2 * Copyright (C) International Business Machines Corp., 2000-2004
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * jfs_dtree.c: directory B+-tree manager
22 * B+-tree with variable length key directory:
24 * each directory page is structured as an array of 32-byte
25 * directory entry slots initialized as a freelist
26 * to avoid search/compaction of free space at insertion.
27 * when an entry is inserted, a number of slots are allocated
28 * from the freelist as required to store variable length data
29 * of the entry; when the entry is deleted, slots of the entry
30 * are returned to freelist.
32 * leaf entry stores full name as key and file serial number
33 * (aka inode number) as data.
34 * internal/router entry stores sufffix compressed name
35 * as key and simple extent descriptor as data.
37 * each directory page maintains a sorted entry index table
38 * which stores the start slot index of sorted entries
39 * to allow binary search on the table.
41 * directory starts as a root/leaf page in on-disk inode
43 * when it becomes full, it starts a leaf of a external extent
44 * of length of 1 block. each time the first leaf becomes full,
45 * it is extended rather than split (its size is doubled),
46 * until its length becoms 4 KBytes, from then the extent is split
47 * with new 4 Kbyte extent when it becomes full
48 * to reduce external fragmentation of small directories.
50 * blah, blah, blah, for linear scan of directory in pieces by
54 * case-insensitive directory file system
56 * names are stored in case-sensitive way in leaf entry.
57 * but stored, searched and compared in case-insensitive (uppercase) order
58 * (i.e., both search key and entry key are folded for search/compare):
59 * (note that case-sensitive order is BROKEN in storage, e.g.,
60 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
62 * entries which folds to the same key makes up a equivalent class
63 * whose members are stored as contiguous cluster (may cross page boundary)
64 * but whose order is arbitrary and acts as duplicate, e.g.,
67 * once match is found at leaf, requires scan forward/backward
68 * either for, in case-insensitive search, duplicate
69 * or for, in case-sensitive search, for exact match
71 * router entry must be created/stored in case-insensitive way
73 * (right most key of left page and left most key of right page
74 * are folded, and its suffix compression is propagated as router
76 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77 * should be made the router key for the split)
79 * case-insensitive search:
83 * case-insensitive search of B-tree:
84 * for internal entry, router key is already folded;
85 * for leaf entry, fold the entry key before comparison.
87 * if (leaf entry case-insensitive match found)
88 * if (next entry satisfies case-insensitive match)
90 * if (prev entry satisfies case-insensitive match)
97 * target directory inode lock is being held on entry/exit
98 * of all main directory service routines.
100 * log based recovery:
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include "jfs_incore.h"
106 #include "jfs_superblock.h"
107 #include "jfs_filsys.h"
108 #include "jfs_metapage.h"
109 #include "jfs_dmap.h"
110 #include "jfs_unicode.h"
111 #include "jfs_debug.h"
113 /* dtree split parameter */
118 struct component_name
*key
;
120 struct pxdlist
*pxdlist
;
123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
125 /* get page buffer for specified block address */
126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
128 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
131 if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
135 jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
142 /* for consistency */
143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
151 static int dtSplitUp(tid_t tid
, struct inode
*ip
,
152 struct dtsplit
* split
, struct btstack
* btstack
);
154 static int dtSplitPage(tid_t tid
, struct inode
*ip
, struct dtsplit
* split
,
155 struct metapage
** rmpp
, dtpage_t
** rpp
, pxd_t
* rxdp
);
157 static int dtExtendPage(tid_t tid
, struct inode
*ip
,
158 struct dtsplit
* split
, struct btstack
* btstack
);
160 static int dtSplitRoot(tid_t tid
, struct inode
*ip
,
161 struct dtsplit
* split
, struct metapage
** rmpp
);
163 static int dtDeleteUp(tid_t tid
, struct inode
*ip
, struct metapage
* fmp
,
164 dtpage_t
* fp
, struct btstack
* btstack
);
166 static int dtRelink(tid_t tid
, struct inode
*ip
, dtpage_t
* p
);
168 static int dtReadFirst(struct inode
*ip
, struct btstack
* btstack
);
170 static int dtReadNext(struct inode
*ip
,
171 loff_t
* offset
, struct btstack
* btstack
);
173 static int dtCompare(struct component_name
* key
, dtpage_t
* p
, int si
);
175 static int ciCompare(struct component_name
* key
, dtpage_t
* p
, int si
,
178 static void dtGetKey(dtpage_t
* p
, int i
, struct component_name
* key
,
181 static int ciGetLeafPrefixKey(dtpage_t
* lp
, int li
, dtpage_t
* rp
,
182 int ri
, struct component_name
* key
, int flag
);
184 static void dtInsertEntry(dtpage_t
* p
, int index
, struct component_name
* key
,
185 ddata_t
* data
, struct dt_lock
**);
187 static void dtMoveEntry(dtpage_t
* sp
, int si
, dtpage_t
* dp
,
188 struct dt_lock
** sdtlock
, struct dt_lock
** ddtlock
,
191 static void dtDeleteEntry(dtpage_t
* p
, int fi
, struct dt_lock
** dtlock
);
193 static void dtTruncateEntry(dtpage_t
* p
, int ti
, struct dt_lock
** dtlock
);
195 static void dtLinelockFreelist(dtpage_t
* p
, int m
, struct dt_lock
** dtlock
);
197 #define ciToUpper(c) UniStrupr((c)->name)
202 * Reads a page of a directory's index table.
203 * Having metadata mapped into the directory inode's address space
204 * presents a multitude of problems. We avoid this by mapping to
205 * the absolute address space outside of the *_metapage routines
207 static struct metapage
*read_index_page(struct inode
*inode
, s64 blkno
)
214 rc
= xtLookup(inode
, blkno
, 1, &xflag
, &xaddr
, &xlen
, 1);
215 if (rc
|| (xaddr
== 0))
218 return read_metapage(inode
, xaddr
, PSIZE
, 1);
224 * Same as get_index_page(), but get's a new page without reading
226 static struct metapage
*get_index_page(struct inode
*inode
, s64 blkno
)
233 rc
= xtLookup(inode
, blkno
, 1, &xflag
, &xaddr
, &xlen
, 1);
234 if (rc
|| (xaddr
== 0))
237 return get_metapage(inode
, xaddr
, PSIZE
, 1);
243 * Returns dtree page containing directory table entry for specified
244 * index and pointer to its entry.
246 * mp must be released by caller.
248 static struct dir_table_slot
*find_index(struct inode
*ip
, u32 index
,
249 struct metapage
** mp
, s64
*lblock
)
251 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
255 struct dir_table_slot
*slot
;
256 static int maxWarnings
= 10;
260 jfs_warn("find_entry called with index = %d", index
);
266 if (index
>= jfs_ip
->next_index
) {
267 jfs_warn("find_entry called with index >= next_index");
271 if (jfs_dirtable_inline(ip
)) {
273 * Inline directory table
276 slot
= &jfs_ip
->i_dirtable
[index
- 2];
278 offset
= (index
- 2) * sizeof(struct dir_table_slot
);
279 page_offset
= offset
& (PSIZE
- 1);
280 blkno
= ((offset
+ 1) >> L2PSIZE
) <<
281 JFS_SBI(ip
->i_sb
)->l2nbperpage
;
283 if (*mp
&& (*lblock
!= blkno
)) {
284 release_metapage(*mp
);
289 *mp
= read_index_page(ip
, blkno
);
292 jfs_err("free_index: error reading directory table");
297 (struct dir_table_slot
*) ((char *) (*mp
)->data
+
303 static inline void lock_index(tid_t tid
, struct inode
*ip
, struct metapage
* mp
,
307 struct linelock
*llck
;
310 tlck
= txLock(tid
, ip
, mp
, tlckDATA
);
311 llck
= (struct linelock
*) tlck
->lock
;
313 if (llck
->index
>= llck
->maxcnt
)
314 llck
= txLinelock(llck
);
315 lv
= &llck
->lv
[llck
->index
];
318 * Linelock slot size is twice the size of directory table
319 * slot size. 512 entries per page.
321 lv
->offset
= ((index
- 2) & 511) >> 1;
329 * Adds an entry to the directory index table. This is used to provide
330 * each directory entry with a persistent index in which to resume
331 * directory traversals
333 static u32
add_index(tid_t tid
, struct inode
*ip
, s64 bn
, int slot
)
335 struct super_block
*sb
= ip
->i_sb
;
336 struct jfs_sb_info
*sbi
= JFS_SBI(sb
);
337 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
339 struct dir_table_slot
*dirtab_slot
;
341 struct linelock
*llck
;
349 ASSERT(DO_INDEX(ip
));
351 if (jfs_ip
->next_index
< 2) {
352 jfs_warn("add_index: next_index = %d. Resetting!",
354 jfs_ip
->next_index
= 2;
357 index
= jfs_ip
->next_index
++;
359 if (index
<= MAX_INLINE_DIRTABLE_ENTRY
) {
361 * i_size reflects size of index table, or 8 bytes per entry.
363 ip
->i_size
= (loff_t
) (index
- 1) << 3;
366 * dir table fits inline within inode
368 dirtab_slot
= &jfs_ip
->i_dirtable
[index
-2];
369 dirtab_slot
->flag
= DIR_INDEX_VALID
;
370 dirtab_slot
->slot
= slot
;
371 DTSaddress(dirtab_slot
, bn
);
373 set_cflag(COMMIT_Dirtable
, ip
);
377 if (index
== (MAX_INLINE_DIRTABLE_ENTRY
+ 1)) {
378 struct dir_table_slot temp_table
[12];
381 * It's time to move the inline table to an external
382 * page and begin to build the xtree
384 if (DQUOT_ALLOC_BLOCK(ip
, sbi
->nbperpage
))
386 if (dbAlloc(ip
, 0, sbi
->nbperpage
, &xaddr
)) {
387 DQUOT_FREE_BLOCK(ip
, sbi
->nbperpage
);
392 * Save the table, we're going to overwrite it with the
395 memcpy(temp_table
, &jfs_ip
->i_dirtable
, sizeof(temp_table
));
398 * Initialize empty x-tree
403 * Add the first block to the xtree
405 if (xtInsert(tid
, ip
, 0, 0, sbi
->nbperpage
, &xaddr
, 0)) {
406 /* This really shouldn't fail */
407 jfs_warn("add_index: xtInsert failed!");
408 memcpy(&jfs_ip
->i_dirtable
, temp_table
,
409 sizeof (temp_table
));
410 dbFree(ip
, xaddr
, sbi
->nbperpage
);
411 DQUOT_FREE_BLOCK(ip
, sbi
->nbperpage
);
416 if ((mp
= get_index_page(ip
, 0)) == 0) {
417 jfs_err("add_index: get_metapage failed!");
418 xtTruncate(tid
, ip
, 0, COMMIT_PWMAP
);
419 memcpy(&jfs_ip
->i_dirtable
, temp_table
,
420 sizeof (temp_table
));
423 tlck
= txLock(tid
, ip
, mp
, tlckDATA
);
424 llck
= (struct linelock
*) & tlck
->lock
;
425 ASSERT(llck
->index
== 0);
429 lv
->length
= 6; /* tlckDATA slot size is 16 bytes */
432 memcpy(mp
->data
, temp_table
, sizeof(temp_table
));
434 mark_metapage_dirty(mp
);
435 release_metapage(mp
);
438 * Logging is now directed by xtree tlocks
440 clear_cflag(COMMIT_Dirtable
, ip
);
443 offset
= (index
- 2) * sizeof(struct dir_table_slot
);
444 page_offset
= offset
& (PSIZE
- 1);
445 blkno
= ((offset
+ 1) >> L2PSIZE
) << sbi
->l2nbperpage
;
446 if (page_offset
== 0) {
448 * This will be the beginning of a new page
451 if (xtInsert(tid
, ip
, 0, blkno
, sbi
->nbperpage
, &xaddr
, 0)) {
452 jfs_warn("add_index: xtInsert failed!");
457 if ((mp
= get_index_page(ip
, blkno
)))
458 memset(mp
->data
, 0, PSIZE
); /* Just looks better */
460 xtTruncate(tid
, ip
, offset
, COMMIT_PWMAP
);
462 mp
= read_index_page(ip
, blkno
);
465 jfs_err("add_index: get/read_metapage failed!");
469 lock_index(tid
, ip
, mp
, index
);
472 (struct dir_table_slot
*) ((char *) mp
->data
+ page_offset
);
473 dirtab_slot
->flag
= DIR_INDEX_VALID
;
474 dirtab_slot
->slot
= slot
;
475 DTSaddress(dirtab_slot
, bn
);
477 mark_metapage_dirty(mp
);
478 release_metapage(mp
);
484 jfs_ip
->next_index
--;
492 * Marks an entry to the directory index table as free.
