954 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
1955 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
1956 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
1958 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
1959 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
1960 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
1963 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
1964 int mem)
1966 int i;
1967 struct cxsr_latency *latency;
1969 if (fsb == 0 || mem == 0)
1970 return NULL;
1972 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
1973 latency = &cxsr_latency_table[i];
1974 if (is_desktop == latency->is_desktop &&
1975 fsb == latency->fsb_freq && mem == latency->mem_freq)
1976 break;
1978 if (i >= ARRAY_SIZE(cxsr_latency_table)) {
1979 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1980 return NULL;
1982 return latency;
1985 static void igd_disable_cxsr(struct drm_device *dev)
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988 u32 reg;
1990 /* deactivate cxsr */
1991 reg = I915_READ(DSPFW3);
1992 reg &= ~(IGD_SELF_REFRESH_EN);
1993 I915_WRITE(DSPFW3, reg);
1994 DRM_INFO("Big FIFO is disabled\n");
1997 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
1998 int pixel_size)
2000 struct drm_i915_private *dev_priv = dev->dev_private;
2001 u32 reg;
2002 unsigned long wm;
2003 struct cxsr_latency *latency;
2005 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2006 dev_priv->mem_freq);
2007 if (!latency) {
2008 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2009 igd_disable_cxsr(dev);
2010 return;
2013 /* Display SR */
2014 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2015 latency->display_sr);
2016 reg = I915_READ(DSPFW1);
2017 reg &= 0x7fffff;
2018 reg |= wm << 23;
2019 I915_WRITE(DSPFW1, reg);
2020 DRM_DEBUG("DSPFW1 register is %x\n", reg);
2022 /* cursor SR */
2023 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2024 latency->cursor_sr);
2025 reg = I915_READ(DSPFW3);
2026 reg &= ~(0x3f << 24);
2027 reg |= (wm & 0x3f) << 24;
2028 I915_WRITE(DSPFW3, reg);
2030 /* Display HPLL off SR */
2031 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2032 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2033 reg = I915_READ(DSPFW3);
2034 reg &= 0xfffffe00;
2035 reg |= wm & 0x1ff;
2036 I915_WRITE(DSPFW3, reg);
2038 /* cursor HPLL off SR */
2039 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2040 latency->cursor_hpll_disable);
2041 reg = I915_READ(DSPFW3);
2042 reg &= ~(0x3f << 16);
2043 reg |= (wm & 0x3f) << 16;
2044 I915_WRITE(DSPFW3, reg);
2045 DRM_DEBUG("DSPFW3 register is %x\n", reg);
2047 /* activate cxsr */
2048 reg = I915_READ(DSPFW3);
2049 reg |= IGD_SELF_REFRESH_EN;
2050 I915_WRITE(DSPFW3, reg);
2052 DRM_INFO("Big FIFO is enabled\n");
2054 return;
2058 * Latency for FIFO fetches is dependent on several factors:
2059 * - memory configuration (speed, channels)
2060 * - chipset
2061 * - current MCH state
2062 * It can be fairly high in some situations, so here we assume a fairly
2063 * pessimal value. It's a tradeoff between extra memory fetches (if we
2064 * set this value too high, the FIFO will fetch frequently to stay full)
2065 * and power consumption (set it too low to save power and we might see
2066 * FIFO underruns and display "flicker").
2068 * A value of 5us seems to be a good balance; safe for very low end
2069 * platforms but not overly aggressive on lower latency configs.
2071 const static int latency_ns = 5000;
2073 static int intel_get_fifo_size(struct drm_device *dev, int plane)
2075 struct drm_i915_private *dev_priv = dev->dev_private;
2076 uint32_t dsparb = I915_READ(DSPARB);
2077 int size;
2079 if (IS_I9XX(dev)) {
2080 if (plane == 0)
2081 size = dsparb & 0x7f;
2082 else
2083 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2084 (dsparb & 0x7f);
2085 } else if (IS_I85X(dev)) {
2086 if (plane == 0)
2087 size = dsparb & 0x1ff;
2088 else
2089 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2090 (dsparb & 0x1ff);
2091 size >>= 1; /* Convert to cachelines */
2092 } else if (IS_845G(dev)) {
2093 size = dsparb & 0x7f;
2094 size >>= 2; /* Convert to cachelines */
2095 } else {
2096 size = dsparb & 0x7f;
2097 size >>= 1; /* Convert to cachelines */
2100 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2101 size);
2103 return size;
2106 static void i965_update_wm(struct drm_device *dev)
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2110 DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2112 /* 965 has limitations... */
2113 I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2114 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2117 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2118 int planeb_clock, int sr_hdisplay, int pixel_size)
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121 uint32_t fwater_lo;
2122 uint32_t fwater_hi;
2123 int total_size, cacheline_size, cwm, srwm = 1;
2124 int planea_wm, planeb_wm;
2125 struct intel_watermark_params planea_params, planeb_params;
2126 unsigned long line_time_us;
2127 int sr_clock, sr_entries = 0;
2129 /* Create copies of the base settings for each pipe */
2130 if (IS_I965GM(dev) || IS_I945GM(dev))
2131 planea_params = planeb_params = i945_wm_info;
2132 else if (IS_I9XX(dev))
2133 planea_params = planeb_params = i915_wm_info;
2134 else
2135 planea_params = planeb_params = i855_wm_info;
2137 /* Grab a couple of global values before we overwrite them */
2138 total_size = planea_params.fifo_size;
2139 cacheline_size = planea_params.cacheline_size;
2141 /* Update per-plane FIFO sizes */
2142 planea_params.fifo_size = intel_get_fifo_size(dev, 0);
2143 planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
2145 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2146 pixel_size, latency_ns);
2147 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2148 pixel_size, latency_ns);
2149 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2152 * Overlay gets an aggressive default since video jitter is bad.
