pids: de_thread: don't clear session/pgrp pids for the old leader
[linux-2.6/mini2440.git] / kernel / sched_fair.c
blob89fa32b4edf27d500c3d6c644596ffc4afb881f5
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
80 static inline struct task_struct *task_of(struct sched_entity *se)
82 return container_of(se, struct task_struct, se);
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
90 return cfs_rq->rq;
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
100 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
102 return p->se.cfs_rq;
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
108 return se->cfs_rq;
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
114 return grp->my_q;
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
120 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
122 return cfs_rq->tg->cfs_rq[this_cpu];
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
129 /* Do the two (enqueued) entities belong to the same group ? */
130 static inline int
131 is_same_group(struct sched_entity *se, struct sched_entity *pse)
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
136 return 0;
139 static inline struct sched_entity *parent_entity(struct sched_entity *se)
141 return se->parent;
144 #else /* CONFIG_FAIR_GROUP_SCHED */
146 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
148 return container_of(cfs_rq, struct rq, cfs);
151 #define entity_is_task(se) 1
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
156 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
158 return &task_rq(p)->cfs;
161 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
166 return &rq->cfs;
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
172 return NULL;
175 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
177 return &cpu_rq(this_cpu)->cfs;
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
183 static inline int
184 is_same_group(struct sched_entity *se, struct sched_entity *pse)
186 return 1;
189 static inline struct sched_entity *parent_entity(struct sched_entity *se)
191 return NULL;
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
201 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
205 min_vruntime = vruntime;
207 return min_vruntime;
210 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
216 return min_vruntime;
219 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
221 return se->vruntime - cfs_rq->min_vruntime;
225 * Enqueue an entity into the rb-tree:
227 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
232 s64 key = entity_key(cfs_rq, se);
233 int leftmost = 1;
236 * Find the right place in the rbtree:
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
245 if (key < entity_key(cfs_rq, entry)) {
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
257 if (leftmost) {
258 cfs_rq->rb_leftmost = &se->run_node;
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
271 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
295 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
297 return cfs_rq->rb_leftmost;
300 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
305 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
309 if (!last)
310 return NULL;
312 return rb_entry(last, struct sched_entity, run_node);
315 /**************************************************************
316 * Scheduling class statistics methods:
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
326 if (ret || !write)
327 return ret;
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
332 return 0;
334 #endif
337 * delta *= w / rw
339 static inline unsigned long
340 calc_delta_weight(unsigned long delta, struct sched_entity *se)
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
347 return delta;
351 * delta *= rw / w
353 static inline unsigned long
354 calc_delta_fair(unsigned long delta, struct sched_entity *se)
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
361 return delta;
365 * The idea is to set a period in which each task runs once.
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
370 * p = (nr <= nl) ? l : l*nr/nl
372 static u64 __sched_period(unsigned long nr_running)
374 u64 period = sysctl_sched_latency;
375 unsigned long nr_latency = sched_nr_latency;
377 if (unlikely(nr_running > nr_latency)) {
378 period = sysctl_sched_min_granularity;
379 period *= nr_running;
382 return period;
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
389 * s = p*w/rw
391 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
397 * We calculate the vruntime slice of a to be inserted task
399 * vs = s*rw/w = p
401 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
403 unsigned long nr_running = cfs_rq->nr_running;
405 if (!se->on_rq)
406 nr_running++;
408 return __sched_period(nr_running);
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
415 * -20 |
417 * 0 --------+-------
418 * .'
419 * 19 .'
422 static unsigned long
423 calc_delta_asym(unsigned long delta, struct sched_entity *se)
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
430 for_each_sched_entity(se) {
431 struct load_weight *se_lw = &se->load;
433 if (se->load.weight < NICE_0_LOAD)
434 se_lw = &lw;
436 delta = calc_delta_mine(delta,
437 cfs_rq_of(se)->load.weight, se_lw);
440 return delta;
444 * Update the current task's runtime statistics. Skip current tasks that
445 * are not in our scheduling class.
