Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6/mini2440.git] / fs / ext4 / mballoc.c
blobf871677a798499c4327629cf282d4f75b38d44b3
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
26 * MUSTDO:
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
30 * TODO v4:
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
34 * - quota
35 * - reservation for superuser
37 * TODO v3:
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
42 * - error handling
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
49 * During initialization phase of the allocator we decide to use the
50 * group preallocation or inode preallocation depending on the size of
51 * the file. The size of the file could be the resulting file size we
52 * would have after allocation, or the current file size, which ever
53 * is larger. If the size is less than sbi->s_mb_stream_request we
54 * select to use the group preallocation. The default value of
55 * s_mb_stream_request is 16 blocks. This can also be tuned via
56 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
57 * terms of number of blocks.
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small files closer together on the disk.
62 * First stage the allocator looks at the inode prealloc list,
63 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
64 * spaces for this particular inode. The inode prealloc space is
65 * represented as:
67 * pa_lstart -> the logical start block for this prealloc space
68 * pa_pstart -> the physical start block for this prealloc space
69 * pa_len -> lenght for this prealloc space
70 * pa_free -> free space available in this prealloc space
72 * The inode preallocation space is used looking at the _logical_ start
73 * block. If only the logical file block falls within the range of prealloc
74 * space we will consume the particular prealloc space. This make sure that
75 * that the we have contiguous physical blocks representing the file blocks
77 * The important thing to be noted in case of inode prealloc space is that
78 * we don't modify the values associated to inode prealloc space except
79 * pa_free.
81 * If we are not able to find blocks in the inode prealloc space and if we
82 * have the group allocation flag set then we look at the locality group
83 * prealloc space. These are per CPU prealloc list repreasented as
85 * ext4_sb_info.s_locality_groups[smp_processor_id()]
87 * The reason for having a per cpu locality group is to reduce the contention
88 * between CPUs. It is possible to get scheduled at this point.
90 * The locality group prealloc space is used looking at whether we have
91 * enough free space (pa_free) withing the prealloc space.
93 * If we can't allocate blocks via inode prealloc or/and locality group
94 * prealloc then we look at the buddy cache. The buddy cache is represented
95 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
96 * mapped to the buddy and bitmap information regarding different
97 * groups. The buddy information is attached to buddy cache inode so that
98 * we can access them through the page cache. The information regarding
99 * each group is loaded via ext4_mb_load_buddy. The information involve
100 * block bitmap and buddy information. The information are stored in the
101 * inode as:
103 * { page }
104 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
107 * one block each for bitmap and buddy information. So for each group we
108 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
109 * blocksize) blocks. So it can have information regarding groups_per_page
110 * which is blocks_per_page/2
112 * The buddy cache inode is not stored on disk. The inode is thrown
113 * away when the filesystem is unmounted.
115 * We look for count number of blocks in the buddy cache. If we were able
116 * to locate that many free blocks we return with additional information
117 * regarding rest of the contiguous physical block available
119 * Before allocating blocks via buddy cache we normalize the request
120 * blocks. This ensure we ask for more blocks that we needed. The extra
121 * blocks that we get after allocation is added to the respective prealloc
122 * list. In case of inode preallocation we follow a list of heuristics
123 * based on file size. This can be found in ext4_mb_normalize_request. If
124 * we are doing a group prealloc we try to normalize the request to
125 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
126 * 512 blocks. This can be tuned via
127 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
128 * terms of number of blocks. If we have mounted the file system with -O
129 * stripe=<value> option the group prealloc request is normalized to the
130 * stripe value (sbi->s_stripe)
132 * The regular allocator(using the buddy cache) supports few tunables.
134 * /sys/fs/ext4/<partition>/mb_min_to_scan
135 * /sys/fs/ext4/<partition>/mb_max_to_scan
136 * /sys/fs/ext4/<partition>/mb_order2_req
138 * The regular allocator uses buddy scan only if the request len is power of
139 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
140 * value of s_mb_order2_reqs can be tuned via
141 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
142 * stripe size (sbi->s_stripe), we try to search for contigous block in
143 * stripe size. This should result in better allocation on RAID setups. If
144 * not, we search in the specific group using bitmap for best extents. The
145 * tunable min_to_scan and max_to_scan control the behaviour here.
146 * min_to_scan indicate how long the mballoc __must__ look for a best
147 * extent and max_to_scan indicates how long the mballoc __can__ look for a
148 * best extent in the found extents. Searching for the blocks starts with
149 * the group specified as the goal value in allocation context via
150 * ac_g_ex. Each group is first checked based on the criteria whether it
151 * can used for allocation. ext4_mb_good_group explains how the groups are
152 * checked.
154 * Both the prealloc space are getting populated as above. So for the first
155 * request we will hit the buddy cache which will result in this prealloc
156 * space getting filled. The prealloc space is then later used for the
157 * subsequent request.
161 * mballoc operates on the following data:
162 * - on-disk bitmap
163 * - in-core buddy (actually includes buddy and bitmap)
164 * - preallocation descriptors (PAs)
166 * there are two types of preallocations:
167 * - inode
168 * assiged to specific inode and can be used for this inode only.
169 * it describes part of inode's space preallocated to specific
170 * physical blocks. any block from that preallocated can be used
171 * independent. the descriptor just tracks number of blocks left
172 * unused. so, before taking some block from descriptor, one must
173 * make sure corresponded logical block isn't allocated yet. this
174 * also means that freeing any block within descriptor's range
175 * must discard all preallocated blocks.