494 static void free_index(tid_t tid
, struct inode
*ip
, u32 index
, u32 next
)
496 struct dir_table_slot
*dirtab_slot
;
498 struct metapage
*mp
= NULL
;
500 dirtab_slot
= find_index(ip
, index
, &mp
, &lblock
);
502 if (dirtab_slot
== 0)
505 dirtab_slot
->flag
= DIR_INDEX_FREE
;
506 dirtab_slot
->slot
= dirtab_slot
->addr1
= 0;
507 dirtab_slot
->addr2
= cpu_to_le32(next
);
510 lock_index(tid
, ip
, mp
, index
);
511 mark_metapage_dirty(mp
);
512 release_metapage(mp
);
514 set_cflag(COMMIT_Dirtable
, ip
);
520 * Changes an entry in the directory index table
522 static void modify_index(tid_t tid
, struct inode
*ip
, u32 index
, s64 bn
,
523 int slot
, struct metapage
** mp
, s64
*lblock
)
525 struct dir_table_slot
*dirtab_slot
;
527 dirtab_slot
= find_index(ip
, index
, mp
, lblock
);
529 if (dirtab_slot
== 0)
532 DTSaddress(dirtab_slot
, bn
);
533 dirtab_slot
->slot
= slot
;
536 lock_index(tid
, ip
, *mp
, index
);
537 mark_metapage_dirty(*mp
);
539 set_cflag(COMMIT_Dirtable
, ip
);
545 * reads a directory table slot
547 static int read_index(struct inode
*ip
, u32 index
,
548 struct dir_table_slot
* dirtab_slot
)
551 struct metapage
*mp
= NULL
;
552 struct dir_table_slot
*slot
;
554 slot
= find_index(ip
, index
, &mp
, &lblock
);
559 memcpy(dirtab_slot
, slot
, sizeof(struct dir_table_slot
));
562 release_metapage(mp
);
571 * Search for the entry with specified key
575 * return: 0 - search result on stack, leaf page pinned;
578 int dtSearch(struct inode
*ip
, struct component_name
* key
, ino_t
* data
,
579 struct btstack
* btstack
, int flag
)
582 int cmp
= 1; /* init for empty page */
587 int base
, index
, lim
;
588 struct btframe
*btsp
;
590 int psize
= 288; /* initial in-line directory */
592 struct component_name ciKey
;
593 struct super_block
*sb
= ip
->i_sb
;
596 (wchar_t *) kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t),
598 if (ciKey
.name
== 0) {
604 /* uppercase search key for c-i directory */
605 UniStrcpy(ciKey
.name
, key
->name
);
606 ciKey
.namlen
= key
->namlen
;
608 /* only uppercase if case-insensitive support is on */
609 if ((JFS_SBI(sb
)->mntflag
& JFS_OS2
) == JFS_OS2
) {
612 BT_CLR(btstack
); /* reset stack */
614 /* init level count for max pages to split */
618 * search down tree from root:
620 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
621 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
623 * if entry with search key K is not found
624 * internal page search find the entry with largest key Ki
625 * less than K which point to the child page to search;
626 * leaf page search find the entry with smallest key Kj
627 * greater than K so that the returned index is the position of
628 * the entry to be shifted right for insertion of new entry.
629 * for empty tree, search key is greater than any key of the tree.
631 * by convention, root bn = 0.
634 /* get/pin the page to search */
635 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
639 /* get sorted entry table of the page */
640 stbl
= DT_GETSTBL(p
);
643 * binary search with search key K on the current page.
645 for (base
= 0, lim
= p
->header
.nextindex
; lim
; lim
>>= 1) {
646 index
= base
+ (lim
>> 1);
648 if (p
->header
.flag
& BT_LEAF
) {
649 /* uppercase leaf name to compare */
651 ciCompare(&ciKey
, p
, stbl
[index
],
652 JFS_SBI(sb
)->mntflag
);
654 /* router key is in uppercase */
656 cmp
= dtCompare(&ciKey
, p
, stbl
[index
]);
664 /* search hit - leaf page:
665 * return the entry found
667 if (p
->header
.flag
& BT_LEAF
) {
668 inumber
= le32_to_cpu(
669 ((struct ldtentry
*) & p
->slot
[stbl
[index
]])->inumber
);
672 * search for JFS_LOOKUP
674 if (flag
== JFS_LOOKUP
) {
681 * search for JFS_CREATE
683 if (flag
== JFS_CREATE
) {
690 * search for JFS_REMOVE or JFS_RENAME
692 if ((flag
== JFS_REMOVE
||
693 flag
== JFS_RENAME
) &&
700 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
702 /* save search result */
713 /* search hit - internal page:
714 * descend/search its child page
728 * base is the smallest index with key (Kj) greater than
729 * search key (K) and may be zero or (maxindex + 1) index.
732 * search miss - leaf page
734 * return location of entry (base) where new entry with
735 * search key K is to be inserted.
737 if (p
->header
.flag
& BT_LEAF
) {
739 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
741 if (flag
== JFS_LOOKUP
|| flag
== JFS_REMOVE
||
742 flag
== JFS_RENAME
) {
748 * search for JFS_CREATE|JFS_FINDDIR:
763 * search miss - internal page
765 * if base is non-zero, decrement base by one to get the parent
766 * entry of the child page to search.
768 index
= base
? base
- 1 : base
;
771 * go down to child page
774 /* update max. number of pages to split */
775 if (BT_STACK_FULL(btstack
)) {
776 /* Something's corrupted, mark filesytem dirty so
777 * chkdsk will fix it.
779 jfs_error(sb
, "stack overrun in dtSearch!");
780 BT_STACK_DUMP(btstack
);
786 /* push (bn, index) of the parent page/entry */
787 BT_PUSH(btstack
, bn
, index
);
789 /* get the child page block number */
790 pxd
= (pxd_t
*) & p
->slot
[stbl
[index
]];
791 bn
= addressPXD(pxd
);
792 psize
= lengthPXD(pxd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
794 /* unpin the parent page */
814 * function: insert an entry to directory tree
818 * return: 0 - success;
821 int dtInsert(tid_t tid
, struct inode
*ip
,
822 struct component_name
* name
, ino_t
* fsn
, struct btstack
* btstack
)
825 struct metapage
*mp
; /* meta-page buffer */
826 dtpage_t
*p
; /* base B+-tree index page */
829 struct dtsplit split
; /* split information */
831 struct dt_lock
*dtlck
;
837 * retrieve search result
839 * dtSearch() returns (leaf page pinned, index at which to insert).
840 * n.b. dtSearch() may return index of (maxindex + 1) of
843 DT_GETSEARCH(ip
, btstack
->top
, bn
, mp
, p
, index
);
846 * insert entry for new key
849 if (JFS_IP(ip
)->next_index
== DIREND
) {
853 n
= NDTLEAF(name
->namlen
);
857 n
= NDTLEAF_LEGACY(name
->namlen
);
858 data
.leaf
.ip
= NULL
; /* signifies legacy directory format */
860 data
.leaf
.ino
= *fsn
;
863 * leaf page does not have enough room for new entry:
865 * extend/split the leaf page;
867 * dtSplitUp() will insert the entry and unpin the leaf page.
869 if (n
> p
->header
.freecnt
) {
875 rc
= dtSplitUp(tid
, ip
, &split
, btstack
);
880 * leaf page does have enough room for new entry:
882 * insert the new data entry into the leaf page;
884 BT_MARK_DIRTY(mp
, ip
);
886 * acquire a transaction lock on the leaf page
888 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
889 dtlck
= (struct dt_lock
*) & tlck
->lock
;
890 ASSERT(dtlck
->index
== 0);
893 /* linelock header */
898 dtInsertEntry(p
, index
, name
, &data
, &dtlck
);
900 /* linelock stbl of non-root leaf page */
901 if (!(p
->header
.flag
& BT_ROOT
)) {
902 if (dtlck
->index
>= dtlck
->maxcnt
)
903 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
904 lv
= & dtlck
->lv
[dtlck
->index
];
905 n
= index
>> L2DTSLOTSIZE
;
906 lv
->offset
= p
->header
.stblindex
+ n
;
908 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) - n
+ 1;
912 /* unpin the leaf page */
922 * function: propagate insertion bottom up;
926 * return: 0 - success;
928 * leaf page unpinned;
930 static int dtSplitUp(tid_t tid
,
931 struct inode
*ip
, struct dtsplit
* split
, struct btstack
* btstack
)
933 struct jfs_sb_info
*sbi
= JFS_SBI(ip
->i_sb
);
935 struct metapage
*smp
;
936 dtpage_t
*sp
; /* split page */
937 struct metapage
*rmp
;
938 dtpage_t
*rp
; /* new right page split from sp */
939 pxd_t rpxd
; /* new right page extent descriptor */
940 struct metapage
*lmp
;
941 dtpage_t
*lp
; /* left child page */
942 int skip
; /* index of entry of insertion */
943 struct btframe
*parent
; /* parent page entry on traverse stack */
946 struct pxdlist pxdlist
;
948 struct component_name key
= { 0, NULL
};
949 ddata_t
*data
= split
->data
;
951 struct dt_lock
*dtlck
;
954 int quota_allocation
= 0;
958 sp
= DT_PAGE(ip
, smp
);
961 (wchar_t *) kmalloc((JFS_NAME_MAX
+ 2) * sizeof(wchar_t),
972 * The split routines insert the new entry, and
973 * acquire txLock as appropriate.
976 * split root leaf page:
978 if (sp
->header
.flag
& BT_ROOT
) {
980 * allocate a single extent child page
983 n
= sbi
->bsize
>> L2DTSLOTSIZE
;
984 n
-= (n
+ 31) >> L2DTSLOTSIZE
; /* stbl size */
985 n
-= DTROOTMAXSLOT
- sp
->header
.freecnt
; /* header + entries */
986 if (n
<= split
->nslot
)
988 if ((rc
= dbAlloc(ip
, 0, (s64
) xlen
, &xaddr
))) {
995 pxd
= &pxdlist
.pxd
[0];
996 PXDaddress(pxd
, xaddr
);
997 PXDlength(pxd
, xlen
);
998 split
->pxdlist
= &pxdlist
;
999 rc
= dtSplitRoot(tid
, ip
, split
, &rmp
);
1002 dbFree(ip
, xaddr
, xlen
);
1009 ip
->i_size
= xlen
<< sbi
->l2bsize
;
1015 * extend first leaf page
1017 * extend the 1st extent if less than buffer page size
1018 * (dtExtendPage() reurns leaf page unpinned)
1020 pxd
= &sp
->header
.self
;
1021 xlen
= lengthPXD(pxd
);
1022 xsize
= xlen
<< sbi
->l2bsize
;
1023 if (xsize
< PSIZE
) {
1024 xaddr
= addressPXD(pxd
);
1025 n
= xsize
>> L2DTSLOTSIZE
;
1026 n
-= (n
+ 31) >> L2DTSLOTSIZE
; /* stbl size */
1027 if ((n
+ sp
->header
.freecnt
) <= split
->nslot
)
1028 n
= xlen
+ (xlen
<< 1);
1032 /* Allocate blocks to quota. */
1033 if (DQUOT_ALLOC_BLOCK(ip
, n
)) {
1037 quota_allocation
+= n
;
1039 if ((rc
= dbReAlloc(sbi
->ipbmap
, xaddr
, (s64
) xlen
,
1043 pxdlist
.maxnpxd
= 1;
1045 pxd
= &pxdlist
.pxd
[0];
1046 PXDaddress(pxd
, nxaddr
)
1047 PXDlength(pxd
, xlen
+ n
);
1048 split
->pxdlist
= &pxdlist
;
1049 if ((rc
= dtExtendPage(tid
, ip
, split
, btstack
))) {
1050 nxaddr
= addressPXD(pxd
);
1051 if (xaddr
!= nxaddr
) {
1052 /* free relocated extent */
1053 xlen
= lengthPXD(pxd
);
1054 dbFree(ip
, nxaddr
, (s64
) xlen
);
1056 /* free extended delta */
1057 xlen
= lengthPXD(pxd
) - n
;
1058 xaddr
= addressPXD(pxd
) + xlen
;
1059 dbFree(ip
, xaddr
, (s64
) n
);
1061 } else if (!DO_INDEX(ip
))
1062 ip
->i_size
= lengthPXD(pxd
) << sbi
->l2bsize
;
1071 * split leaf page <sp> into <sp> and a new right page <rp>.
1073 * return <rp> pinned and its extent descriptor <rpxd>
1076 * allocate new directory page extent and
1077 * new index page(s) to cover page split(s)
1079 * allocation hint: ?
1081 n
= btstack
->nsplit
;
1082 pxdlist
.maxnpxd
= pxdlist
.npxd
= 0;
1083 xlen
= sbi
->nbperpage
;
1084 for (pxd
= pxdlist
.pxd
; n
> 0; n
--, pxd
++) {
1085 if ((rc
= dbAlloc(ip
, 0, (s64
) xlen
, &xaddr
)) == 0) {
1086 PXDaddress(pxd
, xaddr
);
1087 PXDlength(pxd
, xlen
);
1094 /* undo allocation */
1098 split
->pxdlist
= &pxdlist
;
1099 if ((rc
= dtSplitPage(tid
, ip
, split
, &rmp
, &rp
, &rpxd
))) {
1102 /* undo allocation */
1107 ip
->i_size
+= PSIZE
;
1110 * propagate up the router entry for the leaf page just split
1112 * insert a router entry for the new page into the parent page,
1113 * propagate the insert/split up the tree by walking back the stack
1114 * of (bn of parent page, index of child page entry in parent page)
1115 * that were traversed during the search for the page that split.
