PCI: fixup kdoc blocks for hotplug functions
[linux-2.6/mini2440.git] / kernel / sched.c
blobbfb8ad8ed1717bf95f82ddf7ea8b5b40bb7fbe7b
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104 * These are the 'tuning knobs' of the scheduler:
106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
107 * Timeslices get refilled after they expire.
109 #define DEF_TIMESLICE (100 * HZ / 1000)
112 * single value that denotes runtime == period, ie unlimited time.
114 #define RUNTIME_INF ((u64)~0ULL)
116 #ifdef CONFIG_SMP
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
130 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 #endif
137 static inline int rt_policy(int policy)
139 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
140 return 1;
141 return 0;
144 static inline int task_has_rt_policy(struct task_struct *p)
146 return rt_policy(p->policy);
150 * This is the priority-queue data structure of the RT scheduling class:
152 struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
157 struct rt_bandwidth {
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
165 static struct rt_bandwidth def_rt_bandwidth;
167 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
169 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
181 if (!overrun)
182 break;
184 idle = do_sched_rt_period_timer(rt_b, overrun);
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190 static
191 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
196 spin_lock_init(&rt_b->rt_runtime_lock);
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
206 ktime_t now;
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
225 spin_unlock(&rt_b->rt_runtime_lock);
228 #ifdef CONFIG_RT_GROUP_SCHED
229 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231 hrtimer_cancel(&rt_b->rt_period_timer);
233 #endif
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
239 static DEFINE_MUTEX(sched_domains_mutex);
241 #ifdef CONFIG_GROUP_SCHED
243 #include <linux/cgroup.h>
245 struct cfs_rq;
247 static LIST_HEAD(task_groups);
249 /* task group related information */
250 struct task_group {
251 #ifdef CONFIG_CGROUP_SCHED
252 struct cgroup_subsys_state css;
253 #endif
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
261 #endif
263 #ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
267 struct rt_bandwidth rt_bandwidth;
268 #endif
270 struct rcu_head rcu;
271 struct list_head list;
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
278 #ifdef CONFIG_USER_SCHED
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
285 struct task_group root_task_group;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 /* Default task group's sched entity on each cpu */
289 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290 /* Default task group's cfs_rq on each cpu */
291 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
292 #endif
294 #ifdef CONFIG_RT_GROUP_SCHED
295 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
297 #endif
298 #else
299 #define root_task_group init_task_group
300 #endif
302 /* task_group_lock serializes add/remove of task groups and also changes to
303 * a task group's cpu shares.
305 static DEFINE_SPINLOCK(task_group_lock);
307 #ifdef CONFIG_FAIR_GROUP_SCHED
308 #ifdef CONFIG_USER_SCHED
309 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310 #else
311 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312 #endif
315 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
316 * (The default weight is 1024 - so there's no practical
317 * limitation from this.)
319 #define MIN_SHARES 2
320 #define MAX_SHARES (ULONG_MAX - 1)
322 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
323 #endif
325 /* Default task group.
326 * Every task in system belong to this group at bootup.
328 struct task_group init_task_group;
330 /* return group to which a task belongs */
331 static inline struct task_group *task_group(struct task_struct *p)
333 struct task_group *tg;
335 #ifdef CONFIG_USER_SCHED
336 tg = p->user->tg;
337 #elif defined(CONFIG_CGROUP_SCHED)
338 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
339 struct task_group, css);
340 #else
341 tg = &init_task_group;
342 #endif
343 return tg;
346 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
347 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
351 p->se.parent = task_group(p)->se[cpu];
352 #endif
354 #ifdef CONFIG_RT_GROUP_SCHED
355 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
356 p->rt.parent = task_group(p)->rt_se[cpu];
357 #endif
360 #else
362 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
364 #endif /* CONFIG_GROUP_SCHED */
366 /* CFS-related fields in a runqueue */
367 struct cfs_rq {
368 struct load_weight load;
369 unsigned long nr_running;
371 u64 exec_clock;
372 u64 min_vruntime;
374 struct rb_root tasks_timeline;
375 struct rb_node *rb_leftmost;
377 struct list_head tasks;
378 struct list_head *balance_iterator;
381 * 'curr' points to currently running entity on this cfs_rq.
382 * It is set to NULL otherwise (i.e when none are currently running).
384 struct sched_entity *curr, *next;
386 unsigned long nr_spread_over;
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
399 struct list_head leaf_cfs_rq_list;
400 struct task_group *tg; /* group that "owns" this runqueue */
401 #endif
404 /* Real-Time classes' related field in a runqueue: */
405 struct rt_rq {
406 struct rt_prio_array active;
407 unsigned long rt_nr_running;
408 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
409 int highest_prio; /* highest queued rt task prio */
410 #endif
411 #ifdef CONFIG_SMP
412 unsigned long rt_nr_migratory;
413 int overloaded;
414 #endif
415 int rt_throttled;
416 u64 rt_time;
417 u64 rt_runtime;
418 /* Nests inside the rq lock: */
419 spinlock_t rt_runtime_lock;
421 #ifdef CONFIG_RT_GROUP_SCHED
422 unsigned long rt_nr_boosted;
424 struct rq *rq;
425 struct list_head leaf_rt_rq_list;
426 struct task_group *tg;
427 struct sched_rt_entity *rt_se;
428 #endif
431 #ifdef CONFIG_SMP
434 * We add the notion of a root-domain which will be used to define per-domain
435 * variables. Each exclusive cpuset essentially defines an island domain by
436 * fully partitioning the member cpus from any other cpuset. Whenever a new
437 * exclusive cpuset is created, we also create and attach a new root-domain
438 * object.
441 struct root_domain {
442 atomic_t refcount;
443 cpumask_t span;
444 cpumask_t online;
447 * The "RT overload" flag: it gets set if a CPU has more than
448 * one runnable RT task.
450 cpumask_t rto_mask;
451 atomic_t rto_count;
455 * By default the system creates a single root-domain with all cpus as
456 * members (mimicking the global state we have today).
458 static struct root_domain def_root_domain;
460 #endif
463 * This is the main, per-CPU runqueue data structure.
465 * Locking rule: those places that want to lock multiple runqueues
466 * (such as the load balancing or the thread migration code), lock
467 * acquire operations must be ordered by ascending &runqueue.
469 struct rq {
470 /* runqueue lock: */
471 spinlock_t lock;
474 * nr_running and cpu_load should be in the same cacheline because
475 * remote CPUs use both these fields when doing load calculation.
477 unsigned long nr_running;
478 #define CPU_LOAD_IDX_MAX 5
479 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
480 unsigned char idle_at_tick;
481 #ifdef CONFIG_NO_HZ
482 unsigned long last_tick_seen;
483 unsigned char in_nohz_recently;
484 #endif
485 /* capture load from *all* tasks on this cpu: */
486 struct load_weight load;
487 unsigned long nr_load_updates;
488 u64 nr_switches;
490 struct cfs_rq cfs;
491 struct rt_rq rt;
493 #ifdef CONFIG_FAIR_GROUP_SCHED
494 /* list of leaf cfs_rq on this cpu: */
495 struct list_head leaf_cfs_rq_list;
496 #endif
497 #ifdef CONFIG_RT_GROUP_SCHED
498 struct list_head leaf_rt_rq_list;
499 #endif
502 * This is part of a global counter where only the total sum
503 * over all CPUs matters. A task can increase this counter on
504 * one CPU and if it got migrated afterwards it may decrease
505 * it on another CPU. Always updated under the runqueue lock:
507 unsigned long nr_uninterruptible;
509 struct task_struct *curr, *idle;
510 unsigned long next_balance;
511 struct mm_struct *prev_mm;
513 u64 clock;
515 atomic_t nr_iowait;
517 #ifdef CONFIG_SMP
518 struct root_domain *rd;
519 struct sched_domain *sd;
521 /* For active balancing */
522 int active_balance;
523 int push_cpu;
524 /* cpu of this runqueue: */
525 int cpu;
527 struct task_struct *migration_thread;
528 struct list_head migration_queue;
529 #endif
531 #ifdef CONFIG_SCHED_HRTICK
532 unsigned long hrtick_flags;
533 ktime_t hrtick_expire;
534 struct hrtimer hrtick_timer;
535 #endif
537 #ifdef CONFIG_SCHEDSTATS
538 /* latency stats */
539 struct sched_info rq_sched_info;
541 /* sys_sched_yield() stats */
542 unsigned int yld_exp_empty;
543 unsigned int yld_act_empty;
544 unsigned int yld_both_empty;
545 unsigned int yld_count;
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
556 /* BKL stats */
557 unsigned int bkl_count;
558 #endif
559 struct lock_class_key rq_lock_key;
562 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
566 rq->curr->sched_class->check_preempt_curr(rq, p);
569 static inline int cpu_of(struct rq *rq)
571 #ifdef CONFIG_SMP
572 return rq->cpu;
573 #else
574 return 0;
575 #endif
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580 * See detach_destroy_domains: synchronize_sched for details.
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
585 #define for_each_domain(cpu, __sd) \
586 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
588 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589 #define this_rq() (&__get_cpu_var(runqueues))
590 #define task_rq(p) cpu_rq(task_cpu(p))
591 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
593 static inline void update_rq_clock(struct rq *rq)
595 rq->clock = sched_clock_cpu(cpu_of(rq));
599 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
601 #ifdef CONFIG_SCHED_DEBUG
602 # define const_debug __read_mostly
603 #else
604 # define const_debug static const
605 #endif
608 * Debugging: various feature bits
611 #define SCHED_FEAT(name, enabled) \
612 __SCHED_FEAT_##name ,
614 enum {
615 #include "sched_features.h"
618 #undef SCHED_FEAT
620 #define SCHED_FEAT(name, enabled) \
621 (1UL << __SCHED_FEAT_##name) * enabled |
623 const_debug unsigned int sysctl_sched_features =
624 #include "sched_features.h"
627 #undef SCHED_FEAT
629 #ifdef CONFIG_SCHED_DEBUG
630 #define SCHED_FEAT(name, enabled) \
631 #name ,
633 static __read_mostly char *sched_feat_names[] = {
634 #include "sched_features.h"
635 NULL
638 #undef SCHED_FEAT
640 static int sched_feat_open(struct inode *inode, struct file *filp)
642 filp->private_data = inode->i_private;
643 return 0;
646 static ssize_t
647 sched_feat_read(struct file *filp, char __user *ubuf,
648 size_t cnt, loff_t *ppos)
650 char *buf;
651 int r = 0;
652 int len = 0;
653 int i;
655 for (i = 0; sched_feat_names[i]; i++) {
656 len += strlen(sched_feat_names[i]);
657 len += 4;
660 buf = kmalloc(len + 2, GFP_KERNEL);
661 if (!buf)
662 return -ENOMEM;
664 for (i = 0; sched_feat_names[i]; i++) {
665 if (sysctl_sched_features & (1UL << i))
666 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
667 else
668 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
671 r += sprintf(buf + r, "\n");
672 WARN_ON(r >= len + 2);
674 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
676 kfree(buf);
678 return r;
681 static ssize_t
682 sched_feat_write(struct file *filp, const char __user *ubuf,
683 size_t cnt, loff_t *ppos)
685 char buf[64];
686 char *cmp = buf;
687 int neg = 0;
688 int i;
690 if (cnt > 63)
691 cnt = 63;
693 if (copy_from_user(&buf, ubuf, cnt))
694 return -EFAULT;
696 buf[cnt] = 0;
698 if (strncmp(buf, "NO_", 3) == 0) {
699 neg = 1;
700 cmp += 3;
703 for (i = 0; sched_feat_names[i]; i++) {
704 int len = strlen(sched_feat_names[i]);
706 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
707 if (neg)
708 sysctl_sched_features &= ~(1UL << i);
709 else
710 sysctl_sched_features |= (1UL << i);
711 break;
715 if (!sched_feat_names[i])
716 return -EINVAL;
718 filp->f_pos += cnt;
720 return cnt;
723 static struct file_operations sched_feat_fops = {
724 .open = sched_feat_open,
725 .read = sched_feat_read,
726 .write = sched_feat_write,
729 static __init int sched_init_debug(void)
731 debugfs_create_file("sched_features", 0644, NULL, NULL,
732 &sched_feat_fops);
734 return 0;
736 late_initcall(sched_init_debug);
738 #endif
740 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
743 * Number of tasks to iterate in a single balance run.
744 * Limited because this is done with IRQs disabled.
746 const_debug unsigned int sysctl_sched_nr_migrate = 32;
749 * period over which we measure -rt task cpu usage in us.
750 * default: 1s
752 unsigned int sysctl_sched_rt_period = 1000000;
754 static __read_mostly int scheduler_running;
757 * part of the period that we allow rt tasks to run in us.
758 * default: 0.95s
760 int sysctl_sched_rt_runtime = 950000;
762 static inline u64 global_rt_period(void)
764 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
767 static inline u64 global_rt_runtime(void)
769 if (sysctl_sched_rt_period < 0)
770 return RUNTIME_INF;
772 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
775 unsigned long long time_sync_thresh = 100000;
777 static DEFINE_PER_CPU(unsigned long long, time_offset);
778 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
781 * Global lock which we take every now and then to synchronize
782 * the CPUs time. This method is not warp-safe, but it's good
783 * enough to synchronize slowly diverging time sources and thus
784 * it's good enough for tracing:
786 static DEFINE_SPINLOCK(time_sync_lock);
787 static unsigned long long prev_global_time;
789 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
792 * We want this inlined, to not get tracer function calls
793 * in this critical section:
795 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
796 __raw_spin_lock(&time_sync_lock.raw_lock);
798 if (time < prev_global_time) {
799 per_cpu(time_offset, cpu) += prev_global_time - time;
800 time = prev_global_time;
801 } else {
802 prev_global_time = time;
805 __raw_spin_unlock(&time_sync_lock.raw_lock);
806 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
808 return time;
811 static unsigned long long __cpu_clock(int cpu)
813 unsigned long long now;
816 * Only call sched_clock() if the scheduler has already been
817 * initialized (some code might call cpu_clock() very early):
819 if (unlikely(!scheduler_running))
820 return 0;
822 now = sched_clock_cpu(cpu);
824 return now;
828 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
829 * clock constructed from sched_clock():
831 unsigned long long cpu_clock(int cpu)
833 unsigned long long prev_cpu_time, time, delta_time;
834 unsigned long flags;
836 local_irq_save(flags);
837 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
838 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
839 delta_time = time-prev_cpu_time;
841 if (unlikely(delta_time > time_sync_thresh)) {
842 time = __sync_cpu_clock(time, cpu);
843 per_cpu(prev_cpu_time, cpu) = time;
845 local_irq_restore(flags);
847 return time;
849 EXPORT_SYMBOL_GPL(cpu_clock);
851 #ifndef prepare_arch_switch
852 # define prepare_arch_switch(next) do { } while (0)
853 #endif
854 #ifndef finish_arch_switch
855 # define finish_arch_switch(prev) do { } while (0)
856 #endif
858 static inline int task_current(struct rq *rq, struct task_struct *p)
860 return rq->curr == p;
863 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
864 static inline int task_running(struct rq *rq, struct task_struct *p)
866 return task_current(rq, p);
869 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
875 #ifdef CONFIG_DEBUG_SPINLOCK
876 /* this is a valid case when another task releases the spinlock */
877 rq->lock.owner = current;
878 #endif
880 * If we are tracking spinlock dependencies then we have to
881 * fix up the runqueue lock - which gets 'carried over' from
882 * prev into current:
884 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
886 spin_unlock_irq(&rq->lock);
889 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
890 static inline int task_running(struct rq *rq, struct task_struct *p)
892 #ifdef CONFIG_SMP
893 return p->oncpu;
894 #else
895 return task_current(rq, p);
896 #endif
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
901 #ifdef CONFIG_SMP
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
907 next->oncpu = 1;
908 #endif
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 spin_unlock_irq(&rq->lock);
911 #else
912 spin_unlock(&rq->lock);
913 #endif
916 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
918 #ifdef CONFIG_SMP
920 * After ->oncpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
924 smp_wmb();
925 prev->oncpu = 0;
926 #endif
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
929 #endif
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
937 static inline struct rq *__task_rq_lock(struct task_struct *p)
938 __acquires(rq->lock)
940 for (;;) {
941 struct rq *rq = task_rq(p);
942 spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p)))
944 return rq;
945 spin_unlock(&rq->lock);
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
954 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
955 __acquires(rq->lock)
957 struct rq *rq;
959 for (;;) {
960 local_irq_save(*flags);
961 rq = task_rq(p);
962 spin_lock(&rq->lock);
963 if (likely(rq == task_rq(p)))
964 return rq;
965 spin_unlock_irqrestore(&rq->lock, *flags);
969 static void __task_rq_unlock(struct rq *rq)
970 __releases(rq->lock)
972 spin_unlock(&rq->lock);
975 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
976 __releases(rq->lock)
978 spin_unlock_irqrestore(&rq->lock, *flags);
982 * this_rq_lock - lock this runqueue and disable interrupts.
984 static struct rq *this_rq_lock(void)
985 __acquires(rq->lock)
987 struct rq *rq;
989 local_irq_disable();
990 rq = this_rq();
991 spin_lock(&rq->lock);
993 return rq;
996 static void __resched_task(struct task_struct *p, int tif_bit);
998 static inline void resched_task(struct task_struct *p)
1000 __resched_task(p, TIF_NEED_RESCHED);
1003 #ifdef CONFIG_SCHED_HRTICK
1005 * Use HR-timers to deliver accurate preemption points.
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1009 * reschedule event.
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1012 * rq->lock.
1014 static inline void resched_hrt(struct task_struct *p)
1016 __resched_task(p, TIF_HRTICK_RESCHED);
1019 static inline void resched_rq(struct rq *rq)
1021 unsigned long flags;
1023 spin_lock_irqsave(&rq->lock, flags);
1024 resched_task(rq->curr);
1025 spin_unlock_irqrestore(&rq->lock, flags);
1028 enum {
1029 HRTICK_SET, /* re-programm hrtick_timer */
1030 HRTICK_RESET, /* not a new slice */
1031 HRTICK_BLOCK, /* stop hrtick operations */
1035 * Use hrtick when:
1036 * - enabled by features
1037 * - hrtimer is actually high res
1039 static inline int hrtick_enabled(struct rq *rq)
1041 if (!sched_feat(HRTICK))
1042 return 0;
1043 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1044 return 0;
1045 return hrtimer_is_hres_active(&rq->hrtick_timer);
1049 * Called to set the hrtick timer state.
1051 * called with rq->lock held and irqs disabled
1053 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1055 assert_spin_locked(&rq->lock);
1058 * preempt at: now + delay
1060 rq->hrtick_expire =
1061 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1063 * indicate we need to program the timer
1065 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1066 if (reset)
1067 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1070 * New slices are called from the schedule path and don't need a
1071 * forced reschedule.
1073 if (reset)
1074 resched_hrt(rq->curr);
1077 static void hrtick_clear(struct rq *rq)
1079 if (hrtimer_active(&rq->hrtick_timer))
1080 hrtimer_cancel(&rq->hrtick_timer);
1084 * Update the timer from the possible pending state.
1086 static void hrtick_set(struct rq *rq)
1088 ktime_t time;
1089 int set, reset;
1090 unsigned long flags;
1092 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1094 spin_lock_irqsave(&rq->lock, flags);
1095 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1096 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1097 time = rq->hrtick_expire;
1098 clear_thread_flag(TIF_HRTICK_RESCHED);
1099 spin_unlock_irqrestore(&rq->lock, flags);
1101 if (set) {
1102 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1103 if (reset && !hrtimer_active(&rq->hrtick_timer))
1104 resched_rq(rq);
1105 } else
1106 hrtick_clear(rq);
1110 * High-resolution timer tick.
1111 * Runs from hardirq context with interrupts disabled.
1113 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1115 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1117 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1119 spin_lock(&rq->lock);
1120 update_rq_clock(rq);
1121 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1122 spin_unlock(&rq->lock);
1124 return HRTIMER_NORESTART;
1127 static void hotplug_hrtick_disable(int cpu)
1129 struct rq *rq = cpu_rq(cpu);
1130 unsigned long flags;
1132 spin_lock_irqsave(&rq->lock, flags);
1133 rq->hrtick_flags = 0;
1134 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1135 spin_unlock_irqrestore(&rq->lock, flags);
1137 hrtick_clear(rq);
1140 static void hotplug_hrtick_enable(int cpu)
1142 struct rq *rq = cpu_rq(cpu);
1143 unsigned long flags;
1145 spin_lock_irqsave(&rq->lock, flags);
1146 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1147 spin_unlock_irqrestore(&rq->lock, flags);
1150 static int
1151 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1153 int cpu = (int)(long)hcpu;
1155 switch (action) {
1156 case CPU_UP_CANCELED:
1157 case CPU_UP_CANCELED_FROZEN:
1158 case CPU_DOWN_PREPARE:
1159 case CPU_DOWN_PREPARE_FROZEN:
1160 case CPU_DEAD:
1161 case CPU_DEAD_FROZEN:
1162 hotplug_hrtick_disable(cpu);
1163 return NOTIFY_OK;
1165 case CPU_UP_PREPARE:
1166 case CPU_UP_PREPARE_FROZEN:
1167 case CPU_DOWN_FAILED:
1168 case CPU_DOWN_FAILED_FROZEN:
1169 case CPU_ONLINE:
1170 case CPU_ONLINE_FROZEN:
1171 hotplug_hrtick_enable(cpu);
1172 return NOTIFY_OK;
1175 return NOTIFY_DONE;
1178 static void init_hrtick(void)
1180 hotcpu_notifier(hotplug_hrtick, 0);
1183 static void init_rq_hrtick(struct rq *rq)
1185 rq->hrtick_flags = 0;
1186 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1187 rq->hrtick_timer.function = hrtick;
1188 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1191 void hrtick_resched(void)
1193 struct rq *rq;
1194 unsigned long flags;
1196 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1197 return;
1199 local_irq_save(flags);
1200 rq = cpu_rq(smp_processor_id());
1201 hrtick_set(rq);
1202 local_irq_restore(flags);
1204 #else
1205 static inline void hrtick_clear(struct rq *rq)
1209 static inline void hrtick_set(struct rq *rq)
1213 static inline void init_rq_hrtick(struct rq *rq)
1217 void hrtick_resched(void)
1221 static inline void init_hrtick(void)
1224 #endif
1227 * resched_task - mark a task 'to be rescheduled now'.
1229 * On UP this means the setting of the need_resched flag, on SMP it
1230 * might also involve a cross-CPU call to trigger the scheduler on
1231 * the target CPU.
1233 #ifdef CONFIG_SMP
1235 #ifndef tsk_is_polling
1236 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1237 #endif
1239 static void __resched_task(struct task_struct *p, int tif_bit)
1241 int cpu;
1243 assert_spin_locked(&task_rq(p)->lock);
1245 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1246 return;
1248 set_tsk_thread_flag(p, tif_bit);
1250 cpu = task_cpu(p);
1251 if (cpu == smp_processor_id())
1252 return;
1254 /* NEED_RESCHED must be visible before we test polling */
1255 smp_mb();
1256 if (!tsk_is_polling(p))
1257 smp_send_reschedule(cpu);
1260 static void resched_cpu(int cpu)
1262 struct rq *rq = cpu_rq(cpu);
1263 unsigned long flags;
1265 if (!spin_trylock_irqsave(&rq->lock, flags))
1266 return;
1267 resched_task(cpu_curr(cpu));
1268 spin_unlock_irqrestore(&rq->lock, flags);
1271 #ifdef CONFIG_NO_HZ
1273 * When add_timer_on() enqueues a timer into the timer wheel of an
1274 * idle CPU then this timer might expire before the next timer event
1275 * which is scheduled to wake up that CPU. In case of a completely
1276 * idle system the next event might even be infinite time into the
1277 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1278 * leaves the inner idle loop so the newly added timer is taken into
1279 * account when the CPU goes back to idle and evaluates the timer
1280 * wheel for the next timer event.
1282 void wake_up_idle_cpu(int cpu)
1284 struct rq *rq = cpu_rq(cpu);
1286 if (cpu == smp_processor_id())
1287 return;
1290 * This is safe, as this function is called with the timer
1291 * wheel base lock of (cpu) held. When the CPU is on the way
1292 * to idle and has not yet set rq->curr to idle then it will
1293 * be serialized on the timer wheel base lock and take the new
1294 * timer into account automatically.
1296 if (rq->curr != rq->idle)
1297 return;
1300 * We can set TIF_RESCHED on the idle task of the other CPU
1301 * lockless. The worst case is that the other CPU runs the
1302 * idle task through an additional NOOP schedule()
1304 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1306 /* NEED_RESCHED must be visible before we test polling */
1307 smp_mb();
1308 if (!tsk_is_polling(rq->idle))
1309 smp_send_reschedule(cpu);
1311 #endif
1313 #else
1314 static void __resched_task(struct task_struct *p, int tif_bit)
1316 assert_spin_locked(&task_rq(p)->lock);
1317 set_tsk_thread_flag(p, tif_bit);
1319 #endif
1321 #if BITS_PER_LONG == 32
1322 # define WMULT_CONST (~0UL)
1323 #else
1324 # define WMULT_CONST (1UL << 32)
1325 #endif
1327 #define WMULT_SHIFT 32
1330 * Shift right and round:
1332 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1334 static unsigned long
1335 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1336 struct load_weight *lw)
1338 u64 tmp;
1340 if (!lw->inv_weight)
1341 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1343 tmp = (u64)delta_exec * weight;
1345 * Check whether we'd overflow the 64-bit multiplication:
1347 if (unlikely(tmp > WMULT_CONST))
1348 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1349 WMULT_SHIFT/2);
1350 else
1351 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1353 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1356 static inline unsigned long
1357 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1359 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1362 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1364 lw->weight += inc;
1365 lw->inv_weight = 0;
1368 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1370 lw->weight -= dec;
1371 lw->inv_weight = 0;
1375 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1376 * of tasks with abnormal "nice" values across CPUs the contribution that
1377 * each task makes to its run queue's load is weighted according to its
1378 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1379 * scaled version of the new time slice allocation that they receive on time
1380 * slice expiry etc.
1383 #define WEIGHT_IDLEPRIO 2
1384 #define WMULT_IDLEPRIO (1 << 31)
1387 * Nice levels are multiplicative, with a gentle 10% change for every
1388 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1389 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1390 * that remained on nice 0.
1392 * The "10% effect" is relative and cumulative: from _any_ nice level,
1393 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1394 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1395 * If a task goes up by ~10% and another task goes down by ~10% then
1396 * the relative distance between them is ~25%.)