176 * - locality group
177 * assigned to specific locality group which does not translate to
178 * permanent set of inodes: inode can join and leave group. space
179 * from this type of preallocation can be used for any inode. thus
180 * it's consumed from the beginning to the end.
182 * relation between them can be expressed as:
183 * in-core buddy = on-disk bitmap + preallocation descriptors
185 * this mean blocks mballoc considers used are:
186 * - allocated blocks (persistent)
187 * - preallocated blocks (non-persistent)
189 * consistency in mballoc world means that at any time a block is either
190 * free or used in ALL structures. notice: "any time" should not be read
191 * literally -- time is discrete and delimited by locks.
193 * to keep it simple, we don't use block numbers, instead we count number of
194 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
196 * all operations can be expressed as:
197 * - init buddy: buddy = on-disk + PAs
198 * - new PA: buddy += N; PA = N
199 * - use inode PA: on-disk += N; PA -= N
200 * - discard inode PA buddy -= on-disk - PA; PA = 0
201 * - use locality group PA on-disk += N; PA -= N
202 * - discard locality group PA buddy -= PA; PA = 0
203 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
204 * is used in real operation because we can't know actual used
205 * bits from PA, only from on-disk bitmap
207 * if we follow this strict logic, then all operations above should be atomic.
208 * given some of them can block, we'd have to use something like semaphores
209 * killing performance on high-end SMP hardware. let's try to relax it using
210 * the following knowledge:
211 * 1) if buddy is referenced, it's already initialized
212 * 2) while block is used in buddy and the buddy is referenced,
213 * nobody can re-allocate that block
214 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
215 * bit set and PA claims same block, it's OK. IOW, one can set bit in
216 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
217 * block
219 * so, now we're building a concurrency table:
220 * - init buddy vs.
221 * - new PA
222 * blocks for PA are allocated in the buddy, buddy must be referenced
223 * until PA is linked to allocation group to avoid concurrent buddy init
224 * - use inode PA
225 * we need to make sure that either on-disk bitmap or PA has uptodate data
226 * given (3) we care that PA-=N operation doesn't interfere with init
227 * - discard inode PA
228 * the simplest way would be to have buddy initialized by the discard
229 * - use locality group PA
230 * again PA-=N must be serialized with init
231 * - discard locality group PA
232 * the simplest way would be to have buddy initialized by the discard
233 * - new PA vs.
234 * - use inode PA
235 * i_data_sem serializes them
236 * - discard inode PA
237 * discard process must wait until PA isn't used by another process
238 * - use locality group PA
239 * some mutex should serialize them
240 * - discard locality group PA
241 * discard process must wait until PA isn't used by another process
242 * - use inode PA
243 * - use inode PA
244 * i_data_sem or another mutex should serializes them
245 * - discard inode PA
246 * discard process must wait until PA isn't used by another process
247 * - use locality group PA
248 * nothing wrong here -- they're different PAs covering different blocks
249 * - discard locality group PA
250 * discard process must wait until PA isn't used by another process
252 * now we're ready to make few consequences:
253 * - PA is referenced and while it is no discard is possible
254 * - PA is referenced until block isn't marked in on-disk bitmap
255 * - PA changes only after on-disk bitmap
256 * - discard must not compete with init. either init is done before
257 * any discard or they're serialized somehow
258 * - buddy init as sum of on-disk bitmap and PAs is done atomically
260 * a special case when we've used PA to emptiness. no need to modify buddy
261 * in this case, but we should care about concurrent init
266 * Logic in few words:
268 * - allocation:
269 * load group
270 * find blocks
271 * mark bits in on-disk bitmap
272 * release group
274 * - use preallocation:
275 * find proper PA (per-inode or group)
276 * load group
277 * mark bits in on-disk bitmap
278 * release group
279 * release PA
281 * - free:
282 * load group
283 * mark bits in on-disk bitmap
284 * release group
286 * - discard preallocations in group:
287 * mark PAs deleted
288 * move them onto local list
289 * load on-disk bitmap
290 * load group
291 * remove PA from object (inode or locality group)
292 * mark free blocks in-core
294 * - discard inode's preallocations:
298 * Locking rules
300 * Locks:
301 * - bitlock on a group (group)
302 * - object (inode/locality) (object)
303 * - per-pa lock (pa)
305 * Paths:
306 * - new pa
307 * object
308 * group
310 * - find and use pa:
311 * pa
313 * - release consumed pa:
314 * pa
315 * group
316 * object
318 * - generate in-core bitmap:
319 * group
320 * pa
322 * - discard all for given object (inode, locality group):
323 * object
324 * pa
325 * group
327 * - discard all for given group:
328 * group
329 * pa
330 * group
331 * object
334 static struct kmem_cache *ext4_pspace_cachep;
335 static struct kmem_cache *ext4_ac_cachep;
336 static struct kmem_cache *ext4_free_ext_cachep;
337 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
338 ext4_group_t group);
339 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
340 ext4_group_t group);
341 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
345 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 #if BITS_PER_LONG == 64
348 *bit += ((unsigned long) addr & 7UL) << 3;
349 addr = (void *) ((unsigned long) addr & ~7UL);
350 #elif BITS_PER_LONG == 32
351 *bit += ((unsigned long) addr & 3UL) << 3;
352 addr = (void *) ((unsigned long) addr & ~3UL);
353 #else
354 #error "how many bits you are?!"