447 static inline void
448 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
449 unsigned long delta_exec)
451 unsigned long delta_exec_weighted;
453 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
455 curr->sum_exec_runtime += delta_exec;
456 schedstat_add(cfs_rq, exec_clock, delta_exec);
457 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
458 curr->vruntime += delta_exec_weighted;
461 static void update_curr(struct cfs_rq *cfs_rq)
463 struct sched_entity *curr = cfs_rq->curr;
464 u64 now = rq_of(cfs_rq)->clock;
465 unsigned long delta_exec;
467 if (unlikely(!curr))
468 return;
471 * Get the amount of time the current task was running
472 * since the last time we changed load (this cannot
473 * overflow on 32 bits):
475 delta_exec = (unsigned long)(now - curr->exec_start);
477 __update_curr(cfs_rq, curr, delta_exec);
478 curr->exec_start = now;
480 if (entity_is_task(curr)) {
481 struct task_struct *curtask = task_of(curr);
483 cpuacct_charge(curtask, delta_exec);
487 static inline void
488 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
490 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
494 * Task is being enqueued - update stats:
496 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
499 * Are we enqueueing a waiting task? (for current tasks
500 * a dequeue/enqueue event is a NOP)
502 if (se != cfs_rq->curr)
503 update_stats_wait_start(cfs_rq, se);
506 static void
507 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
509 schedstat_set(se->wait_max, max(se->wait_max,
510 rq_of(cfs_rq)->clock - se->wait_start));
511 schedstat_set(se->wait_count, se->wait_count + 1);
512 schedstat_set(se->wait_sum, se->wait_sum +
513 rq_of(cfs_rq)->clock - se->wait_start);
514 schedstat_set(se->wait_start, 0);
517 static inline void
518 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
521 * Mark the end of the wait period if dequeueing a
522 * waiting task:
524 if (se != cfs_rq->curr)
525 update_stats_wait_end(cfs_rq, se);
529 * We are picking a new current task - update its stats:
531 static inline void
532 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
535 * We are starting a new run period:
537 se->exec_start = rq_of(cfs_rq)->clock;
540 /**************************************************
541 * Scheduling class queueing methods:
544 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
545 static void
546 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
548 cfs_rq->task_weight += weight;
550 #else
551 static inline void
552 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
555 #endif
557 static void
558 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 update_load_add(&cfs_rq->load, se->load.weight);
561 if (!parent_entity(se))
562 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
563 if (entity_is_task(se))
564 add_cfs_task_weight(cfs_rq, se->load.weight);
565 cfs_rq->nr_running++;
566 se->on_rq = 1;
567 list_add(&se->group_node, &cfs_rq->tasks);
570 static void
571 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 update_load_sub(&cfs_rq->load, se->load.weight);
574 if (!parent_entity(se))
575 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
576 if (entity_is_task(se))
577 add_cfs_task_weight(cfs_rq, -se->load.weight);
578 cfs_rq->nr_running--;
579 se->on_rq = 0;
580 list_del_init(&se->group_node);
583 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
585 #ifdef CONFIG_SCHEDSTATS
586 if (se->sleep_start) {
587 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
588 struct task_struct *tsk = task_of(se);
590 if ((s64)delta < 0)
591 delta = 0;
593 if (unlikely(delta > se->sleep_max))
594 se->sleep_max = delta;
596 se->sleep_start = 0;
597 se->sum_sleep_runtime += delta;
599 account_scheduler_latency(tsk, delta >> 10, 1);
601 if (se->block_start) {
602 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
603 struct task_struct *tsk = task_of(se);
605 if ((s64)delta < 0)
606 delta = 0;
608 if (unlikely(delta > se->block_max))
609 se->block_max = delta;
611 se->block_start = 0;
612 se->sum_sleep_runtime += delta;
615 * Blocking time is in units of nanosecs, so shift by 20 to
616 * get a milliseconds-range estimation of the amount of
617 * time that the task spent sleeping:
619 if (unlikely(prof_on == SLEEP_PROFILING)) {
621 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
622 delta >> 20);
624 account_scheduler_latency(tsk, delta >> 10, 0);
626 #endif
629 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
631 #ifdef CONFIG_SCHED_DEBUG
632 s64 d = se->vruntime - cfs_rq->min_vruntime;
634 if (d < 0)
635 d = -d;
637 if (d > 3*sysctl_sched_latency)
638 schedstat_inc(cfs_rq, nr_spread_over);
639 #endif
642 static void
643 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
645 u64 vruntime;
647 if (first_fair(cfs_rq)) {
648 vruntime = min_vruntime(cfs_rq->min_vruntime,
649 __pick_next_entity(cfs_rq)->vruntime);
650 } else
651 vruntime = cfs_rq->min_vruntime;
654 * The 'current' period is already promised to the current tasks,
655 * however the extra weight of the new task will slow them down a
656 * little, place the new task so that it fits in the slot that
657 * stays open at the end.