1117 * the propagation of insert/split up the tree stops if the root
1118 * splits or the page inserted into doesn't have to split to hold
1121 * the parent entry for the split page remains the same, and
1122 * a new entry is inserted at its right with the first key and
1123 * block number of the new right page.
1125 * There are a maximum of 4 pages pinned at any time:
1126 * two children, left parent and right parent (when the parent splits).
1127 * keep the child pages pinned while working on the parent.
1128 * make sure that all pins are released at exit.
1130 while ((parent
= BT_POP(btstack
)) != NULL
) {
1131 /* parent page specified by stack frame <parent> */
1133 /* keep current child pages (<lp>, <rp>) pinned */
1138 * insert router entry in parent for new right child page <rp>
1140 /* get the parent page <sp> */
1141 DT_GETPAGE(ip
, parent
->bn
, smp
, PSIZE
, sp
, rc
);
1149 * The new key entry goes ONE AFTER the index of parent entry,
1150 * because the split was to the right.
1152 skip
= parent
->index
+ 1;
1155 * compute the key for the router entry
1157 * key suffix compression:
1158 * for internal pages that have leaf pages as children,
1159 * retain only what's needed to distinguish between
1160 * the new entry and the entry on the page to its left.
1161 * If the keys compare equal, retain the entire key.
1163 * note that compression is performed only at computing
1164 * router key at the lowest internal level.
1165 * further compression of the key between pairs of higher
1166 * level internal pages loses too much information and
1167 * the search may fail.
1168 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1169 * results in two adjacent parent entries (a)(xx).
1170 * if split occurs between these two entries, and
1171 * if compression is applied, the router key of parent entry
1172 * of right page (x) will divert search for x into right
1173 * subtree and miss x in the left subtree.)
1175 * the entire key must be retained for the next-to-leftmost
1176 * internal key at any level of the tree, or search may fail
1179 switch (rp
->header
.flag
& BT_TYPE
) {
1182 * compute the length of prefix for suffix compression
1183 * between last entry of left page and first entry
1186 if ((sp
->header
.flag
& BT_ROOT
&& skip
> 1) ||
1187 sp
->header
.prev
!= 0 || skip
> 1) {
1188 /* compute uppercase router prefix key */
1189 rc
= ciGetLeafPrefixKey(lp
,
1190 lp
->header
.nextindex
-1,
1200 /* next to leftmost entry of
1201 lowest internal level */
1203 /* compute uppercase router key */
1204 dtGetKey(rp
, 0, &key
, sbi
->mntflag
);
1205 key
.name
[key
.namlen
] = 0;
1207 if ((sbi
->mntflag
& JFS_OS2
) == JFS_OS2
)
1211 n
= NDTINTERNAL(key
.namlen
);
1215 dtGetKey(rp
, 0, &key
, sbi
->mntflag
);
1216 n
= NDTINTERNAL(key
.namlen
);
1220 jfs_err("dtSplitUp(): UFO!");
1224 /* unpin left child page */
1228 * compute the data for the router entry
1230 data
->xd
= rpxd
; /* child page xd */
1233 * parent page is full - split the parent page
1235 if (n
> sp
->header
.freecnt
) {
1236 /* init for parent page split */
1238 split
->index
= skip
; /* index at insert */
1241 /* split->data = data; */
1243 /* unpin right child page */
1246 /* The split routines insert the new entry,
1247 * acquire txLock as appropriate.
1248 * return <rp> pinned and its block number <rbn>.
1250 rc
= (sp
->header
.flag
& BT_ROOT
) ?
1251 dtSplitRoot(tid
, ip
, split
, &rmp
) :
1252 dtSplitPage(tid
, ip
, split
, &rmp
, &rp
, &rpxd
);
1258 /* smp and rmp are pinned */
1261 * parent page is not full - insert router entry in parent page
1264 BT_MARK_DIRTY(smp
, ip
);
1266 * acquire a transaction lock on the parent page
1268 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckENTRY
);
1269 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1270 ASSERT(dtlck
->index
== 0);
1271 lv
= & dtlck
->lv
[0];
1273 /* linelock header */
1278 /* linelock stbl of non-root parent page */
1279 if (!(sp
->header
.flag
& BT_ROOT
)) {
1281 n
= skip
>> L2DTSLOTSIZE
;
1282 lv
->offset
= sp
->header
.stblindex
+ n
;
1284 ((sp
->header
.nextindex
-
1285 1) >> L2DTSLOTSIZE
) - n
+ 1;
1289 dtInsertEntry(sp
, skip
, &key
, data
, &dtlck
);
1291 /* exit propagate up */
1296 /* unpin current split and its right page */
1301 * free remaining extents allocated for split
1305 pxd
= &pxdlist
.pxd
[n
];
1306 for (; n
< pxdlist
.maxnpxd
; n
++, pxd
++)
1307 dbFree(ip
, addressPXD(pxd
), (s64
) lengthPXD(pxd
));
1312 /* Rollback quota allocation */
1313 if (rc
&& quota_allocation
)
1314 DQUOT_FREE_BLOCK(ip
, quota_allocation
);
1325 * function: Split a non-root page of a btree.
1329 * return: 0 - success;
1331 * return split and new page pinned;
1333 static int dtSplitPage(tid_t tid
, struct inode
*ip
, struct dtsplit
* split
,
1334 struct metapage
** rmpp
, dtpage_t
** rpp
, pxd_t
* rpxdp
)
1337 struct metapage
*smp
;
1339 struct metapage
*rmp
;
1340 dtpage_t
*rp
; /* new right page allocated */
1341 s64 rbn
; /* new right page block number */
1342 struct metapage
*mp
;
1345 struct pxdlist
*pxdlist
;
1347 int skip
, nextindex
, half
, left
, nxt
, off
, si
;
1348 struct ldtentry
*ldtentry
;
1349 struct idtentry
*idtentry
;
1354 struct dt_lock
*sdtlck
, *rdtlck
;
1356 struct dt_lock
*dtlck
;
1357 struct lv
*slv
, *rlv
, *lv
;
1359 /* get split page */
1361 sp
= DT_PAGE(ip
, smp
);
1364 * allocate the new right page for the split
1366 pxdlist
= split
->pxdlist
;
1367 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1369 rbn
= addressPXD(pxd
);
1370 rmp
= get_metapage(ip
, rbn
, PSIZE
, 1);
1374 /* Allocate blocks to quota. */
1375 if (DQUOT_ALLOC_BLOCK(ip
, lengthPXD(pxd
))) {
1376 release_metapage(rmp
);
1380 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip
, smp
, rmp
);
1382 BT_MARK_DIRTY(rmp
, ip
);
1384 * acquire a transaction lock on the new right page
1386 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckNEW
);
1387 rdtlck
= (struct dt_lock
*) & tlck
->lock
;
1389 rp
= (dtpage_t
*) rmp
->data
;
1391 rp
->header
.self
= *pxd
;
1393 BT_MARK_DIRTY(smp
, ip
);
1395 * acquire a transaction lock on the split page
1399 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckENTRY
);
1400 sdtlck
= (struct dt_lock
*) & tlck
->lock
;
1402 /* linelock header of split page */
1403 ASSERT(sdtlck
->index
== 0);
1404 slv
= & sdtlck
->lv
[0];
1410 * initialize/update sibling pointers between sp and rp
1412 nextbn
= le64_to_cpu(sp
->header
.next
);
1413 rp
->header
.next
= cpu_to_le64(nextbn
);
1414 rp
->header
.prev
= cpu_to_le64(addressPXD(&sp
->header
.self
));
1415 sp
->header
.next
= cpu_to_le64(rbn
);
1418 * initialize new right page
1420 rp
->header
.flag
= sp
->header
.flag
;
1422 /* compute sorted entry table at start of extent data area */
1423 rp
->header
.nextindex
= 0;
1424 rp
->header
.stblindex
= 1;
1426 n
= PSIZE
>> L2DTSLOTSIZE
;
1427 rp
->header
.maxslot
= n
;
1428 stblsize
= (n
+ 31) >> L2DTSLOTSIZE
; /* in unit of slot */
1431 fsi
= rp
->header
.stblindex
+ stblsize
;
1432 rp
->header
.freelist
= fsi
;
1433 rp
->header
.freecnt
= rp
->header
.maxslot
- fsi
;
1436 * sequential append at tail: append without split
1438 * If splitting the last page on a level because of appending
1439 * a entry to it (skip is maxentry), it's likely that the access is
1440 * sequential. Adding an empty page on the side of the level is less
1441 * work and can push the fill factor much higher than normal.
1442 * If we're wrong it's no big deal, we'll just do the split the right
1444 * (It may look like it's equally easy to do a similar hack for
1445 * reverse sorted data, that is, split the tree left,
1446 * but it's not. Be my guest.)
1448 if (nextbn
== 0 && split
->index
== sp
->header
.nextindex
) {
1449 /* linelock header + stbl (first slot) of new page */
1450 rlv
= & rdtlck
->lv
[rdtlck
->index
];
1456 * initialize freelist of new right page
1459 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1463 /* insert entry at the first entry of the new right page */
1464 dtInsertEntry(rp
, 0, split
->key
, split
->data
, &rdtlck
);
1470 * non-sequential insert (at possibly middle page)
1474 * update prev pointer of previous right sibling page;
1477 DT_GETPAGE(ip
, nextbn
, mp
, PSIZE
, p
, rc
);
1479 discard_metapage(rmp
);
1483 BT_MARK_DIRTY(mp
, ip
);
1485 * acquire a transaction lock on the next page
1487 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
1488 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1490 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1492 /* linelock header of previous right sibling page */
1493 lv
= & dtlck
->lv
[dtlck
->index
];
1498 p
->header
.prev
= cpu_to_le64(rbn
);
1504 * split the data between the split and right pages.