2154 cwm = 2;
2156 /* Calc sr entries for one plane configs */
2157 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2158 /* self-refresh has much higher latency */
2159 const static int sr_latency_ns = 6000;
2161 sr_clock = planea_clock ? planea_clock : planeb_clock;
2162 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2164 /* Use ns/us then divide to preserve precision */
2165 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2166 pixel_size * sr_hdisplay) / 1000;
2167 sr_entries = roundup(sr_entries / cacheline_size, 1);
2168 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2169 srwm = total_size - sr_entries;
2170 if (srwm < 0)
2171 srwm = 1;
2172 if (IS_I9XX(dev))
2173 I915_WRITE(FW_BLC_SELF, (srwm & 0x3f));
2176 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2177 planea_wm, planeb_wm, cwm, srwm);
2179 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2180 fwater_hi = (cwm & 0x1f);
2182 /* Set request length to 8 cachelines per fetch */
2183 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2184 fwater_hi = fwater_hi | (1 << 8);
2186 I915_WRITE(FW_BLC, fwater_lo);
2187 I915_WRITE(FW_BLC2, fwater_hi);
2190 static void i830_update_wm(struct drm_device *dev, int planea_clock,
2191 int pixel_size)
2193 struct drm_i915_private *dev_priv = dev->dev_private;
2194 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2195 int planea_wm;
2197 i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
2199 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2200 pixel_size, latency_ns);
2201 fwater_lo |= (3<<8) | planea_wm;
2203 DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2205 I915_WRITE(FW_BLC, fwater_lo);
2209 * intel_update_watermarks - update FIFO watermark values based on current modes
2211 * Calculate watermark values for the various WM regs based on current mode
2212 * and plane configuration.
2214 * There are several cases to deal with here:
2215 * - normal (i.e. non-self-refresh)
2216 * - self-refresh (SR) mode
2217 * - lines are large relative to FIFO size (buffer can hold up to 2)
2218 * - lines are small relative to FIFO size (buffer can hold more than 2
2219 * lines), so need to account for TLB latency
2221 * The normal calculation is:
2222 * watermark = dotclock * bytes per pixel * latency
2223 * where latency is platform & configuration dependent (we assume pessimal
2224 * values here).
2226 * The SR calculation is:
2227 * watermark = (trunc(latency/line time)+1) * surface width *
2228 * bytes per pixel
2229 * where
2230 * line time = htotal / dotclock
2231 * and latency is assumed to be high, as above.
2233 * The final value programmed to the register should always be rounded up,
2234 * and include an extra 2 entries to account for clock crossings.
2236 * We don't use the sprite, so we can ignore that. And on Crestline we have
2237 * to set the non-SR watermarks to 8.
2239 static void intel_update_watermarks(struct drm_device *dev)
2241 struct drm_crtc *crtc;
2242 struct intel_crtc *intel_crtc;
2243 int sr_hdisplay = 0;
2244 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2245 int enabled = 0, pixel_size = 0;
2247 if (DSPARB_HWCONTROL(dev))
2248 return;
2250 /* Get the clock config from both planes */
2251 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2252 intel_crtc = to_intel_crtc(crtc);
2253 if (crtc->enabled) {
2254 enabled++;
2255 if (intel_crtc->plane == 0) {
2256 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2257 intel_crtc->pipe, crtc->mode.clock);
2258 planea_clock = crtc->mode.clock;
2259 } else {
2260 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2261 intel_crtc->pipe, crtc->mode.clock);
2262 planeb_clock = crtc->mode.clock;
2264 sr_hdisplay = crtc->mode.hdisplay;
2265 sr_clock = crtc->mode.clock;
2266 if (crtc->fb)
2267 pixel_size = crtc->fb->bits_per_pixel / 8;
2268 else
2269 pixel_size = 4; /* by default */
2273 if (enabled <= 0)
2274 return;
2276 /* Single plane configs can enable self refresh */
2277 if (enabled == 1 && IS_IGD(dev))
2278 igd_enable_cxsr(dev, sr_clock, pixel_size);
2279 else if (IS_IGD(dev))
2280 igd_disable_cxsr(dev);
2282 if (IS_I965G(dev))
2283 i965_update_wm(dev);
2284 else if (IS_I9XX(dev) || IS_MOBILE(dev))
2285 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
2286 pixel_size);
2287 else
2288 i830_update_wm(dev, planea_clock, pixel_size);
2291 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2292 struct drm_display_mode *mode,
2293 struct drm_display_mode *adjusted_mode,
2294 int x, int y,
2295 struct drm_framebuffer *old_fb)
2297 struct drm_device *dev = crtc->dev;
2298 struct drm_i915_private *dev_priv = dev->dev_private;
2299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300 int pipe = intel_crtc->pipe;
2301 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2302 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2303 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2304 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