355 #endif
356 return addr;
359 static inline int mb_test_bit(int bit, void *addr)
362 * ext4_test_bit on architecture like powerpc
363 * needs unsigned long aligned address
365 addr = mb_correct_addr_and_bit(&bit, addr);
366 return ext4_test_bit(bit, addr);
369 static inline void mb_set_bit(int bit, void *addr)
371 addr = mb_correct_addr_and_bit(&bit, addr);
372 ext4_set_bit(bit, addr);
375 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 addr = mb_correct_addr_and_bit(&bit, addr);
378 ext4_set_bit_atomic(lock, bit, addr);
381 static inline void mb_clear_bit(int bit, void *addr)
383 addr = mb_correct_addr_and_bit(&bit, addr);
384 ext4_clear_bit(bit, addr);
387 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
389 addr = mb_correct_addr_and_bit(&bit, addr);
390 ext4_clear_bit_atomic(lock, bit, addr);
393 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
395 int fix = 0, ret, tmpmax;
396 addr = mb_correct_addr_and_bit(&fix, addr);
397 tmpmax = max + fix;
398 start += fix;
400 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
401 if (ret > max)
402 return max;
403 return ret;
406 static inline int mb_find_next_bit(void *addr, int max, int start)
408 int fix = 0, ret, tmpmax;
409 addr = mb_correct_addr_and_bit(&fix, addr);
410 tmpmax = max + fix;
411 start += fix;
413 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
414 if (ret > max)
415 return max;
416 return ret;
419 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
421 char *bb;
423 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
424 BUG_ON(max == NULL);
426 if (order > e4b->bd_blkbits + 1) {
427 *max = 0;
428 return NULL;
431 /* at order 0 we see each particular block */
432 *max = 1 << (e4b->bd_blkbits + 3);
433 if (order == 0)
434 return EXT4_MB_BITMAP(e4b);
436 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
437 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
439 return bb;
442 #ifdef DOUBLE_CHECK
443 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
444 int first, int count)
446 int i;
447 struct super_block *sb = e4b->bd_sb;
449 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
450 return;
451 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
452 for (i = 0; i < count; i++) {
453 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
454 ext4_fsblk_t blocknr;
455 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
456 blocknr += first + i;
457 blocknr +=
458 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
459 ext4_grp_locked_error(sb, e4b->bd_group,
460 __func__, "double-free of inode"
461 " %lu's block %llu(bit %u in group %u)",
462 inode ? inode->i_ino : 0, blocknr,
463 first + i, e4b->bd_group);
465 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
469 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
471 int i;
473 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
474 return;
475 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
476 for (i = 0; i < count; i++) {
477 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
478 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
482 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
484 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
485 unsigned char *b1, *b2;
486 int i;
487 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
488 b2 = (unsigned char *) bitmap;
489 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
490 if (b1[i] != b2[i]) {
491 printk(KERN_ERR "corruption in group %u "
492 "at byte %u(%u): %x in copy != %x "
493 "on disk/prealloc\n",
494 e4b->bd_group, i, i * 8, b1[i], b2[i]);
495 BUG();
501 #else
502 static inline void mb_free_blocks_double(struct inode *inode,
503 struct ext4_buddy *e4b, int first, int count)
505 return;
507 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
508 int first, int count)
510 return;
512 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
514 return;
516 #endif
518 #ifdef AGGRESSIVE_CHECK
520 #define MB_CHECK_ASSERT(assert) \
521 do { \
522 if (!(assert)) { \
523 printk(KERN_EMERG \
524 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
525 function, file, line, # assert); \
526 BUG(); \
528 } while (0)
530 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
531 const char *function, int line)
533 struct super_block *sb = e4b->bd_sb;
534 int order = e4b->bd_blkbits + 1;
535 int max;
536 int max2;
537 int i;
538 int j;
539 int k;
540 int count;
541 struct ext4_group_info *grp;
542 int fragments = 0;
543 int fstart;
544 struct list_head *cur;
545 void *buddy;
546 void *buddy2;
549 static int mb_check_counter;
550 if (mb_check_counter++ % 100 != 0)
551 return 0;
554 while (order > 1) {
555 buddy = mb_find_buddy(e4b, order, &max);
556 MB_CHECK_ASSERT(buddy);
557 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
558 MB_CHECK_ASSERT(buddy2);
559 MB_CHECK_ASSERT(buddy != buddy2);
560 MB_CHECK_ASSERT(max * 2 == max2);
562 count = 0;
563 for (i = 0; i < max; i++) {
565 if (mb_test_bit(i, buddy)) {
566 /* only single bit in buddy2 may be 1 */
567 if (!mb_test_bit(i << 1, buddy2)) {
568 MB_CHECK_ASSERT(
569 mb_test_bit((i<<1)+1, buddy2));
570 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
571 MB_CHECK_ASSERT(
572 mb_test_bit(i << 1, buddy2));
574 continue;
577 /* both bits in buddy2 must be 0 */
578 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
579 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
581 for (j = 0; j < (1 << order); j++) {
582 k = (i * (1 << order)) + j;
583 MB_CHECK_ASSERT(
584 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
586 count++;
588 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
589 order--;
592 fstart = -1;
593 buddy = mb_find_buddy(e4b, 0, &max);
594 for (i = 0; i < max; i++) {
595 if (!mb_test_bit(i, buddy)) {
596 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
597 if (fstart == -1) {
598 fragments++;
599 fstart = i;
601 continue;
603 fstart = -1;
604 /* check used bits only */
605 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
606 buddy2 = mb_find_buddy(e4b, j, &max2);
607 k = i >> j;
608 MB_CHECK_ASSERT(k < max2);