1398 static const int prio_to_weight[40] = {
1399 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1400 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1401 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1402 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1403 /* 0 */ 1024, 820, 655, 526, 423,
1404 /* 5 */ 335, 272, 215, 172, 137,
1405 /* 10 */ 110, 87, 70, 56, 45,
1406 /* 15 */ 36, 29, 23, 18, 15,
1410 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1412 * In cases where the weight does not change often, we can use the
1413 * precalculated inverse to speed up arithmetics by turning divisions
1414 * into multiplications:
1416 static const u32 prio_to_wmult[40] = {
1417 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1418 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1419 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1420 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1421 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1422 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1423 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1424 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1427 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1430 * runqueue iterator, to support SMP load-balancing between different
1431 * scheduling classes, without having to expose their internal data
1432 * structures to the load-balancing proper:
1434 struct rq_iterator {
1435 void *arg;
1436 struct task_struct *(*start)(void *);
1437 struct task_struct *(*next)(void *);
1440 #ifdef CONFIG_SMP
1441 static unsigned long
1442 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1443 unsigned long max_load_move, struct sched_domain *sd,
1444 enum cpu_idle_type idle, int *all_pinned,
1445 int *this_best_prio, struct rq_iterator *iterator);
1447 static int
1448 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1449 struct sched_domain *sd, enum cpu_idle_type idle,
1450 struct rq_iterator *iterator);
1451 #endif
1453 #ifdef CONFIG_CGROUP_CPUACCT
1454 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1455 #else
1456 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1457 #endif
1459 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1461 update_load_add(&rq->load, load);
1464 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1466 update_load_sub(&rq->load, load);
1469 #ifdef CONFIG_SMP
1470 static unsigned long source_load(int cpu, int type);
1471 static unsigned long target_load(int cpu, int type);
1472 static unsigned long cpu_avg_load_per_task(int cpu);
1473 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1474 #else /* CONFIG_SMP */
1476 #ifdef CONFIG_FAIR_GROUP_SCHED
1477 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1480 #endif
1482 #endif /* CONFIG_SMP */
1484 #include "sched_stats.h"
1485 #include "sched_idletask.c"
1486 #include "sched_fair.c"
1487 #include "sched_rt.c"
1488 #ifdef CONFIG_SCHED_DEBUG
1489 # include "sched_debug.c"
1490 #endif
1492 #define sched_class_highest (&rt_sched_class)
1494 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1496 update_load_add(&rq->load, p->se.load.weight);
1499 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1501 update_load_sub(&rq->load, p->se.load.weight);
1504 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1506 rq->nr_running++;
1507 inc_load(rq, p);
1510 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1512 rq->nr_running--;
1513 dec_load(rq, p);
1516 static void set_load_weight(struct task_struct *p)
1518 if (task_has_rt_policy(p)) {
1519 p->se.load.weight = prio_to_weight[0] * 2;
1520 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1521 return;
1525 * SCHED_IDLE tasks get minimal weight:
1527 if (p->policy == SCHED_IDLE) {
1528 p->se.load.weight = WEIGHT_IDLEPRIO;
1529 p->se.load.inv_weight = WMULT_IDLEPRIO;
1530 return;
1533 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1534 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1537 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1539 sched_info_queued(p);
1540 p->sched_class->enqueue_task(rq, p, wakeup);
1541 p->se.on_rq = 1;
1544 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1546 p->sched_class->dequeue_task(rq, p, sleep);
1547 p->se.on_rq = 0;
1551 * __normal_prio - return the priority that is based on the static prio
1553 static inline int __normal_prio(struct task_struct *p)
1555 return p->static_prio;
1559 * Calculate the expected normal priority: i.e. priority
1560 * without taking RT-inheritance into account. Might be
1561 * boosted by interactivity modifiers. Changes upon fork,
1562 * setprio syscalls, and whenever the interactivity
1563 * estimator recalculates.
1565 static inline int normal_prio(struct task_struct *p)
1567 int prio;
1569 if (task_has_rt_policy(p))
1570 prio = MAX_RT_PRIO-1 - p->rt_priority;
1571 else
1572 prio = __normal_prio(p);
1573 return prio;
1577 * Calculate the current priority, i.e. the priority
1578 * taken into account by the scheduler. This value might
1579 * be boosted by RT tasks, or might be boosted by
1580 * interactivity modifiers. Will be RT if the task got
1581 * RT-boosted. If not then it returns p->normal_prio.
1583 static int effective_prio(struct task_struct *p)
1585 p->normal_prio = normal_prio(p);
1587 * If we are RT tasks or we were boosted to RT priority,
1588 * keep the priority unchanged. Otherwise, update priority
1589 * to the normal priority:
1591 if (!rt_prio(p->prio))
1592 return p->normal_prio;
1593 return p->prio;
1597 * activate_task - move a task to the runqueue.
1599 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1601 if (task_contributes_to_load(p))
1602 rq->nr_uninterruptible--;
1604 enqueue_task(rq, p, wakeup);
1605 inc_nr_running(p, rq);
1609 * deactivate_task - remove a task from the runqueue.
1611 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1613 if (task_contributes_to_load(p))
1614 rq->nr_uninterruptible++;
1616 dequeue_task(rq, p, sleep);
1617 dec_nr_running(p, rq);
1621 * task_curr - is this task currently executing on a CPU?
1622 * @p: the task in question.
1624 inline int task_curr(const struct task_struct *p)
1626 return cpu_curr(task_cpu(p)) == p;
1629 /* Used instead of source_load when we know the type == 0 */
1630 unsigned long weighted_cpuload(const int cpu)
1632 return cpu_rq(cpu)->load.weight;
1635 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1637 set_task_rq(p, cpu);
1638 #ifdef CONFIG_SMP
1640 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1641 * successfuly executed on another CPU. We must ensure that updates of
1642 * per-task data have been completed by this moment.
1644 smp_wmb();
1645 task_thread_info(p)->cpu = cpu;
1646 #endif
1649 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1650 const struct sched_class *prev_class,
1651 int oldprio, int running)
1653 if (prev_class != p->sched_class) {
1654 if (prev_class->switched_from)
1655 prev_class->switched_from(rq, p, running);
1656 p->sched_class->switched_to(rq, p, running);
1657 } else
1658 p->sched_class->prio_changed(rq, p, oldprio, running);
1661 #ifdef CONFIG_SMP
1664 * Is this task likely cache-hot:
1666 static int
1667 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1669 s64 delta;
1672 * Buddy candidates are cache hot:
1674 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1675 return 1;
1677 if (p->sched_class != &fair_sched_class)
1678 return 0;
1680 if (sysctl_sched_migration_cost == -1)
1681 return 1;
1682 if (sysctl_sched_migration_cost == 0)
1683 return 0;
1685 delta = now - p->se.exec_start;
1687 return delta < (s64)sysctl_sched_migration_cost;
1691 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1693 int old_cpu = task_cpu(p);
1694 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1695 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1696 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1697 u64 clock_offset;
1699 clock_offset = old_rq->clock - new_rq->clock;
1701 #ifdef CONFIG_SCHEDSTATS
1702 if (p->se.wait_start)
1703 p->se.wait_start -= clock_offset;
1704 if (p->se.sleep_start)
1705 p->se.sleep_start -= clock_offset;
1706 if (p->se.block_start)
1707 p->se.block_start -= clock_offset;
1708 if (old_cpu != new_cpu) {
1709 schedstat_inc(p, se.nr_migrations);
1710 if (task_hot(p, old_rq->clock, NULL))
1711 schedstat_inc(p, se.nr_forced2_migrations);
1713 #endif
1714 p->se.vruntime -= old_cfsrq->min_vruntime -
1715 new_cfsrq->min_vruntime;
1717 __set_task_cpu(p, new_cpu);
1720 struct migration_req {
1721 struct list_head list;
1723 struct task_struct *task;
1724 int dest_cpu;
1726 struct completion done;
1730 * The task's runqueue lock must be held.
1731 * Returns true if you have to wait for migration thread.
1733 static int
1734 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1736 struct rq *rq = task_rq(p);
1739 * If the task is not on a runqueue (and not running), then
1740 * it is sufficient to simply update the task's cpu field.
1742 if (!p->se.on_rq && !task_running(rq, p)) {
1743 set_task_cpu(p, dest_cpu);
1744 return 0;
1747 init_completion(&req->done);
1748 req->task = p;
1749 req->dest_cpu = dest_cpu;
1750 list_add(&req->list, &rq->migration_queue);
1752 return 1;
1756 * wait_task_inactive - wait for a thread to unschedule.
1758 * The caller must ensure that the task *will* unschedule sometime soon,
1759 * else this function might spin for a *long* time. This function can't
1760 * be called with interrupts off, or it may introduce deadlock with
1761 * smp_call_function() if an IPI is sent by the same process we are
1762 * waiting to become inactive.
1764 void wait_task_inactive(struct task_struct *p)
1766 unsigned long flags;
1767 int running, on_rq;
1768 struct rq *rq;
1770 for (;;) {
1772 * We do the initial early heuristics without holding
1773 * any task-queue locks at all. We'll only try to get
1774 * the runqueue lock when things look like they will
1775 * work out!
1777 rq = task_rq(p);
1780 * If the task is actively running on another CPU
1781 * still, just relax and busy-wait without holding
1782 * any locks.
1784 * NOTE! Since we don't hold any locks, it's not
1785 * even sure that "rq" stays as the right runqueue!
1786 * But we don't care, since "task_running()" will
1787 * return false if the runqueue has changed and p
1788 * is actually now running somewhere else!
1790 while (task_running(rq, p))
1791 cpu_relax();
1794 * Ok, time to look more closely! We need the rq
1795 * lock now, to be *sure*. If we're wrong, we'll
1796 * just go back and repeat.
1798 rq = task_rq_lock(p, &flags);
1799 running = task_running(rq, p);
1800 on_rq = p->se.on_rq;
1801 task_rq_unlock(rq, &flags);
1804 * Was it really running after all now that we
1805 * checked with the proper locks actually held?
1807 * Oops. Go back and try again..
1809 if (unlikely(running)) {
1810 cpu_relax();
1811 continue;
1815 * It's not enough that it's not actively running,
1816 * it must be off the runqueue _entirely_, and not
1817 * preempted!
1819 * So if it wa still runnable (but just not actively
1820 * running right now), it's preempted, and we should
1821 * yield - it could be a while.
1823 if (unlikely(on_rq)) {
1824 schedule_timeout_uninterruptible(1);
1825 continue;
1829 * Ahh, all good. It wasn't running, and it wasn't
1830 * runnable, which means that it will never become
1831 * running in the future either. We're all done!
1833 break;
1837 /***
1838 * kick_process - kick a running thread to enter/exit the kernel
1839 * @p: the to-be-kicked thread
1841 * Cause a process which is running on another CPU to enter
1842 * kernel-mode, without any delay. (to get signals handled.)
1844 * NOTE: this function doesnt have to take the runqueue lock,
1845 * because all it wants to ensure is that the remote task enters
1846 * the kernel. If the IPI races and the task has been migrated
1847 * to another CPU then no harm is done and the purpose has been
1848 * achieved as well.
1850 void kick_process(struct task_struct *p)
1852 int cpu;
1854 preempt_disable();
1855 cpu = task_cpu(p);
1856 if ((cpu != smp_processor_id()) && task_curr(p))
1857 smp_send_reschedule(cpu);
1858 preempt_enable();
1862 * Return a low guess at the load of a migration-source cpu weighted
1863 * according to the scheduling class and "nice" value.
1865 * We want to under-estimate the load of migration sources, to
1866 * balance conservatively.
1868 static unsigned long source_load(int cpu, int type)
1870 struct rq *rq = cpu_rq(cpu);
1871 unsigned long total = weighted_cpuload(cpu);
1873 if (type == 0)
1874 return total;
1876 return min(rq->cpu_load[type-1], total);
1880 * Return a high guess at the load of a migration-target cpu weighted
1881 * according to the scheduling class and "nice" value.
1883 static unsigned long target_load(int cpu, int type)
1885 struct rq *rq = cpu_rq(cpu);
1886 unsigned long total = weighted_cpuload(cpu);
1888 if (type == 0)
1889 return total;
1891 return max(rq->cpu_load[type-1], total);
1895 * Return the average load per task on the cpu's run queue
1897 static unsigned long cpu_avg_load_per_task(int cpu)
1899 struct rq *rq = cpu_rq(cpu);
1900 unsigned long total = weighted_cpuload(cpu);
1901 unsigned long n = rq->nr_running;
1903 return n ? total / n : SCHED_LOAD_SCALE;
1907 * find_idlest_group finds and returns the least busy CPU group within the
1908 * domain.
1910 static struct sched_group *
1911 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1913 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1914 unsigned long min_load = ULONG_MAX, this_load = 0;
1915 int load_idx = sd->forkexec_idx;
1916 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1918 do {
1919 unsigned long load, avg_load;
1920 int local_group;
1921 int i;
1923 /* Skip over this group if it has no CPUs allowed */
1924 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1925 continue;
1927 local_group = cpu_isset(this_cpu, group->cpumask);
1929 /* Tally up the load of all CPUs in the group */
1930 avg_load = 0;
1932 for_each_cpu_mask(i, group->cpumask) {
1933 /* Bias balancing toward cpus of our domain */
1934 if (local_group)
1935 load = source_load(i, load_idx);
1936 else
1937 load = target_load(i, load_idx);
1939 avg_load += load;
1942 /* Adjust by relative CPU power of the group */
1943 avg_load = sg_div_cpu_power(group,
1944 avg_load * SCHED_LOAD_SCALE);
1946 if (local_group) {
1947 this_load = avg_load;
1948 this = group;
1949 } else if (avg_load < min_load) {
1950 min_load = avg_load;
1951 idlest = group;
1953 } while (group = group->next, group != sd->groups);
1955 if (!idlest || 100*this_load < imbalance*min_load)
1956 return NULL;
1957 return idlest;
1961 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1963 static int
1964 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1965 cpumask_t *tmp)
1967 unsigned long load, min_load = ULONG_MAX;
1968 int idlest = -1;
1969 int i;
1971 /* Traverse only the allowed CPUs */
1972 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1974 for_each_cpu_mask(i, *tmp) {
1975 load = weighted_cpuload(i);
1977 if (load < min_load || (load == min_load && i == this_cpu)) {
1978 min_load = load;
1979 idlest = i;
1983 return idlest;
1987 * sched_balance_self: balance the current task (running on cpu) in domains
1988 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1989 * SD_BALANCE_EXEC.
1991 * Balance, ie. select the least loaded group.
1993 * Returns the target CPU number, or the same CPU if no balancing is needed.
1995 * preempt must be disabled.
1997 static int sched_balance_self(int cpu, int flag)
1999 struct task_struct *t = current;
2000 struct sched_domain *tmp, *sd = NULL;
2002 for_each_domain(cpu, tmp) {
2004 * If power savings logic is enabled for a domain, stop there.
2006 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2007 break;
2008 if (tmp->flags & flag)
2009 sd = tmp;
2012 while (sd) {
2013 cpumask_t span, tmpmask;
2014 struct sched_group *group;
2015 int new_cpu, weight;
2017 if (!(sd->flags & flag)) {
2018 sd = sd->child;
2019 continue;
2022 span = sd->span;
2023 group = find_idlest_group(sd, t, cpu);
2024 if (!group) {
2025 sd = sd->child;
2026 continue;
2029 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2030 if (new_cpu == -1 || new_cpu == cpu) {
2031 /* Now try balancing at a lower domain level of cpu */
2032 sd = sd->child;
2033 continue;
2036 /* Now try balancing at a lower domain level of new_cpu */
2037 cpu = new_cpu;
2038 sd = NULL;
2039 weight = cpus_weight(span);
2040 for_each_domain(cpu, tmp) {
2041 if (weight <= cpus_weight(tmp->span))
2042 break;
2043 if (tmp->flags & flag)
2044 sd = tmp;
2046 /* while loop will break here if sd == NULL */
2049 return cpu;
2052 #endif /* CONFIG_SMP */
2054 /***
2055 * try_to_wake_up - wake up a thread
2056 * @p: the to-be-woken-up thread
2057 * @state: the mask of task states that can be woken
2058 * @sync: do a synchronous wakeup?
2060 * Put it on the run-queue if it's not already there. The "current"
2061 * thread is always on the run-queue (except when the actual
2062 * re-schedule is in progress), and as such you're allowed to do
2063 * the simpler "current->state = TASK_RUNNING" to mark yourself
2064 * runnable without the overhead of this.
2066 * returns failure only if the task is already active.
2068 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2070 int cpu, orig_cpu, this_cpu, success = 0;
2071 unsigned long flags;
2072 long old_state;
2073 struct rq *rq;
2075 if (!sched_feat(SYNC_WAKEUPS))
2076 sync = 0;
2078 smp_wmb();
2079 rq = task_rq_lock(p, &flags);
2080 old_state = p->state;
2081 if (!(old_state & state))
2082 goto out;
2084 if (p->se.on_rq)
2085 goto out_running;
2087 cpu = task_cpu(p);
2088 orig_cpu = cpu;
2089 this_cpu = smp_processor_id();
2091 #ifdef CONFIG_SMP
2092 if (unlikely(task_running(rq, p)))
2093 goto out_activate;
2095 cpu = p->sched_class->select_task_rq(p, sync);
2096 if (cpu != orig_cpu) {
2097 set_task_cpu(p, cpu);
2098 task_rq_unlock(rq, &flags);
2099 /* might preempt at this point */
2100 rq = task_rq_lock(p, &flags);
2101 old_state = p->state;
2102 if (!(old_state & state))
2103 goto out;
2104 if (p->se.on_rq)
2105 goto out_running;
2107 this_cpu = smp_processor_id();
2108 cpu = task_cpu(p);
2111 #ifdef CONFIG_SCHEDSTATS
2112 schedstat_inc(rq, ttwu_count);
2113 if (cpu == this_cpu)
2114 schedstat_inc(rq, ttwu_local);
2115 else {
2116 struct sched_domain *sd;
2117 for_each_domain(this_cpu, sd) {
2118 if (cpu_isset(cpu, sd->span)) {
2119 schedstat_inc(sd, ttwu_wake_remote);
2120 break;
2124 #endif
2126 out_activate:
2127 #endif /* CONFIG_SMP */
2128 schedstat_inc(p, se.nr_wakeups);
2129 if (sync)
2130 schedstat_inc(p, se.nr_wakeups_sync);
2131 if (orig_cpu != cpu)
2132 schedstat_inc(p, se.nr_wakeups_migrate);
2133 if (cpu == this_cpu)
2134 schedstat_inc(p, se.nr_wakeups_local);
2135 else
2136 schedstat_inc(p, se.nr_wakeups_remote);
2137 update_rq_clock(rq);
2138 activate_task(rq, p, 1);
2139 success = 1;
2141 out_running:
2142 check_preempt_curr(rq, p);
2144 p->state = TASK_RUNNING;
2145 #ifdef CONFIG_SMP
2146 if (p->sched_class->task_wake_up)
2147 p->sched_class->task_wake_up(rq, p);
2148 #endif
2149 out:
2150 task_rq_unlock(rq, &flags);
2152 return success;
2155 int wake_up_process(struct task_struct *p)
2157 return try_to_wake_up(p, TASK_ALL, 0);
2159 EXPORT_SYMBOL(wake_up_process);
2161 int wake_up_state(struct task_struct *p, unsigned int state)
2163 return try_to_wake_up(p, state, 0);
2167 * Perform scheduler related setup for a newly forked process p.
2168 * p is forked by current.
2170 * __sched_fork() is basic setup used by init_idle() too:
2172 static void __sched_fork(struct task_struct *p)
2174 p->se.exec_start = 0;
2175 p->se.sum_exec_runtime = 0;
2176 p->se.prev_sum_exec_runtime = 0;
2177 p->se.last_wakeup = 0;
2178 p->se.avg_overlap = 0;
2180 #ifdef CONFIG_SCHEDSTATS
2181 p->se.wait_start = 0;
2182 p->se.sum_sleep_runtime = 0;
2183 p->se.sleep_start = 0;
2184 p->se.block_start = 0;
2185 p->se.sleep_max = 0;
2186 p->se.block_max = 0;
2187 p->se.exec_max = 0;
2188 p->se.slice_max = 0;
2189 p->se.wait_max = 0;
2190 #endif
2192 INIT_LIST_HEAD(&p->rt.run_list);
2193 p->se.on_rq = 0;
2194 INIT_LIST_HEAD(&p->se.group_node);
2196 #ifdef CONFIG_PREEMPT_NOTIFIERS
2197 INIT_HLIST_HEAD(&p->preempt_notifiers);
2198 #endif
2201 * We mark the process as running here, but have not actually
2202 * inserted it onto the runqueue yet. This guarantees that
2203 * nobody will actually run it, and a signal or other external
2204 * event cannot wake it up and insert it on the runqueue either.
2206 p->state = TASK_RUNNING;
2210 * fork()/clone()-time setup:
2212 void sched_fork(struct task_struct *p, int clone_flags)
2214 int cpu = get_cpu();
2216 __sched_fork(p);
2218 #ifdef CONFIG_SMP
2219 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2220 #endif
2221 set_task_cpu(p, cpu);
2224 * Make sure we do not leak PI boosting priority to the child:
2226 p->prio = current->normal_prio;
2227 if (!rt_prio(p->prio))
2228 p->sched_class = &fair_sched_class;
2230 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2231 if (likely(sched_info_on()))
2232 memset(&p->sched_info, 0, sizeof(p->sched_info));
2233 #endif
2234 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2235 p->oncpu = 0;
2236 #endif
2237 #ifdef CONFIG_PREEMPT
2238 /* Want to start with kernel preemption disabled. */
2239 task_thread_info(p)->preempt_count = 1;
2240 #endif
2241 put_cpu();
2245 * wake_up_new_task - wake up a newly created task for the first time.
2247 * This function will do some initial scheduler statistics housekeeping
2248 * that must be done for every newly created context, then puts the task
2249 * on the runqueue and wakes it.
2251 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2253 unsigned long flags;
2254 struct rq *rq;
2256 rq = task_rq_lock(p, &flags);
2257 BUG_ON(p->state != TASK_RUNNING);
2258 update_rq_clock(rq);
2260 p->prio = effective_prio(p);
2262 if (!p->sched_class->task_new || !current->se.on_rq) {
2263 activate_task(rq, p, 0);
2264 } else {
2266 * Let the scheduling class do new task startup
2267 * management (if any):
2269 p->sched_class->task_new(rq, p);
2270 inc_nr_running(p, rq);
2272 check_preempt_curr(rq, p);
2273 #ifdef CONFIG_SMP
2274 if (p->sched_class->task_wake_up)
2275 p->sched_class->task_wake_up(rq, p);
2276 #endif
2277 task_rq_unlock(rq, &flags);
2280 #ifdef CONFIG_PREEMPT_NOTIFIERS
2283 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2284 * @notifier: notifier struct to register
2286 void preempt_notifier_register(struct preempt_notifier *notifier)
2288 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2290 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2293 * preempt_notifier_unregister - no longer interested in preemption notifications
2294 * @notifier: notifier struct to unregister
2296 * This is safe to call from within a preemption notifier.
2298 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2300 hlist_del(&notifier->link);
2302 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2304 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2306 struct preempt_notifier *notifier;
2307 struct hlist_node *node;
2309 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2310 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2313 static void
2314 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2315 struct task_struct *next)
2317 struct preempt_notifier *notifier;
2318 struct hlist_node *node;
2320 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2321 notifier->ops->sched_out(notifier, next);
2324 #else
2326 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2330 static void
2331 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2332 struct task_struct *next)
2336 #endif
2339 * prepare_task_switch - prepare to switch tasks
2340 * @rq: the runqueue preparing to switch
2341 * @prev: the current task that is being switched out
2342 * @next: the task we are going to switch to.
2344 * This is called with the rq lock held and interrupts off. It must
2345 * be paired with a subsequent finish_task_switch after the context
2346 * switch.
2348 * prepare_task_switch sets up locking and calls architecture specific
2349 * hooks.
2351 static inline void
2352 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2353 struct task_struct *next)
2355 fire_sched_out_preempt_notifiers(prev, next);
2356 prepare_lock_switch(rq, next);
2357 prepare_arch_switch(next);
2361 * finish_task_switch - clean up after a task-switch
2362 * @rq: runqueue associated with task-switch
2363 * @prev: the thread we just switched away from.
2365 * finish_task_switch must be called after the context switch, paired
2366 * with a prepare_task_switch call before the context switch.
2367 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2368 * and do any other architecture-specific cleanup actions.
2370 * Note that we may have delayed dropping an mm in context_switch(). If
2371 * so, we finish that here outside of the runqueue lock. (Doing it
2372 * with the lock held can cause deadlocks; see schedule() for
2373 * details.)
2375 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2376 __releases(rq->lock)
2378 struct mm_struct *mm = rq->prev_mm;
2379 long prev_state;
2381 rq->prev_mm = NULL;
2384 * A task struct has one reference for the use as "current".
2385 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2386 * schedule one last time. The schedule call will never return, and
2387 * the scheduled task must drop that reference.
2388 * The test for TASK_DEAD must occur while the runqueue locks are
2389 * still held, otherwise prev could be scheduled on another cpu, die
2390 * there before we look at prev->state, and then the reference would
2391 * be dropped twice.
2392 * Manfred Spraul <manfred@colorfullife.com>
2394 prev_state = prev->state;
2395 finish_arch_switch(prev);
2396 finish_lock_switch(rq, prev);
2397 #ifdef CONFIG_SMP
2398 if (current->sched_class->post_schedule)
2399 current->sched_class->post_schedule(rq);
2400 #endif
2402 fire_sched_in_preempt_notifiers(current);
2403 if (mm)
2404 mmdrop(mm);
2405 if (unlikely(prev_state == TASK_DEAD)) {
2407 * Remove function-return probe instances associated with this
2408 * task and put them back on the free list.
2410 kprobe_flush_task(prev);
2411 put_task_struct(prev);
2416 * schedule_tail - first thing a freshly forked thread must call.
2417 * @prev: the thread we just switched away from.
2419 asmlinkage void schedule_tail(struct task_struct *prev)
2420 __releases(rq->lock)
2422 struct rq *rq = this_rq();
2424 finish_task_switch(rq, prev);
2425 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2426 /* In this case, finish_task_switch does not reenable preemption */
2427 preempt_enable();
2428 #endif
2429 if (current->set_child_tid)
2430 put_user(task_pid_vnr(current), current->set_child_tid);
2434 * context_switch - switch to the new MM and the new
2435 * thread's register state.
2437 static inline void
2438 context_switch(struct rq *rq, struct task_struct *prev,
2439 struct task_struct *next)
2441 struct mm_struct *mm, *oldmm;
2443 prepare_task_switch(rq, prev, next);
2444 mm = next->mm;
2445 oldmm = prev->active_mm;
2447 * For paravirt, this is coupled with an exit in switch_to to
2448 * combine the page table reload and the switch backend into
2449 * one hypercall.
2451 arch_enter_lazy_cpu_mode();
2453 if (unlikely(!mm)) {
2454 next->active_mm = oldmm;
2455 atomic_inc(&oldmm->mm_count);
2456 enter_lazy_tlb(oldmm, next);
2457 } else
2458 switch_mm(oldmm, mm, next);
2460 if (unlikely(!prev->mm)) {
2461 prev->active_mm = NULL;
2462 rq->prev_mm = oldmm;
2465 * Since the runqueue lock will be released by the next
2466 * task (which is an invalid locking op but in the case
2467 * of the scheduler it's an obvious special-case), so we
2468 * do an early lockdep release here:
2470 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2471 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2472 #endif
2474 /* Here we just switch the register state and the stack. */
2475 switch_to(prev, next, prev);
2477 barrier();
2479 * this_rq must be evaluated again because prev may have moved
2480 * CPUs since it called schedule(), thus the 'rq' on its stack
2481 * frame will be invalid.
2483 finish_task_switch(this_rq(), prev);
2487 * nr_running, nr_uninterruptible and nr_context_switches:
2489 * externally visible scheduler statistics: current number of runnable
2490 * threads, current number of uninterruptible-sleeping threads, total
2491 * number of context switches performed since bootup.
2493 unsigned long nr_running(void)
2495 unsigned long i, sum = 0;
2497 for_each_online_cpu(i)
2498 sum += cpu_rq(i)->nr_running;
2500 return sum;
2503 unsigned long nr_uninterruptible(void)
2505 unsigned long i, sum = 0;
2507 for_each_possible_cpu(i)
2508 sum += cpu_rq(i)->nr_uninterruptible;
2511 * Since we read the counters lockless, it might be slightly
2512 * inaccurate. Do not allow it to go below zero though:
2514 if (unlikely((long)sum < 0))
2515 sum = 0;
2517 return sum;
2520 unsigned long long nr_context_switches(void)
2522 int i;
2523 unsigned long long sum = 0;
2525 for_each_possible_cpu(i)
2526 sum += cpu_rq(i)->nr_switches;
2528 return sum;
2531 unsigned long nr_iowait(void)
2533 unsigned long i, sum = 0;
2535 for_each_possible_cpu(i)
2536 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2538 return sum;
2541 unsigned long nr_active(void)
2543 unsigned long i, running = 0, uninterruptible = 0;
2545 for_each_online_cpu(i) {
2546 running += cpu_rq(i)->nr_running;
2547 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2550 if (unlikely((long)uninterruptible < 0))
2551 uninterruptible = 0;
2553 return running + uninterruptible;
2557 * Update rq->cpu_load[] statistics. This function is usually called every
2558 * scheduler tick (TICK_NSEC).