2305 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2306 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2307 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2308 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2309 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2310 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2311 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2312 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
2313 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
2314 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2315 int refclk, num_outputs = 0;
2316 intel_clock_t clock;
2317 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
2318 bool ok, is_sdvo = false, is_dvo = false;
2319 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2320 bool is_edp = false;
2321 struct drm_mode_config *mode_config = &dev->mode_config;
2322 struct drm_connector *connector;
2323 const intel_limit_t *limit;
2324 int ret;
2325 struct fdi_m_n m_n = {0};
2326 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2327 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2328 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2329 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2330 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2331 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2332 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2333 int lvds_reg = LVDS;
2334 u32 temp;
2335 int sdvo_pixel_multiply;
2336 int target_clock;
2338 drm_vblank_pre_modeset(dev, pipe);
2340 list_for_each_entry(connector, &mode_config->connector_list, head) {
2341 struct intel_output *intel_output = to_intel_output(connector);
2343 if (!connector->encoder || connector->encoder->crtc != crtc)
2344 continue;
2346 switch (intel_output->type) {
2347 case INTEL_OUTPUT_LVDS:
2348 is_lvds = true;
2349 break;
2350 case INTEL_OUTPUT_SDVO:
2351 case INTEL_OUTPUT_HDMI:
2352 is_sdvo = true;
2353 if (intel_output->needs_tv_clock)
2354 is_tv = true;
2355 break;
2356 case INTEL_OUTPUT_DVO:
2357 is_dvo = true;
2358 break;
2359 case INTEL_OUTPUT_TVOUT:
2360 is_tv = true;
2361 break;
2362 case INTEL_OUTPUT_ANALOG:
2363 is_crt = true;
2364 break;
2365 case INTEL_OUTPUT_DISPLAYPORT:
2366 is_dp = true;
2367 break;
2368 case INTEL_OUTPUT_EDP:
2369 is_edp = true;
2370 break;
2373 num_outputs++;
2376 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2377 refclk = dev_priv->lvds_ssc_freq * 1000;
2378 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2379 } else if (IS_I9XX(dev)) {
2380 refclk = 96000;
2381 if (IS_IGDNG(dev))
2382 refclk = 120000; /* 120Mhz refclk */
2383 } else {
2384 refclk = 48000;
2389 * Returns a set of divisors for the desired target clock with the given
2390 * refclk, or FALSE. The returned values represent the clock equation:
2391 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2393 limit = intel_limit(crtc);
2394 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2395 if (!ok) {
2396 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2397 drm_vblank_post_modeset(dev, pipe);
2398 return -EINVAL;
2401 /* SDVO TV has fixed PLL values depend on its clock range,
2402 this mirrors vbios setting. */
2403 if (is_sdvo && is_tv) {
2404 if (adjusted_mode->clock >= 100000
2405 && adjusted_mode->clock < 140500) {
2406 clock.p1 = 2;
2407 clock.p2 = 10;
2408 clock.n = 3;
2409 clock.m1 = 16;
2410 clock.m2 = 8;
2411 } else if (adjusted_mode->clock >= 140500
2412 && adjusted_mode->clock <= 200000) {
2413 clock.p1 = 1;
2414 clock.p2 = 10;
2415 clock.n = 6;
2416 clock.m1 = 12;
2417 clock.m2 = 8;
2421 /* FDI link */
2422 if (IS_IGDNG(dev)) {
2423 int lane, link_bw, bpp;
2424 /* eDP doesn't require FDI link, so just set DP M/N
2425 according to current link config */
2426 if (is_edp) {
2427 struct drm_connector *edp;
2428 target_clock = mode->clock;
2429 edp = intel_pipe_get_output(crtc);
2430 intel_edp_link_config(to_intel_output(edp),
2431 &lane, &link_bw);
2432 } else {
2433 /* DP over FDI requires target mode clock
2434 instead of link clock */
2435 if (is_dp)
2436 target_clock = mode->clock;
2437 else
2438 target_clock = adjusted_mode->clock;
2439 lane = 4;
2440 link_bw = 270000;
2443 /* determine panel color depth */
2444 temp = I915_READ(pipeconf_reg);
2446 switch (temp & PIPE_BPC_MASK) {
2447 case PIPE_8BPC:
2448 bpp = 24;
2449 break;
2450 case PIPE_10BPC:
2451 bpp = 30;
2452 break;
2453 case PIPE_6BPC:
2454 bpp = 18;
2455 break;
2456 case PIPE_12BPC:
2457 bpp = 36;
2458 break;
2459 default:
2460 DRM_ERROR("unknown pipe bpc value\n");
2461 bpp = 24;
2464 igdng_compute_m_n(bpp, lane, target_clock,
2465 link_bw, &m_n);
2468 /* Ironlake: try to setup display ref clock before DPLL
2469 * enabling. This is only under driver's control after
2470 * PCH B stepping, previous chipset stepping should be
2471 * ignoring this setting.