609 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
612 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
613 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
615 grp = ext4_get_group_info(sb, e4b->bd_group);
616 buddy = mb_find_buddy(e4b, 0, &max);
617 list_for_each(cur, &grp->bb_prealloc_list) {
618 ext4_group_t groupnr;
619 struct ext4_prealloc_space *pa;
620 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
621 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
622 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
623 for (i = 0; i < pa->pa_len; i++)
624 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
626 return 0;
628 #undef MB_CHECK_ASSERT
629 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
630 __FILE__, __func__, __LINE__)
631 #else
632 #define mb_check_buddy(e4b)
633 #endif
635 /* FIXME!! need more doc */
636 static void ext4_mb_mark_free_simple(struct super_block *sb,
637 void *buddy, unsigned first, int len,
638 struct ext4_group_info *grp)
640 struct ext4_sb_info *sbi = EXT4_SB(sb);
641 unsigned short min;
642 unsigned short max;
643 unsigned short chunk;
644 unsigned short border;
646 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
648 border = 2 << sb->s_blocksize_bits;
650 while (len > 0) {
651 /* find how many blocks can be covered since this position */
652 max = ffs(first | border) - 1;
654 /* find how many blocks of power 2 we need to mark */
655 min = fls(len) - 1;
657 if (max < min)
658 min = max;
659 chunk = 1 << min;
661 /* mark multiblock chunks only */
662 grp->bb_counters[min]++;
663 if (min > 0)
664 mb_clear_bit(first >> min,
665 buddy + sbi->s_mb_offsets[min]);
667 len -= chunk;
668 first += chunk;
672 static void ext4_mb_generate_buddy(struct super_block *sb,
673 void *buddy, void *bitmap, ext4_group_t group)
675 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
676 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
677 unsigned short i = 0;
678 unsigned short first;
679 unsigned short len;
680 unsigned free = 0;
681 unsigned fragments = 0;
682 unsigned long long period = get_cycles();
684 /* initialize buddy from bitmap which is aggregation
685 * of on-disk bitmap and preallocations */
686 i = mb_find_next_zero_bit(bitmap, max, 0);
687 grp->bb_first_free = i;
688 while (i < max) {
689 fragments++;
690 first = i;
691 i = mb_find_next_bit(bitmap, max, i);
692 len = i - first;
693 free += len;
694 if (len > 1)
695 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
696 else
697 grp->bb_counters[0]++;
698 if (i < max)
699 i = mb_find_next_zero_bit(bitmap, max, i);
701 grp->bb_fragments = fragments;
703 if (free != grp->bb_free) {
704 ext4_grp_locked_error(sb, group, __func__,
705 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
706 group, free, grp->bb_free);
708 * If we intent to continue, we consider group descritor
709 * corrupt and update bb_free using bitmap value
711 grp->bb_free = free;
714 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
716 period = get_cycles() - period;
717 spin_lock(&EXT4_SB(sb)->s_bal_lock);
718 EXT4_SB(sb)->s_mb_buddies_generated++;
719 EXT4_SB(sb)->s_mb_generation_time += period;
720 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
723 /* The buddy information is attached the buddy cache inode
724 * for convenience. The information regarding each group
725 * is loaded via ext4_mb_load_buddy. The information involve
726 * block bitmap and buddy information. The information are
727 * stored in the inode as
729 * { page }
730 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
733 * one block each for bitmap and buddy information.
734 * So for each group we take up 2 blocks. A page can
735 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
736 * So it can have information regarding groups_per_page which
737 * is blocks_per_page/2
740 static int ext4_mb_init_cache(struct page *page, char *incore)
742 int blocksize;
743 int blocks_per_page;
744 int groups_per_page;
745 int err = 0;
746 int i;
747 ext4_group_t first_group;
748 int first_block;
749 struct super_block *sb;
750 struct buffer_head *bhs;
751 struct buffer_head **bh;
752 struct inode *inode;
753 char *data;
754 char *bitmap;
756 mb_debug("init page %lu\n", page->index);
758 inode = page->mapping->host;
759 sb = inode->i_sb;
760 blocksize = 1 << inode->i_blkbits;
761 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
763 groups_per_page = blocks_per_page >> 1;
764 if (groups_per_page == 0)
765 groups_per_page = 1;
767 /* allocate buffer_heads to read bitmaps */
768 if (groups_per_page > 1) {
769 err = -ENOMEM;
770 i = sizeof(struct buffer_head *) * groups_per_page;
771 bh = kzalloc(i, GFP_NOFS);
772 if (bh == NULL)
773 goto out;
774 } else
775 bh = &bhs;
777 first_group = page->index * blocks_per_page / 2;
779 /* read all groups the page covers into the cache */
780 for (i = 0; i < groups_per_page; i++) {
781 struct ext4_group_desc *desc;
783 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
784 break;
786 err = -EIO;
787 desc = ext4_get_group_desc(sb, first_group + i, NULL);
788 if (desc == NULL)
789 goto out;
791 err = -ENOMEM;
792 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
793 if (bh[i] == NULL)
794 goto out;
796 if (bitmap_uptodate(bh[i]))
797 continue;
799 lock_buffer(bh[i]);
800 if (bitmap_uptodate(bh[i])) {
801 unlock_buffer(bh[i]);
802 continue;
804 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
805 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
806 ext4_init_block_bitmap(sb, bh[i],
807 first_group + i, desc);
808 set_bitmap_uptodate(bh[i]);
809 set_buffer_uptodate(bh[i]);
810 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
811 unlock_buffer(bh[i]);
812 continue;
814 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
815 if (buffer_uptodate(bh[i])) {
817 * if not uninit if bh is uptodate,
818 * bitmap is also uptodate
820 set_bitmap_uptodate(bh[i]);
821 unlock_buffer(bh[i]);
822 continue;
824 get_bh(bh[i]);
826 * submit the buffer_head for read. We can
827 * safely mark the bitmap as uptodate now.