659 if (initial && sched_feat(START_DEBIT))
660 vruntime += sched_vslice_add(cfs_rq, se);
662 if (!initial) {
663 /* sleeps upto a single latency don't count. */
664 if (sched_feat(NEW_FAIR_SLEEPERS)) {
665 if (sched_feat(NORMALIZED_SLEEPER))
666 vruntime -= calc_delta_weight(sysctl_sched_latency, se);
667 else
668 vruntime -= sysctl_sched_latency;
671 /* ensure we never gain time by being placed backwards. */
672 vruntime = max_vruntime(se->vruntime, vruntime);
675 se->vruntime = vruntime;
678 static void
679 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
682 * Update run-time statistics of the 'current'.
684 update_curr(cfs_rq);
686 if (wakeup) {
687 place_entity(cfs_rq, se, 0);
688 enqueue_sleeper(cfs_rq, se);
691 update_stats_enqueue(cfs_rq, se);
692 check_spread(cfs_rq, se);
693 if (se != cfs_rq->curr)
694 __enqueue_entity(cfs_rq, se);
695 account_entity_enqueue(cfs_rq, se);
698 static void update_avg(u64 *avg, u64 sample)
700 s64 diff = sample - *avg;
701 *avg += diff >> 3;
704 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
706 if (!se->last_wakeup)
707 return;
709 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
710 se->last_wakeup = 0;
713 static void
714 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
717 * Update run-time statistics of the 'current'.
719 update_curr(cfs_rq);
721 update_stats_dequeue(cfs_rq, se);
722 if (sleep) {
723 update_avg_stats(cfs_rq, se);
724 #ifdef CONFIG_SCHEDSTATS
725 if (entity_is_task(se)) {
726 struct task_struct *tsk = task_of(se);
728 if (tsk->state & TASK_INTERRUPTIBLE)
729 se->sleep_start = rq_of(cfs_rq)->clock;
730 if (tsk->state & TASK_UNINTERRUPTIBLE)
731 se->block_start = rq_of(cfs_rq)->clock;
733 #endif
736 if (se != cfs_rq->curr)
737 __dequeue_entity(cfs_rq, se);
738 account_entity_dequeue(cfs_rq, se);
742 * Preempt the current task with a newly woken task if needed:
744 static void
745 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
747 unsigned long ideal_runtime, delta_exec;
749 ideal_runtime = sched_slice(cfs_rq, curr);
750 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
751 if (delta_exec > ideal_runtime)
752 resched_task(rq_of(cfs_rq)->curr);
755 static void
756 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
758 /* 'current' is not kept within the tree. */
759 if (se->on_rq) {
761 * Any task has to be enqueued before it get to execute on
762 * a CPU. So account for the time it spent waiting on the
763 * runqueue.
765 update_stats_wait_end(cfs_rq, se);
766 __dequeue_entity(cfs_rq, se);
769 update_stats_curr_start(cfs_rq, se);
770 cfs_rq->curr = se;
771 #ifdef CONFIG_SCHEDSTATS
773 * Track our maximum slice length, if the CPU's load is at
774 * least twice that of our own weight (i.e. dont track it
775 * when there are only lesser-weight tasks around):
777 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
778 se->slice_max = max(se->slice_max,
779 se->sum_exec_runtime - se->prev_sum_exec_runtime);
781 #endif
782 se->prev_sum_exec_runtime = se->sum_exec_runtime;
785 static int
786 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
788 static struct sched_entity *
789 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
791 if (!cfs_rq->next)
792 return se;
794 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
795 return se;
797 return cfs_rq->next;
800 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
802 struct sched_entity *se = NULL;
804 if (first_fair(cfs_rq)) {
805 se = __pick_next_entity(cfs_rq);
806 se = pick_next(cfs_rq, se);
807 set_next_entity(cfs_rq, se);
810 return se;
813 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
816 * If still on the runqueue then deactivate_task()
817 * was not called and update_curr() has to be done:
819 if (prev->on_rq)
820 update_curr(cfs_rq);
822 check_spread(cfs_rq, prev);
823 if (prev->on_rq) {
824 update_stats_wait_start(cfs_rq, prev);
825 /* Put 'current' back into the tree. */
826 __enqueue_entity(cfs_rq, prev);
828 cfs_rq->curr = NULL;
831 static void
832 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
835 * Update run-time statistics of the 'current'.