2560 static void update_cpu_load(struct rq *this_rq)
2562 unsigned long this_load = this_rq->load.weight;
2563 int i, scale;
2565 this_rq->nr_load_updates++;
2567 /* Update our load: */
2568 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2569 unsigned long old_load, new_load;
2571 /* scale is effectively 1 << i now, and >> i divides by scale */
2573 old_load = this_rq->cpu_load[i];
2574 new_load = this_load;
2576 * Round up the averaging division if load is increasing. This
2577 * prevents us from getting stuck on 9 if the load is 10, for
2578 * example.
2580 if (new_load > old_load)
2581 new_load += scale-1;
2582 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2586 #ifdef CONFIG_SMP
2589 * double_rq_lock - safely lock two runqueues
2591 * Note this does not disable interrupts like task_rq_lock,
2592 * you need to do so manually before calling.
2594 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2595 __acquires(rq1->lock)
2596 __acquires(rq2->lock)
2598 BUG_ON(!irqs_disabled());
2599 if (rq1 == rq2) {
2600 spin_lock(&rq1->lock);
2601 __acquire(rq2->lock); /* Fake it out ;) */
2602 } else {
2603 if (rq1 < rq2) {
2604 spin_lock(&rq1->lock);
2605 spin_lock(&rq2->lock);
2606 } else {
2607 spin_lock(&rq2->lock);
2608 spin_lock(&rq1->lock);
2611 update_rq_clock(rq1);
2612 update_rq_clock(rq2);
2616 * double_rq_unlock - safely unlock two runqueues
2618 * Note this does not restore interrupts like task_rq_unlock,
2619 * you need to do so manually after calling.
2621 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2622 __releases(rq1->lock)
2623 __releases(rq2->lock)
2625 spin_unlock(&rq1->lock);
2626 if (rq1 != rq2)
2627 spin_unlock(&rq2->lock);
2628 else
2629 __release(rq2->lock);
2633 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2635 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2636 __releases(this_rq->lock)
2637 __acquires(busiest->lock)
2638 __acquires(this_rq->lock)
2640 int ret = 0;
2642 if (unlikely(!irqs_disabled())) {
2643 /* printk() doesn't work good under rq->lock */
2644 spin_unlock(&this_rq->lock);
2645 BUG_ON(1);
2647 if (unlikely(!spin_trylock(&busiest->lock))) {
2648 if (busiest < this_rq) {
2649 spin_unlock(&this_rq->lock);
2650 spin_lock(&busiest->lock);
2651 spin_lock(&this_rq->lock);
2652 ret = 1;
2653 } else
2654 spin_lock(&busiest->lock);
2656 return ret;
2660 * If dest_cpu is allowed for this process, migrate the task to it.
2661 * This is accomplished by forcing the cpu_allowed mask to only
2662 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2663 * the cpu_allowed mask is restored.
2665 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2667 struct migration_req req;
2668 unsigned long flags;
2669 struct rq *rq;
2671 rq = task_rq_lock(p, &flags);
2672 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2673 || unlikely(cpu_is_offline(dest_cpu)))
2674 goto out;
2676 /* force the process onto the specified CPU */
2677 if (migrate_task(p, dest_cpu, &req)) {
2678 /* Need to wait for migration thread (might exit: take ref). */
2679 struct task_struct *mt = rq->migration_thread;
2681 get_task_struct(mt);
2682 task_rq_unlock(rq, &flags);
2683 wake_up_process(mt);
2684 put_task_struct(mt);
2685 wait_for_completion(&req.done);
2687 return;
2689 out:
2690 task_rq_unlock(rq, &flags);
2694 * sched_exec - execve() is a valuable balancing opportunity, because at
2695 * this point the task has the smallest effective memory and cache footprint.
2697 void sched_exec(void)
2699 int new_cpu, this_cpu = get_cpu();
2700 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2701 put_cpu();
2702 if (new_cpu != this_cpu)
2703 sched_migrate_task(current, new_cpu);
2707 * pull_task - move a task from a remote runqueue to the local runqueue.
2708 * Both runqueues must be locked.
2710 static void pull_task(struct rq *src_rq, struct task_struct *p,
2711 struct rq *this_rq, int this_cpu)
2713 deactivate_task(src_rq, p, 0);
2714 set_task_cpu(p, this_cpu);
2715 activate_task(this_rq, p, 0);
2717 * Note that idle threads have a prio of MAX_PRIO, for this test
2718 * to be always true for them.
2720 check_preempt_curr(this_rq, p);
2724 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2726 static
2727 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2728 struct sched_domain *sd, enum cpu_idle_type idle,
2729 int *all_pinned)
2732 * We do not migrate tasks that are:
2733 * 1) running (obviously), or
2734 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2735 * 3) are cache-hot on their current CPU.
2737 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2738 schedstat_inc(p, se.nr_failed_migrations_affine);
2739 return 0;
2741 *all_pinned = 0;
2743 if (task_running(rq, p)) {
2744 schedstat_inc(p, se.nr_failed_migrations_running);
2745 return 0;
2749 * Aggressive migration if:
2750 * 1) task is cache cold, or
2751 * 2) too many balance attempts have failed.
2754 if (!task_hot(p, rq->clock, sd) ||
2755 sd->nr_balance_failed > sd->cache_nice_tries) {
2756 #ifdef CONFIG_SCHEDSTATS
2757 if (task_hot(p, rq->clock, sd)) {
2758 schedstat_inc(sd, lb_hot_gained[idle]);
2759 schedstat_inc(p, se.nr_forced_migrations);
2761 #endif
2762 return 1;
2765 if (task_hot(p, rq->clock, sd)) {
2766 schedstat_inc(p, se.nr_failed_migrations_hot);
2767 return 0;
2769 return 1;
2772 static unsigned long
2773 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2774 unsigned long max_load_move, struct sched_domain *sd,
2775 enum cpu_idle_type idle, int *all_pinned,
2776 int *this_best_prio, struct rq_iterator *iterator)
2778 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2779 struct task_struct *p;
2780 long rem_load_move = max_load_move;
2782 if (max_load_move == 0)
2783 goto out;
2785 pinned = 1;
2788 * Start the load-balancing iterator:
2790 p = iterator->start(iterator->arg);
2791 next:
2792 if (!p || loops++ > sysctl_sched_nr_migrate)
2793 goto out;
2795 * To help distribute high priority tasks across CPUs we don't
2796 * skip a task if it will be the highest priority task (i.e. smallest
2797 * prio value) on its new queue regardless of its load weight
2799 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2800 SCHED_LOAD_SCALE_FUZZ;
2801 if ((skip_for_load && p->prio >= *this_best_prio) ||
2802 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2803 p = iterator->next(iterator->arg);
2804 goto next;
2807 pull_task(busiest, p, this_rq, this_cpu);
2808 pulled++;
2809 rem_load_move -= p->se.load.weight;
2812 * We only want to steal up to the prescribed amount of weighted load.
2814 if (rem_load_move > 0) {
2815 if (p->prio < *this_best_prio)
2816 *this_best_prio = p->prio;
2817 p = iterator->next(iterator->arg);
2818 goto next;
2820 out:
2822 * Right now, this is one of only two places pull_task() is called,
2823 * so we can safely collect pull_task() stats here rather than
2824 * inside pull_task().
2826 schedstat_add(sd, lb_gained[idle], pulled);
2828 if (all_pinned)
2829 *all_pinned = pinned;
2831 return max_load_move - rem_load_move;
2835 * move_tasks tries to move up to max_load_move weighted load from busiest to
2836 * this_rq, as part of a balancing operation within domain "sd".
2837 * Returns 1 if successful and 0 otherwise.
2839 * Called with both runqueues locked.
2841 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2842 unsigned long max_load_move,
2843 struct sched_domain *sd, enum cpu_idle_type idle,
2844 int *all_pinned)
2846 const struct sched_class *class = sched_class_highest;
2847 unsigned long total_load_moved = 0;
2848 int this_best_prio = this_rq->curr->prio;
2850 do {
2851 total_load_moved +=
2852 class->load_balance(this_rq, this_cpu, busiest,
2853 max_load_move - total_load_moved,
2854 sd, idle, all_pinned, &this_best_prio);
2855 class = class->next;
2856 } while (class && max_load_move > total_load_moved);
2858 return total_load_moved > 0;
2861 static int
2862 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2863 struct sched_domain *sd, enum cpu_idle_type idle,
2864 struct rq_iterator *iterator)
2866 struct task_struct *p = iterator->start(iterator->arg);
2867 int pinned = 0;
2869 while (p) {
2870 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2871 pull_task(busiest, p, this_rq, this_cpu);
2873 * Right now, this is only the second place pull_task()
2874 * is called, so we can safely collect pull_task()
2875 * stats here rather than inside pull_task().
2877 schedstat_inc(sd, lb_gained[idle]);
2879 return 1;
2881 p = iterator->next(iterator->arg);
2884 return 0;
2888 * move_one_task tries to move exactly one task from busiest to this_rq, as
2889 * part of active balancing operations within "domain".
2890 * Returns 1 if successful and 0 otherwise.
2892 * Called with both runqueues locked.
2894 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2895 struct sched_domain *sd, enum cpu_idle_type idle)
2897 const struct sched_class *class;
2899 for (class = sched_class_highest; class; class = class->next)
2900 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2901 return 1;
2903 return 0;
2907 * find_busiest_group finds and returns the busiest CPU group within the
2908 * domain. It calculates and returns the amount of weighted load which
2909 * should be moved to restore balance via the imbalance parameter.
2911 static struct sched_group *
2912 find_busiest_group(struct sched_domain *sd, int this_cpu,
2913 unsigned long *imbalance, enum cpu_idle_type idle,
2914 int *sd_idle, const cpumask_t *cpus, int *balance)
2916 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2917 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2918 unsigned long max_pull;
2919 unsigned long busiest_load_per_task, busiest_nr_running;
2920 unsigned long this_load_per_task, this_nr_running;
2921 int load_idx, group_imb = 0;
2922 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2923 int power_savings_balance = 1;
2924 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2925 unsigned long min_nr_running = ULONG_MAX;
2926 struct sched_group *group_min = NULL, *group_leader = NULL;
2927 #endif
2929 max_load = this_load = total_load = total_pwr = 0;
2930 busiest_load_per_task = busiest_nr_running = 0;
2931 this_load_per_task = this_nr_running = 0;
2932 if (idle == CPU_NOT_IDLE)
2933 load_idx = sd->busy_idx;
2934 else if (idle == CPU_NEWLY_IDLE)
2935 load_idx = sd->newidle_idx;
2936 else
2937 load_idx = sd->idle_idx;
2939 do {
2940 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2941 int local_group;
2942 int i;
2943 int __group_imb = 0;
2944 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2945 unsigned long sum_nr_running, sum_weighted_load;
2947 local_group = cpu_isset(this_cpu, group->cpumask);
2949 if (local_group)
2950 balance_cpu = first_cpu(group->cpumask);
2952 /* Tally up the load of all CPUs in the group */
2953 sum_weighted_load = sum_nr_running = avg_load = 0;
2954 max_cpu_load = 0;
2955 min_cpu_load = ~0UL;
2957 for_each_cpu_mask(i, group->cpumask) {
2958 struct rq *rq;
2960 if (!cpu_isset(i, *cpus))
2961 continue;
2963 rq = cpu_rq(i);
2965 if (*sd_idle && rq->nr_running)
2966 *sd_idle = 0;
2968 /* Bias balancing toward cpus of our domain */
2969 if (local_group) {
2970 if (idle_cpu(i) && !first_idle_cpu) {
2971 first_idle_cpu = 1;
2972 balance_cpu = i;
2975 load = target_load(i, load_idx);
2976 } else {
2977 load = source_load(i, load_idx);
2978 if (load > max_cpu_load)
2979 max_cpu_load = load;
2980 if (min_cpu_load > load)
2981 min_cpu_load = load;
2984 avg_load += load;
2985 sum_nr_running += rq->nr_running;
2986 sum_weighted_load += weighted_cpuload(i);
2990 * First idle cpu or the first cpu(busiest) in this sched group
2991 * is eligible for doing load balancing at this and above
2992 * domains. In the newly idle case, we will allow all the cpu's
2993 * to do the newly idle load balance.
2995 if (idle != CPU_NEWLY_IDLE && local_group &&
2996 balance_cpu != this_cpu && balance) {
2997 *balance = 0;
2998 goto ret;
3001 total_load += avg_load;
3002 total_pwr += group->__cpu_power;
3004 /* Adjust by relative CPU power of the group */
3005 avg_load = sg_div_cpu_power(group,
3006 avg_load * SCHED_LOAD_SCALE);
3008 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3009 __group_imb = 1;
3011 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3013 if (local_group) {
3014 this_load = avg_load;
3015 this = group;
3016 this_nr_running = sum_nr_running;
3017 this_load_per_task = sum_weighted_load;
3018 } else if (avg_load > max_load &&
3019 (sum_nr_running > group_capacity || __group_imb)) {
3020 max_load = avg_load;
3021 busiest = group;
3022 busiest_nr_running = sum_nr_running;
3023 busiest_load_per_task = sum_weighted_load;
3024 group_imb = __group_imb;
3027 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3029 * Busy processors will not participate in power savings
3030 * balance.
3032 if (idle == CPU_NOT_IDLE ||
3033 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3034 goto group_next;
3037 * If the local group is idle or completely loaded
3038 * no need to do power savings balance at this domain
3040 if (local_group && (this_nr_running >= group_capacity ||
3041 !this_nr_running))
3042 power_savings_balance = 0;
3045 * If a group is already running at full capacity or idle,
3046 * don't include that group in power savings calculations
3048 if (!power_savings_balance || sum_nr_running >= group_capacity
3049 || !sum_nr_running)
3050 goto group_next;
3053 * Calculate the group which has the least non-idle load.
3054 * This is the group from where we need to pick up the load
3055 * for saving power
3057 if ((sum_nr_running < min_nr_running) ||
3058 (sum_nr_running == min_nr_running &&
3059 first_cpu(group->cpumask) <
3060 first_cpu(group_min->cpumask))) {
3061 group_min = group;
3062 min_nr_running = sum_nr_running;
3063 min_load_per_task = sum_weighted_load /
3064 sum_nr_running;
3068 * Calculate the group which is almost near its
3069 * capacity but still has some space to pick up some load
3070 * from other group and save more power
3072 if (sum_nr_running <= group_capacity - 1) {
3073 if (sum_nr_running > leader_nr_running ||
3074 (sum_nr_running == leader_nr_running &&
3075 first_cpu(group->cpumask) >
3076 first_cpu(group_leader->cpumask))) {
3077 group_leader = group;
3078 leader_nr_running = sum_nr_running;
3081 group_next:
3082 #endif
3083 group = group->next;
3084 } while (group != sd->groups);
3086 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3087 goto out_balanced;
3089 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3091 if (this_load >= avg_load ||
3092 100*max_load <= sd->imbalance_pct*this_load)
3093 goto out_balanced;
3095 busiest_load_per_task /= busiest_nr_running;
3096 if (group_imb)
3097 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3100 * We're trying to get all the cpus to the average_load, so we don't
3101 * want to push ourselves above the average load, nor do we wish to
3102 * reduce the max loaded cpu below the average load, as either of these
3103 * actions would just result in more rebalancing later, and ping-pong
3104 * tasks around. Thus we look for the minimum possible imbalance.
3105 * Negative imbalances (*we* are more loaded than anyone else) will
3106 * be counted as no imbalance for these purposes -- we can't fix that
3107 * by pulling tasks to us. Be careful of negative numbers as they'll
3108 * appear as very large values with unsigned longs.
3110 if (max_load <= busiest_load_per_task)
3111 goto out_balanced;
3114 * In the presence of smp nice balancing, certain scenarios can have
3115 * max load less than avg load(as we skip the groups at or below
3116 * its cpu_power, while calculating max_load..)
3118 if (max_load < avg_load) {
3119 *imbalance = 0;
3120 goto small_imbalance;
3123 /* Don't want to pull so many tasks that a group would go idle */
3124 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3126 /* How much load to actually move to equalise the imbalance */
3127 *imbalance = min(max_pull * busiest->__cpu_power,
3128 (avg_load - this_load) * this->__cpu_power)
3129 / SCHED_LOAD_SCALE;
3132 * if *imbalance is less than the average load per runnable task
3133 * there is no gaurantee that any tasks will be moved so we'll have
3134 * a think about bumping its value to force at least one task to be
3135 * moved
3137 if (*imbalance < busiest_load_per_task) {
3138 unsigned long tmp, pwr_now, pwr_move;
3139 unsigned int imbn;
3141 small_imbalance:
3142 pwr_move = pwr_now = 0;
3143 imbn = 2;
3144 if (this_nr_running) {
3145 this_load_per_task /= this_nr_running;
3146 if (busiest_load_per_task > this_load_per_task)
3147 imbn = 1;
3148 } else
3149 this_load_per_task = SCHED_LOAD_SCALE;
3151 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3152 busiest_load_per_task * imbn) {
3153 *imbalance = busiest_load_per_task;
3154 return busiest;
3158 * OK, we don't have enough imbalance to justify moving tasks,
3159 * however we may be able to increase total CPU power used by
3160 * moving them.
3163 pwr_now += busiest->__cpu_power *
3164 min(busiest_load_per_task, max_load);
3165 pwr_now += this->__cpu_power *
3166 min(this_load_per_task, this_load);
3167 pwr_now /= SCHED_LOAD_SCALE;
3169 /* Amount of load we'd subtract */
3170 tmp = sg_div_cpu_power(busiest,
3171 busiest_load_per_task * SCHED_LOAD_SCALE);
3172 if (max_load > tmp)
3173 pwr_move += busiest->__cpu_power *
3174 min(busiest_load_per_task, max_load - tmp);
3176 /* Amount of load we'd add */
3177 if (max_load * busiest->__cpu_power <
3178 busiest_load_per_task * SCHED_LOAD_SCALE)
3179 tmp = sg_div_cpu_power(this,
3180 max_load * busiest->__cpu_power);
3181 else
3182 tmp = sg_div_cpu_power(this,
3183 busiest_load_per_task * SCHED_LOAD_SCALE);
3184 pwr_move += this->__cpu_power *
3185 min(this_load_per_task, this_load + tmp);
3186 pwr_move /= SCHED_LOAD_SCALE;
3188 /* Move if we gain throughput */
3189 if (pwr_move > pwr_now)
3190 *imbalance = busiest_load_per_task;
3193 return busiest;
3195 out_balanced:
3196 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3197 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3198 goto ret;
3200 if (this == group_leader && group_leader != group_min) {
3201 *imbalance = min_load_per_task;
3202 return group_min;
3204 #endif
3205 ret:
3206 *imbalance = 0;
3207 return NULL;
3211 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3213 static struct rq *
3214 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3215 unsigned long imbalance, const cpumask_t *cpus)
3217 struct rq *busiest = NULL, *rq;
3218 unsigned long max_load = 0;
3219 int i;
3221 for_each_cpu_mask(i, group->cpumask) {
3222 unsigned long wl;
3224 if (!cpu_isset(i, *cpus))
3225 continue;
3227 rq = cpu_rq(i);
3228 wl = weighted_cpuload(i);
3230 if (rq->nr_running == 1 && wl > imbalance)
3231 continue;
3233 if (wl > max_load) {
3234 max_load = wl;
3235 busiest = rq;
3239 return busiest;
3243 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3244 * so long as it is large enough.
3246 #define MAX_PINNED_INTERVAL 512
3249 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3250 * tasks if there is an imbalance.
3252 static int load_balance(int this_cpu, struct rq *this_rq,
3253 struct sched_domain *sd, enum cpu_idle_type idle,
3254 int *balance, cpumask_t *cpus)
3256 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3257 struct sched_group *group;
3258 unsigned long imbalance;
3259 struct rq *busiest;
3260 unsigned long flags;
3262 cpus_setall(*cpus);
3265 * When power savings policy is enabled for the parent domain, idle
3266 * sibling can pick up load irrespective of busy siblings. In this case,
3267 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3268 * portraying it as CPU_NOT_IDLE.
3270 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3271 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3272 sd_idle = 1;
3274 schedstat_inc(sd, lb_count[idle]);
3276 redo:
3277 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3278 cpus, balance);
3280 if (*balance == 0)
3281 goto out_balanced;
3283 if (!group) {
3284 schedstat_inc(sd, lb_nobusyg[idle]);
3285 goto out_balanced;
3288 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3289 if (!busiest) {
3290 schedstat_inc(sd, lb_nobusyq[idle]);
3291 goto out_balanced;
3294 BUG_ON(busiest == this_rq);
3296 schedstat_add(sd, lb_imbalance[idle], imbalance);
3298 ld_moved = 0;
3299 if (busiest->nr_running > 1) {
3301 * Attempt to move tasks. If find_busiest_group has found
3302 * an imbalance but busiest->nr_running <= 1, the group is
3303 * still unbalanced. ld_moved simply stays zero, so it is
3304 * correctly treated as an imbalance.
3306 local_irq_save(flags);
3307 double_rq_lock(this_rq, busiest);
3308 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3309 imbalance, sd, idle, &all_pinned);
3310 double_rq_unlock(this_rq, busiest);
3311 local_irq_restore(flags);
3314 * some other cpu did the load balance for us.
3316 if (ld_moved && this_cpu != smp_processor_id())
3317 resched_cpu(this_cpu);
3319 /* All tasks on this runqueue were pinned by CPU affinity */
3320 if (unlikely(all_pinned)) {
3321 cpu_clear(cpu_of(busiest), *cpus);
3322 if (!cpus_empty(*cpus))
3323 goto redo;
3324 goto out_balanced;
3328 if (!ld_moved) {
3329 schedstat_inc(sd, lb_failed[idle]);
3330 sd->nr_balance_failed++;
3332 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3334 spin_lock_irqsave(&busiest->lock, flags);
3336 /* don't kick the migration_thread, if the curr
3337 * task on busiest cpu can't be moved to this_cpu
3339 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3340 spin_unlock_irqrestore(&busiest->lock, flags);
3341 all_pinned = 1;
3342 goto out_one_pinned;
3345 if (!busiest->active_balance) {
3346 busiest->active_balance = 1;
3347 busiest->push_cpu = this_cpu;
3348 active_balance = 1;
3350 spin_unlock_irqrestore(&busiest->lock, flags);
3351 if (active_balance)
3352 wake_up_process(busiest->migration_thread);
3355 * We've kicked active balancing, reset the failure
3356 * counter.
3358 sd->nr_balance_failed = sd->cache_nice_tries+1;
3360 } else
3361 sd->nr_balance_failed = 0;
3363 if (likely(!active_balance)) {
3364 /* We were unbalanced, so reset the balancing interval */
3365 sd->balance_interval = sd->min_interval;
3366 } else {
3368 * If we've begun active balancing, start to back off. This
3369 * case may not be covered by the all_pinned logic if there
3370 * is only 1 task on the busy runqueue (because we don't call
3371 * move_tasks).
3373 if (sd->balance_interval < sd->max_interval)
3374 sd->balance_interval *= 2;
3377 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3378 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3379 return -1;
3380 return ld_moved;
3382 out_balanced:
3383 schedstat_inc(sd, lb_balanced[idle]);
3385 sd->nr_balance_failed = 0;
3387 out_one_pinned:
3388 /* tune up the balancing interval */
3389 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3390 (sd->balance_interval < sd->max_interval))
3391 sd->balance_interval *= 2;
3393 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3394 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3395 return -1;
3396 return 0;
3400 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3401 * tasks if there is an imbalance.
3403 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3404 * this_rq is locked.
3406 static int
3407 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3408 cpumask_t *cpus)
3410 struct sched_group *group;
3411 struct rq *busiest = NULL;
3412 unsigned long imbalance;
3413 int ld_moved = 0;
3414 int sd_idle = 0;
3415 int all_pinned = 0;
3417 cpus_setall(*cpus);
3420 * When power savings policy is enabled for the parent domain, idle
3421 * sibling can pick up load irrespective of busy siblings. In this case,
3422 * let the state of idle sibling percolate up as IDLE, instead of
3423 * portraying it as CPU_NOT_IDLE.
3425 if (sd->flags & SD_SHARE_CPUPOWER &&
3426 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3427 sd_idle = 1;
3429 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3430 redo:
3431 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3432 &sd_idle, cpus, NULL);
3433 if (!group) {
3434 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3435 goto out_balanced;
3438 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3439 if (!busiest) {
3440 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3441 goto out_balanced;
3444 BUG_ON(busiest == this_rq);
3446 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3448 ld_moved = 0;
3449 if (busiest->nr_running > 1) {
3450 /* Attempt to move tasks */
3451 double_lock_balance(this_rq, busiest);
3452 /* this_rq->clock is already updated */
3453 update_rq_clock(busiest);
3454 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3455 imbalance, sd, CPU_NEWLY_IDLE,
3456 &all_pinned);
3457 spin_unlock(&busiest->lock);
3459 if (unlikely(all_pinned)) {
3460 cpu_clear(cpu_of(busiest), *cpus);
3461 if (!cpus_empty(*cpus))
3462 goto redo;
3466 if (!ld_moved) {
3467 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3468 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3469 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3470 return -1;
3471 } else
3472 sd->nr_balance_failed = 0;
3474 return ld_moved;
3476 out_balanced:
3477 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3478 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3480 return -1;
3481 sd->nr_balance_failed = 0;
3483 return 0;
3487 * idle_balance is called by schedule() if this_cpu is about to become
3488 * idle. Attempts to pull tasks from other CPUs.
3490 static void idle_balance(int this_cpu, struct rq *this_rq)
3492 struct sched_domain *sd;
3493 int pulled_task = -1;
3494 unsigned long next_balance = jiffies + HZ;
3495 cpumask_t tmpmask;
3497 for_each_domain(this_cpu, sd) {
3498 unsigned long interval;
3500 if (!(sd->flags & SD_LOAD_BALANCE))
3501 continue;
3503 if (sd->flags & SD_BALANCE_NEWIDLE)
3504 /* If we've pulled tasks over stop searching: */
3505 pulled_task = load_balance_newidle(this_cpu, this_rq,
3506 sd, &tmpmask);
3508 interval = msecs_to_jiffies(sd->balance_interval);
3509 if (time_after(next_balance, sd->last_balance + interval))
3510 next_balance = sd->last_balance + interval;
3511 if (pulled_task)
3512 break;
3514 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3516 * We are going idle. next_balance may be set based on
3517 * a busy processor. So reset next_balance.
3519 this_rq->next_balance = next_balance;
3524 * active_load_balance is run by migration threads. It pushes running tasks
3525 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3526 * running on each physical CPU where possible, and avoids physical /
3527 * logical imbalances.
3529 * Called with busiest_rq locked.
3531 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3533 int target_cpu = busiest_rq->push_cpu;
3534 struct sched_domain *sd;
3535 struct rq *target_rq;
3537 /* Is there any task to move? */
3538 if (busiest_rq->nr_running <= 1)
3539 return;
3541 target_rq = cpu_rq(target_cpu);
3544 * This condition is "impossible", if it occurs
3545 * we need to fix it. Originally reported by
3546 * Bjorn Helgaas on a 128-cpu setup.
3548 BUG_ON(busiest_rq == target_rq);
3550 /* move a task from busiest_rq to target_rq */
3551 double_lock_balance(busiest_rq, target_rq);
3552 update_rq_clock(busiest_rq);
3553 update_rq_clock(target_rq);
3555 /* Search for an sd spanning us and the target CPU. */
3556 for_each_domain(target_cpu, sd) {
3557 if ((sd->flags & SD_LOAD_BALANCE) &&
3558 cpu_isset(busiest_cpu, sd->span))
3559 break;
3562 if (likely(sd)) {
3563 schedstat_inc(sd, alb_count);
3565 if (move_one_task(target_rq, target_cpu, busiest_rq,
3566 sd, CPU_IDLE))
3567 schedstat_inc(sd, alb_pushed);
3568 else
3569 schedstat_inc(sd, alb_failed);
3571 spin_unlock(&target_rq->lock);
3574 #ifdef CONFIG_NO_HZ
3575 static struct {
3576 atomic_t load_balancer;
3577 cpumask_t cpu_mask;
3578 } nohz ____cacheline_aligned = {
3579 .load_balancer = ATOMIC_INIT(-1),
3580 .cpu_mask = CPU_MASK_NONE,
3584 * This routine will try to nominate the ilb (idle load balancing)
3585 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3586 * load balancing on behalf of all those cpus. If all the cpus in the system
3587 * go into this tickless mode, then there will be no ilb owner (as there is
3588 * no need for one) and all the cpus will sleep till the next wakeup event
3589 * arrives...