2473 if (IS_IGDNG(dev)) {
2474 temp = I915_READ(PCH_DREF_CONTROL);
2475 /* Always enable nonspread source */
2476 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2477 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2478 I915_WRITE(PCH_DREF_CONTROL, temp);
2479 POSTING_READ(PCH_DREF_CONTROL);
2481 temp &= ~DREF_SSC_SOURCE_MASK;
2482 temp |= DREF_SSC_SOURCE_ENABLE;
2483 I915_WRITE(PCH_DREF_CONTROL, temp);
2484 POSTING_READ(PCH_DREF_CONTROL);
2486 udelay(200);
2488 if (is_edp) {
2489 if (dev_priv->lvds_use_ssc) {
2490 temp |= DREF_SSC1_ENABLE;
2491 I915_WRITE(PCH_DREF_CONTROL, temp);
2492 POSTING_READ(PCH_DREF_CONTROL);
2494 udelay(200);
2496 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2497 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2498 I915_WRITE(PCH_DREF_CONTROL, temp);
2499 POSTING_READ(PCH_DREF_CONTROL);
2500 } else {
2501 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2502 I915_WRITE(PCH_DREF_CONTROL, temp);
2503 POSTING_READ(PCH_DREF_CONTROL);
2508 if (IS_IGD(dev))
2509 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2510 else
2511 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2513 if (!IS_IGDNG(dev))
2514 dpll = DPLL_VGA_MODE_DIS;
2516 if (IS_I9XX(dev)) {
2517 if (is_lvds)
2518 dpll |= DPLLB_MODE_LVDS;
2519 else
2520 dpll |= DPLLB_MODE_DAC_SERIAL;
2521 if (is_sdvo) {
2522 dpll |= DPLL_DVO_HIGH_SPEED;
2523 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2524 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2525 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2526 else if (IS_IGDNG(dev))
2527 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2529 if (is_dp)
2530 dpll |= DPLL_DVO_HIGH_SPEED;
2532 /* compute bitmask from p1 value */
2533 if (IS_IGD(dev))
2534 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2535 else {
2536 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2537 /* also FPA1 */
2538 if (IS_IGDNG(dev))
2539 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2541 switch (clock.p2) {
2542 case 5:
2543 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2544 break;
2545 case 7:
2546 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2547 break;
2548 case 10:
2549 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2550 break;
2551 case 14:
2552 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2553 break;
2555 if (IS_I965G(dev) && !IS_IGDNG(dev))
2556 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2557 } else {
2558 if (is_lvds) {
2559 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2560 } else {
2561 if (clock.p1 == 2)
2562 dpll |= PLL_P1_DIVIDE_BY_TWO;
2563 else
2564 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2565 if (clock.p2 == 4)
2566 dpll |= PLL_P2_DIVIDE_BY_4;
2570 if (is_sdvo && is_tv)
2571 dpll |= PLL_REF_INPUT_TVCLKINBC;
2572 else if (is_tv)
2573 /* XXX: just matching BIOS for now */
2574 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
2575 dpll |= 3;
2576 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2577 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2578 else
2579 dpll |= PLL_REF_INPUT_DREFCLK;
2581 /* setup pipeconf */
2582 pipeconf = I915_READ(pipeconf_reg);
2584 /* Set up the display plane register */
2585 dspcntr = DISPPLANE_GAMMA_ENABLE;
2587 /* IGDNG's plane is forced to pipe, bit 24 is to
2588 enable color space conversion */
2589 if (!IS_IGDNG(dev)) {
2590 if (pipe == 0)
2591 dspcntr |= DISPPLANE_SEL_PIPE_A;
2592 else
2593 dspcntr |= DISPPLANE_SEL_PIPE_B;
2596 if (pipe == 0 && !IS_I965G(dev)) {
2597 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2598 * core speed.
2600 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2601 * pipe == 0 check?
2603 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2604 pipeconf |= PIPEACONF_DOUBLE_WIDE;
2605 else
2606 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2609 dspcntr |= DISPLAY_PLANE_ENABLE;
2610 pipeconf |= PIPEACONF_ENABLE;
2611 dpll |= DPLL_VCO_ENABLE;
2614 /* Disable the panel fitter if it was on our pipe */
2615 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2616 I915_WRITE(PFIT_CONTROL, 0);
2618 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2619 drm_mode_debug_printmodeline(mode);
2621 /* assign to IGDNG registers */
2622 if (IS_IGDNG(dev)) {
2623 fp_reg = pch_fp_reg;
2624 dpll_reg = pch_dpll_reg;
2627 if (is_edp) {
2628 igdng_disable_pll_edp(crtc);
2629 } else if ((dpll & DPLL_VCO_ENABLE)) {
2630 I915_WRITE(fp_reg, fp);
2631 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2632 I915_READ(dpll_reg);
2633 udelay(150);
2636 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2637 * This is an exception to the general rule that mode_set doesn't turn
2638 * things on.
2640 if (is_lvds) {
2641 u32 lvds;
2643 if (IS_IGDNG(dev))
2644 lvds_reg = PCH_LVDS;
2646 lvds = I915_READ(lvds_reg);
2647 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2648 /* Set the B0-B3 data pairs corresponding to whether we're going to
2649 * set the DPLLs for dual-channel mode or not.
2651 if (clock.p2 == 7)
2652 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2653 else
2654 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2656 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2657 * appropriately here, but we need to look more thoroughly into how
2658 * panels behave in the two modes.
2661 I915_WRITE(lvds_reg, lvds);
2662 I915_READ(lvds_reg);
2664 if (is_dp)
2665 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2667 if (!is_edp) {
2668 I915_WRITE(fp_reg, fp);
2669 I915_WRITE(dpll_reg, dpll);
2670 I915_READ(dpll_reg);
2671 /* Wait for the clocks to stabilize. */
2672 udelay(150);
2674 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2675 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2676 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2677 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2678 } else {
2679 /* write it again -- the BIOS does, after all */
2680 I915_WRITE(dpll_reg, dpll);
2682 I915_READ(dpll_reg);
2683 /* Wait for the clocks to stabilize. */
2684 udelay(150);
2687 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2688 ((adjusted_mode->crtc_htotal - 1) << 16));
2689 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2690 ((adjusted_mode->crtc_hblank_end - 1) << 16));
2691 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2692 ((adjusted_mode->crtc_hsync_end - 1) << 16));
2693 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2694 ((adjusted_mode->crtc_vtotal - 1) << 16));
2695 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2696 ((adjusted_mode->crtc_vblank_end - 1) << 16));
2697 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2698 ((adjusted_mode->crtc_vsync_end - 1) << 16));
2699 /* pipesrc and dspsize control the size that is scaled from, which should
2700 * always be the user's requested size.