837 update_curr(cfs_rq);
839 #ifdef CONFIG_SCHED_HRTICK
841 * queued ticks are scheduled to match the slice, so don't bother
842 * validating it and just reschedule.
844 if (queued)
845 return resched_task(rq_of(cfs_rq)->curr);
847 * don't let the period tick interfere with the hrtick preemption
849 if (!sched_feat(DOUBLE_TICK) &&
850 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
851 return;
852 #endif
854 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
855 check_preempt_tick(cfs_rq, curr);
858 /**************************************************
859 * CFS operations on tasks:
862 #ifdef CONFIG_SCHED_HRTICK
863 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
865 int requeue = rq->curr == p;
866 struct sched_entity *se = &p->se;
867 struct cfs_rq *cfs_rq = cfs_rq_of(se);
869 WARN_ON(task_rq(p) != rq);
871 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
872 u64 slice = sched_slice(cfs_rq, se);
873 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
874 s64 delta = slice - ran;
876 if (delta < 0) {
877 if (rq->curr == p)
878 resched_task(p);
879 return;
883 * Don't schedule slices shorter than 10000ns, that just
884 * doesn't make sense. Rely on vruntime for fairness.
886 if (!requeue)
887 delta = max(10000LL, delta);
889 hrtick_start(rq, delta, requeue);
892 #else
893 static inline void
894 hrtick_start_fair(struct rq *rq, struct task_struct *p)
897 #endif
900 * The enqueue_task method is called before nr_running is
901 * increased. Here we update the fair scheduling stats and
902 * then put the task into the rbtree:
904 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
906 struct cfs_rq *cfs_rq;
907 struct sched_entity *se = &p->se;
909 for_each_sched_entity(se) {
910 if (se->on_rq)
911 break;
912 cfs_rq = cfs_rq_of(se);
913 enqueue_entity(cfs_rq, se, wakeup);
914 wakeup = 1;
917 hrtick_start_fair(rq, rq->curr);
921 * The dequeue_task method is called before nr_running is
922 * decreased. We remove the task from the rbtree and
923 * update the fair scheduling stats:
925 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
927 struct cfs_rq *cfs_rq;
928 struct sched_entity *se = &p->se;
930 for_each_sched_entity(se) {
931 cfs_rq = cfs_rq_of(se);
932 dequeue_entity(cfs_rq, se, sleep);
933 /* Don't dequeue parent if it has other entities besides us */
934 if (cfs_rq->load.weight)
935 break;
936 sleep = 1;
939 hrtick_start_fair(rq, rq->curr);
943 * sched_yield() support is very simple - we dequeue and enqueue.
945 * If compat_yield is turned on then we requeue to the end of the tree.
947 static void yield_task_fair(struct rq *rq)
949 struct task_struct *curr = rq->curr;
950 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
951 struct sched_entity *rightmost, *se = &curr->se;
954 * Are we the only task in the tree?
956 if (unlikely(cfs_rq->nr_running == 1))
957 return;
959 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
960 __update_rq_clock(rq);
962 * Update run-time statistics of the 'current'.
964 update_curr(cfs_rq);
966 return;
969 * Find the rightmost entry in the rbtree:
971 rightmost = __pick_last_entity(cfs_rq);
973 * Already in the rightmost position?
975 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
976 return;
979 * Minimally necessary key value to be last in the tree:
980 * Upon rescheduling, sched_class::put_prev_task() will place
981 * 'current' within the tree based on its new key value.
983 se->vruntime = rightmost->vruntime + 1;
987 * wake_idle() will wake a task on an idle cpu if task->cpu is
988 * not idle and an idle cpu is available. The span of cpus to
989 * search starts with cpus closest then further out as needed,
990 * so we always favor a closer, idle cpu.
992 * Returns the CPU we should wake onto.
994 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
995 static int wake_idle(int cpu, struct task_struct *p)
997 cpumask_t tmp;
998 struct sched_domain *sd;
999 int i;
1002 * If it is idle, then it is the best cpu to run this task.