828 * We do it here so the bitmap uptodate bit
829 * get set with buffer lock held.
831 set_bitmap_uptodate(bh[i]);
832 bh[i]->b_end_io = end_buffer_read_sync;
833 submit_bh(READ, bh[i]);
834 mb_debug("read bitmap for group %u\n", first_group + i);
837 /* wait for I/O completion */
838 for (i = 0; i < groups_per_page && bh[i]; i++)
839 wait_on_buffer(bh[i]);
841 err = -EIO;
842 for (i = 0; i < groups_per_page && bh[i]; i++)
843 if (!buffer_uptodate(bh[i]))
844 goto out;
846 err = 0;
847 first_block = page->index * blocks_per_page;
848 /* init the page */
849 memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
850 for (i = 0; i < blocks_per_page; i++) {
851 int group;
852 struct ext4_group_info *grinfo;
854 group = (first_block + i) >> 1;
855 if (group >= EXT4_SB(sb)->s_groups_count)
856 break;
859 * data carry information regarding this
860 * particular group in the format specified
861 * above
864 data = page_address(page) + (i * blocksize);
865 bitmap = bh[group - first_group]->b_data;
868 * We place the buddy block and bitmap block
869 * close together
871 if ((first_block + i) & 1) {
872 /* this is block of buddy */
873 BUG_ON(incore == NULL);
874 mb_debug("put buddy for group %u in page %lu/%x\n",
875 group, page->index, i * blocksize);
876 grinfo = ext4_get_group_info(sb, group);
877 grinfo->bb_fragments = 0;
878 memset(grinfo->bb_counters, 0,
879 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
881 * incore got set to the group block bitmap below
883 ext4_lock_group(sb, group);
884 ext4_mb_generate_buddy(sb, data, incore, group);
885 ext4_unlock_group(sb, group);
886 incore = NULL;
887 } else {
888 /* this is block of bitmap */
889 BUG_ON(incore != NULL);
890 mb_debug("put bitmap for group %u in page %lu/%x\n",
891 group, page->index, i * blocksize);
893 /* see comments in ext4_mb_put_pa() */
894 ext4_lock_group(sb, group);
895 memcpy(data, bitmap, blocksize);
897 /* mark all preallocated blks used in in-core bitmap */
898 ext4_mb_generate_from_pa(sb, data, group);
899 ext4_mb_generate_from_freelist(sb, data, group);
900 ext4_unlock_group(sb, group);
902 /* set incore so that the buddy information can be
903 * generated using this
905 incore = data;
908 SetPageUptodate(page);
910 out:
911 if (bh) {
912 for (i = 0; i < groups_per_page && bh[i]; i++)
913 brelse(bh[i]);
914 if (bh != &bhs)
915 kfree(bh);
917 return err;
920 static noinline_for_stack int
921 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
922 struct ext4_buddy *e4b)
924 int blocks_per_page;
925 int block;
926 int pnum;
927 int poff;
928 struct page *page;
929 int ret;
930 struct ext4_group_info *grp;
931 struct ext4_sb_info *sbi = EXT4_SB(sb);
932 struct inode *inode = sbi->s_buddy_cache;
934 mb_debug("load group %u\n", group);
936 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
937 grp = ext4_get_group_info(sb, group);
939 e4b->bd_blkbits = sb->s_blocksize_bits;
940 e4b->bd_info = ext4_get_group_info(sb, group);
941 e4b->bd_sb = sb;
942 e4b->bd_group = group;
943 e4b->bd_buddy_page = NULL;
944 e4b->bd_bitmap_page = NULL;
945 e4b->alloc_semp = &grp->alloc_sem;
947 /* Take the read lock on the group alloc
948 * sem. This would make sure a parallel
949 * ext4_mb_init_group happening on other
950 * groups mapped by the page is blocked
951 * till we are done with allocation
953 down_read(e4b->alloc_semp);
956 * the buddy cache inode stores the block bitmap
957 * and buddy information in consecutive blocks.
958 * So for each group we need two blocks.
960 block = group * 2;
961 pnum = block / blocks_per_page;
962 poff = block % blocks_per_page;
964 /* we could use find_or_create_page(), but it locks page
965 * what we'd like to avoid in fast path ... */
966 page = find_get_page(inode->i_mapping, pnum);
967 if (page == NULL || !PageUptodate(page)) {
968 if (page)
970 * drop the page reference and try
971 * to get the page with lock. If we
972 * are not uptodate that implies
973 * somebody just created the page but
974 * is yet to initialize the same. So
975 * wait for it to initialize.