2702 if (!IS_IGDNG(dev)) {
2703 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2704 (mode->hdisplay - 1));
2705 I915_WRITE(dsppos_reg, 0);
2707 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2709 if (IS_IGDNG(dev)) {
2710 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2711 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2712 I915_WRITE(link_m1_reg, m_n.link_m);
2713 I915_WRITE(link_n1_reg, m_n.link_n);
2715 if (is_edp) {
2716 igdng_set_pll_edp(crtc, adjusted_mode->clock);
2717 } else {
2718 /* enable FDI RX PLL too */
2719 temp = I915_READ(fdi_rx_reg);
2720 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2721 udelay(200);
2725 I915_WRITE(pipeconf_reg, pipeconf);
2726 I915_READ(pipeconf_reg);
2728 intel_wait_for_vblank(dev);
2730 if (IS_IGDNG(dev)) {
2731 /* enable address swizzle for tiling buffer */
2732 temp = I915_READ(DISP_ARB_CTL);
2733 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
2736 I915_WRITE(dspcntr_reg, dspcntr);
2738 /* Flush the plane changes */
2739 ret = intel_pipe_set_base(crtc, x, y, old_fb);
2741 intel_update_watermarks(dev);
2743 drm_vblank_post_modeset(dev, pipe);
2745 return ret;
2748 /** Loads the palette/gamma unit for the CRTC with the prepared values */
2749 void intel_crtc_load_lut(struct drm_crtc *crtc)
2751 struct drm_device *dev = crtc->dev;
2752 struct drm_i915_private *dev_priv = dev->dev_private;
2753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2754 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2755 int i;
2757 /* The clocks have to be on to load the palette. */
2758 if (!crtc->enabled)
2759 return;
2761 /* use legacy palette for IGDNG */
2762 if (IS_IGDNG(dev))
2763 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2764 LGC_PALETTE_B;
2766 for (i = 0; i < 256; i++) {
2767 I915_WRITE(palreg + 4 * i,
2768 (intel_crtc->lut_r[i] << 16) |
2769 (intel_crtc->lut_g[i] << 8) |
2770 intel_crtc->lut_b[i]);
2774 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2775 struct drm_file *file_priv,
2776 uint32_t handle,
2777 uint32_t width, uint32_t height)
2779 struct drm_device *dev = crtc->dev;
2780 struct drm_i915_private *dev_priv = dev->dev_private;
2781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2782 struct drm_gem_object *bo;
2783 struct drm_i915_gem_object *obj_priv;
2784 int pipe = intel_crtc->pipe;
2785 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2786 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
2787 uint32_t temp = I915_READ(control);
2788 size_t addr;
2789 int ret;
2791 DRM_DEBUG("\n");
2793 /* if we want to turn off the cursor ignore width and height */
2794 if (!handle) {
2795 DRM_DEBUG("cursor off\n");
2796 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2797 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2798 temp |= CURSOR_MODE_DISABLE;
2799 } else {
2800 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
2802 addr = 0;
2803 bo = NULL;
2804 mutex_lock(&dev->struct_mutex);
2805 goto finish;
2808 /* Currently we only support 64x64 cursors */
2809 if (width != 64 || height != 64) {
2810 DRM_ERROR("we currently only support 64x64 cursors\n");
2811 return -EINVAL;
2814 bo = drm_gem_object_lookup(dev, file_priv, handle);
2815 if (!bo)
2816 return -ENOENT;
2818 obj_priv = bo->driver_private;
2820 if (bo->size < width * height * 4) {
2821 DRM_ERROR("buffer is to small\n");
2822 ret = -ENOMEM;
2823 goto fail;
2826 /* we only need to pin inside GTT if cursor is non-phy */
2827 mutex_lock(&dev->struct_mutex);
2828 if (!dev_priv->cursor_needs_physical) {
2829 ret = i915_gem_object_pin(bo, PAGE_SIZE);
2830 if (ret) {
2831 DRM_ERROR("failed to pin cursor bo\n");
2832 goto fail_locked;
2834 addr = obj_priv->gtt_offset;
2835 } else {
2836 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
2837 if (ret) {
2838 DRM_ERROR("failed to attach phys object\n");
2839 goto fail_locked;
2841 addr = obj_priv->phys_obj->handle->busaddr;
2844 if (!IS_I9XX(dev))
2845 I915_WRITE(CURSIZE, (height << 12) | width);
2847 /* Hooray for CUR*CNTR differences */
2848 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2849 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
2850 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
2851 temp |= (pipe << 28); /* Connect to correct pipe */
2852 } else {
2853 temp &= ~(CURSOR_FORMAT_MASK);
2854 temp |= CURSOR_ENABLE;
2855 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
2858 finish:
2859 I915_WRITE(control, temp);
2860 I915_WRITE(base, addr);
2862 if (intel_crtc->cursor_bo) {
2863 if (dev_priv->cursor_needs_physical) {
2864 if (intel_crtc->cursor_bo != bo)
2865 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
2866 } else
2867 i915_gem_object_unpin(intel_crtc->cursor_bo);
2868 drm_gem_object_unreference(intel_crtc->cursor_bo);
2870 mutex_unlock(&dev->struct_mutex);
2872 intel_crtc->cursor_addr = addr;
2873 intel_crtc->cursor_bo = bo;
2875 return 0;
2876 fail:
2877 mutex_lock(&dev->struct_mutex);
2878 fail_locked:
2879 drm_gem_object_unreference(bo);
2880 mutex_unlock(&dev->struct_mutex);
2881 return ret;
2884 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2886 struct drm_device *dev = crtc->dev;
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2889 int pipe = intel_crtc->pipe;
2890 uint32_t temp = 0;
2891 uint32_t adder;
2893 if (x < 0) {
2894 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
2895 x = -x;
2897 if (y < 0) {
2898 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
2899 y = -y;
2902 temp |= x << CURSOR_X_SHIFT;
2903 temp |= y << CURSOR_Y_SHIFT;
2905 adder = intel_crtc->cursor_addr;
2906 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2907 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2909 return 0;
2912 /** Sets the color ramps on behalf of RandR */
2913 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2914 u16 blue, int regno)
2916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2918 intel_crtc->lut_r[regno] = red >> 8;
2919 intel_crtc->lut_g[regno] = green >> 8;
2920 intel_crtc->lut_b[regno] = blue >> 8;
2923 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2924 u16 *blue, uint32_t size)
2926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2927 int i;
2929 if (size != 256)
2930 return;
2932 for (i = 0; i < 256; i++) {
2933 intel_crtc->lut_r[i] = red[i] >> 8;
2934 intel_crtc->lut_g[i] = green[i] >> 8;
2935 intel_crtc->lut_b[i] = blue[i] >> 8;
2938 intel_crtc_load_lut(crtc);
2942 * Get a pipe with a simple mode set on it for doing load-based monitor
2943 * detection.