1004 * This cpu is also the best, if it has more than one task already.
1005 * Siblings must be also busy(in most cases) as they didn't already
1006 * pickup the extra load from this cpu and hence we need not check
1007 * sibling runqueue info. This will avoid the checks and cache miss
1008 * penalities associated with that.
1010 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1011 return cpu;
1013 for_each_domain(cpu, sd) {
1014 if ((sd->flags & SD_WAKE_IDLE)
1015 || ((sd->flags & SD_WAKE_IDLE_FAR)
1016 && !task_hot(p, task_rq(p)->clock, sd))) {
1017 cpus_and(tmp, sd->span, p->cpus_allowed);
1018 for_each_cpu_mask(i, tmp) {
1019 if (idle_cpu(i)) {
1020 if (i != task_cpu(p)) {
1021 schedstat_inc(p,
1022 se.nr_wakeups_idle);
1024 return i;
1027 } else {
1028 break;
1031 return cpu;
1033 #else
1034 static inline int wake_idle(int cpu, struct task_struct *p)
1036 return cpu;
1038 #endif
1040 #ifdef CONFIG_SMP
1042 static const struct sched_class fair_sched_class;
1044 static int
1045 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1046 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1047 int idx, unsigned long load, unsigned long this_load,
1048 unsigned int imbalance)
1050 struct task_struct *curr = this_rq->curr;
1051 unsigned long tl = this_load;
1052 unsigned long tl_per_task;
1054 if (!(this_sd->flags & SD_WAKE_AFFINE))
1055 return 0;
1058 * If the currently running task will sleep within
1059 * a reasonable amount of time then attract this newly
1060 * woken task:
1062 if (sync && curr->sched_class == &fair_sched_class) {
1063 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1064 p->se.avg_overlap < sysctl_sched_migration_cost)
1065 return 1;
1068 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1069 tl_per_task = cpu_avg_load_per_task(this_cpu);
1072 * If sync wakeup then subtract the (maximum possible)
1073 * effect of the currently running task from the load
1074 * of the current CPU:
1076 if (sync)
1077 tl -= current->se.load.weight;
1079 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1080 100*(tl + p->se.load.weight) <= imbalance*load) {
1082 * This domain has SD_WAKE_AFFINE and
1083 * p is cache cold in this domain, and
1084 * there is no bad imbalance.
1086 schedstat_inc(this_sd, ttwu_move_affine);
1087 schedstat_inc(p, se.nr_wakeups_affine);
1089 return 1;
1091 return 0;
1094 static int select_task_rq_fair(struct task_struct *p, int sync)
1096 struct sched_domain *sd, *this_sd = NULL;
1097 int prev_cpu, this_cpu, new_cpu;
1098 unsigned long load, this_load;
1099 struct rq *rq, *this_rq;
1100 unsigned int imbalance;
1101 int idx;
1103 prev_cpu = task_cpu(p);
1104 rq = task_rq(p);
1105 this_cpu = smp_processor_id();
1106 this_rq = cpu_rq(this_cpu);
1107 new_cpu = prev_cpu;
1110 * 'this_sd' is the first domain that both
1111 * this_cpu and prev_cpu are present in:
1113 for_each_domain(this_cpu, sd) {
1114 if (cpu_isset(prev_cpu, sd->span)) {
1115 this_sd = sd;
1116 break;
1120 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1121 goto out;
1124 * Check for affine wakeup and passive balancing possibilities.
1126 if (!this_sd)
1127 goto out;
1129 idx = this_sd->wake_idx;
1131 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1133 load = source_load(prev_cpu, idx);
1134 this_load = target_load(this_cpu, idx);
1136 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1137 load, this_load, imbalance))
1138 return this_cpu;
1140 if (prev_cpu == this_cpu)
1141 goto out;
1144 * Start passive balancing when half the imbalance_pct
1145 * limit is reached.
1147 if (this_sd->flags & SD_WAKE_BALANCE) {
1148 if (imbalance*this_load <= 100*load) {
1149 schedstat_inc(this_sd, ttwu_move_balance);
1150 schedstat_inc(p, se.nr_wakeups_passive);
1151 return this_cpu;
1155 out:
1156 return wake_idle(new_cpu, p);
1158 #endif /* CONFIG_SMP */
1160 static unsigned long wakeup_gran(struct sched_entity *se)
1162 unsigned long gran = sysctl_sched_wakeup_granularity;
1165 * More easily preempt - nice tasks, while not making it harder for
1166 * + nice tasks.