977 page_cache_release(page);
978 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
979 if (page) {
980 BUG_ON(page->mapping != inode->i_mapping);
981 if (!PageUptodate(page)) {
982 ret = ext4_mb_init_cache(page, NULL);
983 if (ret) {
984 unlock_page(page);
985 goto err;
987 mb_cmp_bitmaps(e4b, page_address(page) +
988 (poff * sb->s_blocksize));
990 unlock_page(page);
993 if (page == NULL || !PageUptodate(page)) {
994 ret = -EIO;
995 goto err;
997 e4b->bd_bitmap_page = page;
998 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999 mark_page_accessed(page);
1001 block++;
1002 pnum = block / blocks_per_page;
1003 poff = block % blocks_per_page;
1005 page = find_get_page(inode->i_mapping, pnum);
1006 if (page == NULL || !PageUptodate(page)) {
1007 if (page)
1008 page_cache_release(page);
1009 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1010 if (page) {
1011 BUG_ON(page->mapping != inode->i_mapping);
1012 if (!PageUptodate(page)) {
1013 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1014 if (ret) {
1015 unlock_page(page);
1016 goto err;
1019 unlock_page(page);
1022 if (page == NULL || !PageUptodate(page)) {
1023 ret = -EIO;
1024 goto err;
1026 e4b->bd_buddy_page = page;
1027 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1028 mark_page_accessed(page);
1030 BUG_ON(e4b->bd_bitmap_page == NULL);
1031 BUG_ON(e4b->bd_buddy_page == NULL);
1033 return 0;
1035 err:
1036 if (e4b->bd_bitmap_page)
1037 page_cache_release(e4b->bd_bitmap_page);
1038 if (e4b->bd_buddy_page)
1039 page_cache_release(e4b->bd_buddy_page);
1040 e4b->bd_buddy = NULL;
1041 e4b->bd_bitmap = NULL;
1043 /* Done with the buddy cache */
1044 up_read(e4b->alloc_semp);
1045 return ret;
1048 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1050 if (e4b->bd_bitmap_page)
1051 page_cache_release(e4b->bd_bitmap_page);
1052 if (e4b->bd_buddy_page)
1053 page_cache_release(e4b->bd_buddy_page);
1054 /* Done with the buddy cache */
1055 if (e4b->alloc_semp)
1056 up_read(e4b->alloc_semp);
1060 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1062 int order = 1;
1063 void *bb;
1065 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1066 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1068 bb = EXT4_MB_BUDDY(e4b);
1069 while (order <= e4b->bd_blkbits + 1) {
1070 block = block >> 1;
1071 if (!mb_test_bit(block, bb)) {
1072 /* this block is part of buddy of order 'order' */
1073 return order;
1075 bb += 1 << (e4b->bd_blkbits - order);
1076 order++;
1078 return 0;
1081 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1083 __u32 *addr;
1085 len = cur + len;
1086 while (cur < len) {
1087 if ((cur & 31) == 0 && (len - cur) >= 32) {
1088 /* fast path: clear whole word at once */
1089 addr = bm + (cur >> 3);
1090 *addr = 0;
1091 cur += 32;
1092 continue;
1094 if (lock)
1095 mb_clear_bit_atomic(lock, cur, bm);
1096 else
1097 mb_clear_bit(cur, bm);
1098 cur++;
1102 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1104 __u32 *addr;
1106 len = cur + len;
1107 while (cur < len) {
1108 if ((cur & 31) == 0 && (len - cur) >= 32) {
1109 /* fast path: set whole word at once */
1110 addr = bm + (cur >> 3);
1111 *addr = 0xffffffff;
1112 cur += 32;
1113 continue;
1115 if (lock)
1116 mb_set_bit_atomic(lock, cur, bm);
1117 else
1118 mb_set_bit(cur, bm);
1119 cur++;
1123 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1124 int first, int count)
1126 int block = 0;
1127 int max = 0;
1128 int order;
1129 void *buddy;
1130 void *buddy2;
1131 struct super_block *sb = e4b->bd_sb;
1133 BUG_ON(first + count > (sb->s_blocksize << 3));
1134 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1135 mb_check_buddy(e4b);
1136 mb_free_blocks_double(inode, e4b, first, count);
1138 e4b->bd_info->bb_free += count;
1139 if (first < e4b->bd_info->bb_first_free)
1140 e4b->bd_info->bb_first_free = first;
1142 /* let's maintain fragments counter */
1143 if (first != 0)
1144 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1145 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1146 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1147 if (block && max)
1148 e4b->bd_info->bb_fragments--;
1149 else if (!block && !max)
1150 e4b->bd_info->bb_fragments++;
1152 /* let's maintain buddy itself */
1153 while (count-- > 0) {
1154 block = first++;
1155 order = 0;
1157 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1158 ext4_fsblk_t blocknr;
1159 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1160 blocknr += block;
1161 blocknr +=