2945 * It will be up to the load-detect code to adjust the pipe as appropriate for
2946 * its requirements. The pipe will be connected to no other outputs.
2948 * Currently this code will only succeed if there is a pipe with no outputs
2949 * configured for it. In the future, it could choose to temporarily disable
2950 * some outputs to free up a pipe for its use.
2952 * \return crtc, or NULL if no pipes are available.
2955 /* VESA 640x480x72Hz mode to set on the pipe */
2956 static struct drm_display_mode load_detect_mode = {
2957 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2958 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2961 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2962 struct drm_display_mode *mode,
2963 int *dpms_mode)
2965 struct intel_crtc *intel_crtc;
2966 struct drm_crtc *possible_crtc;
2967 struct drm_crtc *supported_crtc =NULL;
2968 struct drm_encoder *encoder = &intel_output->enc;
2969 struct drm_crtc *crtc = NULL;
2970 struct drm_device *dev = encoder->dev;
2971 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2972 struct drm_crtc_helper_funcs *crtc_funcs;
2973 int i = -1;
2976 * Algorithm gets a little messy:
2977 * - if the connector already has an assigned crtc, use it (but make
2978 * sure it's on first)
2979 * - try to find the first unused crtc that can drive this connector,
2980 * and use that if we find one
2981 * - if there are no unused crtcs available, try to use the first
2982 * one we found that supports the connector
2985 /* See if we already have a CRTC for this connector */
2986 if (encoder->crtc) {
2987 crtc = encoder->crtc;
2988 /* Make sure the crtc and connector are running */
2989 intel_crtc = to_intel_crtc(crtc);
2990 *dpms_mode = intel_crtc->dpms_mode;
2991 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2992 crtc_funcs = crtc->helper_private;
2993 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2994 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2996 return crtc;
2999 /* Find an unused one (if possible) */
3000 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3001 i++;
3002 if (!(encoder->possible_crtcs & (1 << i)))
3003 continue;
3004 if (!possible_crtc->enabled) {
3005 crtc = possible_crtc;
3006 break;
3008 if (!supported_crtc)
3009 supported_crtc = possible_crtc;
3013 * If we didn't find an unused CRTC, don't use any.
3015 if (!crtc) {
3016 return NULL;
3019 encoder->crtc = crtc;
3020 intel_output->base.encoder = encoder;
3021 intel_output->load_detect_temp = true;
3023 intel_crtc = to_intel_crtc(crtc);
3024 *dpms_mode = intel_crtc->dpms_mode;
3026 if (!crtc->enabled) {
3027 if (!mode)
3028 mode = &load_detect_mode;
3029 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3030 } else {
3031 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3032 crtc_funcs = crtc->helper_private;
3033 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3036 /* Add this connector to the crtc */
3037 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3038 encoder_funcs->commit(encoder);
3040 /* let the connector get through one full cycle before testing */
3041 intel_wait_for_vblank(dev);
3043 return crtc;
3046 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3048 struct drm_encoder *encoder = &intel_output->enc;
3049 struct drm_device *dev = encoder->dev;
3050 struct drm_crtc *crtc = encoder->crtc;
3051 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3052 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3054 if (intel_output->load_detect_temp) {
3055 encoder->crtc = NULL;
3056 intel_output->base.encoder = NULL;
3057 intel_output->load_detect_temp = false;
3058 crtc->enabled = drm_helper_crtc_in_use(crtc);
3059 drm_helper_disable_unused_functions(dev);
3062 /* Switch crtc and output back off if necessary */
3063 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3064 if (encoder->crtc == crtc)
3065 encoder_funcs->dpms(encoder, dpms_mode);
3066 crtc_funcs->dpms(crtc, dpms_mode);
3070 /* Returns the clock of the currently programmed mode of the given pipe. */
3071 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3075 int pipe = intel_crtc->pipe;
3076 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3077 u32 fp;
3078 intel_clock_t clock;
3080 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3081 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3082 else
3083 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3085 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3086 if (IS_IGD(dev)) {
3087 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3088 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3089 } else {
3090 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3091 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3094 if (IS_I9XX(dev)) {
3095 if (IS_IGD(dev))
3096 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3097 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3098 else
3099 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3100 DPLL_FPA01_P1_POST_DIV_SHIFT);
3102 switch (dpll & DPLL_MODE_MASK) {
3103 case DPLLB_MODE_DAC_SERIAL:
3104 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3105 5 : 10;
3106 break;
3107 case DPLLB_MODE_LVDS:
3108 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3109 7 : 14;
3110 break;
3111 default:
3112 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3113 "mode\n", (int)(dpll & DPLL_MODE_MASK));
3114 return 0;
3117 /* XXX: Handle the 100Mhz refclk */
3118 intel_clock(dev, 96000, &clock);
3119 } else {
3120 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3122 if (is_lvds) {
3123 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3124 DPLL_FPA01_P1_POST_DIV_SHIFT);
3125 clock.p2 = 14;
3127 if ((dpll & PLL_REF_INPUT_MASK) ==
3128 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3129 /* XXX: might not be 66MHz */
3130 intel_clock(dev, 66000, &clock);
3131 } else
3132 intel_clock(dev, 48000, &clock);
3133 } else {
3134 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3135 clock.p1 = 2;
3136 else {
3137 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3138 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3140 if (dpll & PLL_P2_DIVIDE_BY_4)
3141 clock.p2 = 4;
3142 else
3143 clock.p2 = 2;
3145 intel_clock(dev, 48000, &clock);
3149 /* XXX: It would be nice to validate the clocks, but we can't reuse
3150 * i830PllIsValid() because it relies on the xf86_config connector
3151 * configuration being accurate, which it isn't necessarily.