3591 * For the ilb owner, tick is not stopped. And this tick will be used
3592 * for idle load balancing. ilb owner will still be part of
3593 * nohz.cpu_mask..
3595 * While stopping the tick, this cpu will become the ilb owner if there
3596 * is no other owner. And will be the owner till that cpu becomes busy
3597 * or if all cpus in the system stop their ticks at which point
3598 * there is no need for ilb owner.
3600 * When the ilb owner becomes busy, it nominates another owner, during the
3601 * next busy scheduler_tick()
3603 int select_nohz_load_balancer(int stop_tick)
3605 int cpu = smp_processor_id();
3607 if (stop_tick) {
3608 cpu_set(cpu, nohz.cpu_mask);
3609 cpu_rq(cpu)->in_nohz_recently = 1;
3612 * If we are going offline and still the leader, give up!
3614 if (cpu_is_offline(cpu) &&
3615 atomic_read(&nohz.load_balancer) == cpu) {
3616 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3617 BUG();
3618 return 0;
3621 /* time for ilb owner also to sleep */
3622 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3623 if (atomic_read(&nohz.load_balancer) == cpu)
3624 atomic_set(&nohz.load_balancer, -1);
3625 return 0;
3628 if (atomic_read(&nohz.load_balancer) == -1) {
3629 /* make me the ilb owner */
3630 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3631 return 1;
3632 } else if (atomic_read(&nohz.load_balancer) == cpu)
3633 return 1;
3634 } else {
3635 if (!cpu_isset(cpu, nohz.cpu_mask))
3636 return 0;
3638 cpu_clear(cpu, nohz.cpu_mask);
3640 if (atomic_read(&nohz.load_balancer) == cpu)
3641 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3642 BUG();
3644 return 0;
3646 #endif
3648 static DEFINE_SPINLOCK(balancing);
3651 * It checks each scheduling domain to see if it is due to be balanced,
3652 * and initiates a balancing operation if so.
3654 * Balancing parameters are set up in arch_init_sched_domains.
3656 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3658 int balance = 1;
3659 struct rq *rq = cpu_rq(cpu);
3660 unsigned long interval;
3661 struct sched_domain *sd;
3662 /* Earliest time when we have to do rebalance again */
3663 unsigned long next_balance = jiffies + 60*HZ;
3664 int update_next_balance = 0;
3665 cpumask_t tmp;
3667 for_each_domain(cpu, sd) {
3668 if (!(sd->flags & SD_LOAD_BALANCE))
3669 continue;
3671 interval = sd->balance_interval;
3672 if (idle != CPU_IDLE)
3673 interval *= sd->busy_factor;
3675 /* scale ms to jiffies */
3676 interval = msecs_to_jiffies(interval);
3677 if (unlikely(!interval))
3678 interval = 1;
3679 if (interval > HZ*NR_CPUS/10)
3680 interval = HZ*NR_CPUS/10;
3683 if (sd->flags & SD_SERIALIZE) {
3684 if (!spin_trylock(&balancing))
3685 goto out;
3688 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3689 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3691 * We've pulled tasks over so either we're no
3692 * longer idle, or one of our SMT siblings is
3693 * not idle.
3695 idle = CPU_NOT_IDLE;
3697 sd->last_balance = jiffies;
3699 if (sd->flags & SD_SERIALIZE)
3700 spin_unlock(&balancing);
3701 out:
3702 if (time_after(next_balance, sd->last_balance + interval)) {
3703 next_balance = sd->last_balance + interval;
3704 update_next_balance = 1;
3708 * Stop the load balance at this level. There is another
3709 * CPU in our sched group which is doing load balancing more
3710 * actively.
3712 if (!balance)
3713 break;
3717 * next_balance will be updated only when there is a need.
3718 * When the cpu is attached to null domain for ex, it will not be
3719 * updated.
3721 if (likely(update_next_balance))
3722 rq->next_balance = next_balance;
3726 * run_rebalance_domains is triggered when needed from the scheduler tick.
3727 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3728 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3730 static void run_rebalance_domains(struct softirq_action *h)
3732 int this_cpu = smp_processor_id();
3733 struct rq *this_rq = cpu_rq(this_cpu);
3734 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3735 CPU_IDLE : CPU_NOT_IDLE;
3737 rebalance_domains(this_cpu, idle);
3739 #ifdef CONFIG_NO_HZ
3741 * If this cpu is the owner for idle load balancing, then do the
3742 * balancing on behalf of the other idle cpus whose ticks are
3743 * stopped.
3745 if (this_rq->idle_at_tick &&
3746 atomic_read(&nohz.load_balancer) == this_cpu) {
3747 cpumask_t cpus = nohz.cpu_mask;
3748 struct rq *rq;
3749 int balance_cpu;
3751 cpu_clear(this_cpu, cpus);
3752 for_each_cpu_mask(balance_cpu, cpus) {
3754 * If this cpu gets work to do, stop the load balancing
3755 * work being done for other cpus. Next load
3756 * balancing owner will pick it up.
3758 if (need_resched())
3759 break;
3761 rebalance_domains(balance_cpu, CPU_IDLE);
3763 rq = cpu_rq(balance_cpu);
3764 if (time_after(this_rq->next_balance, rq->next_balance))
3765 this_rq->next_balance = rq->next_balance;
3768 #endif
3772 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3774 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3775 * idle load balancing owner or decide to stop the periodic load balancing,
3776 * if the whole system is idle.
3778 static inline void trigger_load_balance(struct rq *rq, int cpu)
3780 #ifdef CONFIG_NO_HZ
3782 * If we were in the nohz mode recently and busy at the current
3783 * scheduler tick, then check if we need to nominate new idle
3784 * load balancer.
3786 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3787 rq->in_nohz_recently = 0;
3789 if (atomic_read(&nohz.load_balancer) == cpu) {
3790 cpu_clear(cpu, nohz.cpu_mask);
3791 atomic_set(&nohz.load_balancer, -1);
3794 if (atomic_read(&nohz.load_balancer) == -1) {
3796 * simple selection for now: Nominate the
3797 * first cpu in the nohz list to be the next
3798 * ilb owner.
3800 * TBD: Traverse the sched domains and nominate
3801 * the nearest cpu in the nohz.cpu_mask.
3803 int ilb = first_cpu(nohz.cpu_mask);
3805 if (ilb < nr_cpu_ids)
3806 resched_cpu(ilb);
3811 * If this cpu is idle and doing idle load balancing for all the
3812 * cpus with ticks stopped, is it time for that to stop?
3814 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3815 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3816 resched_cpu(cpu);
3817 return;
3821 * If this cpu is idle and the idle load balancing is done by
3822 * someone else, then no need raise the SCHED_SOFTIRQ
3824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3825 cpu_isset(cpu, nohz.cpu_mask))
3826 return;
3827 #endif
3828 if (time_after_eq(jiffies, rq->next_balance))
3829 raise_softirq(SCHED_SOFTIRQ);
3832 #else /* CONFIG_SMP */
3835 * on UP we do not need to balance between CPUs:
3837 static inline void idle_balance(int cpu, struct rq *rq)
3841 #endif
3843 DEFINE_PER_CPU(struct kernel_stat, kstat);
3845 EXPORT_PER_CPU_SYMBOL(kstat);
3848 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3849 * that have not yet been banked in case the task is currently running.
3851 unsigned long long task_sched_runtime(struct task_struct *p)
3853 unsigned long flags;
3854 u64 ns, delta_exec;
3855 struct rq *rq;
3857 rq = task_rq_lock(p, &flags);
3858 ns = p->se.sum_exec_runtime;
3859 if (task_current(rq, p)) {
3860 update_rq_clock(rq);
3861 delta_exec = rq->clock - p->se.exec_start;
3862 if ((s64)delta_exec > 0)
3863 ns += delta_exec;
3865 task_rq_unlock(rq, &flags);
3867 return ns;
3871 * Account user cpu time to a process.
3872 * @p: the process that the cpu time gets accounted to
3873 * @cputime: the cpu time spent in user space since the last update
3875 void account_user_time(struct task_struct *p, cputime_t cputime)
3877 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3878 cputime64_t tmp;
3880 p->utime = cputime_add(p->utime, cputime);
3882 /* Add user time to cpustat. */
3883 tmp = cputime_to_cputime64(cputime);
3884 if (TASK_NICE(p) > 0)
3885 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3886 else
3887 cpustat->user = cputime64_add(cpustat->user, tmp);
3891 * Account guest cpu time to a process.
3892 * @p: the process that the cpu time gets accounted to
3893 * @cputime: the cpu time spent in virtual machine since the last update
3895 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3897 cputime64_t tmp;
3898 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3900 tmp = cputime_to_cputime64(cputime);
3902 p->utime = cputime_add(p->utime, cputime);
3903 p->gtime = cputime_add(p->gtime, cputime);
3905 cpustat->user = cputime64_add(cpustat->user, tmp);
3906 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3910 * Account scaled user cpu time to a process.
3911 * @p: the process that the cpu time gets accounted to
3912 * @cputime: the cpu time spent in user space since the last update
3914 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3916 p->utimescaled = cputime_add(p->utimescaled, cputime);
3920 * Account system cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @hardirq_offset: the offset to subtract from hardirq_count()
3923 * @cputime: the cpu time spent in kernel space since the last update
3925 void account_system_time(struct task_struct *p, int hardirq_offset,
3926 cputime_t cputime)
3928 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3929 struct rq *rq = this_rq();
3930 cputime64_t tmp;
3932 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3933 account_guest_time(p, cputime);
3934 return;
3937 p->stime = cputime_add(p->stime, cputime);
3939 /* Add system time to cpustat. */
3940 tmp = cputime_to_cputime64(cputime);
3941 if (hardirq_count() - hardirq_offset)
3942 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3943 else if (softirq_count())
3944 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3945 else if (p != rq->idle)
3946 cpustat->system = cputime64_add(cpustat->system, tmp);
3947 else if (atomic_read(&rq->nr_iowait) > 0)
3948 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3949 else
3950 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3951 /* Account for system time used */
3952 acct_update_integrals(p);
3956 * Account scaled system cpu time to a process.
3957 * @p: the process that the cpu time gets accounted to
3958 * @hardirq_offset: the offset to subtract from hardirq_count()
3959 * @cputime: the cpu time spent in kernel space since the last update
3961 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3963 p->stimescaled = cputime_add(p->stimescaled, cputime);
3967 * Account for involuntary wait time.
3968 * @p: the process from which the cpu time has been stolen
3969 * @steal: the cpu time spent in involuntary wait
3971 void account_steal_time(struct task_struct *p, cputime_t steal)
3973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3974 cputime64_t tmp = cputime_to_cputime64(steal);
3975 struct rq *rq = this_rq();
3977 if (p == rq->idle) {
3978 p->stime = cputime_add(p->stime, steal);
3979 if (atomic_read(&rq->nr_iowait) > 0)
3980 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3981 else
3982 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3983 } else
3984 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3988 * This function gets called by the timer code, with HZ frequency.
3989 * We call it with interrupts disabled.
3991 * It also gets called by the fork code, when changing the parent's
3992 * timeslices.
3994 void scheduler_tick(void)
3996 int cpu = smp_processor_id();
3997 struct rq *rq = cpu_rq(cpu);
3998 struct task_struct *curr = rq->curr;
4000 sched_clock_tick();
4002 spin_lock(&rq->lock);
4003 update_rq_clock(rq);
4004 update_cpu_load(rq);
4005 curr->sched_class->task_tick(rq, curr, 0);
4006 spin_unlock(&rq->lock);
4008 #ifdef CONFIG_SMP
4009 rq->idle_at_tick = idle_cpu(cpu);
4010 trigger_load_balance(rq, cpu);
4011 #endif
4014 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4016 void __kprobes add_preempt_count(int val)
4019 * Underflow?
4021 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4022 return;
4023 preempt_count() += val;
4025 * Spinlock count overflowing soon?
4027 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4028 PREEMPT_MASK - 10);
4030 EXPORT_SYMBOL(add_preempt_count);
4032 void __kprobes sub_preempt_count(int val)
4035 * Underflow?
4037 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4038 return;
4040 * Is the spinlock portion underflowing?
4042 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4043 !(preempt_count() & PREEMPT_MASK)))
4044 return;
4046 preempt_count() -= val;
4048 EXPORT_SYMBOL(sub_preempt_count);
4050 #endif
4053 * Print scheduling while atomic bug:
4055 static noinline void __schedule_bug(struct task_struct *prev)
4057 struct pt_regs *regs = get_irq_regs();
4059 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4060 prev->comm, prev->pid, preempt_count());
4062 debug_show_held_locks(prev);
4063 if (irqs_disabled())
4064 print_irqtrace_events(prev);
4066 if (regs)
4067 show_regs(regs);
4068 else
4069 dump_stack();
4073 * Various schedule()-time debugging checks and statistics:
4075 static inline void schedule_debug(struct task_struct *prev)
4078 * Test if we are atomic. Since do_exit() needs to call into
4079 * schedule() atomically, we ignore that path for now.
4080 * Otherwise, whine if we are scheduling when we should not be.
4082 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4083 __schedule_bug(prev);
4085 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4087 schedstat_inc(this_rq(), sched_count);
4088 #ifdef CONFIG_SCHEDSTATS
4089 if (unlikely(prev->lock_depth >= 0)) {
4090 schedstat_inc(this_rq(), bkl_count);
4091 schedstat_inc(prev, sched_info.bkl_count);
4093 #endif
4097 * Pick up the highest-prio task:
4099 static inline struct task_struct *
4100 pick_next_task(struct rq *rq, struct task_struct *prev)
4102 const struct sched_class *class;
4103 struct task_struct *p;
4106 * Optimization: we know that if all tasks are in
4107 * the fair class we can call that function directly:
4109 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4110 p = fair_sched_class.pick_next_task(rq);
4111 if (likely(p))
4112 return p;
4115 class = sched_class_highest;
4116 for ( ; ; ) {
4117 p = class->pick_next_task(rq);
4118 if (p)
4119 return p;
4121 * Will never be NULL as the idle class always
4122 * returns a non-NULL p:
4124 class = class->next;
4129 * schedule() is the main scheduler function.
4131 asmlinkage void __sched schedule(void)
4133 struct task_struct *prev, *next;
4134 unsigned long *switch_count;
4135 struct rq *rq;
4136 int cpu;
4138 need_resched:
4139 preempt_disable();
4140 cpu = smp_processor_id();
4141 rq = cpu_rq(cpu);
4142 rcu_qsctr_inc(cpu);
4143 prev = rq->curr;
4144 switch_count = &prev->nivcsw;
4146 release_kernel_lock(prev);
4147 need_resched_nonpreemptible:
4149 schedule_debug(prev);
4151 hrtick_clear(rq);
4154 * Do the rq-clock update outside the rq lock:
4156 local_irq_disable();
4157 update_rq_clock(rq);
4158 spin_lock(&rq->lock);
4159 clear_tsk_need_resched(prev);
4161 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4162 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4163 signal_pending(prev))) {
4164 prev->state = TASK_RUNNING;
4165 } else {
4166 deactivate_task(rq, prev, 1);
4168 switch_count = &prev->nvcsw;
4171 #ifdef CONFIG_SMP
4172 if (prev->sched_class->pre_schedule)
4173 prev->sched_class->pre_schedule(rq, prev);
4174 #endif
4176 if (unlikely(!rq->nr_running))
4177 idle_balance(cpu, rq);
4179 prev->sched_class->put_prev_task(rq, prev);
4180 next = pick_next_task(rq, prev);
4182 if (likely(prev != next)) {
4183 sched_info_switch(prev, next);
4185 rq->nr_switches++;
4186 rq->curr = next;
4187 ++*switch_count;
4189 context_switch(rq, prev, next); /* unlocks the rq */
4191 * the context switch might have flipped the stack from under
4192 * us, hence refresh the local variables.
4194 cpu = smp_processor_id();
4195 rq = cpu_rq(cpu);
4196 } else
4197 spin_unlock_irq(&rq->lock);
4199 hrtick_set(rq);
4201 if (unlikely(reacquire_kernel_lock(current) < 0))
4202 goto need_resched_nonpreemptible;
4204 preempt_enable_no_resched();
4205 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4206 goto need_resched;
4208 EXPORT_SYMBOL(schedule);
4210 #ifdef CONFIG_PREEMPT
4212 * this is the entry point to schedule() from in-kernel preemption
4213 * off of preempt_enable. Kernel preemptions off return from interrupt
4214 * occur there and call schedule directly.
4216 asmlinkage void __sched preempt_schedule(void)
4218 struct thread_info *ti = current_thread_info();
4221 * If there is a non-zero preempt_count or interrupts are disabled,
4222 * we do not want to preempt the current task. Just return..
4224 if (likely(ti->preempt_count || irqs_disabled()))
4225 return;
4227 do {
4228 add_preempt_count(PREEMPT_ACTIVE);
4229 schedule();
4230 sub_preempt_count(PREEMPT_ACTIVE);
4233 * Check again in case we missed a preemption opportunity
4234 * between schedule and now.
4236 barrier();
4237 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4239 EXPORT_SYMBOL(preempt_schedule);
4242 * this is the entry point to schedule() from kernel preemption
4243 * off of irq context.
4244 * Note, that this is called and return with irqs disabled. This will
4245 * protect us against recursive calling from irq.
4247 asmlinkage void __sched preempt_schedule_irq(void)
4249 struct thread_info *ti = current_thread_info();
4251 /* Catch callers which need to be fixed */
4252 BUG_ON(ti->preempt_count || !irqs_disabled());
4254 do {
4255 add_preempt_count(PREEMPT_ACTIVE);
4256 local_irq_enable();
4257 schedule();
4258 local_irq_disable();
4259 sub_preempt_count(PREEMPT_ACTIVE);
4262 * Check again in case we missed a preemption opportunity
4263 * between schedule and now.
4265 barrier();
4266 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4269 #endif /* CONFIG_PREEMPT */
4271 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4272 void *key)
4274 return try_to_wake_up(curr->private, mode, sync);
4276 EXPORT_SYMBOL(default_wake_function);
4279 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4280 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4281 * number) then we wake all the non-exclusive tasks and one exclusive task.
4283 * There are circumstances in which we can try to wake a task which has already
4284 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4285 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4287 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4288 int nr_exclusive, int sync, void *key)
4290 wait_queue_t *curr, *next;
4292 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4293 unsigned flags = curr->flags;
4295 if (curr->func(curr, mode, sync, key) &&
4296 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4297 break;
4302 * __wake_up - wake up threads blocked on a waitqueue.
4303 * @q: the waitqueue
4304 * @mode: which threads
4305 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4306 * @key: is directly passed to the wakeup function
4308 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4309 int nr_exclusive, void *key)
4311 unsigned long flags;
4313 spin_lock_irqsave(&q->lock, flags);
4314 __wake_up_common(q, mode, nr_exclusive, 0, key);
4315 spin_unlock_irqrestore(&q->lock, flags);
4317 EXPORT_SYMBOL(__wake_up);
4320 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4322 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4324 __wake_up_common(q, mode, 1, 0, NULL);
4328 * __wake_up_sync - wake up threads blocked on a waitqueue.
4329 * @q: the waitqueue
4330 * @mode: which threads
4331 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4333 * The sync wakeup differs that the waker knows that it will schedule
4334 * away soon, so while the target thread will be woken up, it will not
4335 * be migrated to another CPU - ie. the two threads are 'synchronized'
4336 * with each other. This can prevent needless bouncing between CPUs.
4338 * On UP it can prevent extra preemption.
4340 void
4341 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4343 unsigned long flags;
4344 int sync = 1;
4346 if (unlikely(!q))
4347 return;
4349 if (unlikely(!nr_exclusive))
4350 sync = 0;
4352 spin_lock_irqsave(&q->lock, flags);
4353 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4354 spin_unlock_irqrestore(&q->lock, flags);
4356 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4358 void complete(struct completion *x)
4360 unsigned long flags;
4362 spin_lock_irqsave(&x->wait.lock, flags);
4363 x->done++;
4364 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4365 spin_unlock_irqrestore(&x->wait.lock, flags);
4367 EXPORT_SYMBOL(complete);
4369 void complete_all(struct completion *x)
4371 unsigned long flags;
4373 spin_lock_irqsave(&x->wait.lock, flags);
4374 x->done += UINT_MAX/2;
4375 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4376 spin_unlock_irqrestore(&x->wait.lock, flags);
4378 EXPORT_SYMBOL(complete_all);
4380 static inline long __sched
4381 do_wait_for_common(struct completion *x, long timeout, int state)
4383 if (!x->done) {
4384 DECLARE_WAITQUEUE(wait, current);
4386 wait.flags |= WQ_FLAG_EXCLUSIVE;
4387 __add_wait_queue_tail(&x->wait, &wait);
4388 do {
4389 if ((state == TASK_INTERRUPTIBLE &&
4390 signal_pending(current)) ||
4391 (state == TASK_KILLABLE &&
4392 fatal_signal_pending(current))) {
4393 __remove_wait_queue(&x->wait, &wait);
4394 return -ERESTARTSYS;
4396 __set_current_state(state);
4397 spin_unlock_irq(&x->wait.lock);
4398 timeout = schedule_timeout(timeout);
4399 spin_lock_irq(&x->wait.lock);
4400 if (!timeout) {
4401 __remove_wait_queue(&x->wait, &wait);
4402 return timeout;
4404 } while (!x->done);
4405 __remove_wait_queue(&x->wait, &wait);
4407 x->done--;
4408 return timeout;
4411 static long __sched
4412 wait_for_common(struct completion *x, long timeout, int state)
4414 might_sleep();
4416 spin_lock_irq(&x->wait.lock);
4417 timeout = do_wait_for_common(x, timeout, state);
4418 spin_unlock_irq(&x->wait.lock);
4419 return timeout;
4422 void __sched wait_for_completion(struct completion *x)
4424 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4426 EXPORT_SYMBOL(wait_for_completion);
4428 unsigned long __sched
4429 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4431 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4433 EXPORT_SYMBOL(wait_for_completion_timeout);
4435 int __sched wait_for_completion_interruptible(struct completion *x)
4437 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4438 if (t == -ERESTARTSYS)
4439 return t;
4440 return 0;
4442 EXPORT_SYMBOL(wait_for_completion_interruptible);
4444 unsigned long __sched
4445 wait_for_completion_interruptible_timeout(struct completion *x,
4446 unsigned long timeout)
4448 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4450 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4452 int __sched wait_for_completion_killable(struct completion *x)
4454 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4455 if (t == -ERESTARTSYS)
4456 return t;
4457 return 0;
4459 EXPORT_SYMBOL(wait_for_completion_killable);
4461 static long __sched
4462 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4464 unsigned long flags;
4465 wait_queue_t wait;
4467 init_waitqueue_entry(&wait, current);
4469 __set_current_state(state);
4471 spin_lock_irqsave(&q->lock, flags);
4472 __add_wait_queue(q, &wait);
4473 spin_unlock(&q->lock);
4474 timeout = schedule_timeout(timeout);
4475 spin_lock_irq(&q->lock);
4476 __remove_wait_queue(q, &wait);
4477 spin_unlock_irqrestore(&q->lock, flags);
4479 return timeout;
4482 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4484 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4486 EXPORT_SYMBOL(interruptible_sleep_on);
4488 long __sched
4489 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4491 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4493 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4495 void __sched sleep_on(wait_queue_head_t *q)
4497 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4499 EXPORT_SYMBOL(sleep_on);
4501 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4503 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4505 EXPORT_SYMBOL(sleep_on_timeout);
4507 #ifdef CONFIG_RT_MUTEXES
4510 * rt_mutex_setprio - set the current priority of a task
4511 * @p: task
4512 * @prio: prio value (kernel-internal form)
4514 * This function changes the 'effective' priority of a task. It does
4515 * not touch ->normal_prio like __setscheduler().
4517 * Used by the rt_mutex code to implement priority inheritance logic.
4519 void rt_mutex_setprio(struct task_struct *p, int prio)
4521 unsigned long flags;
4522 int oldprio, on_rq, running;
4523 struct rq *rq;
4524 const struct sched_class *prev_class = p->sched_class;
4526 BUG_ON(prio < 0 || prio > MAX_PRIO);
4528 rq = task_rq_lock(p, &flags);
4529 update_rq_clock(rq);
4531 oldprio = p->prio;
4532 on_rq = p->se.on_rq;
4533 running = task_current(rq, p);
4534 if (on_rq)
4535 dequeue_task(rq, p, 0);
4536 if (running)
4537 p->sched_class->put_prev_task(rq, p);
4539 if (rt_prio(prio))
4540 p->sched_class = &rt_sched_class;
4541 else
4542 p->sched_class = &fair_sched_class;
4544 p->prio = prio;
4546 if (running)
4547 p->sched_class->set_curr_task(rq);
4548 if (on_rq) {
4549 enqueue_task(rq, p, 0);
4551 check_class_changed(rq, p, prev_class, oldprio, running);
4553 task_rq_unlock(rq, &flags);
4556 #endif
4558 void set_user_nice(struct task_struct *p, long nice)
4560 int old_prio, delta, on_rq;
4561 unsigned long flags;
4562 struct rq *rq;
4564 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4565 return;
4567 * We have to be careful, if called from sys_setpriority(),
4568 * the task might be in the middle of scheduling on another CPU.
4570 rq = task_rq_lock(p, &flags);
4571 update_rq_clock(rq);
4573 * The RT priorities are set via sched_setscheduler(), but we still
4574 * allow the 'normal' nice value to be set - but as expected
4575 * it wont have any effect on scheduling until the task is
4576 * SCHED_FIFO/SCHED_RR:
4578 if (task_has_rt_policy(p)) {
4579 p->static_prio = NICE_TO_PRIO(nice);
4580 goto out_unlock;
4582 on_rq = p->se.on_rq;
4583 if (on_rq) {
4584 dequeue_task(rq, p, 0);
4585 dec_load(rq, p);
4588 p->static_prio = NICE_TO_PRIO(nice);
4589 set_load_weight(p);
4590 old_prio = p->prio;
4591 p->prio = effective_prio(p);
4592 delta = p->prio - old_prio;
4594 if (on_rq) {
4595 enqueue_task(rq, p, 0);
4596 inc_load(rq, p);
4598 * If the task increased its priority or is running and
4599 * lowered its priority, then reschedule its CPU:
4601 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4602 resched_task(rq->curr);
4604 out_unlock:
4605 task_rq_unlock(rq, &flags);
4607 EXPORT_SYMBOL(set_user_nice);
4610 * can_nice - check if a task can reduce its nice value
4611 * @p: task
4612 * @nice: nice value
4614 int can_nice(const struct task_struct *p, const int nice)
4616 /* convert nice value [19,-20] to rlimit style value [1,40] */
4617 int nice_rlim = 20 - nice;
4619 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4620 capable(CAP_SYS_NICE));
4623 #ifdef __ARCH_WANT_SYS_NICE
4626 * sys_nice - change the priority of the current process.
4627 * @increment: priority increment
4629 * sys_setpriority is a more generic, but much slower function that
4630 * does similar things.
4632 asmlinkage long sys_nice(int increment)
4634 long nice, retval;
4637 * Setpriority might change our priority at the same moment.
4638 * We don't have to worry. Conceptually one call occurs first
4639 * and we have a single winner.
4641 if (increment < -40)
4642 increment = -40;
4643 if (increment > 40)
4644 increment = 40;
4646 nice = PRIO_TO_NICE(current->static_prio) + increment;
4647 if (nice < -20)
4648 nice = -20;
4649 if (nice > 19)
4650 nice = 19;
4652 if (increment < 0 && !can_nice(current, nice))
4653 return -EPERM;
4655 retval = security_task_setnice(current, nice);
4656 if (retval)
4657 return retval;
4659 set_user_nice(current, nice);
4660 return 0;
4663 #endif
4666 * task_prio - return the priority value of a given task.