1162 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1163 ext4_grp_locked_error(sb, e4b->bd_group,
1164 __func__, "double-free of inode"
1165 " %lu's block %llu(bit %u in group %u)",
1166 inode ? inode->i_ino : 0, blocknr, block,
1167 e4b->bd_group);
1169 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1170 e4b->bd_info->bb_counters[order]++;
1172 /* start of the buddy */
1173 buddy = mb_find_buddy(e4b, order, &max);
1175 do {
1176 block &= ~1UL;
1177 if (mb_test_bit(block, buddy) ||
1178 mb_test_bit(block + 1, buddy))
1179 break;
1181 /* both the buddies are free, try to coalesce them */
1182 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1184 if (!buddy2)
1185 break;
1187 if (order > 0) {
1188 /* for special purposes, we don't set
1189 * free bits in bitmap */
1190 mb_set_bit(block, buddy);
1191 mb_set_bit(block + 1, buddy);
1193 e4b->bd_info->bb_counters[order]--;
1194 e4b->bd_info->bb_counters[order]--;
1196 block = block >> 1;
1197 order++;
1198 e4b->bd_info->bb_counters[order]++;
1200 mb_clear_bit(block, buddy2);
1201 buddy = buddy2;
1202 } while (1);
1204 mb_check_buddy(e4b);
1207 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1208 int needed, struct ext4_free_extent *ex)
1210 int next = block;
1211 int max;
1212 int ord;
1213 void *buddy;
1215 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1216 BUG_ON(ex == NULL);
1218 buddy = mb_find_buddy(e4b, order, &max);
1219 BUG_ON(buddy == NULL);
1220 BUG_ON(block >= max);
1221 if (mb_test_bit(block, buddy)) {
1222 ex->fe_len = 0;
1223 ex->fe_start = 0;
1224 ex->fe_group = 0;
1225 return 0;
1228 /* FIXME dorp order completely ? */
1229 if (likely(order == 0)) {
1230 /* find actual order */
1231 order = mb_find_order_for_block(e4b, block);
1232 block = block >> order;
1235 ex->fe_len = 1 << order;
1236 ex->fe_start = block << order;
1237 ex->fe_group = e4b->bd_group;
1239 /* calc difference from given start */
1240 next = next - ex->fe_start;
1241 ex->fe_len -= next;
1242 ex->fe_start += next;
1244 while (needed > ex->fe_len &&
1245 (buddy = mb_find_buddy(e4b, order, &max))) {
1247 if (block + 1 >= max)
1248 break;
1250 next = (block + 1) * (1 << order);
1251 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1252 break;
1254 ord = mb_find_order_for_block(e4b, next);
1256 order = ord;
1257 block = next >> order;
1258 ex->fe_len += 1 << order;
1261 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1262 return ex->fe_len;
1265 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1267 int ord;
1268 int mlen = 0;
1269 int max = 0;
1270 int cur;
1271 int start = ex->fe_start;
1272 int len = ex->fe_len;
1273 unsigned ret = 0;
1274 int len0 = len;
1275 void *buddy;
1277 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1278 BUG_ON(e4b->bd_group != ex->fe_group);
1279 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1280 mb_check_buddy(e4b);
1281 mb_mark_used_double(e4b, start, len);
1283 e4b->bd_info->bb_free -= len;
1284 if (e4b->bd_info->bb_first_free == start)
1285 e4b->bd_info->bb_first_free += len;
1287 /* let's maintain fragments counter */
1288 if (start != 0)
1289 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1290 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1291 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1292 if (mlen && max)
1293 e4b->bd_info->bb_fragments++;
1294 else if (!mlen && !max)
1295 e4b->bd_info->bb_fragments--;
1297 /* let's maintain buddy itself */
1298 while (len) {
1299 ord = mb_find_order_for_block(e4b, start);
1301 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1302 /* the whole chunk may be allocated at once! */
1303 mlen = 1 << ord;
1304 buddy = mb_find_buddy(e4b, ord, &max);
1305 BUG_ON((start >> ord) >= max);
1306 mb_set_bit(start >> ord, buddy);
1307 e4b->bd_info->bb_counters[ord]--;
1308 start += mlen;
1309 len -= mlen;
1310 BUG_ON(len < 0);
1311 continue;
1314 /* store for history */
1315 if (ret == 0)
1316 ret = len | (ord << 16);
1318 /* we have to split large buddy */
1319 BUG_ON(ord <= 0);
1320 buddy = mb_find_buddy(e4b, ord, &max);
1321 mb_set_bit(start >> ord, buddy);
1322 e4b->bd_info->bb_counters[ord]--;
1324 ord--;
1325 cur = (start >> ord) & ~1U;
1326 buddy = mb_find_buddy(e4b, ord, &max);
1327 mb_clear_bit(cur, buddy);
1328 mb_clear_bit(cur + 1, buddy);
1329 e4b->bd_info->bb_counters[ord]++;
1330 e4b->bd_info->bb_counters[ord]++;
1333 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1334 EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1335 mb_check_buddy(e4b);
1337 return ret;
1341 * Must be called under group lock!