1168 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1170 return gran;
1174 * Should 'se' preempt 'curr'.
1176 * |s1
1177 * |s2
1178 * |s3
1180 * |<--->|c
1182 * w(c, s1) = -1
1183 * w(c, s2) = 0
1184 * w(c, s3) = 1
1187 static int
1188 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1190 s64 gran, vdiff = curr->vruntime - se->vruntime;
1192 if (vdiff < 0)
1193 return -1;
1195 gran = wakeup_gran(curr);
1196 if (vdiff > gran)
1197 return 1;
1199 return 0;
1202 /* return depth at which a sched entity is present in the hierarchy */
1203 static inline int depth_se(struct sched_entity *se)
1205 int depth = 0;
1207 for_each_sched_entity(se)
1208 depth++;
1210 return depth;
1214 * Preempt the current task with a newly woken task if needed:
1216 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1218 struct task_struct *curr = rq->curr;
1219 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1220 struct sched_entity *se = &curr->se, *pse = &p->se;
1221 int se_depth, pse_depth;
1223 if (unlikely(rt_prio(p->prio))) {
1224 update_rq_clock(rq);
1225 update_curr(cfs_rq);
1226 resched_task(curr);
1227 return;
1230 se->last_wakeup = se->sum_exec_runtime;
1231 if (unlikely(se == pse))
1232 return;
1234 cfs_rq_of(pse)->next = pse;
1237 * Batch tasks do not preempt (their preemption is driven by
1238 * the tick):
1240 if (unlikely(p->policy == SCHED_BATCH))
1241 return;
1243 if (!sched_feat(WAKEUP_PREEMPT))
1244 return;
1247 * preemption test can be made between sibling entities who are in the
1248 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1249 * both tasks until we find their ancestors who are siblings of common
1250 * parent.
1253 /* First walk up until both entities are at same depth */
1254 se_depth = depth_se(se);
1255 pse_depth = depth_se(pse);
1257 while (se_depth > pse_depth) {
1258 se_depth--;
1259 se = parent_entity(se);
1262 while (pse_depth > se_depth) {
1263 pse_depth--;
1264 pse = parent_entity(pse);
1267 while (!is_same_group(se, pse)) {
1268 se = parent_entity(se);
1269 pse = parent_entity(pse);
1272 if (wakeup_preempt_entity(se, pse) == 1)
1273 resched_task(curr);
1276 static struct task_struct *pick_next_task_fair(struct rq *rq)
1278 struct task_struct *p;
1279 struct cfs_rq *cfs_rq = &rq->cfs;
1280 struct sched_entity *se;
1282 if (unlikely(!cfs_rq->nr_running))
1283 return NULL;
1285 do {
1286 se = pick_next_entity(cfs_rq);
1287 cfs_rq = group_cfs_rq(se);
1288 } while (cfs_rq);
1290 p = task_of(se);
1291 hrtick_start_fair(rq, p);
1293 return p;
1297 * Account for a descheduled task:
1299 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1301 struct sched_entity *se = &prev->se;
1302 struct cfs_rq *cfs_rq;
1304 for_each_sched_entity(se) {
1305 cfs_rq = cfs_rq_of(se);
1306 put_prev_entity(cfs_rq, se);
1310 #ifdef CONFIG_SMP
1311 /**************************************************
1312 * Fair scheduling class load-balancing methods:
1316 * Load-balancing iterator. Note: while the runqueue stays locked
1317 * during the whole iteration, the current task might be
1318 * dequeued so the iterator has to be dequeue-safe. Here we
1319 * achieve that by always pre-iterating before returning
1320 * the current task:
1322 static struct task_struct *
1323 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1325 struct task_struct *p = NULL;
1326 struct sched_entity *se;
1328 if (next == &cfs_rq->tasks)
1329 return NULL;
1331 /* Skip over entities that are not tasks */
1332 do {
1333 se = list_entry(next, struct sched_entity, group_node);
1334 next = next->next;
1335 } while (next != &cfs_rq->tasks && !entity_is_task(se));
1337 if (next == &cfs_rq->tasks)
1338 return NULL;
1340 cfs_rq->balance_iterator = next;
1342 if (entity_is_task(se))
1343 p = task_of(se);
1345 return p;
1348 static struct task_struct *load_balance_start_fair(void *arg)
1350 struct cfs_rq *cfs_rq = arg;