4667 * @p: the task in question.
4669 * This is the priority value as seen by users in /proc.
4670 * RT tasks are offset by -200. Normal tasks are centered
4671 * around 0, value goes from -16 to +15.
4673 int task_prio(const struct task_struct *p)
4675 return p->prio - MAX_RT_PRIO;
4679 * task_nice - return the nice value of a given task.
4680 * @p: the task in question.
4682 int task_nice(const struct task_struct *p)
4684 return TASK_NICE(p);
4686 EXPORT_SYMBOL(task_nice);
4689 * idle_cpu - is a given cpu idle currently?
4690 * @cpu: the processor in question.
4692 int idle_cpu(int cpu)
4694 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4698 * idle_task - return the idle task for a given cpu.
4699 * @cpu: the processor in question.
4701 struct task_struct *idle_task(int cpu)
4703 return cpu_rq(cpu)->idle;
4707 * find_process_by_pid - find a process with a matching PID value.
4708 * @pid: the pid in question.
4710 static struct task_struct *find_process_by_pid(pid_t pid)
4712 return pid ? find_task_by_vpid(pid) : current;
4715 /* Actually do priority change: must hold rq lock. */
4716 static void
4717 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4719 BUG_ON(p->se.on_rq);
4721 p->policy = policy;
4722 switch (p->policy) {
4723 case SCHED_NORMAL:
4724 case SCHED_BATCH:
4725 case SCHED_IDLE:
4726 p->sched_class = &fair_sched_class;
4727 break;
4728 case SCHED_FIFO:
4729 case SCHED_RR:
4730 p->sched_class = &rt_sched_class;
4731 break;
4734 p->rt_priority = prio;
4735 p->normal_prio = normal_prio(p);
4736 /* we are holding p->pi_lock already */
4737 p->prio = rt_mutex_getprio(p);
4738 set_load_weight(p);
4742 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4743 * @p: the task in question.
4744 * @policy: new policy.
4745 * @param: structure containing the new RT priority.
4747 * NOTE that the task may be already dead.
4749 int sched_setscheduler(struct task_struct *p, int policy,
4750 struct sched_param *param)
4752 int retval, oldprio, oldpolicy = -1, on_rq, running;
4753 unsigned long flags;
4754 const struct sched_class *prev_class = p->sched_class;
4755 struct rq *rq;
4757 /* may grab non-irq protected spin_locks */
4758 BUG_ON(in_interrupt());
4759 recheck:
4760 /* double check policy once rq lock held */
4761 if (policy < 0)
4762 policy = oldpolicy = p->policy;
4763 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4764 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4765 policy != SCHED_IDLE)
4766 return -EINVAL;
4768 * Valid priorities for SCHED_FIFO and SCHED_RR are
4769 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4770 * SCHED_BATCH and SCHED_IDLE is 0.
4772 if (param->sched_priority < 0 ||
4773 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4774 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4775 return -EINVAL;
4776 if (rt_policy(policy) != (param->sched_priority != 0))
4777 return -EINVAL;
4780 * Allow unprivileged RT tasks to decrease priority:
4782 if (!capable(CAP_SYS_NICE)) {
4783 if (rt_policy(policy)) {
4784 unsigned long rlim_rtprio;
4786 if (!lock_task_sighand(p, &flags))
4787 return -ESRCH;
4788 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4789 unlock_task_sighand(p, &flags);
4791 /* can't set/change the rt policy */
4792 if (policy != p->policy && !rlim_rtprio)
4793 return -EPERM;
4795 /* can't increase priority */
4796 if (param->sched_priority > p->rt_priority &&
4797 param->sched_priority > rlim_rtprio)
4798 return -EPERM;
4801 * Like positive nice levels, dont allow tasks to
4802 * move out of SCHED_IDLE either:
4804 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4805 return -EPERM;
4807 /* can't change other user's priorities */
4808 if ((current->euid != p->euid) &&
4809 (current->euid != p->uid))
4810 return -EPERM;
4813 #ifdef CONFIG_RT_GROUP_SCHED
4815 * Do not allow realtime tasks into groups that have no runtime
4816 * assigned.
4818 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4819 return -EPERM;
4820 #endif
4822 retval = security_task_setscheduler(p, policy, param);
4823 if (retval)
4824 return retval;
4826 * make sure no PI-waiters arrive (or leave) while we are
4827 * changing the priority of the task:
4829 spin_lock_irqsave(&p->pi_lock, flags);
4831 * To be able to change p->policy safely, the apropriate
4832 * runqueue lock must be held.
4834 rq = __task_rq_lock(p);
4835 /* recheck policy now with rq lock held */
4836 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4837 policy = oldpolicy = -1;
4838 __task_rq_unlock(rq);
4839 spin_unlock_irqrestore(&p->pi_lock, flags);
4840 goto recheck;
4842 update_rq_clock(rq);
4843 on_rq = p->se.on_rq;
4844 running = task_current(rq, p);
4845 if (on_rq)
4846 deactivate_task(rq, p, 0);
4847 if (running)
4848 p->sched_class->put_prev_task(rq, p);
4850 oldprio = p->prio;
4851 __setscheduler(rq, p, policy, param->sched_priority);
4853 if (running)
4854 p->sched_class->set_curr_task(rq);
4855 if (on_rq) {
4856 activate_task(rq, p, 0);
4858 check_class_changed(rq, p, prev_class, oldprio, running);
4860 __task_rq_unlock(rq);
4861 spin_unlock_irqrestore(&p->pi_lock, flags);
4863 rt_mutex_adjust_pi(p);
4865 return 0;
4867 EXPORT_SYMBOL_GPL(sched_setscheduler);
4869 static int
4870 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4872 struct sched_param lparam;
4873 struct task_struct *p;
4874 int retval;
4876 if (!param || pid < 0)
4877 return -EINVAL;
4878 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4879 return -EFAULT;
4881 rcu_read_lock();
4882 retval = -ESRCH;
4883 p = find_process_by_pid(pid);
4884 if (p != NULL)
4885 retval = sched_setscheduler(p, policy, &lparam);
4886 rcu_read_unlock();
4888 return retval;
4892 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4893 * @pid: the pid in question.
4894 * @policy: new policy.
4895 * @param: structure containing the new RT priority.
4897 asmlinkage long
4898 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4900 /* negative values for policy are not valid */
4901 if (policy < 0)
4902 return -EINVAL;
4904 return do_sched_setscheduler(pid, policy, param);
4908 * sys_sched_setparam - set/change the RT priority of a thread
4909 * @pid: the pid in question.
4910 * @param: structure containing the new RT priority.
4912 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4914 return do_sched_setscheduler(pid, -1, param);
4918 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4919 * @pid: the pid in question.
4921 asmlinkage long sys_sched_getscheduler(pid_t pid)
4923 struct task_struct *p;
4924 int retval;
4926 if (pid < 0)
4927 return -EINVAL;
4929 retval = -ESRCH;
4930 read_lock(&tasklist_lock);
4931 p = find_process_by_pid(pid);
4932 if (p) {
4933 retval = security_task_getscheduler(p);
4934 if (!retval)
4935 retval = p->policy;
4937 read_unlock(&tasklist_lock);
4938 return retval;
4942 * sys_sched_getscheduler - get the RT priority of a thread
4943 * @pid: the pid in question.
4944 * @param: structure containing the RT priority.
4946 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4948 struct sched_param lp;
4949 struct task_struct *p;
4950 int retval;
4952 if (!param || pid < 0)
4953 return -EINVAL;
4955 read_lock(&tasklist_lock);
4956 p = find_process_by_pid(pid);
4957 retval = -ESRCH;
4958 if (!p)
4959 goto out_unlock;
4961 retval = security_task_getscheduler(p);
4962 if (retval)
4963 goto out_unlock;
4965 lp.sched_priority = p->rt_priority;
4966 read_unlock(&tasklist_lock);
4969 * This one might sleep, we cannot do it with a spinlock held ...
4971 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4973 return retval;
4975 out_unlock:
4976 read_unlock(&tasklist_lock);
4977 return retval;
4980 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
4982 cpumask_t cpus_allowed;
4983 cpumask_t new_mask = *in_mask;
4984 struct task_struct *p;
4985 int retval;
4987 get_online_cpus();
4988 read_lock(&tasklist_lock);
4990 p = find_process_by_pid(pid);
4991 if (!p) {
4992 read_unlock(&tasklist_lock);
4993 put_online_cpus();
4994 return -ESRCH;
4998 * It is not safe to call set_cpus_allowed with the
4999 * tasklist_lock held. We will bump the task_struct's
5000 * usage count and then drop tasklist_lock.
5002 get_task_struct(p);
5003 read_unlock(&tasklist_lock);
5005 retval = -EPERM;
5006 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5007 !capable(CAP_SYS_NICE))
5008 goto out_unlock;
5010 retval = security_task_setscheduler(p, 0, NULL);
5011 if (retval)
5012 goto out_unlock;
5014 cpuset_cpus_allowed(p, &cpus_allowed);
5015 cpus_and(new_mask, new_mask, cpus_allowed);
5016 again:
5017 retval = set_cpus_allowed_ptr(p, &new_mask);
5019 if (!retval) {
5020 cpuset_cpus_allowed(p, &cpus_allowed);
5021 if (!cpus_subset(new_mask, cpus_allowed)) {
5023 * We must have raced with a concurrent cpuset
5024 * update. Just reset the cpus_allowed to the
5025 * cpuset's cpus_allowed
5027 new_mask = cpus_allowed;
5028 goto again;
5031 out_unlock:
5032 put_task_struct(p);
5033 put_online_cpus();
5034 return retval;
5037 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5038 cpumask_t *new_mask)
5040 if (len < sizeof(cpumask_t)) {
5041 memset(new_mask, 0, sizeof(cpumask_t));
5042 } else if (len > sizeof(cpumask_t)) {
5043 len = sizeof(cpumask_t);
5045 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5049 * sys_sched_setaffinity - set the cpu affinity of a process
5050 * @pid: pid of the process
5051 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5052 * @user_mask_ptr: user-space pointer to the new cpu mask
5054 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5055 unsigned long __user *user_mask_ptr)
5057 cpumask_t new_mask;
5058 int retval;
5060 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5061 if (retval)
5062 return retval;
5064 return sched_setaffinity(pid, &new_mask);
5068 * Represents all cpu's present in the system
5069 * In systems capable of hotplug, this map could dynamically grow
5070 * as new cpu's are detected in the system via any platform specific
5071 * method, such as ACPI for e.g.
5074 cpumask_t cpu_present_map __read_mostly;
5075 EXPORT_SYMBOL(cpu_present_map);
5077 #ifndef CONFIG_SMP
5078 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5079 EXPORT_SYMBOL(cpu_online_map);
5081 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5082 EXPORT_SYMBOL(cpu_possible_map);
5083 #endif
5085 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5087 struct task_struct *p;
5088 int retval;
5090 get_online_cpus();
5091 read_lock(&tasklist_lock);
5093 retval = -ESRCH;
5094 p = find_process_by_pid(pid);
5095 if (!p)
5096 goto out_unlock;
5098 retval = security_task_getscheduler(p);
5099 if (retval)
5100 goto out_unlock;
5102 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5104 out_unlock:
5105 read_unlock(&tasklist_lock);
5106 put_online_cpus();
5108 return retval;
5112 * sys_sched_getaffinity - get the cpu affinity of a process
5113 * @pid: pid of the process
5114 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5115 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5117 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5118 unsigned long __user *user_mask_ptr)
5120 int ret;
5121 cpumask_t mask;
5123 if (len < sizeof(cpumask_t))
5124 return -EINVAL;
5126 ret = sched_getaffinity(pid, &mask);
5127 if (ret < 0)
5128 return ret;
5130 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5131 return -EFAULT;
5133 return sizeof(cpumask_t);
5137 * sys_sched_yield - yield the current processor to other threads.
5139 * This function yields the current CPU to other tasks. If there are no
5140 * other threads running on this CPU then this function will return.
5142 asmlinkage long sys_sched_yield(void)
5144 struct rq *rq = this_rq_lock();
5146 schedstat_inc(rq, yld_count);
5147 current->sched_class->yield_task(rq);
5150 * Since we are going to call schedule() anyway, there's
5151 * no need to preempt or enable interrupts:
5153 __release(rq->lock);
5154 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5155 _raw_spin_unlock(&rq->lock);
5156 preempt_enable_no_resched();
5158 schedule();
5160 return 0;
5163 static void __cond_resched(void)
5165 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5166 __might_sleep(__FILE__, __LINE__);
5167 #endif
5169 * The BKS might be reacquired before we have dropped
5170 * PREEMPT_ACTIVE, which could trigger a second
5171 * cond_resched() call.
5173 do {
5174 add_preempt_count(PREEMPT_ACTIVE);
5175 schedule();
5176 sub_preempt_count(PREEMPT_ACTIVE);
5177 } while (need_resched());
5180 int __sched _cond_resched(void)
5182 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5183 system_state == SYSTEM_RUNNING) {
5184 __cond_resched();
5185 return 1;
5187 return 0;
5189 EXPORT_SYMBOL(_cond_resched);
5192 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5193 * call schedule, and on return reacquire the lock.
5195 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5196 * operations here to prevent schedule() from being called twice (once via
5197 * spin_unlock(), once by hand).
5199 int cond_resched_lock(spinlock_t *lock)
5201 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5202 int ret = 0;
5204 if (spin_needbreak(lock) || resched) {
5205 spin_unlock(lock);
5206 if (resched && need_resched())
5207 __cond_resched();
5208 else
5209 cpu_relax();
5210 ret = 1;
5211 spin_lock(lock);
5213 return ret;
5215 EXPORT_SYMBOL(cond_resched_lock);
5217 int __sched cond_resched_softirq(void)
5219 BUG_ON(!in_softirq());
5221 if (need_resched() && system_state == SYSTEM_RUNNING) {
5222 local_bh_enable();
5223 __cond_resched();
5224 local_bh_disable();
5225 return 1;
5227 return 0;
5229 EXPORT_SYMBOL(cond_resched_softirq);
5232 * yield - yield the current processor to other threads.
5234 * This is a shortcut for kernel-space yielding - it marks the
5235 * thread runnable and calls sys_sched_yield().
5237 void __sched yield(void)
5239 set_current_state(TASK_RUNNING);
5240 sys_sched_yield();
5242 EXPORT_SYMBOL(yield);
5245 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5246 * that process accounting knows that this is a task in IO wait state.
5248 * But don't do that if it is a deliberate, throttling IO wait (this task
5249 * has set its backing_dev_info: the queue against which it should throttle)
5251 void __sched io_schedule(void)
5253 struct rq *rq = &__raw_get_cpu_var(runqueues);
5255 delayacct_blkio_start();
5256 atomic_inc(&rq->nr_iowait);
5257 schedule();
5258 atomic_dec(&rq->nr_iowait);
5259 delayacct_blkio_end();
5261 EXPORT_SYMBOL(io_schedule);
5263 long __sched io_schedule_timeout(long timeout)
5265 struct rq *rq = &__raw_get_cpu_var(runqueues);
5266 long ret;
5268 delayacct_blkio_start();
5269 atomic_inc(&rq->nr_iowait);
5270 ret = schedule_timeout(timeout);
5271 atomic_dec(&rq->nr_iowait);
5272 delayacct_blkio_end();
5273 return ret;
5277 * sys_sched_get_priority_max - return maximum RT priority.
5278 * @policy: scheduling class.
5280 * this syscall returns the maximum rt_priority that can be used
5281 * by a given scheduling class.
5283 asmlinkage long sys_sched_get_priority_max(int policy)
5285 int ret = -EINVAL;
5287 switch (policy) {
5288 case SCHED_FIFO:
5289 case SCHED_RR:
5290 ret = MAX_USER_RT_PRIO-1;
5291 break;
5292 case SCHED_NORMAL:
5293 case SCHED_BATCH:
5294 case SCHED_IDLE:
5295 ret = 0;
5296 break;
5298 return ret;
5302 * sys_sched_get_priority_min - return minimum RT priority.
5303 * @policy: scheduling class.
5305 * this syscall returns the minimum rt_priority that can be used
5306 * by a given scheduling class.
5308 asmlinkage long sys_sched_get_priority_min(int policy)
5310 int ret = -EINVAL;
5312 switch (policy) {
5313 case SCHED_FIFO:
5314 case SCHED_RR:
5315 ret = 1;
5316 break;
5317 case SCHED_NORMAL:
5318 case SCHED_BATCH:
5319 case SCHED_IDLE:
5320 ret = 0;
5322 return ret;
5326 * sys_sched_rr_get_interval - return the default timeslice of a process.
5327 * @pid: pid of the process.
5328 * @interval: userspace pointer to the timeslice value.
5330 * this syscall writes the default timeslice value of a given process
5331 * into the user-space timespec buffer. A value of '0' means infinity.
5333 asmlinkage
5334 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5336 struct task_struct *p;
5337 unsigned int time_slice;
5338 int retval;
5339 struct timespec t;
5341 if (pid < 0)
5342 return -EINVAL;
5344 retval = -ESRCH;
5345 read_lock(&tasklist_lock);
5346 p = find_process_by_pid(pid);
5347 if (!p)
5348 goto out_unlock;
5350 retval = security_task_getscheduler(p);
5351 if (retval)
5352 goto out_unlock;
5355 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5356 * tasks that are on an otherwise idle runqueue:
5358 time_slice = 0;
5359 if (p->policy == SCHED_RR) {
5360 time_slice = DEF_TIMESLICE;
5361 } else if (p->policy != SCHED_FIFO) {
5362 struct sched_entity *se = &p->se;
5363 unsigned long flags;
5364 struct rq *rq;
5366 rq = task_rq_lock(p, &flags);
5367 if (rq->cfs.load.weight)
5368 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5369 task_rq_unlock(rq, &flags);
5371 read_unlock(&tasklist_lock);
5372 jiffies_to_timespec(time_slice, &t);
5373 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5374 return retval;
5376 out_unlock:
5377 read_unlock(&tasklist_lock);
5378 return retval;
5381 static const char stat_nam[] = "RSDTtZX";
5383 void sched_show_task(struct task_struct *p)
5385 unsigned long free = 0;
5386 unsigned state;
5388 state = p->state ? __ffs(p->state) + 1 : 0;
5389 printk(KERN_INFO "%-13.13s %c", p->comm,
5390 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5391 #if BITS_PER_LONG == 32
5392 if (state == TASK_RUNNING)
5393 printk(KERN_CONT " running ");
5394 else
5395 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5396 #else
5397 if (state == TASK_RUNNING)
5398 printk(KERN_CONT " running task ");
5399 else
5400 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5401 #endif
5402 #ifdef CONFIG_DEBUG_STACK_USAGE
5404 unsigned long *n = end_of_stack(p);
5405 while (!*n)
5406 n++;
5407 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5409 #endif
5410 printk(KERN_CONT "%5lu %5d %6d\n", free,
5411 task_pid_nr(p), task_pid_nr(p->real_parent));
5413 show_stack(p, NULL);
5416 void show_state_filter(unsigned long state_filter)
5418 struct task_struct *g, *p;
5420 #if BITS_PER_LONG == 32
5421 printk(KERN_INFO
5422 " task PC stack pid father\n");
5423 #else
5424 printk(KERN_INFO
5425 " task PC stack pid father\n");
5426 #endif
5427 read_lock(&tasklist_lock);
5428 do_each_thread(g, p) {
5430 * reset the NMI-timeout, listing all files on a slow
5431 * console might take alot of time:
5433 touch_nmi_watchdog();
5434 if (!state_filter || (p->state & state_filter))
5435 sched_show_task(p);
5436 } while_each_thread(g, p);
5438 touch_all_softlockup_watchdogs();
5440 #ifdef CONFIG_SCHED_DEBUG
5441 sysrq_sched_debug_show();
5442 #endif
5443 read_unlock(&tasklist_lock);
5445 * Only show locks if all tasks are dumped:
5447 if (state_filter == -1)
5448 debug_show_all_locks();
5451 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5453 idle->sched_class = &idle_sched_class;
5457 * init_idle - set up an idle thread for a given CPU
5458 * @idle: task in question
5459 * @cpu: cpu the idle task belongs to
5461 * NOTE: this function does not set the idle thread's NEED_RESCHED
5462 * flag, to make booting more robust.
5464 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5466 struct rq *rq = cpu_rq(cpu);
5467 unsigned long flags;
5469 __sched_fork(idle);
5470 idle->se.exec_start = sched_clock();
5472 idle->prio = idle->normal_prio = MAX_PRIO;
5473 idle->cpus_allowed = cpumask_of_cpu(cpu);
5474 __set_task_cpu(idle, cpu);
5476 spin_lock_irqsave(&rq->lock, flags);
5477 rq->curr = rq->idle = idle;
5478 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5479 idle->oncpu = 1;
5480 #endif
5481 spin_unlock_irqrestore(&rq->lock, flags);
5483 /* Set the preempt count _outside_ the spinlocks! */
5484 #if defined(CONFIG_PREEMPT)
5485 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5486 #else
5487 task_thread_info(idle)->preempt_count = 0;
5488 #endif
5490 * The idle tasks have their own, simple scheduling class:
5492 idle->sched_class = &idle_sched_class;
5496 * In a system that switches off the HZ timer nohz_cpu_mask
5497 * indicates which cpus entered this state. This is used
5498 * in the rcu update to wait only for active cpus. For system
5499 * which do not switch off the HZ timer nohz_cpu_mask should
5500 * always be CPU_MASK_NONE.
5502 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5505 * Increase the granularity value when there are more CPUs,
5506 * because with more CPUs the 'effective latency' as visible
5507 * to users decreases. But the relationship is not linear,
5508 * so pick a second-best guess by going with the log2 of the
5509 * number of CPUs.
5511 * This idea comes from the SD scheduler of Con Kolivas:
5513 static inline void sched_init_granularity(void)
5515 unsigned int factor = 1 + ilog2(num_online_cpus());
5516 const unsigned long limit = 200000000;
5518 sysctl_sched_min_granularity *= factor;
5519 if (sysctl_sched_min_granularity > limit)
5520 sysctl_sched_min_granularity = limit;
5522 sysctl_sched_latency *= factor;
5523 if (sysctl_sched_latency > limit)
5524 sysctl_sched_latency = limit;
5526 sysctl_sched_wakeup_granularity *= factor;
5529 #ifdef CONFIG_SMP
5531 * This is how migration works:
5533 * 1) we queue a struct migration_req structure in the source CPU's
5534 * runqueue and wake up that CPU's migration thread.
5535 * 2) we down() the locked semaphore => thread blocks.
5536 * 3) migration thread wakes up (implicitly it forces the migrated
5537 * thread off the CPU)
5538 * 4) it gets the migration request and checks whether the migrated
5539 * task is still in the wrong runqueue.
5540 * 5) if it's in the wrong runqueue then the migration thread removes
5541 * it and puts it into the right queue.
5542 * 6) migration thread up()s the semaphore.
5543 * 7) we wake up and the migration is done.
5547 * Change a given task's CPU affinity. Migrate the thread to a
5548 * proper CPU and schedule it away if the CPU it's executing on
5549 * is removed from the allowed bitmask.
5551 * NOTE: the caller must have a valid reference to the task, the
5552 * task must not exit() & deallocate itself prematurely. The
5553 * call is not atomic; no spinlocks may be held.
5555 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5557 struct migration_req req;
5558 unsigned long flags;
5559 struct rq *rq;
5560 int ret = 0;
5562 rq = task_rq_lock(p, &flags);
5563 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5564 ret = -EINVAL;
5565 goto out;
5568 if (p->sched_class->set_cpus_allowed)
5569 p->sched_class->set_cpus_allowed(p, new_mask);
5570 else {
5571 p->cpus_allowed = *new_mask;
5572 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5575 /* Can the task run on the task's current CPU? If so, we're done */
5576 if (cpu_isset(task_cpu(p), *new_mask))
5577 goto out;
5579 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5580 /* Need help from migration thread: drop lock and wait. */
5581 task_rq_unlock(rq, &flags);
5582 wake_up_process(rq->migration_thread);
5583 wait_for_completion(&req.done);
5584 tlb_migrate_finish(p->mm);
5585 return 0;
5587 out:
5588 task_rq_unlock(rq, &flags);
5590 return ret;
5592 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5595 * Move (not current) task off this cpu, onto dest cpu. We're doing
5596 * this because either it can't run here any more (set_cpus_allowed()
5597 * away from this CPU, or CPU going down), or because we're
5598 * attempting to rebalance this task on exec (sched_exec).
5600 * So we race with normal scheduler movements, but that's OK, as long
5601 * as the task is no longer on this CPU.
5603 * Returns non-zero if task was successfully migrated.
5605 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5607 struct rq *rq_dest, *rq_src;
5608 int ret = 0, on_rq;
5610 if (unlikely(cpu_is_offline(dest_cpu)))
5611 return ret;
5613 rq_src = cpu_rq(src_cpu);
5614 rq_dest = cpu_rq(dest_cpu);
5616 double_rq_lock(rq_src, rq_dest);
5617 /* Already moved. */
5618 if (task_cpu(p) != src_cpu)
5619 goto out;
5620 /* Affinity changed (again). */
5621 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5622 goto out;
5624 on_rq = p->se.on_rq;
5625 if (on_rq)
5626 deactivate_task(rq_src, p, 0);
5628 set_task_cpu(p, dest_cpu);
5629 if (on_rq) {
5630 activate_task(rq_dest, p, 0);
5631 check_preempt_curr(rq_dest, p);
5633 ret = 1;
5634 out:
5635 double_rq_unlock(rq_src, rq_dest);
5636 return ret;
5640 * migration_thread - this is a highprio system thread that performs
5641 * thread migration by bumping thread off CPU then 'pushing' onto
5642 * another runqueue.
5644 static int migration_thread(void *data)
5646 int cpu = (long)data;
5647 struct rq *rq;
5649 rq = cpu_rq(cpu);
5650 BUG_ON(rq->migration_thread != current);
5652 set_current_state(TASK_INTERRUPTIBLE);
5653 while (!kthread_should_stop()) {
5654 struct migration_req *req;
5655 struct list_head *head;
5657 spin_lock_irq(&rq->lock);
5659 if (cpu_is_offline(cpu)) {
5660 spin_unlock_irq(&rq->lock);
5661 goto wait_to_die;
5664 if (rq->active_balance) {
5665 active_load_balance(rq, cpu);
5666 rq->active_balance = 0;
5669 head = &rq->migration_queue;
5671 if (list_empty(head)) {
5672 spin_unlock_irq(&rq->lock);
5673 schedule();
5674 set_current_state(TASK_INTERRUPTIBLE);
5675 continue;
5677 req = list_entry(head->next, struct migration_req, list);
5678 list_del_init(head->next);
5680 spin_unlock(&rq->lock);
5681 __migrate_task(req->task, cpu, req->dest_cpu);
5682 local_irq_enable();
5684 complete(&req->done);
5686 __set_current_state(TASK_RUNNING);
5687 return 0;
5689 wait_to_die:
5690 /* Wait for kthread_stop */
5691 set_current_state(TASK_INTERRUPTIBLE);
5692 while (!kthread_should_stop()) {
5693 schedule();
5694 set_current_state(TASK_INTERRUPTIBLE);
5696 __set_current_state(TASK_RUNNING);
5697 return 0;
5700 #ifdef CONFIG_HOTPLUG_CPU
5702 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5704 int ret;
5706 local_irq_disable();
5707 ret = __migrate_task(p, src_cpu, dest_cpu);
5708 local_irq_enable();
5709 return ret;
5713 * Figure out where task on dead CPU should go, use force if necessary.