1506 skip
= split
->index
;
1507 half
= (PSIZE
>> L2DTSLOTSIZE
) >> 1; /* swag */
1511 * compute fill factor for split pages
1513 * <nxt> traces the next entry to move to rp
1514 * <off> traces the next entry to stay in sp
1516 stbl
= (u8
*) & sp
->slot
[sp
->header
.stblindex
];
1517 nextindex
= sp
->header
.nextindex
;
1518 for (nxt
= off
= 0; nxt
< nextindex
; ++off
) {
1520 /* check for fill factor with new entry size */
1524 switch (sp
->header
.flag
& BT_TYPE
) {
1526 ldtentry
= (struct ldtentry
*) & sp
->slot
[si
];
1528 n
= NDTLEAF(ldtentry
->namlen
);
1530 n
= NDTLEAF_LEGACY(ldtentry
->
1535 idtentry
= (struct idtentry
*) & sp
->slot
[si
];
1536 n
= NDTINTERNAL(idtentry
->namlen
);
1543 ++nxt
; /* advance to next entry to move in sp */
1551 /* <nxt> poins to the 1st entry to move */
1554 * move entries to right page
1556 * dtMoveEntry() initializes rp and reserves entry for insertion
1558 * split page moved out entries are linelocked;
1559 * new/right page moved in entries are linelocked;
1561 /* linelock header + stbl of new right page */
1562 rlv
= & rdtlck
->lv
[rdtlck
->index
];
1567 dtMoveEntry(sp
, nxt
, rp
, &sdtlck
, &rdtlck
, DO_INDEX(ip
));
1569 sp
->header
.nextindex
= nxt
;
1572 * finalize freelist of new right page
1574 fsi
= rp
->header
.freelist
;
1576 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1581 * Update directory index table for entries now in right page
1583 if ((rp
->header
.flag
& BT_LEAF
) && DO_INDEX(ip
)) {
1587 stbl
= DT_GETSTBL(rp
);
1588 for (n
= 0; n
< rp
->header
.nextindex
; n
++) {
1589 ldtentry
= (struct ldtentry
*) & rp
->slot
[stbl
[n
]];
1590 modify_index(tid
, ip
, le32_to_cpu(ldtentry
->index
),
1591 rbn
, n
, &mp
, &lblock
);
1594 release_metapage(mp
);
1598 * the skipped index was on the left page,
1601 /* insert the new entry in the split page */
1602 dtInsertEntry(sp
, skip
, split
->key
, split
->data
, &sdtlck
);
1604 /* linelock stbl of split page */
1605 if (sdtlck
->index
>= sdtlck
->maxcnt
)
1606 sdtlck
= (struct dt_lock
*) txLinelock(sdtlck
);
1607 slv
= & sdtlck
->lv
[sdtlck
->index
];
1608 n
= skip
>> L2DTSLOTSIZE
;
1609 slv
->offset
= sp
->header
.stblindex
+ n
;
1611 ((sp
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) - n
+ 1;
1615 * the skipped index was on the right page,
1618 /* adjust the skip index to reflect the new position */
1621 /* insert the new entry in the right page */
1622 dtInsertEntry(rp
, skip
, split
->key
, split
->data
, &rdtlck
);
1636 * function: extend 1st/only directory leaf page
1640 * return: 0 - success;
1642 * return extended page pinned;
1644 static int dtExtendPage(tid_t tid
,
1645 struct inode
*ip
, struct dtsplit
* split
, struct btstack
* btstack
)
1647 struct super_block
*sb
= ip
->i_sb
;
1649 struct metapage
*smp
, *pmp
, *mp
;
1651 struct pxdlist
*pxdlist
;
1654 int newstblindex
, newstblsize
;
1655 int oldstblindex
, oldstblsize
;
1658 struct btframe
*parent
;
1660 struct dt_lock
*dtlck
;
1663 struct pxd_lock
*pxdlock
;
1666 struct ldtentry
*ldtentry
;
1669 /* get page to extend */
1671 sp
= DT_PAGE(ip
, smp
);
1673 /* get parent/root page */
1674 parent
= BT_POP(btstack
);
1675 DT_GETPAGE(ip
, parent
->bn
, pmp
, PSIZE
, pp
, rc
);
1682 pxdlist
= split
->pxdlist
;
1683 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1686 xaddr
= addressPXD(pxd
);
1687 tpxd
= &sp
->header
.self
;
1688 txaddr
= addressPXD(tpxd
);
1689 /* in-place extension */
1690 if (xaddr
== txaddr
) {
1697 /* save moved extent descriptor for later free */
1698 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckRELOCATE
);
1699 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
1700 pxdlock
->flag
= mlckFREEPXD
;
1701 pxdlock
->pxd
= sp
->header
.self
;
1705 * Update directory index table to reflect new page address
1711 stbl
= DT_GETSTBL(sp
);
1712 for (n
= 0; n
< sp
->header
.nextindex
; n
++) {
1714 (struct ldtentry
*) & sp
->slot
[stbl
[n
]];
1715 modify_index(tid
, ip
,
1716 le32_to_cpu(ldtentry
->index
),
1717 xaddr
, n
, &mp
, &lblock
);
1720 release_metapage(mp
);
1727 sp
->header
.self
= *pxd
;
1729 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip
, smp
, sp
);
1731 BT_MARK_DIRTY(smp
, ip
);
1733 * acquire a transaction lock on the extended/leaf page
1735 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| type
);
1736 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1737 lv
= & dtlck
->lv
[0];
1739 /* update buffer extent descriptor of extended page */
1740 xlen
= lengthPXD(pxd
);
1741 xsize
= xlen
<< JFS_SBI(sb
)->l2bsize
;
1744 * copy old stbl to new stbl at start of extended area
1746 oldstblindex
= sp
->header
.stblindex
;
1747 oldstblsize
= (sp
->header
.maxslot
+ 31) >> L2DTSLOTSIZE
;
1748 newstblindex
= sp
->header
.maxslot
;
1749 n
= xsize
>> L2DTSLOTSIZE
;
1750 newstblsize
= (n
+ 31) >> L2DTSLOTSIZE
;
1751 memcpy(&sp
->slot
[newstblindex
], &sp
->slot
[oldstblindex
],
1752 sp
->header
.nextindex
);
1755 * in-line extension: linelock old area of extended page
1757 if (type
== tlckEXTEND
) {
1758 /* linelock header */
1764 /* linelock new stbl of extended page */
1765 lv
->offset
= newstblindex
;
1766 lv
->length
= newstblsize
;
1769 * relocation: linelock whole relocated area
1773 lv
->length
= sp
->header
.maxslot
+ newstblsize
;
1778 sp
->header
.maxslot
= n
;
1779 sp
->header
.stblindex
= newstblindex
;
1780 /* sp->header.nextindex remains the same */
1783 * add old stbl region at head of freelist
1787 last
= sp
->header
.freelist
;
1788 for (n
= 0; n
< oldstblsize
; n
++, fsi
++, f
++) {
1792 sp
->header
.freelist
= last
;
1793 sp
->header
.freecnt
+= oldstblsize
;
1796 * append free region of newly extended area at tail of freelist
1798 /* init free region of newly extended area */
1799 fsi
= n
= newstblindex
+ newstblsize
;
1801 for (fsi
++; fsi
< sp
->header
.maxslot
; f
++, fsi
++)
1805 /* append new free region at tail of old freelist */
1806 fsi
= sp
->header
.freelist
;
1808 sp
->header
.freelist
= n
;
1813 } while (fsi
!= -1);
1818 sp
->header
.freecnt
+= sp
->header
.maxslot
- n
;
1821 * insert the new entry
1823 dtInsertEntry(sp
, split
->index
, split
->key
, split
->data
, &dtlck
);
1825 BT_MARK_DIRTY(pmp
, ip
);
1827 * linelock any freeslots residing in old extent
1829 if (type
== tlckEXTEND
) {
1830 n
= sp
->header
.maxslot
>> 2;
1831 if (sp
->header
.freelist
< n
)
1832 dtLinelockFreelist(sp
, n
, &dtlck
);
1836 * update parent entry on the parent/root page
1839 * acquire a transaction lock on the parent/root page
1841 tlck
= txLock(tid
, ip
, pmp
, tlckDTREE
| tlckENTRY
);
1842 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1843 lv
= & dtlck
->lv
[dtlck
->index
];
1845 /* linelock parent entry - 1st slot */
1850 /* update the parent pxd for page extension */
1851 tpxd
= (pxd_t
*) & pp
->slot
[1];
1863 * split the full root page into
1864 * original/root/split page and new right page
1865 * i.e., root remains fixed in tree anchor (inode) and
1866 * the root is copied to a single new right child page
1867 * since root page << non-root page, and
1868 * the split root page contains a single entry for the
1869 * new right child page.
1873 * return: 0 - success;
1875 * return new page pinned;
1877 static int dtSplitRoot(tid_t tid
,
1878 struct inode
*ip
, struct dtsplit
* split
, struct metapage
** rmpp
)
1880 struct super_block
*sb
= ip
->i_sb
;
1881 struct metapage
*smp
;
1883 struct metapage
*rmp
;
1890 int fsi
, stblsize
, n
;
1893 struct pxdlist
*pxdlist
;
1895 struct dt_lock
*dtlck
;
1899 /* get split root page */
1901 sp
= &JFS_IP(ip
)->i_dtroot
;
1904 * allocate/initialize a single (right) child page
1906 * N.B. at first split, a one (or two) block to fit new entry
1907 * is allocated; at subsequent split, a full page is allocated;
1909 pxdlist
= split
->pxdlist
;
1910 pxd
= &pxdlist
->pxd
[pxdlist
->npxd
];
1912 rbn
= addressPXD(pxd
);
1913 xlen
= lengthPXD(pxd
);
1914 xsize
= xlen
<< JFS_SBI(sb
)->l2bsize
;
1915 rmp
= get_metapage(ip
, rbn
, xsize
, 1);
1921 /* Allocate blocks to quota. */
1922 if (DQUOT_ALLOC_BLOCK(ip
, lengthPXD(pxd
))) {
1923 release_metapage(rmp
);
1927 BT_MARK_DIRTY(rmp
, ip
);
1929 * acquire a transaction lock on the new right page
1931 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckNEW
);
1932 dtlck
= (struct dt_lock
*) & tlck
->lock
;
1935 (sp
->header
.flag
& BT_LEAF
) ? BT_LEAF
: BT_INTERNAL
;
1936 rp
->header
.self
= *pxd
;
1938 /* initialize sibling pointers */
1939 rp
->header
.next
= 0;
1940 rp
->header
.prev
= 0;
1943 * move in-line root page into new right page extent
1945 /* linelock header + copied entries + new stbl (1st slot) in new page */
1946 ASSERT(dtlck
->index
== 0);
1947 lv
= & dtlck
->lv
[0];
1949 lv
->length
= 10; /* 1 + 8 + 1 */
1952 n
= xsize
>> L2DTSLOTSIZE
;
1953 rp
->header
.maxslot
= n
;
1954 stblsize
= (n
+ 31) >> L2DTSLOTSIZE
;
1956 /* copy old stbl to new stbl at start of extended area */
1957 rp
->header
.stblindex
= DTROOTMAXSLOT
;
1958 stbl
= (s8
*) & rp
->slot
[DTROOTMAXSLOT
];
1959 memcpy(stbl
, sp
->header
.stbl
, sp
->header
.nextindex
);
1960 rp
->header
.nextindex
= sp
->header
.nextindex
;
1962 /* copy old data area to start of new data area */
1963 memcpy(&rp
->slot
[1], &sp
->slot
[1], IDATASIZE
);
1966 * append free region of newly extended area at tail of freelist
1968 /* init free region of newly extended area */
1969 fsi
= n
= DTROOTMAXSLOT
+ stblsize
;
1971 for (fsi
++; fsi
< rp
->header
.maxslot
; f
++, fsi
++)
1975 /* append new free region at tail of old freelist */
1976 fsi
= sp
->header
.freelist
;
1978 rp
->header
.freelist
= n
;
1980 rp
->header
.freelist
= fsi
;
1985 } while (fsi
!= -1);
1990 rp
->header
.freecnt
= sp
->header
.freecnt
+ rp
->header
.maxslot
- n
;
1993 * Update directory index table for entries now in right page
1995 if ((rp
->header
.flag
& BT_LEAF
) && DO_INDEX(ip
)) {
1997 struct metapage
*mp
= NULL
;
1998 struct ldtentry
*ldtentry
;
2000 stbl
= DT_GETSTBL(rp
);
2001 for (n
= 0; n
< rp
->header
.nextindex
; n
++) {
2002 ldtentry
= (struct ldtentry
*) & rp
->slot
[stbl
[n
]];
2003 modify_index(tid
, ip
, le32_to_cpu(ldtentry
->index
),
2004 rbn
, n
, &mp
, &lblock
);
2007 release_metapage(mp
);
2010 * insert the new entry into the new right/child page
2011 * (skip index in the new right page will not change)
2013 dtInsertEntry(rp
, split
->index
, split
->key
, split
->data
, &dtlck
);
2016 * reset parent/root page
2018 * set the 1st entry offset to 0, which force the left-most key
2019 * at any level of the tree to be less than any search key.
2021 * The btree comparison code guarantees that the left-most key on any
2022 * level of the tree is never used, so it doesn't need to be filled in.
2024 BT_MARK_DIRTY(smp
, ip
);
2026 * acquire a transaction lock on the root page (in-memory inode)
2028 tlck
= txLock(tid
, ip
, smp
, tlckDTREE
| tlckNEW
| tlckBTROOT
);
2029 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2032 ASSERT(dtlck
->index
== 0);
2033 lv
= & dtlck
->lv
[0];
2035 lv
->length
= DTROOTMAXSLOT
;
2038 /* update page header of root */
2039 if (sp
->header
.flag
& BT_LEAF
) {
2040 sp
->header
.flag
&= ~BT_LEAF
;
2041 sp
->header
.flag
|= BT_INTERNAL
;
2044 /* init the first entry */
2045 s
= (struct idtentry
*) & sp
->slot
[DTENTRYSTART
];
2051 stbl
= sp
->header
.stbl
;
2052 stbl
[0] = DTENTRYSTART
;
2053 sp
->header
.nextindex
= 1;
2056 fsi
= DTENTRYSTART
+ 1;
2059 /* init free region of remaining area */
2060 for (fsi
++; fsi
< DTROOTMAXSLOT
; f
++, fsi
++)
2064 sp
->header
.freelist
= DTENTRYSTART
+ 1;
2065 sp
->header
.freecnt
= DTROOTMAXSLOT
- (DTENTRYSTART
+ 1);
2076 * function: delete the entry(s) referenced by a key.
2082 int dtDelete(tid_t tid
,
2083 struct inode
*ip
, struct component_name
* key
, ino_t
* ino
, int flag
)
2087 struct metapage
*mp
, *imp
;
2090 struct btstack btstack
;
2091 struct dt_lock
*dtlck
;
2095 struct ldtentry
*ldtentry
;
2097 u32 table_index
, next_index
;
2098 struct metapage
*nmp
;
2102 * search for the entry to delete:
2104 * dtSearch() returns (leaf page pinned, index at which to delete).
2106 if ((rc
= dtSearch(ip
, key
, ino
, &btstack
, flag
)))
2109 /* retrieve search result */
2110 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
2113 * We need to find put the index of the next entry into the
2114 * directory index table in order to resume a readdir from this
2118 stbl
= DT_GETSTBL(p
);
2119 ldtentry
= (struct ldtentry
*) & p
->slot
[stbl
[index
]];
2120 table_index
= le32_to_cpu(ldtentry
->index
);
2121 if (index
== (p
->header
.nextindex
- 1)) {
2123 * Last entry in this leaf page
2125 if ((p
->header
.flag
& BT_ROOT
)
2126 || (p
->header
.next
== 0))
2129 /* Read next leaf page */
2130 DT_GETPAGE(ip
, le64_to_cpu(p
->header
.next
),
2131 nmp
, PSIZE
, np
, rc
);
2135 stbl
= DT_GETSTBL(np
);
2137 (struct ldtentry
*) & np
->
2140 le32_to_cpu(ldtentry
->index
);
2146 (struct ldtentry
*) & p
->slot
[stbl
[index
+ 1]];
2147 next_index
= le32_to_cpu(ldtentry
->index
);
2149 free_index(tid
, ip
, table_index
, next_index
);
2152 * the leaf page becomes empty, delete the page
2154 if (p
->header
.nextindex
== 1) {
2155 /* delete empty page */
2156 rc
= dtDeleteUp(tid
, ip
, mp
, p
, &btstack
);
2159 * the leaf page has other entries remaining:
2161 * delete the entry from the leaf page.