1352 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1355 static struct task_struct *load_balance_next_fair(void *arg)
1357 struct cfs_rq *cfs_rq = arg;
1359 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1362 static unsigned long
1363 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1364 unsigned long max_load_move, struct sched_domain *sd,
1365 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1366 struct cfs_rq *cfs_rq)
1368 struct rq_iterator cfs_rq_iterator;
1370 cfs_rq_iterator.start = load_balance_start_fair;
1371 cfs_rq_iterator.next = load_balance_next_fair;
1372 cfs_rq_iterator.arg = cfs_rq;
1374 return balance_tasks(this_rq, this_cpu, busiest,
1375 max_load_move, sd, idle, all_pinned,
1376 this_best_prio, &cfs_rq_iterator);
1379 #ifdef CONFIG_FAIR_GROUP_SCHED
1380 static unsigned long
1381 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1382 unsigned long max_load_move,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 int *all_pinned, int *this_best_prio)
1386 long rem_load_move = max_load_move;
1387 int busiest_cpu = cpu_of(busiest);
1388 struct task_group *tg;
1390 rcu_read_lock();
1391 list_for_each_entry(tg, &task_groups, list) {
1392 long imbalance;
1393 unsigned long this_weight, busiest_weight;
1394 long rem_load, max_load, moved_load;
1397 * empty group
1399 if (!aggregate(tg, sd)->task_weight)
1400 continue;
1402 rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
1403 rem_load /= aggregate(tg, sd)->load + 1;
1405 this_weight = tg->cfs_rq[this_cpu]->task_weight;
1406 busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
1408 imbalance = (busiest_weight - this_weight) / 2;
1410 if (imbalance < 0)
1411 imbalance = busiest_weight;
1413 max_load = max(rem_load, imbalance);
1414 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1415 max_load, sd, idle, all_pinned, this_best_prio,
1416 tg->cfs_rq[busiest_cpu]);
1418 if (!moved_load)
1419 continue;
1421 move_group_shares(tg, sd, busiest_cpu, this_cpu);
1423 moved_load *= aggregate(tg, sd)->load;
1424 moved_load /= aggregate(tg, sd)->rq_weight + 1;
1426 rem_load_move -= moved_load;
1427 if (rem_load_move < 0)
1428 break;
1430 rcu_read_unlock();
1432 return max_load_move - rem_load_move;
1434 #else
1435 static unsigned long
1436 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1437 unsigned long max_load_move,
1438 struct sched_domain *sd, enum cpu_idle_type idle,
1439 int *all_pinned, int *this_best_prio)
1441 return __load_balance_fair(this_rq, this_cpu, busiest,
1442 max_load_move, sd, idle, all_pinned,
1443 this_best_prio, &busiest->cfs);
1445 #endif
1447 static int
1448 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1449 struct sched_domain *sd, enum cpu_idle_type idle)
1451 struct cfs_rq *busy_cfs_rq;
1452 struct rq_iterator cfs_rq_iterator;
1454 cfs_rq_iterator.start = load_balance_start_fair;
1455 cfs_rq_iterator.next = load_balance_next_fair;
1457 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1459 * pass busy_cfs_rq argument into
1460 * load_balance_[start|next]_fair iterators
1462 cfs_rq_iterator.arg = busy_cfs_rq;
1463 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1464 &cfs_rq_iterator))
1465 return 1;
1468 return 0;
1470 #endif
1473 * scheduler tick hitting a task of our scheduling class:
1475 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1477 struct cfs_rq *cfs_rq;
1478 struct sched_entity *se = &curr->se;
1480 for_each_sched_entity(se) {
1481 cfs_rq = cfs_rq_of(se);
1482 entity_tick(cfs_rq, se, queued);
1486 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1489 * Share the fairness runtime between parent and child, thus the
1490 * total amount of pressure for CPU stays equal - new tasks
1491 * get a chance to run but frequent forkers are not allowed to
1492 * monopolize the CPU. Note: the parent runqueue is locked,
1493 * the child is not running yet.