5714 * NOTE: interrupts should be disabled by the caller
5716 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5718 unsigned long flags;
5719 cpumask_t mask;
5720 struct rq *rq;
5721 int dest_cpu;
5723 do {
5724 /* On same node? */
5725 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5726 cpus_and(mask, mask, p->cpus_allowed);
5727 dest_cpu = any_online_cpu(mask);
5729 /* On any allowed CPU? */
5730 if (dest_cpu >= nr_cpu_ids)
5731 dest_cpu = any_online_cpu(p->cpus_allowed);
5733 /* No more Mr. Nice Guy. */
5734 if (dest_cpu >= nr_cpu_ids) {
5735 cpumask_t cpus_allowed;
5737 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5739 * Try to stay on the same cpuset, where the
5740 * current cpuset may be a subset of all cpus.
5741 * The cpuset_cpus_allowed_locked() variant of
5742 * cpuset_cpus_allowed() will not block. It must be
5743 * called within calls to cpuset_lock/cpuset_unlock.
5745 rq = task_rq_lock(p, &flags);
5746 p->cpus_allowed = cpus_allowed;
5747 dest_cpu = any_online_cpu(p->cpus_allowed);
5748 task_rq_unlock(rq, &flags);
5751 * Don't tell them about moving exiting tasks or
5752 * kernel threads (both mm NULL), since they never
5753 * leave kernel.
5755 if (p->mm && printk_ratelimit()) {
5756 printk(KERN_INFO "process %d (%s) no "
5757 "longer affine to cpu%d\n",
5758 task_pid_nr(p), p->comm, dead_cpu);
5761 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5765 * While a dead CPU has no uninterruptible tasks queued at this point,
5766 * it might still have a nonzero ->nr_uninterruptible counter, because
5767 * for performance reasons the counter is not stricly tracking tasks to
5768 * their home CPUs. So we just add the counter to another CPU's counter,
5769 * to keep the global sum constant after CPU-down:
5771 static void migrate_nr_uninterruptible(struct rq *rq_src)
5773 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5774 unsigned long flags;
5776 local_irq_save(flags);
5777 double_rq_lock(rq_src, rq_dest);
5778 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5779 rq_src->nr_uninterruptible = 0;
5780 double_rq_unlock(rq_src, rq_dest);
5781 local_irq_restore(flags);
5784 /* Run through task list and migrate tasks from the dead cpu. */
5785 static void migrate_live_tasks(int src_cpu)
5787 struct task_struct *p, *t;
5789 read_lock(&tasklist_lock);
5791 do_each_thread(t, p) {
5792 if (p == current)
5793 continue;
5795 if (task_cpu(p) == src_cpu)
5796 move_task_off_dead_cpu(src_cpu, p);
5797 } while_each_thread(t, p);
5799 read_unlock(&tasklist_lock);
5803 * Schedules idle task to be the next runnable task on current CPU.
5804 * It does so by boosting its priority to highest possible.
5805 * Used by CPU offline code.
5807 void sched_idle_next(void)
5809 int this_cpu = smp_processor_id();
5810 struct rq *rq = cpu_rq(this_cpu);
5811 struct task_struct *p = rq->idle;
5812 unsigned long flags;
5814 /* cpu has to be offline */
5815 BUG_ON(cpu_online(this_cpu));
5818 * Strictly not necessary since rest of the CPUs are stopped by now
5819 * and interrupts disabled on the current cpu.
5821 spin_lock_irqsave(&rq->lock, flags);
5823 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5825 update_rq_clock(rq);
5826 activate_task(rq, p, 0);
5828 spin_unlock_irqrestore(&rq->lock, flags);
5832 * Ensures that the idle task is using init_mm right before its cpu goes
5833 * offline.
5835 void idle_task_exit(void)
5837 struct mm_struct *mm = current->active_mm;
5839 BUG_ON(cpu_online(smp_processor_id()));
5841 if (mm != &init_mm)
5842 switch_mm(mm, &init_mm, current);
5843 mmdrop(mm);
5846 /* called under rq->lock with disabled interrupts */
5847 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5849 struct rq *rq = cpu_rq(dead_cpu);
5851 /* Must be exiting, otherwise would be on tasklist. */
5852 BUG_ON(!p->exit_state);
5854 /* Cannot have done final schedule yet: would have vanished. */
5855 BUG_ON(p->state == TASK_DEAD);
5857 get_task_struct(p);
5860 * Drop lock around migration; if someone else moves it,
5861 * that's OK. No task can be added to this CPU, so iteration is
5862 * fine.
5864 spin_unlock_irq(&rq->lock);
5865 move_task_off_dead_cpu(dead_cpu, p);
5866 spin_lock_irq(&rq->lock);
5868 put_task_struct(p);
5871 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5872 static void migrate_dead_tasks(unsigned int dead_cpu)
5874 struct rq *rq = cpu_rq(dead_cpu);
5875 struct task_struct *next;
5877 for ( ; ; ) {
5878 if (!rq->nr_running)
5879 break;
5880 update_rq_clock(rq);
5881 next = pick_next_task(rq, rq->curr);
5882 if (!next)
5883 break;
5884 migrate_dead(dead_cpu, next);
5888 #endif /* CONFIG_HOTPLUG_CPU */
5890 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5892 static struct ctl_table sd_ctl_dir[] = {
5894 .procname = "sched_domain",
5895 .mode = 0555,
5897 {0, },
5900 static struct ctl_table sd_ctl_root[] = {
5902 .ctl_name = CTL_KERN,
5903 .procname = "kernel",
5904 .mode = 0555,
5905 .child = sd_ctl_dir,
5907 {0, },
5910 static struct ctl_table *sd_alloc_ctl_entry(int n)
5912 struct ctl_table *entry =
5913 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5915 return entry;
5918 static void sd_free_ctl_entry(struct ctl_table **tablep)
5920 struct ctl_table *entry;
5923 * In the intermediate directories, both the child directory and
5924 * procname are dynamically allocated and could fail but the mode
5925 * will always be set. In the lowest directory the names are
5926 * static strings and all have proc handlers.
5928 for (entry = *tablep; entry->mode; entry++) {
5929 if (entry->child)
5930 sd_free_ctl_entry(&entry->child);
5931 if (entry->proc_handler == NULL)
5932 kfree(entry->procname);
5935 kfree(*tablep);
5936 *tablep = NULL;
5939 static void
5940 set_table_entry(struct ctl_table *entry,
5941 const char *procname, void *data, int maxlen,
5942 mode_t mode, proc_handler *proc_handler)
5944 entry->procname = procname;
5945 entry->data = data;
5946 entry->maxlen = maxlen;
5947 entry->mode = mode;
5948 entry->proc_handler = proc_handler;
5951 static struct ctl_table *
5952 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5954 struct ctl_table *table = sd_alloc_ctl_entry(12);
5956 if (table == NULL)
5957 return NULL;
5959 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5960 sizeof(long), 0644, proc_doulongvec_minmax);
5961 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5962 sizeof(long), 0644, proc_doulongvec_minmax);
5963 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5964 sizeof(int), 0644, proc_dointvec_minmax);
5965 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5966 sizeof(int), 0644, proc_dointvec_minmax);
5967 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5968 sizeof(int), 0644, proc_dointvec_minmax);
5969 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5970 sizeof(int), 0644, proc_dointvec_minmax);
5971 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5972 sizeof(int), 0644, proc_dointvec_minmax);
5973 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5974 sizeof(int), 0644, proc_dointvec_minmax);
5975 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5976 sizeof(int), 0644, proc_dointvec_minmax);
5977 set_table_entry(&table[9], "cache_nice_tries",
5978 &sd->cache_nice_tries,
5979 sizeof(int), 0644, proc_dointvec_minmax);
5980 set_table_entry(&table[10], "flags", &sd->flags,
5981 sizeof(int), 0644, proc_dointvec_minmax);
5982 /* &table[11] is terminator */
5984 return table;
5987 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5989 struct ctl_table *entry, *table;
5990 struct sched_domain *sd;
5991 int domain_num = 0, i;
5992 char buf[32];
5994 for_each_domain(cpu, sd)
5995 domain_num++;
5996 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5997 if (table == NULL)
5998 return NULL;
6000 i = 0;
6001 for_each_domain(cpu, sd) {
6002 snprintf(buf, 32, "domain%d", i);
6003 entry->procname = kstrdup(buf, GFP_KERNEL);
6004 entry->mode = 0555;
6005 entry->child = sd_alloc_ctl_domain_table(sd);
6006 entry++;
6007 i++;
6009 return table;
6012 static struct ctl_table_header *sd_sysctl_header;
6013 static void register_sched_domain_sysctl(void)
6015 int i, cpu_num = num_online_cpus();
6016 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6017 char buf[32];
6019 WARN_ON(sd_ctl_dir[0].child);
6020 sd_ctl_dir[0].child = entry;
6022 if (entry == NULL)
6023 return;
6025 for_each_online_cpu(i) {
6026 snprintf(buf, 32, "cpu%d", i);
6027 entry->procname = kstrdup(buf, GFP_KERNEL);
6028 entry->mode = 0555;
6029 entry->child = sd_alloc_ctl_cpu_table(i);
6030 entry++;
6033 WARN_ON(sd_sysctl_header);
6034 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6037 /* may be called multiple times per register */
6038 static void unregister_sched_domain_sysctl(void)
6040 if (sd_sysctl_header)
6041 unregister_sysctl_table(sd_sysctl_header);
6042 sd_sysctl_header = NULL;
6043 if (sd_ctl_dir[0].child)
6044 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6046 #else
6047 static void register_sched_domain_sysctl(void)
6050 static void unregister_sched_domain_sysctl(void)
6053 #endif
6056 * migration_call - callback that gets triggered when a CPU is added.
6057 * Here we can start up the necessary migration thread for the new CPU.
6059 static int __cpuinit
6060 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6062 struct task_struct *p;
6063 int cpu = (long)hcpu;
6064 unsigned long flags;
6065 struct rq *rq;
6067 switch (action) {
6069 case CPU_UP_PREPARE:
6070 case CPU_UP_PREPARE_FROZEN:
6071 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6072 if (IS_ERR(p))
6073 return NOTIFY_BAD;
6074 kthread_bind(p, cpu);
6075 /* Must be high prio: stop_machine expects to yield to it. */
6076 rq = task_rq_lock(p, &flags);
6077 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6078 task_rq_unlock(rq, &flags);
6079 cpu_rq(cpu)->migration_thread = p;
6080 break;
6082 case CPU_ONLINE:
6083 case CPU_ONLINE_FROZEN:
6084 /* Strictly unnecessary, as first user will wake it. */
6085 wake_up_process(cpu_rq(cpu)->migration_thread);
6087 /* Update our root-domain */
6088 rq = cpu_rq(cpu);
6089 spin_lock_irqsave(&rq->lock, flags);
6090 if (rq->rd) {
6091 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6092 cpu_set(cpu, rq->rd->online);
6094 spin_unlock_irqrestore(&rq->lock, flags);
6095 break;
6097 #ifdef CONFIG_HOTPLUG_CPU
6098 case CPU_UP_CANCELED:
6099 case CPU_UP_CANCELED_FROZEN:
6100 if (!cpu_rq(cpu)->migration_thread)
6101 break;
6102 /* Unbind it from offline cpu so it can run. Fall thru. */
6103 kthread_bind(cpu_rq(cpu)->migration_thread,
6104 any_online_cpu(cpu_online_map));
6105 kthread_stop(cpu_rq(cpu)->migration_thread);
6106 cpu_rq(cpu)->migration_thread = NULL;
6107 break;
6109 case CPU_DEAD:
6110 case CPU_DEAD_FROZEN:
6111 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6112 migrate_live_tasks(cpu);
6113 rq = cpu_rq(cpu);
6114 kthread_stop(rq->migration_thread);
6115 rq->migration_thread = NULL;
6116 /* Idle task back to normal (off runqueue, low prio) */
6117 spin_lock_irq(&rq->lock);
6118 update_rq_clock(rq);
6119 deactivate_task(rq, rq->idle, 0);
6120 rq->idle->static_prio = MAX_PRIO;
6121 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6122 rq->idle->sched_class = &idle_sched_class;
6123 migrate_dead_tasks(cpu);
6124 spin_unlock_irq(&rq->lock);
6125 cpuset_unlock();
6126 migrate_nr_uninterruptible(rq);
6127 BUG_ON(rq->nr_running != 0);
6130 * No need to migrate the tasks: it was best-effort if
6131 * they didn't take sched_hotcpu_mutex. Just wake up
6132 * the requestors.
6134 spin_lock_irq(&rq->lock);
6135 while (!list_empty(&rq->migration_queue)) {
6136 struct migration_req *req;
6138 req = list_entry(rq->migration_queue.next,
6139 struct migration_req, list);
6140 list_del_init(&req->list);
6141 complete(&req->done);
6143 spin_unlock_irq(&rq->lock);
6144 break;
6146 case CPU_DYING:
6147 case CPU_DYING_FROZEN:
6148 /* Update our root-domain */
6149 rq = cpu_rq(cpu);
6150 spin_lock_irqsave(&rq->lock, flags);
6151 if (rq->rd) {
6152 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6153 cpu_clear(cpu, rq->rd->online);
6155 spin_unlock_irqrestore(&rq->lock, flags);
6156 break;
6157 #endif
6159 return NOTIFY_OK;
6162 /* Register at highest priority so that task migration (migrate_all_tasks)
6163 * happens before everything else.
6165 static struct notifier_block __cpuinitdata migration_notifier = {
6166 .notifier_call = migration_call,
6167 .priority = 10
6170 void __init migration_init(void)
6172 void *cpu = (void *)(long)smp_processor_id();
6173 int err;
6175 /* Start one for the boot CPU: */
6176 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6177 BUG_ON(err == NOTIFY_BAD);
6178 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6179 register_cpu_notifier(&migration_notifier);
6181 #endif
6183 #ifdef CONFIG_SMP
6185 #ifdef CONFIG_SCHED_DEBUG
6187 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6188 cpumask_t *groupmask)
6190 struct sched_group *group = sd->groups;
6191 char str[256];
6193 cpulist_scnprintf(str, sizeof(str), sd->span);
6194 cpus_clear(*groupmask);
6196 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6198 if (!(sd->flags & SD_LOAD_BALANCE)) {
6199 printk("does not load-balance\n");
6200 if (sd->parent)
6201 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6202 " has parent");
6203 return -1;
6206 printk(KERN_CONT "span %s\n", str);
6208 if (!cpu_isset(cpu, sd->span)) {
6209 printk(KERN_ERR "ERROR: domain->span does not contain "
6210 "CPU%d\n", cpu);
6212 if (!cpu_isset(cpu, group->cpumask)) {
6213 printk(KERN_ERR "ERROR: domain->groups does not contain"
6214 " CPU%d\n", cpu);
6217 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6218 do {
6219 if (!group) {
6220 printk("\n");
6221 printk(KERN_ERR "ERROR: group is NULL\n");
6222 break;
6225 if (!group->__cpu_power) {
6226 printk(KERN_CONT "\n");
6227 printk(KERN_ERR "ERROR: domain->cpu_power not "
6228 "set\n");
6229 break;
6232 if (!cpus_weight(group->cpumask)) {
6233 printk(KERN_CONT "\n");
6234 printk(KERN_ERR "ERROR: empty group\n");
6235 break;
6238 if (cpus_intersects(*groupmask, group->cpumask)) {
6239 printk(KERN_CONT "\n");
6240 printk(KERN_ERR "ERROR: repeated CPUs\n");
6241 break;
6244 cpus_or(*groupmask, *groupmask, group->cpumask);
6246 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6247 printk(KERN_CONT " %s", str);
6249 group = group->next;
6250 } while (group != sd->groups);
6251 printk(KERN_CONT "\n");
6253 if (!cpus_equal(sd->span, *groupmask))
6254 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6256 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6257 printk(KERN_ERR "ERROR: parent span is not a superset "
6258 "of domain->span\n");
6259 return 0;
6262 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6264 cpumask_t *groupmask;
6265 int level = 0;
6267 if (!sd) {
6268 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6269 return;
6272 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6274 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6275 if (!groupmask) {
6276 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6277 return;
6280 for (;;) {
6281 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6282 break;
6283 level++;
6284 sd = sd->parent;
6285 if (!sd)
6286 break;
6288 kfree(groupmask);
6290 #else
6291 # define sched_domain_debug(sd, cpu) do { } while (0)
6292 #endif
6294 static int sd_degenerate(struct sched_domain *sd)
6296 if (cpus_weight(sd->span) == 1)
6297 return 1;
6299 /* Following flags need at least 2 groups */
6300 if (sd->flags & (SD_LOAD_BALANCE |
6301 SD_BALANCE_NEWIDLE |
6302 SD_BALANCE_FORK |
6303 SD_BALANCE_EXEC |
6304 SD_SHARE_CPUPOWER |
6305 SD_SHARE_PKG_RESOURCES)) {
6306 if (sd->groups != sd->groups->next)
6307 return 0;
6310 /* Following flags don't use groups */
6311 if (sd->flags & (SD_WAKE_IDLE |
6312 SD_WAKE_AFFINE |
6313 SD_WAKE_BALANCE))
6314 return 0;
6316 return 1;
6319 static int
6320 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6322 unsigned long cflags = sd->flags, pflags = parent->flags;
6324 if (sd_degenerate(parent))
6325 return 1;
6327 if (!cpus_equal(sd->span, parent->span))
6328 return 0;
6330 /* Does parent contain flags not in child? */
6331 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6332 if (cflags & SD_WAKE_AFFINE)
6333 pflags &= ~SD_WAKE_BALANCE;
6334 /* Flags needing groups don't count if only 1 group in parent */
6335 if (parent->groups == parent->groups->next) {
6336 pflags &= ~(SD_LOAD_BALANCE |
6337 SD_BALANCE_NEWIDLE |
6338 SD_BALANCE_FORK |
6339 SD_BALANCE_EXEC |
6340 SD_SHARE_CPUPOWER |
6341 SD_SHARE_PKG_RESOURCES);
6343 if (~cflags & pflags)
6344 return 0;
6346 return 1;
6349 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6351 unsigned long flags;
6352 const struct sched_class *class;
6354 spin_lock_irqsave(&rq->lock, flags);
6356 if (rq->rd) {
6357 struct root_domain *old_rd = rq->rd;
6359 for (class = sched_class_highest; class; class = class->next) {
6360 if (class->leave_domain)
6361 class->leave_domain(rq);
6364 cpu_clear(rq->cpu, old_rd->span);
6365 cpu_clear(rq->cpu, old_rd->online);
6367 if (atomic_dec_and_test(&old_rd->refcount))
6368 kfree(old_rd);
6371 atomic_inc(&rd->refcount);
6372 rq->rd = rd;
6374 cpu_set(rq->cpu, rd->span);
6375 if (cpu_isset(rq->cpu, cpu_online_map))
6376 cpu_set(rq->cpu, rd->online);
6378 for (class = sched_class_highest; class; class = class->next) {
6379 if (class->join_domain)
6380 class->join_domain(rq);
6383 spin_unlock_irqrestore(&rq->lock, flags);
6386 static void init_rootdomain(struct root_domain *rd)
6388 memset(rd, 0, sizeof(*rd));
6390 cpus_clear(rd->span);
6391 cpus_clear(rd->online);
6394 static void init_defrootdomain(void)
6396 init_rootdomain(&def_root_domain);
6397 atomic_set(&def_root_domain.refcount, 1);
6400 static struct root_domain *alloc_rootdomain(void)
6402 struct root_domain *rd;
6404 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6405 if (!rd)
6406 return NULL;
6408 init_rootdomain(rd);
6410 return rd;
6414 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6415 * hold the hotplug lock.
6417 static void
6418 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6420 struct rq *rq = cpu_rq(cpu);
6421 struct sched_domain *tmp;
6423 /* Remove the sched domains which do not contribute to scheduling. */
6424 for (tmp = sd; tmp; tmp = tmp->parent) {
6425 struct sched_domain *parent = tmp->parent;
6426 if (!parent)
6427 break;
6428 if (sd_parent_degenerate(tmp, parent)) {
6429 tmp->parent = parent->parent;
6430 if (parent->parent)
6431 parent->parent->child = tmp;
6435 if (sd && sd_degenerate(sd)) {
6436 sd = sd->parent;
6437 if (sd)
6438 sd->child = NULL;
6441 sched_domain_debug(sd, cpu);
6443 rq_attach_root(rq, rd);
6444 rcu_assign_pointer(rq->sd, sd);
6447 /* cpus with isolated domains */
6448 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6450 /* Setup the mask of cpus configured for isolated domains */
6451 static int __init isolated_cpu_setup(char *str)
6453 int ints[NR_CPUS], i;
6455 str = get_options(str, ARRAY_SIZE(ints), ints);
6456 cpus_clear(cpu_isolated_map);
6457 for (i = 1; i <= ints[0]; i++)
6458 if (ints[i] < NR_CPUS)
6459 cpu_set(ints[i], cpu_isolated_map);
6460 return 1;
6463 __setup("isolcpus=", isolated_cpu_setup);
6466 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6467 * to a function which identifies what group(along with sched group) a CPU
6468 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6469 * (due to the fact that we keep track of groups covered with a cpumask_t).
6471 * init_sched_build_groups will build a circular linked list of the groups
6472 * covered by the given span, and will set each group's ->cpumask correctly,
6473 * and ->cpu_power to 0.
6475 static void
6476 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6477 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6478 struct sched_group **sg,
6479 cpumask_t *tmpmask),
6480 cpumask_t *covered, cpumask_t *tmpmask)
6482 struct sched_group *first = NULL, *last = NULL;
6483 int i;
6485 cpus_clear(*covered);
6487 for_each_cpu_mask(i, *span) {
6488 struct sched_group *sg;
6489 int group = group_fn(i, cpu_map, &sg, tmpmask);
6490 int j;
6492 if (cpu_isset(i, *covered))
6493 continue;
6495 cpus_clear(sg->cpumask);
6496 sg->__cpu_power = 0;
6498 for_each_cpu_mask(j, *span) {
6499 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6500 continue;
6502 cpu_set(j, *covered);
6503 cpu_set(j, sg->cpumask);
6505 if (!first)
6506 first = sg;
6507 if (last)
6508 last->next = sg;
6509 last = sg;
6511 last->next = first;
6514 #define SD_NODES_PER_DOMAIN 16
6516 #ifdef CONFIG_NUMA
6519 * find_next_best_node - find the next node to include in a sched_domain
6520 * @node: node whose sched_domain we're building
6521 * @used_nodes: nodes already in the sched_domain
6523 * Find the next node to include in a given scheduling domain. Simply
6524 * finds the closest node not already in the @used_nodes map.
6526 * Should use nodemask_t.
6528 static int find_next_best_node(int node, nodemask_t *used_nodes)
6530 int i, n, val, min_val, best_node = 0;
6532 min_val = INT_MAX;
6534 for (i = 0; i < MAX_NUMNODES; i++) {
6535 /* Start at @node */
6536 n = (node + i) % MAX_NUMNODES;
6538 if (!nr_cpus_node(n))
6539 continue;
6541 /* Skip already used nodes */
6542 if (node_isset(n, *used_nodes))
6543 continue;
6545 /* Simple min distance search */
6546 val = node_distance(node, n);
6548 if (val < min_val) {
6549 min_val = val;
6550 best_node = n;
6554 node_set(best_node, *used_nodes);
6555 return best_node;
6559 * sched_domain_node_span - get a cpumask for a node's sched_domain
6560 * @node: node whose cpumask we're constructing
6561 * @span: resulting cpumask
6563 * Given a node, construct a good cpumask for its sched_domain to span. It
6564 * should be one that prevents unnecessary balancing, but also spreads tasks
6565 * out optimally.
6567 static void sched_domain_node_span(int node, cpumask_t *span)
6569 nodemask_t used_nodes;
6570 node_to_cpumask_ptr(nodemask, node);
6571 int i;
6573 cpus_clear(*span);
6574 nodes_clear(used_nodes);
6576 cpus_or(*span, *span, *nodemask);
6577 node_set(node, used_nodes);
6579 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6580 int next_node = find_next_best_node(node, &used_nodes);
6582 node_to_cpumask_ptr_next(nodemask, next_node);
6583 cpus_or(*span, *span, *nodemask);
6586 #endif
6588 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6591 * SMT sched-domains:
6593 #ifdef CONFIG_SCHED_SMT
6594 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6595 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6597 static int
6598 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6599 cpumask_t *unused)
6601 if (sg)
6602 *sg = &per_cpu(sched_group_cpus, cpu);
6603 return cpu;
6605 #endif
6608 * multi-core sched-domains:
6610 #ifdef CONFIG_SCHED_MC
6611 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6612 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6613 #endif
6615 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6616 static int
6617 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6618 cpumask_t *mask)
6620 int group;
6622 *mask = per_cpu(cpu_sibling_map, cpu);
6623 cpus_and(*mask, *mask, *cpu_map);
6624 group = first_cpu(*mask);
6625 if (sg)
6626 *sg = &per_cpu(sched_group_core, group);
6627 return group;
6629 #elif defined(CONFIG_SCHED_MC)
6630 static int
6631 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6632 cpumask_t *unused)
6634 if (sg)
6635 *sg = &per_cpu(sched_group_core, cpu);
6636 return cpu;
6638 #endif
6640 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6641 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6643 static int
6644 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6645 cpumask_t *mask)
6647 int group;
6648 #ifdef CONFIG_SCHED_MC
6649 *mask = cpu_coregroup_map(cpu);
6650 cpus_and(*mask, *mask, *cpu_map);
6651 group = first_cpu(*mask);
6652 #elif defined(CONFIG_SCHED_SMT)
6653 *mask = per_cpu(cpu_sibling_map, cpu);
6654 cpus_and(*mask, *mask, *cpu_map);
6655 group = first_cpu(*mask);
6656 #else
6657 group = cpu;
6658 #endif
6659 if (sg)
6660 *sg = &per_cpu(sched_group_phys, group);
6661 return group;
6664 #ifdef CONFIG_NUMA
6666 * The init_sched_build_groups can't handle what we want to do with node
6667 * groups, so roll our own. Now each node has its own list of groups which
6668 * gets dynamically allocated.
6670 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6671 static struct sched_group ***sched_group_nodes_bycpu;
6673 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6674 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6676 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6677 struct sched_group **sg, cpumask_t *nodemask)
6679 int group;
6681 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6682 cpus_and(*nodemask, *nodemask, *cpu_map);
6683 group = first_cpu(*nodemask);
6685 if (sg)
6686 *sg = &per_cpu(sched_group_allnodes, group);
6687 return group;
6690 static void init_numa_sched_groups_power(struct sched_group *group_head)
6692 struct sched_group *sg = group_head;
6693 int j;
6695 if (!sg)
6696 return;
6697 do {
6698 for_each_cpu_mask(j, sg->cpumask) {
6699 struct sched_domain *sd;
6701 sd = &per_cpu(phys_domains, j);
6702 if (j != first_cpu(sd->groups->cpumask)) {
6704 * Only add "power" once for each
6705 * physical package.
6707 continue;
6710 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6712 sg = sg->next;
6713 } while (sg != group_head);
6715 #endif
6717 #ifdef CONFIG_NUMA
6718 /* Free memory allocated for various sched_group structures */
6719 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6721 int cpu, i;
6723 for_each_cpu_mask(cpu, *cpu_map) {
6724 struct sched_group **sched_group_nodes
6725 = sched_group_nodes_bycpu[cpu];
6727 if (!sched_group_nodes)
6728 continue;
6730 for (i = 0; i < MAX_NUMNODES; i++) {
6731 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6733 *nodemask = node_to_cpumask(i);
6734 cpus_and(*nodemask, *nodemask, *cpu_map);
6735 if (cpus_empty(*nodemask))
6736 continue;
6738 if (sg == NULL)
6739 continue;
6740 sg = sg->next;
6741 next_sg:
6742 oldsg = sg;
6743 sg = sg->next;
6744 kfree(oldsg);
6745 if (oldsg != sched_group_nodes[i])
6746 goto next_sg;
6748 kfree(sched_group_nodes);
6749 sched_group_nodes_bycpu[cpu] = NULL;
6752 #else
6753 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6756 #endif
6759 * Initialize sched groups cpu_power.
6761 * cpu_power indicates the capacity of sched group, which is used while
6762 * distributing the load between different sched groups in a sched domain.