3154 return clock.dot;
3157 /** Returns the currently programmed mode of the given pipe. */
3158 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3159 struct drm_crtc *crtc)
3161 struct drm_i915_private *dev_priv = dev->dev_private;
3162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163 int pipe = intel_crtc->pipe;
3164 struct drm_display_mode *mode;
3165 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3166 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3167 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3168 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3170 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3171 if (!mode)
3172 return NULL;
3174 mode->clock = intel_crtc_clock_get(dev, crtc);
3175 mode->hdisplay = (htot & 0xffff) + 1;
3176 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3177 mode->hsync_start = (hsync & 0xffff) + 1;
3178 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3179 mode->vdisplay = (vtot & 0xffff) + 1;
3180 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3181 mode->vsync_start = (vsync & 0xffff) + 1;
3182 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3184 drm_mode_set_name(mode);
3185 drm_mode_set_crtcinfo(mode, 0);
3187 return mode;
3190 static void intel_crtc_destroy(struct drm_crtc *crtc)
3192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3194 if (intel_crtc->mode_set.mode)
3195 drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
3196 drm_crtc_cleanup(crtc);
3197 kfree(intel_crtc);
3200 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3201 .dpms = intel_crtc_dpms,
3202 .mode_fixup = intel_crtc_mode_fixup,
3203 .mode_set = intel_crtc_mode_set,
3204 .mode_set_base = intel_pipe_set_base,
3205 .prepare = intel_crtc_prepare,
3206 .commit = intel_crtc_commit,
3209 static const struct drm_crtc_funcs intel_crtc_funcs = {
3210 .cursor_set = intel_crtc_cursor_set,
3211 .cursor_move = intel_crtc_cursor_move,
3212 .gamma_set = intel_crtc_gamma_set,
3213 .set_config = drm_crtc_helper_set_config,
3214 .destroy = intel_crtc_destroy,
3218 static void intel_crtc_init(struct drm_device *dev, int pipe)
3220 struct intel_crtc *intel_crtc;
3221 int i;
3223 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3224 if (intel_crtc == NULL)
3225 return;
3227 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3229 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
3230 intel_crtc->pipe = pipe;
3231 intel_crtc->plane = pipe;
3232 for (i = 0; i < 256; i++) {
3233 intel_crtc->lut_r[i] = i;
3234 intel_crtc->lut_g[i] = i;
3235 intel_crtc->lut_b[i] = i;
3238 intel_crtc->cursor_addr = 0;
3239 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
3240 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
3242 intel_crtc->mode_set.crtc = &intel_crtc->base;
3243 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
3244 intel_crtc->mode_set.num_connectors = 0;
3246 if (i915_fbpercrtc) {
3253 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
3254 struct drm_file *file_priv)
3256 drm_i915_private_t *dev_priv = dev->dev_private;
3257 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
3258 struct drm_crtc *crtc = NULL;
3259 int pipe = -1;
3261 if (!dev_priv) {
3262 DRM_ERROR("called with no initialization\n");
3263 return -EINVAL;
3266 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3268 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
3269 pipe = intel_crtc->pipe;
3270 break;
3274 if (pipe == -1) {
3275 DRM_ERROR("no such CRTC id\n");
3276 return -EINVAL;
3279 pipe_from_crtc_id->pipe = pipe;
3281 return 0;
3284 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
3286 struct drm_crtc *crtc = NULL;
3288 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290 if (intel_crtc->pipe == pipe)
3291 break;
3293 return crtc;
3296 static int intel_connector_clones(struct drm_device *dev, int type_mask)
3298 int index_mask = 0;
3299 struct drm_connector *connector;
3300 int entry = 0;
3302 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3303 struct intel_output *intel_output = to_intel_output(connector);
3304 if (type_mask & intel_output->clone_mask)
3305 index_mask |= (1 << entry);
3306 entry++;
3308 return index_mask;
3312 static void intel_setup_outputs(struct drm_device *dev)
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 struct drm_connector *connector;
3317 intel_crt_init(dev);
3319 /* Set up integrated LVDS */
3320 if (IS_MOBILE(dev) && !IS_I830(dev))
3321 intel_lvds_init(dev);
3323 if (IS_IGDNG(dev)) {
3324 int found;
3326 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
3327 intel_dp_init(dev, DP_A);
3329 if (I915_READ(HDMIB) & PORT_DETECTED) {
3330 /* check SDVOB */
3331 /* found = intel_sdvo_init(dev, HDMIB); */
3332 found = 0;
3333 if (!found)
3334 intel_hdmi_init(dev, HDMIB);
3335 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3336 intel_dp_init(dev, PCH_DP_B);
3339 if (I915_READ(HDMIC) & PORT_DETECTED)
3340 intel_hdmi_init(dev, HDMIC);
3342 if (I915_READ(HDMID) & PORT_DETECTED)