2164 BT_MARK_DIRTY(mp
, ip
);
2166 * acquire a transaction lock on the leaf page
2168 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
2169 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2172 * Do not assume that dtlck->index will be zero. During a
2173 * rename within a directory, this transaction may have
2174 * modified this page already when adding the new entry.
2177 /* linelock header */
2178 if (dtlck
->index
>= dtlck
->maxcnt
)
2179 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2180 lv
= & dtlck
->lv
[dtlck
->index
];
2185 /* linelock stbl of non-root leaf page */
2186 if (!(p
->header
.flag
& BT_ROOT
)) {
2187 if (dtlck
->index
>= dtlck
->maxcnt
)
2188 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2189 lv
= & dtlck
->lv
[dtlck
->index
];
2190 i
= index
>> L2DTSLOTSIZE
;
2191 lv
->offset
= p
->header
.stblindex
+ i
;
2193 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) -
2198 /* free the leaf entry */
2199 dtDeleteEntry(p
, index
, &dtlck
);
2202 * Update directory index table for entries moved in stbl
2204 if (DO_INDEX(ip
) && index
< p
->header
.nextindex
) {
2208 stbl
= DT_GETSTBL(p
);
2209 for (i
= index
; i
< p
->header
.nextindex
; i
++) {
2211 (struct ldtentry
*) & p
->slot
[stbl
[i
]];
2212 modify_index(tid
, ip
,
2213 le32_to_cpu(ldtentry
->index
),
2214 bn
, i
, &imp
, &lblock
);
2217 release_metapage(imp
);
2231 * free empty pages as propagating deletion up the tree
2237 static int dtDeleteUp(tid_t tid
, struct inode
*ip
,
2238 struct metapage
* fmp
, dtpage_t
* fp
, struct btstack
* btstack
)
2241 struct metapage
*mp
;
2243 int index
, nextindex
;
2245 struct btframe
*parent
;
2246 struct dt_lock
*dtlck
;
2249 struct pxd_lock
*pxdlock
;
2253 * keep the root leaf page which has become empty
2255 if (BT_IS_ROOT(fmp
)) {
2259 * dtInitRoot() acquires txlock on the root
2261 dtInitRoot(tid
, ip
, PARENT(ip
));
2269 * free the non-root leaf page
2272 * acquire a transaction lock on the page
2274 * write FREEXTENT|NOREDOPAGE log record
2275 * N.B. linelock is overlaid as freed extent descriptor, and
2276 * the buffer page is freed;
2278 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckFREE
);
2279 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2280 pxdlock
->flag
= mlckFREEPXD
;
2281 pxdlock
->pxd
= fp
->header
.self
;
2284 /* update sibling pointers */
2285 if ((rc
= dtRelink(tid
, ip
, fp
))) {
2290 xlen
= lengthPXD(&fp
->header
.self
);
2292 /* Free quota allocation. */
2293 DQUOT_FREE_BLOCK(ip
, xlen
);
2295 /* free/invalidate its buffer page */
2296 discard_metapage(fmp
);
2299 * propagate page deletion up the directory tree
2301 * If the delete from the parent page makes it empty,
2302 * continue all the way up the tree.
2303 * stop if the root page is reached (which is never deleted) or
2304 * if the entry deletion does not empty the page.
2306 while ((parent
= BT_POP(btstack
)) != NULL
) {
2307 /* pin the parent page <sp> */
2308 DT_GETPAGE(ip
, parent
->bn
, mp
, PSIZE
, p
, rc
);
2313 * free the extent of the child page deleted
2315 index
= parent
->index
;
2318 * delete the entry for the child page from parent
2320 nextindex
= p
->header
.nextindex
;
2323 * the parent has the single entry being deleted:
2325 * free the parent page which has become empty.
2327 if (nextindex
== 1) {
2329 * keep the root internal page which has become empty
2331 if (p
->header
.flag
& BT_ROOT
) {
2335 * dtInitRoot() acquires txlock on the root
2337 dtInitRoot(tid
, ip
, PARENT(ip
));
2344 * free the parent page
2348 * acquire a transaction lock on the page
2350 * write FREEXTENT|NOREDOPAGE log record
2354 tlckDTREE
| tlckFREE
);
2355 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2356 pxdlock
->flag
= mlckFREEPXD
;
2357 pxdlock
->pxd
= p
->header
.self
;
2360 /* update sibling pointers */
2361 if ((rc
= dtRelink(tid
, ip
, p
))) {
2366 xlen
= lengthPXD(&p
->header
.self
);
2368 /* Free quota allocation */
2369 DQUOT_FREE_BLOCK(ip
, xlen
);
2371 /* free/invalidate its buffer page */
2372 discard_metapage(mp
);
2380 * the parent has other entries remaining:
2382 * delete the router entry from the parent page.
2384 BT_MARK_DIRTY(mp
, ip
);
2386 * acquire a transaction lock on the page
2388 * action: router entry deletion
2390 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
2391 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2393 /* linelock header */
2394 if (dtlck
->index
>= dtlck
->maxcnt
)
2395 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2396 lv
= & dtlck
->lv
[dtlck
->index
];
2401 /* linelock stbl of non-root leaf page */
2402 if (!(p
->header
.flag
& BT_ROOT
)) {
2403 if (dtlck
->index
< dtlck
->maxcnt
)
2406 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2407 lv
= & dtlck
->lv
[0];
2409 i
= index
>> L2DTSLOTSIZE
;
2410 lv
->offset
= p
->header
.stblindex
+ i
;
2412 ((p
->header
.nextindex
- 1) >> L2DTSLOTSIZE
) -
2417 /* free the router entry */
2418 dtDeleteEntry(p
, index
, &dtlck
);
2420 /* reset key of new leftmost entry of level (for consistency) */
2422 ((p
->header
.flag
& BT_ROOT
) || p
->header
.prev
== 0))
2423 dtTruncateEntry(p
, 0, &dtlck
);
2425 /* unpin the parent page */
2428 /* exit propagation up */
2433 ip
->i_size
-= PSIZE
;
2440 * NAME: dtRelocate()
2442 * FUNCTION: relocate dtpage (internal or leaf) of directory;
2443 * This function is mainly used by defragfs utility.
2445 int dtRelocate(tid_t tid
, struct inode
*ip
, s64 lmxaddr
, pxd_t
* opxd
,
2449 struct metapage
*mp
, *pmp
, *lmp
, *rmp
;
2450 dtpage_t
*p
, *pp
, *rp
= 0, *lp
= 0;
2453 struct btstack btstack
;
2455 s64 oxaddr
, nextbn
, prevbn
;
2458 struct dt_lock
*dtlck
;
2459 struct pxd_lock
*pxdlock
;
2463 oxaddr
= addressPXD(opxd
);
2464 xlen
= lengthPXD(opxd
);
2466 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2467 (long long)lmxaddr
, (long long)oxaddr
, (long long)nxaddr
,
2471 * 1. get the internal parent dtpage covering
2472 * router entry for the tartget page to be relocated;
2474 rc
= dtSearchNode(ip
, lmxaddr
, opxd
, &btstack
);
2478 /* retrieve search result */
2479 DT_GETSEARCH(ip
, btstack
.top
, bn
, pmp
, pp
, index
);
2480 jfs_info("dtRelocate: parent router entry validated.");
2483 * 2. relocate the target dtpage
2485 /* read in the target page from src extent */
2486 DT_GETPAGE(ip
, oxaddr
, mp
, PSIZE
, p
, rc
);
2488 /* release the pinned parent page */
2494 * read in sibling pages if any to update sibling pointers;
2497 if (p
->header
.next
) {
2498 nextbn
= le64_to_cpu(p
->header
.next
);
2499 DT_GETPAGE(ip
, nextbn
, rmp
, PSIZE
, rp
, rc
);
2508 if (p
->header
.prev
) {
2509 prevbn
= le64_to_cpu(p
->header
.prev
);
2510 DT_GETPAGE(ip
, prevbn
, lmp
, PSIZE
, lp
, rc
);
2520 /* at this point, all xtpages to be updated are in memory */
2523 * update sibling pointers of sibling dtpages if any;
2526 tlck
= txLock(tid
, ip
, lmp
, tlckDTREE
| tlckRELINK
);
2527 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2528 /* linelock header */
2529 ASSERT(dtlck
->index
== 0);
2530 lv
= & dtlck
->lv
[0];
2535 lp
->header
.next
= cpu_to_le64(nxaddr
);
2540 tlck
= txLock(tid
, ip
, rmp
, tlckDTREE
| tlckRELINK
);
2541 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2542 /* linelock header */
2543 ASSERT(dtlck
->index
== 0);
2544 lv
= & dtlck
->lv
[0];
2549 rp
->header
.prev
= cpu_to_le64(nxaddr
);
2554 * update the target dtpage to be relocated
2556 * write LOG_REDOPAGE of LOG_NEW type for dst page
2557 * for the whole target page (logredo() will apply
2558 * after image and update bmap for allocation of the
2559 * dst extent), and update bmap for allocation of
2562 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckNEW
);
2563 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2564 /* linelock header */
2565 ASSERT(dtlck
->index
== 0);
2566 lv
= & dtlck
->lv
[0];
2568 /* update the self address in the dtpage header */
2569 pxd
= &p
->header
.self
;
2570 PXDaddress(pxd
, nxaddr
);
2572 /* the dst page is the same as the src page, i.e.,
2573 * linelock for afterimage of the whole page;
2576 lv
->length
= p
->header
.maxslot
;
2579 /* update the buffer extent descriptor of the dtpage */
2580 xsize
= xlen
<< JFS_SBI(ip
->i_sb
)->l2bsize
;
2582 /* unpin the relocated page */
2584 jfs_info("dtRelocate: target dtpage relocated.");
2586 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2587 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2588 * will also force a bmap update ).
2592 * 3. acquire maplock for the source extent to be freed;
2594 /* for dtpage relocation, write a LOG_NOREDOPAGE record
2595 * for the source dtpage (logredo() will init NoRedoPage
2596 * filter and will also update bmap for free of the source
2597 * dtpage), and upadte bmap for free of the source dtpage;
2599 tlck
= txMaplock(tid
, ip
, tlckDTREE
| tlckFREE
);
2600 pxdlock
= (struct pxd_lock
*) & tlck
->lock
;
2601 pxdlock
->flag
= mlckFREEPXD
;
2602 PXDaddress(&pxdlock
->pxd
, oxaddr
);
2603 PXDlength(&pxdlock
->pxd
, xlen
);
2607 * 4. update the parent router entry for relocation;
2609 * acquire tlck for the parent entry covering the target dtpage;
2610 * write LOG_REDOPAGE to apply after image only;
2612 jfs_info("dtRelocate: update parent router entry.");
2613 tlck
= txLock(tid
, ip
, pmp
, tlckDTREE
| tlckENTRY
);
2614 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2615 lv
= & dtlck
->lv
[dtlck
->index
];
2617 /* update the PXD with the new address */
2618 stbl
= DT_GETSTBL(pp
);
2619 pxd
= (pxd_t
*) & pp
->slot
[stbl
[index
]];
2620 PXDaddress(pxd
, nxaddr
);
2621 lv
->offset
= stbl
[index
];
2625 /* unpin the parent dtpage */
2632 * NAME: dtSearchNode()
2634 * FUNCTION: Search for an dtpage containing a specified address
2635 * This function is mainly used by defragfs utility.
2637 * NOTE: Search result on stack, the found page is pinned at exit.
2638 * The result page must be an internal dtpage.
2639 * lmxaddr give the address of the left most page of the
2640 * dtree level, in which the required dtpage resides.
2642 static int dtSearchNode(struct inode
*ip
, s64 lmxaddr
, pxd_t
* kpxd
,
2643 struct btstack
* btstack
)
2647 struct metapage
*mp
;
2649 int psize
= 288; /* initial in-line directory */
2653 struct btframe
*btsp
;
2655 BT_CLR(btstack
); /* reset stack */
2658 * descend tree to the level with specified leftmost page
2660 * by convention, root bn = 0.
2663 /* get/pin the page to search */
2664 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
2668 /* does the xaddr of leftmost page of the levevl
2669 * matches levevl search key ?
2671 if (p
->header
.flag
& BT_ROOT
) {
2674 } else if (addressPXD(&p
->header
.self
) == lmxaddr
)
2678 * descend down to leftmost child page
2680 if (p
->header
.flag
& BT_LEAF
) {
2685 /* get the leftmost entry */
2686 stbl
= DT_GETSTBL(p
);
2687 pxd
= (pxd_t
*) & p
->slot
[stbl
[0]];
2689 /* get the child page block address */
2690 bn
= addressPXD(pxd
);
2691 psize
= lengthPXD(pxd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
2692 /* unpin the parent page */
2697 * search each page at the current levevl
2700 stbl
= DT_GETSTBL(p
);
2701 for (i
= 0; i
< p
->header
.nextindex
; i
++) {
2702 pxd
= (pxd_t
*) & p
->slot
[stbl
[i
]];
2704 /* found the specified router entry */
2705 if (addressPXD(pxd
) == addressPXD(kpxd
) &&
2706 lengthPXD(pxd
) == lengthPXD(kpxd
)) {
2707 btsp
= btstack
->top
;
2716 /* get the right sibling page if any */
2718 bn
= le64_to_cpu(p
->header
.next
);
2724 /* unpin current page */
2727 /* get the right sibling page */
2728 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
2734 #endif /* _NOTYET */
2740 * link around a freed page.