6763 * Typically cpu_power for all the groups in a sched domain will be same unless
6764 * there are asymmetries in the topology. If there are asymmetries, group
6765 * having more cpu_power will pickup more load compared to the group having
6766 * less cpu_power.
6768 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6769 * the maximum number of tasks a group can handle in the presence of other idle
6770 * or lightly loaded groups in the same sched domain.
6772 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6774 struct sched_domain *child;
6775 struct sched_group *group;
6777 WARN_ON(!sd || !sd->groups);
6779 if (cpu != first_cpu(sd->groups->cpumask))
6780 return;
6782 child = sd->child;
6784 sd->groups->__cpu_power = 0;
6787 * For perf policy, if the groups in child domain share resources
6788 * (for example cores sharing some portions of the cache hierarchy
6789 * or SMT), then set this domain groups cpu_power such that each group
6790 * can handle only one task, when there are other idle groups in the
6791 * same sched domain.
6793 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6794 (child->flags &
6795 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6796 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6797 return;
6801 * add cpu_power of each child group to this groups cpu_power
6803 group = child->groups;
6804 do {
6805 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6806 group = group->next;
6807 } while (group != child->groups);
6811 * Initializers for schedule domains
6812 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6815 #define SD_INIT(sd, type) sd_init_##type(sd)
6816 #define SD_INIT_FUNC(type) \
6817 static noinline void sd_init_##type(struct sched_domain *sd) \
6819 memset(sd, 0, sizeof(*sd)); \
6820 *sd = SD_##type##_INIT; \
6821 sd->level = SD_LV_##type; \
6824 SD_INIT_FUNC(CPU)
6825 #ifdef CONFIG_NUMA
6826 SD_INIT_FUNC(ALLNODES)
6827 SD_INIT_FUNC(NODE)
6828 #endif
6829 #ifdef CONFIG_SCHED_SMT
6830 SD_INIT_FUNC(SIBLING)
6831 #endif
6832 #ifdef CONFIG_SCHED_MC
6833 SD_INIT_FUNC(MC)
6834 #endif
6837 * To minimize stack usage kmalloc room for cpumasks and share the
6838 * space as the usage in build_sched_domains() dictates. Used only
6839 * if the amount of space is significant.
6841 struct allmasks {
6842 cpumask_t tmpmask; /* make this one first */
6843 union {
6844 cpumask_t nodemask;
6845 cpumask_t this_sibling_map;
6846 cpumask_t this_core_map;
6848 cpumask_t send_covered;
6850 #ifdef CONFIG_NUMA
6851 cpumask_t domainspan;
6852 cpumask_t covered;
6853 cpumask_t notcovered;
6854 #endif
6857 #if NR_CPUS > 128
6858 #define SCHED_CPUMASK_ALLOC 1
6859 #define SCHED_CPUMASK_FREE(v) kfree(v)
6860 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6861 #else
6862 #define SCHED_CPUMASK_ALLOC 0
6863 #define SCHED_CPUMASK_FREE(v)
6864 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6865 #endif
6867 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6868 ((unsigned long)(a) + offsetof(struct allmasks, v))
6870 static int default_relax_domain_level = -1;
6872 static int __init setup_relax_domain_level(char *str)
6874 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6875 return 1;
6877 __setup("relax_domain_level=", setup_relax_domain_level);
6879 static void set_domain_attribute(struct sched_domain *sd,
6880 struct sched_domain_attr *attr)
6882 int request;
6884 if (!attr || attr->relax_domain_level < 0) {
6885 if (default_relax_domain_level < 0)
6886 return;
6887 else
6888 request = default_relax_domain_level;
6889 } else
6890 request = attr->relax_domain_level;
6891 if (request < sd->level) {
6892 /* turn off idle balance on this domain */
6893 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6894 } else {
6895 /* turn on idle balance on this domain */
6896 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6901 * Build sched domains for a given set of cpus and attach the sched domains
6902 * to the individual cpus
6904 static int __build_sched_domains(const cpumask_t *cpu_map,
6905 struct sched_domain_attr *attr)
6907 int i;
6908 struct root_domain *rd;
6909 SCHED_CPUMASK_DECLARE(allmasks);
6910 cpumask_t *tmpmask;
6911 #ifdef CONFIG_NUMA
6912 struct sched_group **sched_group_nodes = NULL;
6913 int sd_allnodes = 0;
6916 * Allocate the per-node list of sched groups
6918 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6919 GFP_KERNEL);
6920 if (!sched_group_nodes) {
6921 printk(KERN_WARNING "Can not alloc sched group node list\n");
6922 return -ENOMEM;
6924 #endif
6926 rd = alloc_rootdomain();
6927 if (!rd) {
6928 printk(KERN_WARNING "Cannot alloc root domain\n");
6929 #ifdef CONFIG_NUMA
6930 kfree(sched_group_nodes);
6931 #endif
6932 return -ENOMEM;
6935 #if SCHED_CPUMASK_ALLOC
6936 /* get space for all scratch cpumask variables */
6937 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6938 if (!allmasks) {
6939 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6940 kfree(rd);
6941 #ifdef CONFIG_NUMA
6942 kfree(sched_group_nodes);
6943 #endif
6944 return -ENOMEM;
6946 #endif
6947 tmpmask = (cpumask_t *)allmasks;
6950 #ifdef CONFIG_NUMA
6951 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6952 #endif
6955 * Set up domains for cpus specified by the cpu_map.
6957 for_each_cpu_mask(i, *cpu_map) {
6958 struct sched_domain *sd = NULL, *p;
6959 SCHED_CPUMASK_VAR(nodemask, allmasks);
6961 *nodemask = node_to_cpumask(cpu_to_node(i));
6962 cpus_and(*nodemask, *nodemask, *cpu_map);
6964 #ifdef CONFIG_NUMA
6965 if (cpus_weight(*cpu_map) >
6966 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6967 sd = &per_cpu(allnodes_domains, i);
6968 SD_INIT(sd, ALLNODES);
6969 set_domain_attribute(sd, attr);
6970 sd->span = *cpu_map;
6971 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6972 p = sd;
6973 sd_allnodes = 1;
6974 } else
6975 p = NULL;
6977 sd = &per_cpu(node_domains, i);
6978 SD_INIT(sd, NODE);
6979 set_domain_attribute(sd, attr);
6980 sched_domain_node_span(cpu_to_node(i), &sd->span);
6981 sd->parent = p;
6982 if (p)
6983 p->child = sd;
6984 cpus_and(sd->span, sd->span, *cpu_map);
6985 #endif
6987 p = sd;
6988 sd = &per_cpu(phys_domains, i);
6989 SD_INIT(sd, CPU);
6990 set_domain_attribute(sd, attr);
6991 sd->span = *nodemask;
6992 sd->parent = p;
6993 if (p)
6994 p->child = sd;
6995 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
6997 #ifdef CONFIG_SCHED_MC
6998 p = sd;
6999 sd = &per_cpu(core_domains, i);
7000 SD_INIT(sd, MC);
7001 set_domain_attribute(sd, attr);
7002 sd->span = cpu_coregroup_map(i);
7003 cpus_and(sd->span, sd->span, *cpu_map);
7004 sd->parent = p;
7005 p->child = sd;
7006 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7007 #endif
7009 #ifdef CONFIG_SCHED_SMT
7010 p = sd;
7011 sd = &per_cpu(cpu_domains, i);
7012 SD_INIT(sd, SIBLING);
7013 set_domain_attribute(sd, attr);
7014 sd->span = per_cpu(cpu_sibling_map, i);
7015 cpus_and(sd->span, sd->span, *cpu_map);
7016 sd->parent = p;
7017 p->child = sd;
7018 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7019 #endif
7022 #ifdef CONFIG_SCHED_SMT
7023 /* Set up CPU (sibling) groups */
7024 for_each_cpu_mask(i, *cpu_map) {
7025 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7026 SCHED_CPUMASK_VAR(send_covered, allmasks);
7028 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7029 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7030 if (i != first_cpu(*this_sibling_map))
7031 continue;
7033 init_sched_build_groups(this_sibling_map, cpu_map,
7034 &cpu_to_cpu_group,
7035 send_covered, tmpmask);
7037 #endif
7039 #ifdef CONFIG_SCHED_MC
7040 /* Set up multi-core groups */
7041 for_each_cpu_mask(i, *cpu_map) {
7042 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7043 SCHED_CPUMASK_VAR(send_covered, allmasks);
7045 *this_core_map = cpu_coregroup_map(i);
7046 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7047 if (i != first_cpu(*this_core_map))
7048 continue;
7050 init_sched_build_groups(this_core_map, cpu_map,
7051 &cpu_to_core_group,
7052 send_covered, tmpmask);
7054 #endif
7056 /* Set up physical groups */
7057 for (i = 0; i < MAX_NUMNODES; i++) {
7058 SCHED_CPUMASK_VAR(nodemask, allmasks);
7059 SCHED_CPUMASK_VAR(send_covered, allmasks);
7061 *nodemask = node_to_cpumask(i);
7062 cpus_and(*nodemask, *nodemask, *cpu_map);
7063 if (cpus_empty(*nodemask))
7064 continue;
7066 init_sched_build_groups(nodemask, cpu_map,
7067 &cpu_to_phys_group,
7068 send_covered, tmpmask);
7071 #ifdef CONFIG_NUMA
7072 /* Set up node groups */
7073 if (sd_allnodes) {
7074 SCHED_CPUMASK_VAR(send_covered, allmasks);
7076 init_sched_build_groups(cpu_map, cpu_map,
7077 &cpu_to_allnodes_group,
7078 send_covered, tmpmask);
7081 for (i = 0; i < MAX_NUMNODES; i++) {
7082 /* Set up node groups */
7083 struct sched_group *sg, *prev;
7084 SCHED_CPUMASK_VAR(nodemask, allmasks);
7085 SCHED_CPUMASK_VAR(domainspan, allmasks);
7086 SCHED_CPUMASK_VAR(covered, allmasks);
7087 int j;
7089 *nodemask = node_to_cpumask(i);
7090 cpus_clear(*covered);
7092 cpus_and(*nodemask, *nodemask, *cpu_map);
7093 if (cpus_empty(*nodemask)) {
7094 sched_group_nodes[i] = NULL;
7095 continue;
7098 sched_domain_node_span(i, domainspan);
7099 cpus_and(*domainspan, *domainspan, *cpu_map);
7101 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7102 if (!sg) {
7103 printk(KERN_WARNING "Can not alloc domain group for "
7104 "node %d\n", i);
7105 goto error;
7107 sched_group_nodes[i] = sg;
7108 for_each_cpu_mask(j, *nodemask) {
7109 struct sched_domain *sd;
7111 sd = &per_cpu(node_domains, j);
7112 sd->groups = sg;
7114 sg->__cpu_power = 0;
7115 sg->cpumask = *nodemask;
7116 sg->next = sg;
7117 cpus_or(*covered, *covered, *nodemask);
7118 prev = sg;
7120 for (j = 0; j < MAX_NUMNODES; j++) {
7121 SCHED_CPUMASK_VAR(notcovered, allmasks);
7122 int n = (i + j) % MAX_NUMNODES;
7123 node_to_cpumask_ptr(pnodemask, n);
7125 cpus_complement(*notcovered, *covered);
7126 cpus_and(*tmpmask, *notcovered, *cpu_map);
7127 cpus_and(*tmpmask, *tmpmask, *domainspan);
7128 if (cpus_empty(*tmpmask))
7129 break;
7131 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7132 if (cpus_empty(*tmpmask))
7133 continue;
7135 sg = kmalloc_node(sizeof(struct sched_group),
7136 GFP_KERNEL, i);
7137 if (!sg) {
7138 printk(KERN_WARNING
7139 "Can not alloc domain group for node %d\n", j);
7140 goto error;
7142 sg->__cpu_power = 0;
7143 sg->cpumask = *tmpmask;
7144 sg->next = prev->next;
7145 cpus_or(*covered, *covered, *tmpmask);
7146 prev->next = sg;
7147 prev = sg;
7150 #endif
7152 /* Calculate CPU power for physical packages and nodes */
7153 #ifdef CONFIG_SCHED_SMT
7154 for_each_cpu_mask(i, *cpu_map) {
7155 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7157 init_sched_groups_power(i, sd);
7159 #endif
7160 #ifdef CONFIG_SCHED_MC
7161 for_each_cpu_mask(i, *cpu_map) {
7162 struct sched_domain *sd = &per_cpu(core_domains, i);
7164 init_sched_groups_power(i, sd);
7166 #endif
7168 for_each_cpu_mask(i, *cpu_map) {
7169 struct sched_domain *sd = &per_cpu(phys_domains, i);
7171 init_sched_groups_power(i, sd);
7174 #ifdef CONFIG_NUMA
7175 for (i = 0; i < MAX_NUMNODES; i++)
7176 init_numa_sched_groups_power(sched_group_nodes[i]);
7178 if (sd_allnodes) {
7179 struct sched_group *sg;
7181 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7182 tmpmask);
7183 init_numa_sched_groups_power(sg);
7185 #endif
7187 /* Attach the domains */
7188 for_each_cpu_mask(i, *cpu_map) {
7189 struct sched_domain *sd;
7190 #ifdef CONFIG_SCHED_SMT
7191 sd = &per_cpu(cpu_domains, i);
7192 #elif defined(CONFIG_SCHED_MC)
7193 sd = &per_cpu(core_domains, i);
7194 #else
7195 sd = &per_cpu(phys_domains, i);
7196 #endif
7197 cpu_attach_domain(sd, rd, i);
7200 SCHED_CPUMASK_FREE((void *)allmasks);
7201 return 0;
7203 #ifdef CONFIG_NUMA
7204 error:
7205 free_sched_groups(cpu_map, tmpmask);
7206 SCHED_CPUMASK_FREE((void *)allmasks);
7207 return -ENOMEM;
7208 #endif
7211 static int build_sched_domains(const cpumask_t *cpu_map)
7213 return __build_sched_domains(cpu_map, NULL);
7216 static cpumask_t *doms_cur; /* current sched domains */
7217 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7218 static struct sched_domain_attr *dattr_cur;
7219 /* attribues of custom domains in 'doms_cur' */
7222 * Special case: If a kmalloc of a doms_cur partition (array of
7223 * cpumask_t) fails, then fallback to a single sched domain,
7224 * as determined by the single cpumask_t fallback_doms.
7226 static cpumask_t fallback_doms;
7228 void __attribute__((weak)) arch_update_cpu_topology(void)
7233 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7234 * For now this just excludes isolated cpus, but could be used to
7235 * exclude other special cases in the future.
7237 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7239 int err;
7241 arch_update_cpu_topology();
7242 ndoms_cur = 1;
7243 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7244 if (!doms_cur)
7245 doms_cur = &fallback_doms;
7246 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7247 dattr_cur = NULL;
7248 err = build_sched_domains(doms_cur);
7249 register_sched_domain_sysctl();
7251 return err;
7254 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7255 cpumask_t *tmpmask)
7257 free_sched_groups(cpu_map, tmpmask);
7261 * Detach sched domains from a group of cpus specified in cpu_map
7262 * These cpus will now be attached to the NULL domain
7264 static void detach_destroy_domains(const cpumask_t *cpu_map)
7266 cpumask_t tmpmask;
7267 int i;
7269 unregister_sched_domain_sysctl();
7271 for_each_cpu_mask(i, *cpu_map)
7272 cpu_attach_domain(NULL, &def_root_domain, i);
7273 synchronize_sched();
7274 arch_destroy_sched_domains(cpu_map, &tmpmask);
7277 /* handle null as "default" */
7278 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7279 struct sched_domain_attr *new, int idx_new)
7281 struct sched_domain_attr tmp;
7283 /* fast path */
7284 if (!new && !cur)
7285 return 1;
7287 tmp = SD_ATTR_INIT;
7288 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7289 new ? (new + idx_new) : &tmp,
7290 sizeof(struct sched_domain_attr));
7294 * Partition sched domains as specified by the 'ndoms_new'
7295 * cpumasks in the array doms_new[] of cpumasks. This compares
7296 * doms_new[] to the current sched domain partitioning, doms_cur[].
7297 * It destroys each deleted domain and builds each new domain.
7299 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7300 * The masks don't intersect (don't overlap.) We should setup one
7301 * sched domain for each mask. CPUs not in any of the cpumasks will
7302 * not be load balanced. If the same cpumask appears both in the
7303 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7304 * it as it is.
7306 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7307 * ownership of it and will kfree it when done with it. If the caller
7308 * failed the kmalloc call, then it can pass in doms_new == NULL,
7309 * and partition_sched_domains() will fallback to the single partition
7310 * 'fallback_doms'.
7312 * Call with hotplug lock held
7314 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7315 struct sched_domain_attr *dattr_new)
7317 int i, j;
7319 mutex_lock(&sched_domains_mutex);
7321 /* always unregister in case we don't destroy any domains */
7322 unregister_sched_domain_sysctl();
7324 if (doms_new == NULL) {
7325 ndoms_new = 1;
7326 doms_new = &fallback_doms;
7327 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7328 dattr_new = NULL;
7331 /* Destroy deleted domains */
7332 for (i = 0; i < ndoms_cur; i++) {
7333 for (j = 0; j < ndoms_new; j++) {
7334 if (cpus_equal(doms_cur[i], doms_new[j])
7335 && dattrs_equal(dattr_cur, i, dattr_new, j))
7336 goto match1;
7338 /* no match - a current sched domain not in new doms_new[] */
7339 detach_destroy_domains(doms_cur + i);
7340 match1:
7344 /* Build new domains */
7345 for (i = 0; i < ndoms_new; i++) {
7346 for (j = 0; j < ndoms_cur; j++) {
7347 if (cpus_equal(doms_new[i], doms_cur[j])
7348 && dattrs_equal(dattr_new, i, dattr_cur, j))
7349 goto match2;
7351 /* no match - add a new doms_new */
7352 __build_sched_domains(doms_new + i,
7353 dattr_new ? dattr_new + i : NULL);
7354 match2:
7358 /* Remember the new sched domains */
7359 if (doms_cur != &fallback_doms)
7360 kfree(doms_cur);
7361 kfree(dattr_cur); /* kfree(NULL) is safe */
7362 doms_cur = doms_new;
7363 dattr_cur = dattr_new;
7364 ndoms_cur = ndoms_new;
7366 register_sched_domain_sysctl();
7368 mutex_unlock(&sched_domains_mutex);
7371 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7372 int arch_reinit_sched_domains(void)
7374 int err;
7376 get_online_cpus();
7377 mutex_lock(&sched_domains_mutex);
7378 detach_destroy_domains(&cpu_online_map);
7379 err = arch_init_sched_domains(&cpu_online_map);
7380 mutex_unlock(&sched_domains_mutex);
7381 put_online_cpus();
7383 return err;
7386 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7388 int ret;
7390 if (buf[0] != '0' && buf[0] != '1')
7391 return -EINVAL;
7393 if (smt)
7394 sched_smt_power_savings = (buf[0] == '1');
7395 else
7396 sched_mc_power_savings = (buf[0] == '1');
7398 ret = arch_reinit_sched_domains();
7400 return ret ? ret : count;
7403 #ifdef CONFIG_SCHED_MC
7404 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7406 return sprintf(page, "%u\n", sched_mc_power_savings);
7408 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7409 const char *buf, size_t count)
7411 return sched_power_savings_store(buf, count, 0);
7413 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7414 sched_mc_power_savings_store);
7415 #endif
7417 #ifdef CONFIG_SCHED_SMT
7418 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7420 return sprintf(page, "%u\n", sched_smt_power_savings);
7422 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7423 const char *buf, size_t count)
7425 return sched_power_savings_store(buf, count, 1);
7427 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7428 sched_smt_power_savings_store);
7429 #endif
7431 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7433 int err = 0;
7435 #ifdef CONFIG_SCHED_SMT
7436 if (smt_capable())
7437 err = sysfs_create_file(&cls->kset.kobj,
7438 &attr_sched_smt_power_savings.attr);
7439 #endif
7440 #ifdef CONFIG_SCHED_MC
7441 if (!err && mc_capable())
7442 err = sysfs_create_file(&cls->kset.kobj,
7443 &attr_sched_mc_power_savings.attr);
7444 #endif
7445 return err;
7447 #endif
7450 * Force a reinitialization of the sched domains hierarchy. The domains
7451 * and groups cannot be updated in place without racing with the balancing
7452 * code, so we temporarily attach all running cpus to the NULL domain
7453 * which will prevent rebalancing while the sched domains are recalculated.
7455 static int update_sched_domains(struct notifier_block *nfb,
7456 unsigned long action, void *hcpu)
7458 switch (action) {
7459 case CPU_UP_PREPARE:
7460 case CPU_UP_PREPARE_FROZEN:
7461 case CPU_DOWN_PREPARE:
7462 case CPU_DOWN_PREPARE_FROZEN:
7463 detach_destroy_domains(&cpu_online_map);
7464 return NOTIFY_OK;
7466 case CPU_UP_CANCELED:
7467 case CPU_UP_CANCELED_FROZEN:
7468 case CPU_DOWN_FAILED:
7469 case CPU_DOWN_FAILED_FROZEN:
7470 case CPU_ONLINE:
7471 case CPU_ONLINE_FROZEN:
7472 case CPU_DEAD:
7473 case CPU_DEAD_FROZEN:
7475 * Fall through and re-initialise the domains.
7477 break;
7478 default:
7479 return NOTIFY_DONE;
7482 /* The hotplug lock is already held by cpu_up/cpu_down */
7483 arch_init_sched_domains(&cpu_online_map);
7485 return NOTIFY_OK;
7488 void __init sched_init_smp(void)
7490 cpumask_t non_isolated_cpus;
7492 #if defined(CONFIG_NUMA)
7493 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7494 GFP_KERNEL);
7495 BUG_ON(sched_group_nodes_bycpu == NULL);
7496 #endif
7497 get_online_cpus();
7498 mutex_lock(&sched_domains_mutex);
7499 arch_init_sched_domains(&cpu_online_map);
7500 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7501 if (cpus_empty(non_isolated_cpus))
7502 cpu_set(smp_processor_id(), non_isolated_cpus);
7503 mutex_unlock(&sched_domains_mutex);
7504 put_online_cpus();
7505 /* XXX: Theoretical race here - CPU may be hotplugged now */
7506 hotcpu_notifier(update_sched_domains, 0);
7507 init_hrtick();
7509 /* Move init over to a non-isolated CPU */
7510 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7511 BUG();
7512 sched_init_granularity();
7514 #else
7515 void __init sched_init_smp(void)
7517 sched_init_granularity();
7519 #endif /* CONFIG_SMP */
7521 int in_sched_functions(unsigned long addr)
7523 return in_lock_functions(addr) ||
7524 (addr >= (unsigned long)__sched_text_start
7525 && addr < (unsigned long)__sched_text_end);
7528 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7530 cfs_rq->tasks_timeline = RB_ROOT;
7531 INIT_LIST_HEAD(&cfs_rq->tasks);
7532 #ifdef CONFIG_FAIR_GROUP_SCHED
7533 cfs_rq->rq = rq;
7534 #endif
7535 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7538 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7540 struct rt_prio_array *array;
7541 int i;
7543 array = &rt_rq->active;
7544 for (i = 0; i < MAX_RT_PRIO; i++) {
7545 INIT_LIST_HEAD(array->queue + i);
7546 __clear_bit(i, array->bitmap);
7548 /* delimiter for bitsearch: */
7549 __set_bit(MAX_RT_PRIO, array->bitmap);
7551 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7552 rt_rq->highest_prio = MAX_RT_PRIO;
7553 #endif
7554 #ifdef CONFIG_SMP
7555 rt_rq->rt_nr_migratory = 0;
7556 rt_rq->overloaded = 0;
7557 #endif
7559 rt_rq->rt_time = 0;
7560 rt_rq->rt_throttled = 0;
7561 rt_rq->rt_runtime = 0;
7562 spin_lock_init(&rt_rq->rt_runtime_lock);
7564 #ifdef CONFIG_RT_GROUP_SCHED
7565 rt_rq->rt_nr_boosted = 0;
7566 rt_rq->rq = rq;
7567 #endif
7570 #ifdef CONFIG_FAIR_GROUP_SCHED
7571 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7572 struct sched_entity *se, int cpu, int add,
7573 struct sched_entity *parent)
7575 struct rq *rq = cpu_rq(cpu);
7576 tg->cfs_rq[cpu] = cfs_rq;
7577 init_cfs_rq(cfs_rq, rq);
7578 cfs_rq->tg = tg;
7579 if (add)
7580 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7582 tg->se[cpu] = se;
7583 /* se could be NULL for init_task_group */
7584 if (!se)
7585 return;
7587 if (!parent)
7588 se->cfs_rq = &rq->cfs;
7589 else
7590 se->cfs_rq = parent->my_q;
7592 se->my_q = cfs_rq;
7593 se->load.weight = tg->shares;
7594 se->load.inv_weight = 0;
7595 se->parent = parent;
7597 #endif
7599 #ifdef CONFIG_RT_GROUP_SCHED
7600 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7601 struct sched_rt_entity *rt_se, int cpu, int add,
7602 struct sched_rt_entity *parent)
7604 struct rq *rq = cpu_rq(cpu);
7606 tg->rt_rq[cpu] = rt_rq;
7607 init_rt_rq(rt_rq, rq);
7608 rt_rq->tg = tg;
7609 rt_rq->rt_se = rt_se;
7610 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7611 if (add)
7612 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7614 tg->rt_se[cpu] = rt_se;
7615 if (!rt_se)
7616 return;
7618 if (!parent)
7619 rt_se->rt_rq = &rq->rt;
7620 else
7621 rt_se->rt_rq = parent->my_q;
7623 rt_se->rt_rq = &rq->rt;
7624 rt_se->my_q = rt_rq;
7625 rt_se->parent = parent;
7626 INIT_LIST_HEAD(&rt_se->run_list);
7628 #endif
7630 void __init sched_init(void)
7632 int i, j;
7633 unsigned long alloc_size = 0, ptr;
7635 #ifdef CONFIG_FAIR_GROUP_SCHED
7636 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7637 #endif
7638 #ifdef CONFIG_RT_GROUP_SCHED
7639 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7640 #endif
7641 #ifdef CONFIG_USER_SCHED
7642 alloc_size *= 2;
7643 #endif
7645 * As sched_init() is called before page_alloc is setup,
7646 * we use alloc_bootmem().
7648 if (alloc_size) {
7649 ptr = (unsigned long)alloc_bootmem(alloc_size);
7651 #ifdef CONFIG_FAIR_GROUP_SCHED
7652 init_task_group.se = (struct sched_entity **)ptr;
7653 ptr += nr_cpu_ids * sizeof(void **);
7655 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7656 ptr += nr_cpu_ids * sizeof(void **);
7658 #ifdef CONFIG_USER_SCHED
7659 root_task_group.se = (struct sched_entity **)ptr;
7660 ptr += nr_cpu_ids * sizeof(void **);
7662 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7663 ptr += nr_cpu_ids * sizeof(void **);
7664 #endif
7665 #endif
7666 #ifdef CONFIG_RT_GROUP_SCHED
7667 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7668 ptr += nr_cpu_ids * sizeof(void **);
7670 init_task_group.rt_rq = (struct rt_rq **)ptr;
7671 ptr += nr_cpu_ids * sizeof(void **);
7673 #ifdef CONFIG_USER_SCHED
7674 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7675 ptr += nr_cpu_ids * sizeof(void **);
7677 root_task_group.rt_rq = (struct rt_rq **)ptr;
7678 ptr += nr_cpu_ids * sizeof(void **);
7679 #endif
7680 #endif
7683 #ifdef CONFIG_SMP
7684 init_defrootdomain();
7685 #endif
7687 init_rt_bandwidth(&def_rt_bandwidth,
7688 global_rt_period(), global_rt_runtime());
7690 #ifdef CONFIG_RT_GROUP_SCHED
7691 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7692 global_rt_period(), global_rt_runtime());
7693 #ifdef CONFIG_USER_SCHED
7694 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7695 global_rt_period(), RUNTIME_INF);
7696 #endif
7697 #endif
7699 #ifdef CONFIG_GROUP_SCHED
7700 list_add(&init_task_group.list, &task_groups);
7701 INIT_LIST_HEAD(&init_task_group.children);
7703 #ifdef CONFIG_USER_SCHED
7704 INIT_LIST_HEAD(&root_task_group.children);
7705 init_task_group.parent = &root_task_group;
7706 list_add(&init_task_group.siblings, &root_task_group.children);
7707 #endif
7708 #endif
7710 for_each_possible_cpu(i) {
7711 struct rq *rq;
7713 rq = cpu_rq(i);
7714 spin_lock_init(&rq->lock);
7715 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7716 rq->nr_running = 0;
7717 init_cfs_rq(&rq->cfs, rq);
7718 init_rt_rq(&rq->rt, rq);
7719 #ifdef CONFIG_FAIR_GROUP_SCHED
7720 init_task_group.shares = init_task_group_load;
7721 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7722 #ifdef CONFIG_CGROUP_SCHED
7724 * How much cpu bandwidth does init_task_group get?