1495 static void task_new_fair(struct rq *rq, struct task_struct *p)
1497 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1498 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1499 int this_cpu = smp_processor_id();
1501 sched_info_queued(p);
1503 update_curr(cfs_rq);
1504 place_entity(cfs_rq, se, 1);
1506 /* 'curr' will be NULL if the child belongs to a different group */
1507 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1508 curr && curr->vruntime < se->vruntime) {
1510 * Upon rescheduling, sched_class::put_prev_task() will place
1511 * 'current' within the tree based on its new key value.
1513 swap(curr->vruntime, se->vruntime);
1516 enqueue_task_fair(rq, p, 0);
1517 resched_task(rq->curr);
1521 * Priority of the task has changed. Check to see if we preempt
1522 * the current task.
1524 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1525 int oldprio, int running)
1528 * Reschedule if we are currently running on this runqueue and
1529 * our priority decreased, or if we are not currently running on
1530 * this runqueue and our priority is higher than the current's
1532 if (running) {
1533 if (p->prio > oldprio)
1534 resched_task(rq->curr);
1535 } else
1536 check_preempt_curr(rq, p);
1540 * We switched to the sched_fair class.
1542 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1543 int running)
1546 * We were most likely switched from sched_rt, so
1547 * kick off the schedule if running, otherwise just see
1548 * if we can still preempt the current task.
1550 if (running)
1551 resched_task(rq->curr);
1552 else
1553 check_preempt_curr(rq, p);
1556 /* Account for a task changing its policy or group.
1558 * This routine is mostly called to set cfs_rq->curr field when a task
1559 * migrates between groups/classes.
1561 static void set_curr_task_fair(struct rq *rq)
1563 struct sched_entity *se = &rq->curr->se;
1565 for_each_sched_entity(se)
1566 set_next_entity(cfs_rq_of(se), se);
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570 static void moved_group_fair(struct task_struct *p)
1572 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1574 update_curr(cfs_rq);
1575 place_entity(cfs_rq, &p->se, 1);
1577 #endif
1580 * All the scheduling class methods:
1582 static const struct sched_class fair_sched_class = {
1583 .next = &idle_sched_class,
1584 .enqueue_task = enqueue_task_fair,
1585 .dequeue_task = dequeue_task_fair,
1586 .yield_task = yield_task_fair,
1587 #ifdef CONFIG_SMP
1588 .select_task_rq = select_task_rq_fair,
1589 #endif /* CONFIG_SMP */
1591 .check_preempt_curr = check_preempt_wakeup,
1593 .pick_next_task = pick_next_task_fair,
1594 .put_prev_task = put_prev_task_fair,
1596 #ifdef CONFIG_SMP
1597 .load_balance = load_balance_fair,
1598 .move_one_task = move_one_task_fair,
1599 #endif
1601 .set_curr_task = set_curr_task_fair,
1602 .task_tick = task_tick_fair,
1603 .task_new = task_new_fair,
1605 .prio_changed = prio_changed_fair,
1606 .switched_to = switched_to_fair,
1608 #ifdef CONFIG_FAIR_GROUP_SCHED
1609 .moved_group = moved_group_fair,
1610 #endif
1613 #ifdef CONFIG_SCHED_DEBUG
1614 static void
1615 print_cfs_rq_tasks(struct seq_file *m, struct cfs_rq *cfs_rq, int depth)
1617 struct sched_entity *se;
1619 if (!cfs_rq)
1620 return;
1622 list_for_each_entry_rcu(se, &cfs_rq->tasks, group_node) {
1623 int i;
1625 for (i = depth; i; i--)
1626 seq_puts(m, " ");
1628 seq_printf(m, "%lu %s %lu\n",
1629 se->load.weight,
1630 entity_is_task(se) ? "T" : "G",
1631 calc_delta_weight(SCHED_LOAD_SCALE, se)
1633 if (!entity_is_task(se))
1634 print_cfs_rq_tasks(m, group_cfs_rq(se), depth + 1);
1638 static void print_cfs_stats(struct seq_file *m, int cpu)
1640 struct cfs_rq *cfs_rq;
1642 rcu_read_lock();
1643 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1644 print_cfs_rq(m, cpu, cfs_rq);
1646 seq_printf(m, "\nWeight tree:\n");
1647 print_cfs_rq_tasks(m, &cpu_rq(cpu)->cfs, 1);
1648 rcu_read_unlock();
1650 #endif