2743 * fp: page to be freed
2747 static int dtRelink(tid_t tid
, struct inode
*ip
, dtpage_t
* p
)
2750 struct metapage
*mp
;
2753 struct dt_lock
*dtlck
;
2756 nextbn
= le64_to_cpu(p
->header
.next
);
2757 prevbn
= le64_to_cpu(p
->header
.prev
);
2759 /* update prev pointer of the next page */
2761 DT_GETPAGE(ip
, nextbn
, mp
, PSIZE
, p
, rc
);
2765 BT_MARK_DIRTY(mp
, ip
);
2767 * acquire a transaction lock on the next page
2769 * action: update prev pointer;
2771 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
2772 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2774 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2776 /* linelock header */
2777 if (dtlck
->index
>= dtlck
->maxcnt
)
2778 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2779 lv
= & dtlck
->lv
[dtlck
->index
];
2784 p
->header
.prev
= cpu_to_le64(prevbn
);
2788 /* update next pointer of the previous page */
2790 DT_GETPAGE(ip
, prevbn
, mp
, PSIZE
, p
, rc
);
2794 BT_MARK_DIRTY(mp
, ip
);
2796 * acquire a transaction lock on the prev page
2798 * action: update next pointer;
2800 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckRELINK
);
2801 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2803 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2805 /* linelock header */
2806 if (dtlck
->index
>= dtlck
->maxcnt
)
2807 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2808 lv
= & dtlck
->lv
[dtlck
->index
];
2813 p
->header
.next
= cpu_to_le64(nextbn
);
2824 * initialize directory root (inline in inode)
2826 void dtInitRoot(tid_t tid
, struct inode
*ip
, u32 idotdot
)
2828 struct jfs_inode_info
*jfs_ip
= JFS_IP(ip
);
2833 struct dt_lock
*dtlck
;
2838 * If this was previously an non-empty directory, we need to remove
2839 * the old directory table.
2842 if (!jfs_dirtable_inline(ip
)) {
2843 struct tblock
*tblk
= tid_to_tblock(tid
);
2845 * We're playing games with the tid's xflag. If
2846 * we're removing a regular file, the file's xtree
2847 * is committed with COMMIT_PMAP, but we always
2848 * commit the directories xtree with COMMIT_PWMAP.
2850 xflag_save
= tblk
->xflag
;
2853 * xtTruncate isn't guaranteed to fully truncate
2854 * the xtree. The caller needs to check i_size
2855 * after committing the transaction to see if
2856 * additional truncation is needed. The
2857 * COMMIT_Stale flag tells caller that we
2858 * initiated the truncation.
2860 xtTruncate(tid
, ip
, 0, COMMIT_PWMAP
);
2861 set_cflag(COMMIT_Stale
, ip
);
2863 tblk
->xflag
= xflag_save
;
2867 jfs_ip
->next_index
= 2;
2869 ip
->i_size
= IDATASIZE
;
2872 * acquire a transaction lock on the root
2874 * action: directory initialization;
2876 tlck
= txLock(tid
, ip
, (struct metapage
*) & jfs_ip
->bxflag
,
2877 tlckDTREE
| tlckENTRY
| tlckBTROOT
);
2878 dtlck
= (struct dt_lock
*) & tlck
->lock
;
2881 ASSERT(dtlck
->index
== 0);
2882 lv
= & dtlck
->lv
[0];
2884 lv
->length
= DTROOTMAXSLOT
;
2887 p
= &jfs_ip
->i_dtroot
;
2889 p
->header
.flag
= DXD_INDEX
| BT_ROOT
| BT_LEAF
;
2891 p
->header
.nextindex
= 0;
2897 /* init data area of root */
2898 for (fsi
++; fsi
< DTROOTMAXSLOT
; f
++, fsi
++)
2902 p
->header
.freelist
= 1;
2903 p
->header
.freecnt
= 8;
2905 /* init '..' entry */
2906 p
->header
.idotdot
= cpu_to_le32(idotdot
);
2912 * add_missing_indices()
2914 * function: Fix dtree page in which one or more entries has an invalid index.
2915 * fsck.jfs should really fix this, but it currently does not.
2916 * Called from jfs_readdir when bad index is detected.
2918 static void add_missing_indices(struct inode
*inode
, s64 bn
)
2921 struct dt_lock
*dtlck
;
2925 struct metapage
*mp
;
2932 tid
= txBegin(inode
->i_sb
, 0);
2934 DT_GETPAGE(inode
, bn
, mp
, PSIZE
, p
, rc
);
2937 printk(KERN_ERR
"DT_GETPAGE failed!\n");
2940 BT_MARK_DIRTY(mp
, inode
);
2942 ASSERT(p
->header
.flag
& BT_LEAF
);
2944 tlck
= txLock(tid
, inode
, mp
, tlckDTREE
| tlckENTRY
);
2946 tlck
->type
|= tlckBTROOT
;
2948 dtlck
= (struct dt_lock
*) &tlck
->lock
;
2950 stbl
= DT_GETSTBL(p
);
2951 for (i
= 0; i
< p
->header
.nextindex
; i
++) {
2952 d
= (struct ldtentry
*) &p
->slot
[stbl
[i
]];
2953 index
= le32_to_cpu(d
->index
);
2954 if ((index
< 2) || (index
>= JFS_IP(inode
)->next_index
)) {
2955 d
->index
= cpu_to_le32(add_index(tid
, inode
, bn
, i
));
2956 if (dtlck
->index
>= dtlck
->maxcnt
)
2957 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
2958 lv
= &dtlck
->lv
[dtlck
->index
];
2959 lv
->offset
= stbl
[i
];
2966 (void) txCommit(tid
, 1, &inode
, 0);
2972 * Buffer to hold directory entry info while traversing a dtree page
2973 * before being fed to the filldir function
2983 * function to determine next variable-sized jfs_dirent in buffer
2985 static inline struct jfs_dirent
*next_jfs_dirent(struct jfs_dirent
*dirent
)
2987 return (struct jfs_dirent
*)
2989 ((sizeof (struct jfs_dirent
) + dirent
->name_len
+ 1 +
2990 sizeof (loff_t
) - 1) &
2991 ~(sizeof (loff_t
) - 1)));
2997 * function: read directory entries sequentially
2998 * from the specified entry offset
3002 * return: offset = (pn, index) of start entry
3003 * of next jfs_readdir()/dtRead()
3005 int jfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
3007 struct inode
*ip
= filp
->f_path
.dentry
->d_inode
;
3008 struct nls_table
*codepage
= JFS_SBI(ip
->i_sb
)->nls_tab
;
3010 loff_t dtpos
; /* legacy OS/2 style position */
3015 } *dtoffset
= (struct dtoffset
*) &dtpos
;
3017 struct metapage
*mp
;
3021 struct btstack btstack
;
3025 int d_namleft
, len
, outlen
;
3026 unsigned long dirent_buf
;
3030 uint loop_count
= 0;
3031 struct jfs_dirent
*jfs_dirent
;
3033 int overflow
, fix_page
, page_fixed
= 0;
3034 static int unique_pos
= 2; /* If we can't fix broken index */
3036 if (filp
->f_pos
== DIREND
)
3041 * persistent index is stored in directory entries.
3042 * Special cases: 0 = .
3044 * -1 = End of directory
3048 dir_index
= (u32
) filp
->f_pos
;
3050 if (dir_index
> 1) {
3051 struct dir_table_slot dirtab_slot
;
3054 (dir_index
>= JFS_IP(ip
)->next_index
)) {
3055 /* Stale position. Directory has shrunk */
3056 filp
->f_pos
= DIREND
;
3060 rc
= read_index(ip
, dir_index
, &dirtab_slot
);
3062 filp
->f_pos
= DIREND
;
3065 if (dirtab_slot
.flag
== DIR_INDEX_FREE
) {
3066 if (loop_count
++ > JFS_IP(ip
)->next_index
) {
3067 jfs_err("jfs_readdir detected "
3069 filp
->f_pos
= DIREND
;
3072 dir_index
= le32_to_cpu(dirtab_slot
.addr2
);
3073 if (dir_index
== -1) {
3074 filp
->f_pos
= DIREND
;
3079 bn
= addressDTS(&dirtab_slot
);
3080 index
= dirtab_slot
.slot
;
3081 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3083 filp
->f_pos
= DIREND
;
3086 if (p
->header
.flag
& BT_INTERNAL
) {
3087 jfs_err("jfs_readdir: bad index table");
3093 if (dir_index
== 0) {
3098 if (filldir(dirent
, ".", 1, 0, ip
->i_ino
,
3106 if (filldir(dirent
, "..", 2, 1, PARENT(ip
), DT_DIR
))
3110 * Find first entry of left-most leaf
3113 filp
->f_pos
= DIREND
;
3117 if ((rc
= dtReadFirst(ip
, &btstack
)))
3120 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
3124 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3126 * pn = index = 0: First entry "."
3127 * pn = 0; index = 1: Second entry ".."
3128 * pn > 0: Real entries, pn=1 -> leftmost page
3129 * pn = index = -1: No more entries
3131 dtpos
= filp
->f_pos
;
3133 /* build "." entry */
3135 if (filldir(dirent
, ".", 1, filp
->f_pos
, ip
->i_ino
,
3138 dtoffset
->index
= 1;
3139 filp
->f_pos
= dtpos
;
3142 if (dtoffset
->pn
== 0) {
3143 if (dtoffset
->index
== 1) {
3144 /* build ".." entry */
3146 if (filldir(dirent
, "..", 2, filp
->f_pos
,
3147 PARENT(ip
), DT_DIR
))
3150 jfs_err("jfs_readdir called with "
3154 dtoffset
->index
= 0;
3155 filp
->f_pos
= dtpos
;
3159 filp
->f_pos
= DIREND
;
3163 if ((rc
= dtReadNext(ip
, &filp
->f_pos
, &btstack
))) {
3164 jfs_err("jfs_readdir: unexpected rc = %d "
3165 "from dtReadNext", rc
);
3166 filp
->f_pos
= DIREND
;
3169 /* get start leaf page and index */
3170 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
3172 /* offset beyond directory eof ? */
3174 filp
->f_pos
= DIREND
;
3179 dirent_buf
= __get_free_page(GFP_KERNEL
);
3180 if (dirent_buf
== 0) {
3182 jfs_warn("jfs_readdir: __get_free_page failed!");
3183 filp
->f_pos
= DIREND
;
3188 jfs_dirent
= (struct jfs_dirent
*) dirent_buf
;
3190 overflow
= fix_page
= 0;
3192 stbl
= DT_GETSTBL(p
);
3194 for (i
= index
; i
< p
->header
.nextindex
; i
++) {
3195 d
= (struct ldtentry
*) & p
->slot
[stbl
[i
]];
3197 if (((long) jfs_dirent
+ d
->namlen
+ 1) >
3198 (dirent_buf
+ PAGE_SIZE
)) {
3199 /* DBCS codepages could overrun dirent_buf */
3205 d_namleft
= d
->namlen
;
3206 name_ptr
= jfs_dirent
->name
;
3207 jfs_dirent
->ino
= le32_to_cpu(d
->inumber
);
3210 len
= min(d_namleft
, DTLHDRDATALEN
);
3211 jfs_dirent
->position
= le32_to_cpu(d
->index
);
3213 * d->index should always be valid, but it
3214 * isn't. fsck.jfs doesn't create the
3215 * directory index for the lost+found
3216 * directory. Rather than let it go,
3217 * we can try to fix it.
3219 if ((jfs_dirent
->position
< 2) ||
3220 (jfs_dirent
->position
>=
3221 JFS_IP(ip
)->next_index
)) {
3222 if (!page_fixed
&& !isReadOnly(ip
)) {
3225 * setting overflow and setting
3226 * index to i will cause the
3227 * same page to be processed
3228 * again starting here
3234 jfs_dirent
->position
= unique_pos
++;
3237 jfs_dirent
->position
= dtpos
;
3238 len
= min(d_namleft
, DTLHDRDATALEN_LEGACY
);
3241 /* copy the name of head/only segment */
3242 outlen
= jfs_strfromUCS_le(name_ptr
, d
->name
, len
,
3244 jfs_dirent
->name_len
= outlen
;
3246 /* copy name in the additional segment(s) */
3249 t
= (struct dtslot
*) & p
->slot
[next
];
3253 if (d_namleft
== 0) {
3255 "JFS:Dtree error: ino = "
3256 "%ld, bn=%Ld, index = %d",
3262 len
= min(d_namleft
, DTSLOTDATALEN
);
3263 outlen
= jfs_strfromUCS_le(name_ptr
, t
->name
,
3265 jfs_dirent
->name_len
+= outlen
;
3271 jfs_dirent
= next_jfs_dirent(jfs_dirent
);
3278 /* Point to next leaf page */
3279 if (p
->header
.flag
& BT_ROOT
)
3282 bn
= le64_to_cpu(p
->header
.next
);
3284 /* update offset (pn:index) for new page */
3287 dtoffset
->index
= 0;
3293 /* unpin previous leaf page */
3296 jfs_dirent
= (struct jfs_dirent
*) dirent_buf
;
3297 while (jfs_dirents
--) {
3298 filp
->f_pos
= jfs_dirent
->position
;
3299 if (filldir(dirent
, jfs_dirent
->name
,
3300 jfs_dirent
->name_len
, filp
->f_pos
,
3301 jfs_dirent
->ino
, DT_UNKNOWN
))
3303 jfs_dirent
= next_jfs_dirent(jfs_dirent
);
3307 add_missing_indices(ip
, bn
);
3311 if (!overflow
&& (bn
== 0)) {
3312 filp
->f_pos
= DIREND
;
3316 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3318 free_page(dirent_buf
);
3324 free_page(dirent_buf
);
3333 * function: get the leftmost page of the directory
3335 static int dtReadFirst(struct inode
*ip
, struct btstack
* btstack
)
3339 int psize
= 288; /* initial in-line directory */
3340 struct metapage
*mp
;
3343 struct btframe
*btsp
;
3346 BT_CLR(btstack
); /* reset stack */
3349 * descend leftmost path of the tree
3351 * by convention, root bn = 0.