7726 * In case of task-groups formed thr' the cgroup filesystem, it
7727 * gets 100% of the cpu resources in the system. This overall
7728 * system cpu resource is divided among the tasks of
7729 * init_task_group and its child task-groups in a fair manner,
7730 * based on each entity's (task or task-group's) weight
7731 * (se->load.weight).
7733 * In other words, if init_task_group has 10 tasks of weight
7734 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7735 * then A0's share of the cpu resource is:
7737 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7739 * We achieve this by letting init_task_group's tasks sit
7740 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7742 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7743 #elif defined CONFIG_USER_SCHED
7744 root_task_group.shares = NICE_0_LOAD;
7745 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7747 * In case of task-groups formed thr' the user id of tasks,
7748 * init_task_group represents tasks belonging to root user.
7749 * Hence it forms a sibling of all subsequent groups formed.
7750 * In this case, init_task_group gets only a fraction of overall
7751 * system cpu resource, based on the weight assigned to root
7752 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7753 * by letting tasks of init_task_group sit in a separate cfs_rq
7754 * (init_cfs_rq) and having one entity represent this group of
7755 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7757 init_tg_cfs_entry(&init_task_group,
7758 &per_cpu(init_cfs_rq, i),
7759 &per_cpu(init_sched_entity, i), i, 1,
7760 root_task_group.se[i]);
7762 #endif
7763 #endif /* CONFIG_FAIR_GROUP_SCHED */
7765 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7766 #ifdef CONFIG_RT_GROUP_SCHED
7767 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7768 #ifdef CONFIG_CGROUP_SCHED
7769 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7770 #elif defined CONFIG_USER_SCHED
7771 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7772 init_tg_rt_entry(&init_task_group,
7773 &per_cpu(init_rt_rq, i),
7774 &per_cpu(init_sched_rt_entity, i), i, 1,
7775 root_task_group.rt_se[i]);
7776 #endif
7777 #endif
7779 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7780 rq->cpu_load[j] = 0;
7781 #ifdef CONFIG_SMP
7782 rq->sd = NULL;
7783 rq->rd = NULL;
7784 rq->active_balance = 0;
7785 rq->next_balance = jiffies;
7786 rq->push_cpu = 0;
7787 rq->cpu = i;
7788 rq->migration_thread = NULL;
7789 INIT_LIST_HEAD(&rq->migration_queue);
7790 rq_attach_root(rq, &def_root_domain);
7791 #endif
7792 init_rq_hrtick(rq);
7793 atomic_set(&rq->nr_iowait, 0);
7796 set_load_weight(&init_task);
7798 #ifdef CONFIG_PREEMPT_NOTIFIERS
7799 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7800 #endif
7802 #ifdef CONFIG_SMP
7803 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7804 #endif
7806 #ifdef CONFIG_RT_MUTEXES
7807 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7808 #endif
7811 * The boot idle thread does lazy MMU switching as well:
7813 atomic_inc(&init_mm.mm_count);
7814 enter_lazy_tlb(&init_mm, current);
7817 * Make us the idle thread. Technically, schedule() should not be
7818 * called from this thread, however somewhere below it might be,
7819 * but because we are the idle thread, we just pick up running again
7820 * when this runqueue becomes "idle".
7822 init_idle(current, smp_processor_id());
7824 * During early bootup we pretend to be a normal task:
7826 current->sched_class = &fair_sched_class;
7828 scheduler_running = 1;
7831 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7832 void __might_sleep(char *file, int line)
7834 #ifdef in_atomic
7835 static unsigned long prev_jiffy; /* ratelimiting */
7837 if ((in_atomic() || irqs_disabled()) &&
7838 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7839 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7840 return;
7841 prev_jiffy = jiffies;
7842 printk(KERN_ERR "BUG: sleeping function called from invalid"
7843 " context at %s:%d\n", file, line);
7844 printk("in_atomic():%d, irqs_disabled():%d\n",
7845 in_atomic(), irqs_disabled());
7846 debug_show_held_locks(current);
7847 if (irqs_disabled())
7848 print_irqtrace_events(current);
7849 dump_stack();
7851 #endif
7853 EXPORT_SYMBOL(__might_sleep);
7854 #endif
7856 #ifdef CONFIG_MAGIC_SYSRQ
7857 static void normalize_task(struct rq *rq, struct task_struct *p)
7859 int on_rq;
7861 update_rq_clock(rq);
7862 on_rq = p->se.on_rq;
7863 if (on_rq)
7864 deactivate_task(rq, p, 0);
7865 __setscheduler(rq, p, SCHED_NORMAL, 0);
7866 if (on_rq) {
7867 activate_task(rq, p, 0);
7868 resched_task(rq->curr);
7872 void normalize_rt_tasks(void)
7874 struct task_struct *g, *p;
7875 unsigned long flags;
7876 struct rq *rq;
7878 read_lock_irqsave(&tasklist_lock, flags);
7879 do_each_thread(g, p) {
7881 * Only normalize user tasks:
7883 if (!p->mm)
7884 continue;
7886 p->se.exec_start = 0;
7887 #ifdef CONFIG_SCHEDSTATS
7888 p->se.wait_start = 0;
7889 p->se.sleep_start = 0;
7890 p->se.block_start = 0;
7891 #endif
7893 if (!rt_task(p)) {
7895 * Renice negative nice level userspace
7896 * tasks back to 0:
7898 if (TASK_NICE(p) < 0 && p->mm)
7899 set_user_nice(p, 0);
7900 continue;
7903 spin_lock(&p->pi_lock);
7904 rq = __task_rq_lock(p);
7906 normalize_task(rq, p);
7908 __task_rq_unlock(rq);
7909 spin_unlock(&p->pi_lock);
7910 } while_each_thread(g, p);
7912 read_unlock_irqrestore(&tasklist_lock, flags);
7915 #endif /* CONFIG_MAGIC_SYSRQ */
7917 #ifdef CONFIG_IA64
7919 * These functions are only useful for the IA64 MCA handling.
7921 * They can only be called when the whole system has been
7922 * stopped - every CPU needs to be quiescent, and no scheduling
7923 * activity can take place. Using them for anything else would
7924 * be a serious bug, and as a result, they aren't even visible
7925 * under any other configuration.
7929 * curr_task - return the current task for a given cpu.
7930 * @cpu: the processor in question.
7932 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7934 struct task_struct *curr_task(int cpu)
7936 return cpu_curr(cpu);
7940 * set_curr_task - set the current task for a given cpu.
7941 * @cpu: the processor in question.
7942 * @p: the task pointer to set.
7944 * Description: This function must only be used when non-maskable interrupts
7945 * are serviced on a separate stack. It allows the architecture to switch the
7946 * notion of the current task on a cpu in a non-blocking manner. This function
7947 * must be called with all CPU's synchronized, and interrupts disabled, the
7948 * and caller must save the original value of the current task (see
7949 * curr_task() above) and restore that value before reenabling interrupts and
7950 * re-starting the system.
7952 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7954 void set_curr_task(int cpu, struct task_struct *p)
7956 cpu_curr(cpu) = p;
7959 #endif
7961 #ifdef CONFIG_FAIR_GROUP_SCHED
7962 static void free_fair_sched_group(struct task_group *tg)
7964 int i;
7966 for_each_possible_cpu(i) {
7967 if (tg->cfs_rq)
7968 kfree(tg->cfs_rq[i]);
7969 if (tg->se)
7970 kfree(tg->se[i]);
7973 kfree(tg->cfs_rq);
7974 kfree(tg->se);
7977 static
7978 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7980 struct cfs_rq *cfs_rq;
7981 struct sched_entity *se, *parent_se;
7982 struct rq *rq;
7983 int i;
7985 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7986 if (!tg->cfs_rq)
7987 goto err;
7988 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7989 if (!tg->se)
7990 goto err;
7992 tg->shares = NICE_0_LOAD;
7994 for_each_possible_cpu(i) {
7995 rq = cpu_rq(i);
7997 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7998 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7999 if (!cfs_rq)
8000 goto err;
8002 se = kmalloc_node(sizeof(struct sched_entity),
8003 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8004 if (!se)
8005 goto err;
8007 parent_se = parent ? parent->se[i] : NULL;
8008 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8011 return 1;
8013 err:
8014 return 0;
8017 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8019 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8020 &cpu_rq(cpu)->leaf_cfs_rq_list);
8023 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8025 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8027 #else
8028 static inline void free_fair_sched_group(struct task_group *tg)
8032 static inline
8033 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8035 return 1;
8038 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8042 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8045 #endif
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 static void free_rt_sched_group(struct task_group *tg)
8050 int i;
8052 destroy_rt_bandwidth(&tg->rt_bandwidth);
8054 for_each_possible_cpu(i) {
8055 if (tg->rt_rq)
8056 kfree(tg->rt_rq[i]);
8057 if (tg->rt_se)
8058 kfree(tg->rt_se[i]);
8061 kfree(tg->rt_rq);
8062 kfree(tg->rt_se);
8065 static
8066 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8068 struct rt_rq *rt_rq;
8069 struct sched_rt_entity *rt_se, *parent_se;
8070 struct rq *rq;
8071 int i;
8073 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8074 if (!tg->rt_rq)
8075 goto err;
8076 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8077 if (!tg->rt_se)
8078 goto err;
8080 init_rt_bandwidth(&tg->rt_bandwidth,
8081 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8083 for_each_possible_cpu(i) {
8084 rq = cpu_rq(i);
8086 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8087 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8088 if (!rt_rq)
8089 goto err;
8091 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8092 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8093 if (!rt_se)
8094 goto err;
8096 parent_se = parent ? parent->rt_se[i] : NULL;
8097 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8100 return 1;
8102 err:
8103 return 0;
8106 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8108 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8109 &cpu_rq(cpu)->leaf_rt_rq_list);
8112 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8114 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8116 #else
8117 static inline void free_rt_sched_group(struct task_group *tg)
8121 static inline
8122 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8124 return 1;
8127 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8131 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8134 #endif
8136 #ifdef CONFIG_GROUP_SCHED
8137 static void free_sched_group(struct task_group *tg)
8139 free_fair_sched_group(tg);
8140 free_rt_sched_group(tg);
8141 kfree(tg);
8144 /* allocate runqueue etc for a new task group */
8145 struct task_group *sched_create_group(struct task_group *parent)
8147 struct task_group *tg;
8148 unsigned long flags;
8149 int i;
8151 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8152 if (!tg)
8153 return ERR_PTR(-ENOMEM);
8155 if (!alloc_fair_sched_group(tg, parent))
8156 goto err;
8158 if (!alloc_rt_sched_group(tg, parent))
8159 goto err;
8161 spin_lock_irqsave(&task_group_lock, flags);
8162 for_each_possible_cpu(i) {
8163 register_fair_sched_group(tg, i);
8164 register_rt_sched_group(tg, i);
8166 list_add_rcu(&tg->list, &task_groups);
8168 WARN_ON(!parent); /* root should already exist */
8170 tg->parent = parent;
8171 list_add_rcu(&tg->siblings, &parent->children);
8172 INIT_LIST_HEAD(&tg->children);
8173 spin_unlock_irqrestore(&task_group_lock, flags);
8175 return tg;
8177 err:
8178 free_sched_group(tg);
8179 return ERR_PTR(-ENOMEM);
8182 /* rcu callback to free various structures associated with a task group */
8183 static void free_sched_group_rcu(struct rcu_head *rhp)
8185 /* now it should be safe to free those cfs_rqs */
8186 free_sched_group(container_of(rhp, struct task_group, rcu));
8189 /* Destroy runqueue etc associated with a task group */
8190 void sched_destroy_group(struct task_group *tg)
8192 unsigned long flags;
8193 int i;
8195 spin_lock_irqsave(&task_group_lock, flags);
8196 for_each_possible_cpu(i) {
8197 unregister_fair_sched_group(tg, i);
8198 unregister_rt_sched_group(tg, i);
8200 list_del_rcu(&tg->list);
8201 list_del_rcu(&tg->siblings);
8202 spin_unlock_irqrestore(&task_group_lock, flags);
8204 /* wait for possible concurrent references to cfs_rqs complete */
8205 call_rcu(&tg->rcu, free_sched_group_rcu);
8208 /* change task's runqueue when it moves between groups.
8209 * The caller of this function should have put the task in its new group
8210 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8211 * reflect its new group.
8213 void sched_move_task(struct task_struct *tsk)
8215 int on_rq, running;
8216 unsigned long flags;
8217 struct rq *rq;
8219 rq = task_rq_lock(tsk, &flags);
8221 update_rq_clock(rq);
8223 running = task_current(rq, tsk);
8224 on_rq = tsk->se.on_rq;
8226 if (on_rq)
8227 dequeue_task(rq, tsk, 0);
8228 if (unlikely(running))
8229 tsk->sched_class->put_prev_task(rq, tsk);
8231 set_task_rq(tsk, task_cpu(tsk));
8233 #ifdef CONFIG_FAIR_GROUP_SCHED
8234 if (tsk->sched_class->moved_group)
8235 tsk->sched_class->moved_group(tsk);
8236 #endif
8238 if (unlikely(running))
8239 tsk->sched_class->set_curr_task(rq);
8240 if (on_rq)
8241 enqueue_task(rq, tsk, 0);
8243 task_rq_unlock(rq, &flags);
8245 #endif
8247 #ifdef CONFIG_FAIR_GROUP_SCHED
8248 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8250 struct cfs_rq *cfs_rq = se->cfs_rq;
8251 struct rq *rq = cfs_rq->rq;
8252 int on_rq;
8254 spin_lock_irq(&rq->lock);
8256 on_rq = se->on_rq;
8257 if (on_rq)
8258 dequeue_entity(cfs_rq, se, 0);
8260 se->load.weight = shares;
8261 se->load.inv_weight = 0;
8263 if (on_rq)
8264 enqueue_entity(cfs_rq, se, 0);
8266 spin_unlock_irq(&rq->lock);
8269 static DEFINE_MUTEX(shares_mutex);
8271 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8273 int i;
8274 unsigned long flags;
8277 * We can't change the weight of the root cgroup.
8279 if (!tg->se[0])
8280 return -EINVAL;
8282 if (shares < MIN_SHARES)
8283 shares = MIN_SHARES;
8284 else if (shares > MAX_SHARES)
8285 shares = MAX_SHARES;
8287 mutex_lock(&shares_mutex);
8288 if (tg->shares == shares)
8289 goto done;
8291 spin_lock_irqsave(&task_group_lock, flags);
8292 for_each_possible_cpu(i)
8293 unregister_fair_sched_group(tg, i);
8294 list_del_rcu(&tg->siblings);
8295 spin_unlock_irqrestore(&task_group_lock, flags);
8297 /* wait for any ongoing reference to this group to finish */
8298 synchronize_sched();
8301 * Now we are free to modify the group's share on each cpu
8302 * w/o tripping rebalance_share or load_balance_fair.
8304 tg->shares = shares;
8305 for_each_possible_cpu(i)
8306 set_se_shares(tg->se[i], shares);
8309 * Enable load balance activity on this group, by inserting it back on
8310 * each cpu's rq->leaf_cfs_rq_list.
8312 spin_lock_irqsave(&task_group_lock, flags);
8313 for_each_possible_cpu(i)
8314 register_fair_sched_group(tg, i);
8315 list_add_rcu(&tg->siblings, &tg->parent->children);
8316 spin_unlock_irqrestore(&task_group_lock, flags);
8317 done:
8318 mutex_unlock(&shares_mutex);
8319 return 0;
8322 unsigned long sched_group_shares(struct task_group *tg)
8324 return tg->shares;
8326 #endif
8328 #ifdef CONFIG_RT_GROUP_SCHED
8330 * Ensure that the real time constraints are schedulable.
8332 static DEFINE_MUTEX(rt_constraints_mutex);
8334 static unsigned long to_ratio(u64 period, u64 runtime)
8336 if (runtime == RUNTIME_INF)
8337 return 1ULL << 16;
8339 return div64_u64(runtime << 16, period);
8342 #ifdef CONFIG_CGROUP_SCHED
8343 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8345 struct task_group *tgi, *parent = tg->parent;
8346 unsigned long total = 0;
8348 if (!parent) {
8349 if (global_rt_period() < period)
8350 return 0;
8352 return to_ratio(period, runtime) <
8353 to_ratio(global_rt_period(), global_rt_runtime());
8356 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8357 return 0;
8359 rcu_read_lock();
8360 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8361 if (tgi == tg)
8362 continue;
8364 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8365 tgi->rt_bandwidth.rt_runtime);
8367 rcu_read_unlock();
8369 return total + to_ratio(period, runtime) <
8370 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8371 parent->rt_bandwidth.rt_runtime);
8373 #elif defined CONFIG_USER_SCHED
8374 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8376 struct task_group *tgi;
8377 unsigned long total = 0;
8378 unsigned long global_ratio =
8379 to_ratio(global_rt_period(), global_rt_runtime());
8381 rcu_read_lock();
8382 list_for_each_entry_rcu(tgi, &task_groups, list) {
8383 if (tgi == tg)
8384 continue;
8386 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8387 tgi->rt_bandwidth.rt_runtime);
8389 rcu_read_unlock();
8391 return total + to_ratio(period, runtime) < global_ratio;
8393 #endif
8395 /* Must be called with tasklist_lock held */
8396 static inline int tg_has_rt_tasks(struct task_group *tg)
8398 struct task_struct *g, *p;
8399 do_each_thread(g, p) {
8400 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8401 return 1;
8402 } while_each_thread(g, p);
8403 return 0;
8406 static int tg_set_bandwidth(struct task_group *tg,
8407 u64 rt_period, u64 rt_runtime)
8409 int i, err = 0;
8411 mutex_lock(&rt_constraints_mutex);
8412 read_lock(&tasklist_lock);
8413 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8414 err = -EBUSY;
8415 goto unlock;
8417 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8418 err = -EINVAL;
8419 goto unlock;
8422 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8423 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8424 tg->rt_bandwidth.rt_runtime = rt_runtime;
8426 for_each_possible_cpu(i) {
8427 struct rt_rq *rt_rq = tg->rt_rq[i];
8429 spin_lock(&rt_rq->rt_runtime_lock);
8430 rt_rq->rt_runtime = rt_runtime;
8431 spin_unlock(&rt_rq->rt_runtime_lock);
8433 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8434 unlock:
8435 read_unlock(&tasklist_lock);
8436 mutex_unlock(&rt_constraints_mutex);
8438 return err;
8441 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8443 u64 rt_runtime, rt_period;
8445 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8446 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8447 if (rt_runtime_us < 0)
8448 rt_runtime = RUNTIME_INF;
8450 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8453 long sched_group_rt_runtime(struct task_group *tg)
8455 u64 rt_runtime_us;
8457 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8458 return -1;
8460 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8461 do_div(rt_runtime_us, NSEC_PER_USEC);
8462 return rt_runtime_us;
8465 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8467 u64 rt_runtime, rt_period;
8469 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8470 rt_runtime = tg->rt_bandwidth.rt_runtime;
8472 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8475 long sched_group_rt_period(struct task_group *tg)
8477 u64 rt_period_us;
8479 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8480 do_div(rt_period_us, NSEC_PER_USEC);
8481 return rt_period_us;
8484 static int sched_rt_global_constraints(void)
8486 int ret = 0;
8488 mutex_lock(&rt_constraints_mutex);
8489 if (!__rt_schedulable(NULL, 1, 0))
8490 ret = -EINVAL;
8491 mutex_unlock(&rt_constraints_mutex);
8493 return ret;
8495 #else
8496 static int sched_rt_global_constraints(void)
8498 unsigned long flags;
8499 int i;
8501 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8502 for_each_possible_cpu(i) {
8503 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8505 spin_lock(&rt_rq->rt_runtime_lock);
8506 rt_rq->rt_runtime = global_rt_runtime();
8507 spin_unlock(&rt_rq->rt_runtime_lock);
8509 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8511 return 0;
8513 #endif
8515 int sched_rt_handler(struct ctl_table *table, int write,
8516 struct file *filp, void __user *buffer, size_t *lenp,
8517 loff_t *ppos)
8519 int ret;
8520 int old_period, old_runtime;
8521 static DEFINE_MUTEX(mutex);
8523 mutex_lock(&mutex);
8524 old_period = sysctl_sched_rt_period;
8525 old_runtime = sysctl_sched_rt_runtime;
8527 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8529 if (!ret && write) {
8530 ret = sched_rt_global_constraints();
8531 if (ret) {
8532 sysctl_sched_rt_period = old_period;
8533 sysctl_sched_rt_runtime = old_runtime;
8534 } else {
8535 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8536 def_rt_bandwidth.rt_period =
8537 ns_to_ktime(global_rt_period());
8540 mutex_unlock(&mutex);
8542 return ret;
8545 #ifdef CONFIG_CGROUP_SCHED
8547 /* return corresponding task_group object of a cgroup */
8548 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8550 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8551 struct task_group, css);
8554 static struct cgroup_subsys_state *
8555 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8557 struct task_group *tg, *parent;
8559 if (!cgrp->parent) {
8560 /* This is early initialization for the top cgroup */
8561 init_task_group.css.cgroup = cgrp;
8562 return &init_task_group.css;
8565 parent = cgroup_tg(cgrp->parent);
8566 tg = sched_create_group(parent);
8567 if (IS_ERR(tg))
8568 return ERR_PTR(-ENOMEM);
8570 /* Bind the cgroup to task_group object we just created */
8571 tg->css.cgroup = cgrp;
8573 return &tg->css;
8576 static void
8577 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8579 struct task_group *tg = cgroup_tg(cgrp);
8581 sched_destroy_group(tg);
8584 static int
8585 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8586 struct task_struct *tsk)
8588 #ifdef CONFIG_RT_GROUP_SCHED
8589 /* Don't accept realtime tasks when there is no way for them to run */
8590 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8591 return -EINVAL;
8592 #else
8593 /* We don't support RT-tasks being in separate groups */
8594 if (tsk->sched_class != &fair_sched_class)
8595 return -EINVAL;
8596 #endif
8598 return 0;
8601 static void
8602 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8603 struct cgroup *old_cont, struct task_struct *tsk)
8605 sched_move_task(tsk);
8608 #ifdef CONFIG_FAIR_GROUP_SCHED
8609 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8610 u64 shareval)
8612 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8615 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8617 struct task_group *tg = cgroup_tg(cgrp);
8619 return (u64) tg->shares;
8621 #endif
8623 #ifdef CONFIG_RT_GROUP_SCHED
8624 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8625 s64 val)
8627 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8630 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8632 return sched_group_rt_runtime(cgroup_tg(cgrp));
8635 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8636 u64 rt_period_us)
8638 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8641 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8643 return sched_group_rt_period(cgroup_tg(cgrp));
8645 #endif
8647 static struct cftype cpu_files[] = {
8648 #ifdef CONFIG_FAIR_GROUP_SCHED
8650 .name = "shares",
8651 .read_u64 = cpu_shares_read_u64,
8652 .write_u64 = cpu_shares_write_u64,
8654 #endif
8655 #ifdef CONFIG_RT_GROUP_SCHED
8657 .name = "rt_runtime_us",
8658 .read_s64 = cpu_rt_runtime_read,
8659 .write_s64 = cpu_rt_runtime_write,
8662 .name = "rt_period_us",
8663 .read_u64 = cpu_rt_period_read_uint,
8664 .write_u64 = cpu_rt_period_write_uint,
8666 #endif
8669 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8671 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8674 struct cgroup_subsys cpu_cgroup_subsys = {
8675 .name = "cpu",
8676 .create = cpu_cgroup_create,
8677 .destroy = cpu_cgroup_destroy,
8678 .can_attach = cpu_cgroup_can_attach,
8679 .attach = cpu_cgroup_attach,
8680 .populate = cpu_cgroup_populate,
8681 .subsys_id = cpu_cgroup_subsys_id,
8682 .early_init = 1,
8685 #endif /* CONFIG_CGROUP_SCHED */
8687 #ifdef CONFIG_CGROUP_CPUACCT
8690 * CPU accounting code for task groups.
8692 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8693 * (balbir@in.ibm.com).
8696 /* track cpu usage of a group of tasks */
8697 struct cpuacct {
8698 struct cgroup_subsys_state css;
8699 /* cpuusage holds pointer to a u64-type object on every cpu */
8700 u64 *cpuusage;
8703 struct cgroup_subsys cpuacct_subsys;
8705 /* return cpu accounting group corresponding to this container */
8706 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8708 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8709 struct cpuacct, css);
8712 /* return cpu accounting group to which this task belongs */
8713 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8715 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8716 struct cpuacct, css);
8719 /* create a new cpu accounting group */
8720 static struct cgroup_subsys_state *cpuacct_create(
8721 struct cgroup_subsys *ss, struct cgroup *cgrp)
8723 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8725 if (!ca)
8726 return ERR_PTR(-ENOMEM);
8728 ca->cpuusage = alloc_percpu(u64);
8729 if (!ca->cpuusage) {
8730 kfree(ca);
8731 return ERR_PTR(-ENOMEM);
8734 return &ca->css;
8737 /* destroy an existing cpu accounting group */
8738 static void
8739 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8741 struct cpuacct *ca = cgroup_ca(cgrp);
8743 free_percpu(ca->cpuusage);
8744 kfree(ca);
8747 /* return total cpu usage (in nanoseconds) of a group */
8748 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8750 struct cpuacct *ca = cgroup_ca(cgrp);
8751 u64 totalcpuusage = 0;
8752 int i;
8754 for_each_possible_cpu(i) {
8755 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8758 * Take rq->lock to make 64-bit addition safe on 32-bit
8759 * platforms.
8761 spin_lock_irq(&cpu_rq(i)->lock);
8762 totalcpuusage += *cpuusage;
8763 spin_unlock_irq(&cpu_rq(i)->lock);
8766 return totalcpuusage;
8769 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8770 u64 reset)
8772 struct cpuacct *ca = cgroup_ca(cgrp);
8773 int err = 0;
8774 int i;
8776 if (reset) {
8777 err = -EINVAL;
8778 goto out;
8781 for_each_possible_cpu(i) {
8782 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8784 spin_lock_irq(&cpu_rq(i)->lock);
8785 *cpuusage = 0;
8786 spin_unlock_irq(&cpu_rq(i)->lock);
8788 out:
8789 return err;
8792 static struct cftype files[] = {
8794 .name = "usage",
8795 .read_u64 = cpuusage_read,
8796 .write_u64 = cpuusage_write,
8800 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8802 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8806 * charge this task's execution time to its accounting group.
8808 * called with rq->lock held.
8810 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8812 struct cpuacct *ca;
8814 if (!cpuacct_subsys.active)
8815 return;
8817 ca = task_ca(tsk);
8818 if (ca) {
8819 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8821 *cpuusage += cputime;
8825 struct cgroup_subsys cpuacct_subsys = {
8826 .name = "cpuacct",
8827 .create = cpuacct_create,
8828 .destroy = cpuacct_destroy,
8829 .populate = cpuacct_populate,
8830 .subsys_id = cpuacct_subsys_id,
8832 #endif /* CONFIG_CGROUP_CPUACCT */