3343 intel_hdmi_init(dev, HDMID);
3345 if (I915_READ(PCH_DP_C) & DP_DETECTED)
3346 intel_dp_init(dev, PCH_DP_C);
3348 if (I915_READ(PCH_DP_D) & DP_DETECTED)
3349 intel_dp_init(dev, PCH_DP_D);
3351 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
3352 bool found = false;
3354 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3355 found = intel_sdvo_init(dev, SDVOB);
3356 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3357 intel_hdmi_init(dev, SDVOB);
3359 if (!found && SUPPORTS_INTEGRATED_DP(dev))
3360 intel_dp_init(dev, DP_B);
3363 /* Before G4X SDVOC doesn't have its own detect register */
3365 if (I915_READ(SDVOB) & SDVO_DETECTED)
3366 found = intel_sdvo_init(dev, SDVOC);
3368 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
3370 if (SUPPORTS_INTEGRATED_HDMI(dev))
3371 intel_hdmi_init(dev, SDVOC);
3372 if (SUPPORTS_INTEGRATED_DP(dev))
3373 intel_dp_init(dev, DP_C);
3376 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
3377 intel_dp_init(dev, DP_D);
3378 } else if (IS_I8XX(dev))
3379 intel_dvo_init(dev);
3381 if (SUPPORTS_TV(dev))
3382 intel_tv_init(dev);
3384 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3385 struct intel_output *intel_output = to_intel_output(connector);
3386 struct drm_encoder *encoder = &intel_output->enc;
3388 encoder->possible_crtcs = intel_output->crtc_mask;
3389 encoder->possible_clones = intel_connector_clones(dev,
3390 intel_output->clone_mask);
3394 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3396 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3397 struct drm_device *dev = fb->dev;
3399 if (fb->fbdev)
3400 intelfb_remove(dev, fb);
3402 drm_framebuffer_cleanup(fb);
3403 mutex_lock(&dev->struct_mutex);
3404 drm_gem_object_unreference(intel_fb->obj);
3405 mutex_unlock(&dev->struct_mutex);
3407 kfree(intel_fb);
3410 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3411 struct drm_file *file_priv,
3412 unsigned int *handle)
3414 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3415 struct drm_gem_object *object = intel_fb->obj;
3417 return drm_gem_handle_create(file_priv, object, handle);
3420 static const struct drm_framebuffer_funcs intel_fb_funcs = {
3421 .destroy = intel_user_framebuffer_destroy,
3422 .create_handle = intel_user_framebuffer_create_handle,
3425 int intel_framebuffer_create(struct drm_device *dev,
3426 struct drm_mode_fb_cmd *mode_cmd,
3427 struct drm_framebuffer **fb,
3428 struct drm_gem_object *obj)
3430 struct intel_framebuffer *intel_fb;
3431 int ret;
3433 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3434 if (!intel_fb)
3435 return -ENOMEM;
3437 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3438 if (ret) {
3439 DRM_ERROR("framebuffer init failed %d\n", ret);
3440 return ret;
3443 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3445 intel_fb->obj = obj;
3447 *fb = &intel_fb->base;
3449 return 0;
3453 static struct drm_framebuffer *
3454 intel_user_framebuffer_create(struct drm_device *dev,
3455 struct drm_file *filp,
3456 struct drm_mode_fb_cmd *mode_cmd)
3458 struct drm_gem_object *obj;
3459 struct drm_framebuffer *fb;
3460 int ret;
3462 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3463 if (!obj)
3464 return NULL;
3466 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3467 if (ret) {
3468 mutex_lock(&dev->struct_mutex);
3469 drm_gem_object_unreference(obj);
3470 mutex_unlock(&dev->struct_mutex);
3471 return NULL;
3474 return fb;
3477 static const struct drm_mode_config_funcs intel_mode_funcs = {
3478 .fb_create = intel_user_framebuffer_create,
3479 .fb_changed = intelfb_probe,
3482 void intel_modeset_init(struct drm_device *dev)
3484 int num_pipe;
3485 int i;
3487 drm_mode_config_init(dev);
3489 dev->mode_config.min_width = 0;
3490 dev->mode_config.min_height = 0;
3492 dev->mode_config.funcs = (void *)&intel_mode_funcs;
3494 if (IS_I965G(dev)) {
3495 dev->mode_config.max_width = 8192;
3496 dev->mode_config.max_height = 8192;
3497 } else if (IS_I9XX(dev)) {
3498 dev->mode_config.max_width = 4096;
3499 dev->mode_config.max_height = 4096;
3500 } else {
3501 dev->mode_config.max_width = 2048;
3502 dev->mode_config.max_height = 2048;
3505 /* set memory base */
3506 if (IS_I9XX(dev))
3507 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
3508 else
3509 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
3511 if (IS_MOBILE(dev) || IS_I9XX(dev))
3512 num_pipe = 2;
3513 else
3514 num_pipe = 1;
3515 DRM_DEBUG("%d display pipe%s available.\n",
3516 num_pipe, num_pipe > 1 ? "s" : "");
3518 for (i = 0; i < num_pipe; i++) {
3519 intel_crtc_init(dev, i);
3522 intel_setup_outputs(dev);
3525 void intel_modeset_cleanup(struct drm_device *dev)
3527 drm_mode_config_cleanup(dev);
3531 /* current intel driver doesn't take advantage of encoders
3532 always give back the encoder for the connector
3534 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
3536 struct intel_output *intel_output = to_intel_output(connector);
3538 return &intel_output->enc;