3354 DT_GETPAGE(ip
, bn
, mp
, psize
, p
, rc
);
3359 * leftmost leaf page
3361 if (p
->header
.flag
& BT_LEAF
) {
3362 /* return leftmost entry */
3363 btsp
= btstack
->top
;
3372 * descend down to leftmost child page
3374 if (BT_STACK_FULL(btstack
)) {
3376 jfs_error(ip
->i_sb
, "dtReadFirst: btstack overrun");
3377 BT_STACK_DUMP(btstack
);
3380 /* push (bn, index) of the parent page/entry */
3381 BT_PUSH(btstack
, bn
, 0);
3383 /* get the leftmost entry */
3384 stbl
= DT_GETSTBL(p
);
3385 xd
= (pxd_t
*) & p
->slot
[stbl
[0]];
3387 /* get the child page block address */
3388 bn
= addressPXD(xd
);
3389 psize
= lengthPXD(xd
) << JFS_SBI(ip
->i_sb
)->l2bsize
;
3391 /* unpin the parent page */
3400 * function: get the page of the specified offset (pn:index)
3402 * return: if (offset > eof), bn = -1;
3404 * note: if index > nextindex of the target leaf page,
3405 * start with 1st entry of next leaf page;
3407 static int dtReadNext(struct inode
*ip
, loff_t
* offset
,
3408 struct btstack
* btstack
)
3415 } *dtoffset
= (struct dtoffset
*) offset
;
3417 struct metapage
*mp
;
3422 struct btframe
*btsp
, *parent
;
3426 * get leftmost leaf page pinned
3428 if ((rc
= dtReadFirst(ip
, btstack
)))
3432 DT_GETSEARCH(ip
, btstack
->top
, bn
, mp
, p
, index
);
3434 /* get the start offset (pn:index) */
3435 pn
= dtoffset
->pn
- 1; /* Now pn = 0 represents leftmost leaf */
3436 index
= dtoffset
->index
;
3438 /* start at leftmost page ? */
3440 /* offset beyond eof ? */
3441 if (index
< p
->header
.nextindex
)
3444 if (p
->header
.flag
& BT_ROOT
) {
3449 /* start with 1st entry of next leaf page */
3451 dtoffset
->index
= index
= 0;
3455 /* start at non-leftmost page: scan parent pages for large pn */
3456 if (p
->header
.flag
& BT_ROOT
) {
3461 /* start after next leaf page ? */
3465 /* get leaf page pn = 1 */
3467 bn
= le64_to_cpu(p
->header
.next
);
3469 /* unpin leaf page */
3472 /* offset beyond eof ? */
3481 * scan last internal page level to get target leaf page
3484 /* unpin leftmost leaf page */
3487 /* get left most parent page */
3488 btsp
= btstack
->top
;
3491 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3495 /* scan parent pages at last internal page level */
3496 while (pn
>= p
->header
.nextindex
) {
3497 pn
-= p
->header
.nextindex
;
3499 /* get next parent page address */
3500 bn
= le64_to_cpu(p
->header
.next
);
3502 /* unpin current parent page */
3505 /* offset beyond eof ? */
3511 /* get next parent page */
3512 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3516 /* update parent page stack frame */
3520 /* get leaf page address */
3521 stbl
= DT_GETSTBL(p
);
3522 xd
= (pxd_t
*) & p
->slot
[stbl
[pn
]];
3523 bn
= addressPXD(xd
);
3525 /* unpin parent page */
3529 * get target leaf page
3532 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3537 * leaf page has been completed:
3538 * start with 1st entry of next leaf page
3540 if (index
>= p
->header
.nextindex
) {
3541 bn
= le64_to_cpu(p
->header
.next
);
3543 /* unpin leaf page */
3546 /* offset beyond eof ? */
3552 /* get next leaf page */
3553 DT_GETPAGE(ip
, bn
, mp
, PSIZE
, p
, rc
);
3557 /* start with 1st entry of next leaf page */
3559 dtoffset
->index
= 0;
3563 /* return target leaf page pinned */
3564 btsp
= btstack
->top
;
3566 btsp
->index
= dtoffset
->index
;
3576 * function: compare search key with an internal entry
3579 * < 0 if k is < record
3580 * = 0 if k is = record
3581 * > 0 if k is > record
3583 static int dtCompare(struct component_name
* key
, /* search key */
3584 dtpage_t
* p
, /* directory page */
3586 { /* entry slot index */
3589 int klen
, namlen
, len
, rc
;
3590 struct idtentry
*ih
;
3594 * force the left-most key on internal pages, at any level of
3595 * the tree, to be less than any search key.
3596 * this obviates having to update the leftmost key on an internal
3597 * page when the user inserts a new key in the tree smaller than
3598 * anything that has been stored.
3600 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3601 * at any internal page at any level of the tree,
3602 * it descends to child of the entry anyway -
3603 * ? make the entry as min size dummy entry)
3605 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3612 ih
= (struct idtentry
*) & p
->slot
[si
];
3615 namlen
= ih
->namlen
;
3616 len
= min(namlen
, DTIHDRDATALEN
);
3618 /* compare with head/only segment */
3619 len
= min(klen
, len
);
3620 if ((rc
= UniStrncmp_le(kname
, name
, len
)))
3626 /* compare with additional segment(s) */
3628 while (klen
> 0 && namlen
> 0) {
3629 /* compare with next name segment */
3630 t
= (struct dtslot
*) & p
->slot
[si
];
3631 len
= min(namlen
, DTSLOTDATALEN
);
3632 len
= min(klen
, len
);
3634 if ((rc
= UniStrncmp_le(kname
, name
, len
)))
3643 return (klen
- namlen
);
3652 * function: compare search key with an (leaf/internal) entry
3655 * < 0 if k is < record
3656 * = 0 if k is = record
3657 * > 0 if k is > record
3659 static int ciCompare(struct component_name
* key
, /* search key */
3660 dtpage_t
* p
, /* directory page */
3661 int si
, /* entry slot index */
3666 int klen
, namlen
, len
, rc
;
3667 struct ldtentry
*lh
;
3668 struct idtentry
*ih
;
3673 * force the left-most key on internal pages, at any level of
3674 * the tree, to be less than any search key.
3675 * this obviates having to update the leftmost key on an internal
3676 * page when the user inserts a new key in the tree smaller than
3677 * anything that has been stored.
3679 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3680 * at any internal page at any level of the tree,
3681 * it descends to child of the entry anyway -
3682 * ? make the entry as min size dummy entry)
3684 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3694 if (p
->header
.flag
& BT_LEAF
) {
3695 lh
= (struct ldtentry
*) & p
->slot
[si
];
3698 namlen
= lh
->namlen
;
3699 if (flag
& JFS_DIR_INDEX
)
3700 len
= min(namlen
, DTLHDRDATALEN
);
3702 len
= min(namlen
, DTLHDRDATALEN_LEGACY
);
3705 * internal page entry
3708 ih
= (struct idtentry
*) & p
->slot
[si
];
3711 namlen
= ih
->namlen
;
3712 len
= min(namlen
, DTIHDRDATALEN
);
3715 /* compare with head/only segment */
3716 len
= min(klen
, len
);
3717 for (i
= 0; i
< len
; i
++, kname
++, name
++) {
3718 /* only uppercase if case-insensitive support is on */
3719 if ((flag
& JFS_OS2
) == JFS_OS2
)
3720 x
= UniToupper(le16_to_cpu(*name
));
3722 x
= le16_to_cpu(*name
);
3723 if ((rc
= *kname
- x
))
3730 /* compare with additional segment(s) */
3731 while (klen
> 0 && namlen
> 0) {
3732 /* compare with next name segment */
3733 t
= (struct dtslot
*) & p
->slot
[si
];
3734 len
= min(namlen
, DTSLOTDATALEN
);
3735 len
= min(klen
, len
);
3737 for (i
= 0; i
< len
; i
++, kname
++, name
++) {
3738 /* only uppercase if case-insensitive support is on */
3739 if ((flag
& JFS_OS2
) == JFS_OS2
)
3740 x
= UniToupper(le16_to_cpu(*name
));
3742 x
= le16_to_cpu(*name
);
3744 if ((rc
= *kname
- x
))
3753 return (klen
- namlen
);
3758 * ciGetLeafPrefixKey()
3760 * function: compute prefix of suffix compression
3761 * from two adjacent leaf entries
3762 * across page boundary
3764 * return: non-zero on error
3767 static int ciGetLeafPrefixKey(dtpage_t
* lp
, int li
, dtpage_t
* rp
,
3768 int ri
, struct component_name
* key
, int flag
)
3771 wchar_t *pl
, *pr
, *kname
;
3772 struct component_name lkey
;
3773 struct component_name rkey
;
3775 lkey
.name
= kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t),
3777 if (lkey
.name
== NULL
)
3780 rkey
.name
= kmalloc((JFS_NAME_MAX
+ 1) * sizeof(wchar_t),
3782 if (rkey
.name
== NULL
) {
3787 /* get left and right key */
3788 dtGetKey(lp
, li
, &lkey
, flag
);
3789 lkey
.name
[lkey
.namlen
] = 0;
3791 if ((flag
& JFS_OS2
) == JFS_OS2
)
3794 dtGetKey(rp
, ri
, &rkey
, flag
);
3795 rkey
.name
[rkey
.namlen
] = 0;
3798 if ((flag
& JFS_OS2
) == JFS_OS2
)
3801 /* compute prefix */
3804 namlen
= min(lkey
.namlen
, rkey
.namlen
);
3805 for (pl
= lkey
.name
, pr
= rkey
.name
;
3806 namlen
; pl
++, pr
++, namlen
--, klen
++, kname
++) {
3809 key
->namlen
= klen
+ 1;
3814 /* l->namlen <= r->namlen since l <= r */
3815 if (lkey
.namlen
< rkey
.namlen
) {
3817 key
->namlen
= klen
+ 1;
3818 } else /* l->namelen == r->namelen */
3832 * function: get key of the entry
3834 static void dtGetKey(dtpage_t
* p
, int i
, /* entry index */
3835 struct component_name
* key
, int flag
)
3839 struct ldtentry
*lh
;
3840 struct idtentry
*ih
;
3847 stbl
= DT_GETSTBL(p
);
3849 if (p
->header
.flag
& BT_LEAF
) {
3850 lh
= (struct ldtentry
*) & p
->slot
[si
];
3852 namlen
= lh
->namlen
;
3854 if (flag
& JFS_DIR_INDEX
)
3855 len
= min(namlen
, DTLHDRDATALEN
);
3857 len
= min(namlen
, DTLHDRDATALEN_LEGACY
);
3859 ih
= (struct idtentry
*) & p
->slot
[si
];
3861 namlen
= ih
->namlen
;
3863 len
= min(namlen
, DTIHDRDATALEN
);
3866 key
->namlen
= namlen
;
3870 * move head/only segment
3872 UniStrncpy_from_le(kname
, name
, len
);
3875 * move additional segment(s)
3878 /* get next segment */
3882 len
= min(namlen
, DTSLOTDATALEN
);
3883 UniStrncpy_from_le(kname
, t
->name
, len
);
3893 * function: allocate free slot(s) and
3894 * write a leaf/internal entry
3896 * return: entry slot index
3898 static void dtInsertEntry(dtpage_t
* p
, int index
, struct component_name
* key
,
3899 ddata_t
* data
, struct dt_lock
** dtlock
)
3901 struct dtslot
*h
, *t
;
3902 struct ldtentry
*lh
= NULL
;
3903 struct idtentry
*ih
= NULL
;
3904 int hsi
, fsi
, klen
, len
, nextindex
;
3909 struct dt_lock
*dtlck
= *dtlock
;
3913 struct metapage
*mp
= NULL
;
3918 /* allocate a free slot */
3919 hsi
= fsi
= p
->header
.freelist
;
3921 p
->header
.freelist
= h
->next
;
3922 --p
->header
.freecnt
;
3924 /* open new linelock */
3925 if (dtlck
->index
>= dtlck
->maxcnt
)
3926 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
3928 lv
= & dtlck
->lv
[dtlck
->index
];
3931 /* write head/only segment */
3932 if (p
->header
.flag
& BT_LEAF
) {
3933 lh
= (struct ldtentry
*) h
;
3935 lh
->inumber
= cpu_to_le32(data
->leaf
.ino
);
3938 if (data
->leaf
.ip
) {
3939 len
= min(klen
, DTLHDRDATALEN
);
3940 if (!(p
->header
.flag
& BT_ROOT
))
3941 bn
= addressPXD(&p
->header
.self
);
3942 lh
->index
= cpu_to_le32(add_index(data
->leaf
.tid
,
3946 len
= min(klen
, DTLHDRDATALEN_LEGACY
);
3948 ih
= (struct idtentry
*) h
;
3954 len
= min(klen
, DTIHDRDATALEN
);
3957 UniStrncpy_to_le(name
, kname
, len
);
3962 /* write additional segment(s) */
3967 fsi
= p
->header
.freelist
;
3969 p
->header
.freelist
= t
->next
;
3970 --p
->header
.freecnt
;
3972 /* is next slot contiguous ? */
3973 if (fsi
!= xsi
+ 1) {
3974 /* close current linelock */
3978 /* open new linelock */
3979 if (dtlck
->index
< dtlck
->maxcnt
)
3982 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
3983 lv
= & dtlck
->lv
[0];
3991 len
= min(klen
, DTSLOTDATALEN
);
3992 UniStrncpy_to_le(t
->name
, kname
, len
);
3999 /* close current linelock */
4005 /* terminate last/only segment */
4007 /* single segment entry */
4008 if (p
->header
.flag
& BT_LEAF
)
4013 /* multi-segment entry */
4016 /* if insert into middle, shift right succeeding entries in stbl */
4017 stbl
= DT_GETSTBL(p
);
4018 nextindex
= p
->header
.nextindex
;
4019 if (index
< nextindex
) {
4020 memmove(stbl
+ index
+ 1, stbl
+ index
, nextindex
- index
);
4022 if ((p
->header
.flag
& BT_LEAF
) && data
->leaf
.ip
) {
4026 * Need to update slot number for entries that moved
4030 for (n
= index
+ 1; n
<= nextindex
; n
++) {
4031 lh
= (struct ldtentry
*) & (p
->slot
[stbl
[n
]]);
4032 modify_index(data
->leaf
.tid
, data
->leaf
.ip
,
4033 le32_to_cpu(lh
->index
), bn
, n
,
4037 release_metapage(mp
);
4043 /* advance next available entry index of stbl */
4044 ++p
->header
.nextindex
;
4051 * function: move entries from split/left page to new/right page
4053 * nextindex of dst page and freelist/freecnt of both pages
4056 static void dtMoveEntry(dtpage_t
* sp
, int si
, dtpage_t
* dp
,
4057 struct dt_lock
** sdtlock
, struct dt_lock
** ddtlock
,
4060 int ssi
, next
; /* src slot index */
4061 int di
; /* dst entry index */
4062 int dsi
; /* dst slot index */
4063 s8
*sstbl
, *dstbl
; /* sorted entry table */
4065 struct ldtentry
*slh
, *dlh
= NULL
;
4066 struct idtentry
*sih
, *dih
= NULL
;
4067 struct dtslot
*h
, *s
, *d
;
4068 struct dt_lock
*sdtlck
= *sdtlock
, *ddtlck
= *ddtlock
;
4069 struct lv
*slv
, *dlv
;
4073 sstbl
= (s8
*) & sp
->slot
[sp
->header
.stblindex
];
4074 dstbl
= (s8
*) & dp
->slot
[dp
->header
.stblindex
];
4076 dsi
= dp
->header
.freelist
; /* first (whole page) free slot */
4077 sfsi
= sp
->header
.freelist
;
4079 /* linelock destination entry slot */
4080 dlv
= & ddtlck
->lv
[ddtlck
->index
];
4083 /* linelock source entry slot */
4084 slv
= & sdtlck
->lv
[sdtlck
->index
];
4085 slv
->offset
= sstbl
[si
];
4086 xssi
= slv
->offset
- 1;
4092 for (di
= 0; si
< sp
->header
.nextindex
; si
++, di
++) {
4096 /* is next slot contiguous ? */
4097 if (ssi
!= xssi
+ 1) {
4098 /* close current linelock */
4102 /* open new linelock */
4103 if (sdtlck
->index
< sdtlck
->maxcnt
)
4106 sdtlck
= (struct dt_lock
*) txLinelock(sdtlck
);
4107 slv
= & sdtlck
->lv
[0];
4115 * move head/only segment of an entry
4118 h
= d
= &dp
->slot
[dsi
];
4120 /* get src slot and move */
4122 if (sp
->header
.flag
& BT_LEAF
) {
4123 /* get source entry */
4124 slh
= (struct ldtentry
*) s
;
4125 dlh
= (struct ldtentry
*) h
;
4126 snamlen
= slh
->namlen
;
4129 len
= min(snamlen
, DTLHDRDATALEN
);
4130 dlh
->index
= slh
->index
; /* little-endian */
4132 len
= min(snamlen
, DTLHDRDATALEN_LEGACY
);
4134 memcpy(dlh
, slh
, 6 + len
* 2);
4138 /* update dst head/only segment next field */
4142 sih
= (struct idtentry
*) s
;
4143 snamlen
= sih
->namlen
;
4145 len
= min(snamlen
, DTIHDRDATALEN
);
4146 dih
= (struct idtentry
*) h
;
4147 memcpy(dih
, sih
, 10 + len
* 2);
4154 /* free src head/only segment */
4164 * move additional segment(s) of the entry
4167 while ((ssi
= next
) >= 0) {
4168 /* is next slot contiguous ? */
4169 if (ssi
!= xssi
+ 1) {
4170 /* close current linelock */
4174 /* open new linelock */
4175 if (sdtlck
->index
< sdtlck
->maxcnt
)
4181 slv
= & sdtlck
->lv
[0];
4188 /* get next source segment */
4191 /* get next destination free slot */
4194 len
= min(snamlen
, DTSLOTDATALEN
);
4195 UniStrncpy_le(d
->name
, s
->name
, len
);
4204 /* free source segment */
4213 /* terminate dst last/only segment */
4215 /* single segment entry */
4216 if (dp
->header
.flag
& BT_LEAF
)
4221 /* multi-segment entry */
4225 /* close current linelock */
4234 /* update source header */
4235 sp
->header
.freelist
= sfsi
;
4236 sp
->header
.freecnt
+= nd
;
4238 /* update destination header */
4239 dp
->header
.nextindex
= di
;
4241 dp
->header
.freelist
= dsi
;
4242 dp
->header
.freecnt
-= nd
;
4249 * function: free a (leaf/internal) entry
4251 * log freelist header, stbl, and each segment slot of entry
4252 * (even though last/only segment next field is modified,
4253 * physical image logging requires all segment slots of
4254 * the entry logged to avoid applying previous updates
4255 * to the same slots)
4257 static void dtDeleteEntry(dtpage_t
* p
, int fi
, struct dt_lock
** dtlock
)
4259 int fsi
; /* free entry slot index */
4263 struct dt_lock
*dtlck
= *dtlock
;
4267 /* get free entry slot index */
4268 stbl
= DT_GETSTBL(p
);
4271 /* open new linelock */
4272 if (dtlck
->index
>= dtlck
->maxcnt
)
4273 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4274 lv
= & dtlck
->lv
[dtlck
->index
];
4278 /* get the head/only segment */
4280 if (p
->header
.flag
& BT_LEAF
)
4281 si
= ((struct ldtentry
*) t
)->next
;
4283 si
= ((struct idtentry
*) t
)->next
;
4290 /* find the last/only segment */
4292 /* is next slot contiguous ? */
4293 if (si
!= xsi
+ 1) {
4294 /* close current linelock */
4298 /* open new linelock */
4299 if (dtlck
->index
< dtlck
->maxcnt
)
4302 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4303 lv
= & dtlck
->lv
[0];
4319 /* close current linelock */
4325 /* update freelist */
4326 t
->next
= p
->header
.freelist
;
4327 p
->header
.freelist
= fsi
;
4328 p
->header
.freecnt
+= freecnt
;
4330 /* if delete from middle,
4331 * shift left the succedding entries in the stbl
4333 si
= p
->header
.nextindex
;
4335 memmove(&stbl
[fi
], &stbl
[fi
+ 1], si
- fi
- 1);
4337 p
->header
.nextindex
--;
4344 * function: truncate a (leaf/internal) entry
4346 * log freelist header, stbl, and each segment slot of entry
4347 * (even though last/only segment next field is modified,
4348 * physical image logging requires all segment slots of
4349 * the entry logged to avoid applying previous updates
4350 * to the same slots)
4352 static void dtTruncateEntry(dtpage_t
* p
, int ti
, struct dt_lock
** dtlock
)
4354 int tsi
; /* truncate entry slot index */
4358 struct dt_lock
*dtlck
= *dtlock
;
4362 /* get free entry slot index */
4363 stbl
= DT_GETSTBL(p
);
4366 /* open new linelock */
4367 if (dtlck
->index
>= dtlck
->maxcnt
)
4368 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4369 lv
= & dtlck
->lv
[dtlck
->index
];
4373 /* get the head/only segment */
4375 ASSERT(p
->header
.flag
& BT_INTERNAL
);
4376 ((struct idtentry
*) t
)->namlen
= 0;
4377 si
= ((struct idtentry
*) t
)->next
;
4378 ((struct idtentry
*) t
)->next
= -1;
4385 /* find the last/only segment */
4387 /* is next slot contiguous ? */
4388 if (si
!= xsi
+ 1) {
4389 /* close current linelock */
4393 /* open new linelock */
4394 if (dtlck
->index
< dtlck
->maxcnt
)
4397 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4398 lv
= & dtlck
->lv
[0];
4414 /* close current linelock */
4420 /* update freelist */
4423 t
->next
= p
->header
.freelist
;
4424 p
->header
.freelist
= fsi
;
4425 p
->header
.freecnt
+= freecnt
;
4430 * dtLinelockFreelist()
4432 static void dtLinelockFreelist(dtpage_t
* p
, /* directory page */
4433 int m
, /* max slot index */
4434 struct dt_lock
** dtlock
)
4436 int fsi
; /* free entry slot index */
4439 struct dt_lock
*dtlck
= *dtlock
;
4443 /* get free entry slot index */
4444 fsi
= p
->header
.freelist
;
4446 /* open new linelock */
4447 if (dtlck
->index
>= dtlck
->maxcnt
)
4448 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4449 lv
= & dtlck
->lv
[dtlck
->index
];
4459 /* find the last/only segment */
4460 while (si
< m
&& si
>= 0) {
4461 /* is next slot contiguous ? */
4462 if (si
!= xsi
+ 1) {
4463 /* close current linelock */
4467 /* open new linelock */
4468 if (dtlck
->index
< dtlck
->maxcnt
)
4471 dtlck
= (struct dt_lock
*) txLinelock(dtlck
);
4472 lv
= & dtlck
->lv
[0];
4486 /* close current linelock */
4497 * FUNCTION: Modify the inode number part of a directory entry
4500 * tid - Transaction id
4501 * ip - Inode of parent directory
4502 * key - Name of entry to be modified
4503 * orig_ino - Original inode number expected in entry
4504 * new_ino - New inode number to put into entry
4508 * -ESTALE - If entry found does not match orig_ino passed in
4509 * -ENOENT - If no entry can be found to match key
4510 * 0 - If successfully modified entry
4512 int dtModify(tid_t tid
, struct inode
*ip
,
4513 struct component_name
* key
, ino_t
* orig_ino
, ino_t new_ino
, int flag
)
4517 struct metapage
*mp
;
4520 struct btstack btstack
;
4522 struct dt_lock
*dtlck
;
4525 int entry_si
; /* entry slot index */
4526 struct ldtentry
*entry
;
4529 * search for the entry to modify:
4531 * dtSearch() returns (leaf page pinned, index at which to modify).
4533 if ((rc
= dtSearch(ip
, key
, orig_ino
, &btstack
, flag
)))
4536 /* retrieve search result */
4537 DT_GETSEARCH(ip
, btstack
.top
, bn
, mp
, p
, index
);
4539 BT_MARK_DIRTY(mp
, ip
);
4541 * acquire a transaction lock on the leaf page of named entry
4543 tlck
= txLock(tid
, ip
, mp
, tlckDTREE
| tlckENTRY
);
4544 dtlck
= (struct dt_lock
*) & tlck
->lock
;
4546 /* get slot index of the entry */
4547 stbl
= DT_GETSTBL(p
);
4548 entry_si
= stbl
[index
];
4550 /* linelock entry */
4551 ASSERT(dtlck
->index
== 0);
4552 lv
= & dtlck
->lv
[0];
4553 lv
->offset
= entry_si
;
4557 /* get the head/only segment */
4558 entry
= (struct ldtentry
*) & p
->slot
[entry_si
];
4560 /* substitute the inode number of the entry */
4561 entry
->inumber
= cpu_to_le32(new_ino
);
4563 /* unpin the leaf page */