1343 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1344 struct ext4_buddy *e4b)
1346 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1347 int ret;
1349 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1350 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1352 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1353 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1354 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1356 /* preallocation can change ac_b_ex, thus we store actually
1357 * allocated blocks for history */
1358 ac->ac_f_ex = ac->ac_b_ex;
1360 ac->ac_status = AC_STATUS_FOUND;
1361 ac->ac_tail = ret & 0xffff;
1362 ac->ac_buddy = ret >> 16;
1365 * take the page reference. We want the page to be pinned
1366 * so that we don't get a ext4_mb_init_cache_call for this
1367 * group until we update the bitmap. That would mean we
1368 * double allocate blocks. The reference is dropped
1369 * in ext4_mb_release_context
1371 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1372 get_page(ac->ac_bitmap_page);
1373 ac->ac_buddy_page = e4b->bd_buddy_page;
1374 get_page(ac->ac_buddy_page);
1375 /* on allocation we use ac to track the held semaphore */
1376 ac->alloc_semp = e4b->alloc_semp;
1377 e4b->alloc_semp = NULL;
1378 /* store last allocated for subsequent stream allocation */
1379 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1380 spin_lock(&sbi->s_md_lock);
1381 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1382 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1383 spin_unlock(&sbi->s_md_lock);
1388 * regular allocator, for general purposes allocation
1391 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1392 struct ext4_buddy *e4b,
1393 int finish_group)
1395 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1396 struct ext4_free_extent *bex = &ac->ac_b_ex;
1397 struct ext4_free_extent *gex = &ac->ac_g_ex;
1398 struct ext4_free_extent ex;
1399 int max;
1401 if (ac->ac_status == AC_STATUS_FOUND)
1402 return;
1404 * We don't want to scan for a whole year
1406 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1407 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1408 ac->ac_status = AC_STATUS_BREAK;
1409 return;
1413 * Haven't found good chunk so far, let's continue
1415 if (bex->fe_len < gex->fe_len)
1416 return;
1418 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1419 && bex->fe_group == e4b->bd_group) {
1420 /* recheck chunk's availability - we don't know
1421 * when it was found (within this lock-unlock
1422 * period or not) */
1423 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1424 if (max >= gex->fe_len) {
1425 ext4_mb_use_best_found(ac, e4b);
1426 return;
1432 * The routine checks whether found extent is good enough. If it is,
1433 * then the extent gets marked used and flag is set to the context
1434 * to stop scanning. Otherwise, the extent is compared with the
1435 * previous found extent and if new one is better, then it's stored
1436 * in the context. Later, the best found extent will be used, if
1437 * mballoc can't find good enough extent.
1439 * FIXME: real allocation policy is to be designed yet!
1441 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1442 struct ext4_free_extent *ex,
1443 struct ext4_buddy *e4b)
1445 struct ext4_free_extent *bex = &ac->ac_b_ex;
1446 struct ext4_free_extent *gex = &ac->ac_g_ex;
1448 BUG_ON(ex->fe_len <= 0);
1449 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1450 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1451 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1453 ac->ac_found++;
1456 * The special case - take what you catch first
1458 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1459 *bex = *ex;
1460 ext4_mb_use_best_found(ac, e4b);
1461 return;
1465 * Let's check whether the chuck is good enough
1467 if (ex->fe_len == gex->fe_len) {
1468 *bex = *ex;
1469 ext4_mb_use_best_found(ac, e4b);
1470 return;
1474 * If this is first found extent, just store it in the context
1476 if (bex->fe_len == 0) {
1477 *bex = *ex;
1478 return;
1482 * If new found extent is better, store it in the context
1484 if (bex->fe_len < gex->fe_len) {
1485 /* if the request isn't satisfied, any found extent
1486 * larger than previous best one is better */
1487 if (ex->fe_len > bex->fe_len)
1488 *bex = *ex;
1489 } else if (ex->fe_len > gex->fe_len) {
1490 /* if the request is satisfied, then we try to find
1491 * an extent that still satisfy the request, but is
1492 * smaller than previous one */
1493 if (ex->fe_len < bex->fe_len)
1494 *bex = *ex;
1497 ext4_mb_check_limits(ac, e4b, 0);
1500 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1501 struct ext4_buddy *e4b)
1503 struct ext4_free_extent ex = ac->ac_b_ex;
1504 ext4_group_t group = ex.fe_group;
1505 int max;
1506 int err;
1508 BUG_ON(ex.fe_len <= 0);
1509 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1510 if (err)
1511 return err;
1513 ext4_lock_group(ac->ac_sb, group);
1514 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1516 if (max > 0) {
1517 ac->ac_b_ex = ex;
1518 ext4_mb_use_best_found(ac, e4b);
1521 ext4_unlock_group(ac->ac_sb, group);
1522 ext4_mb_release_desc(e4b);
1524 return 0;
1527 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1528 struct ext4_buddy *e4b)
1530 ext4_group_t group = ac->ac_g_ex.fe_group;
1531 int max;
1532 int err;
1533 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1534 struct ext4_super_block *es = sbi->s_es;
1535 struct ext4_free_extent ex;
1537 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1538 return 0;
1540 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1541 if (err)
1542 return err;
1544 ext4_lock_group(ac->ac_sb, group);
1545 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1546 ac->ac_g_ex.fe_len, &ex);
1548 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1549 ext4_fsblk_t start;
1551 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1552 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1553 /* use do_div to get remainder (would be 64-bit modulo) */
1554 if (do_div(start, sbi->s_stripe) == 0) {
1555 ac->ac_found++;
1556 ac->ac_b_ex = ex;
1557 ext4_mb_use_best_found(ac, e4b);
1559 } else if (max >= ac->ac_g_ex.fe_len) {
1560 BUG_ON(ex.fe_len <= 0);
1561 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1562 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1563 ac->ac_found++;
1564 ac->ac_b_ex = ex;
1565 ext4_mb_use_best_found(ac, e4b);
1566 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1567 /* Sometimes, caller may want to merge even small
1568 * number of blocks to an existing extent */
1569 BUG_ON(ex.fe_len <= 0);
1570 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1571 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1572 ac->ac_found++;
1573 ac->ac_b_ex = ex;
1574 ext4_mb_use_best_found(ac, e4b);
1576 ext4_unlock_group(ac->ac_sb, group);
1577 ext4_mb_release_desc(e4b);
1579 return 0;
1583 * The routine scans buddy structures (not bitmap!) from given order
1584 * to max order and tries to find big enough chunk to satisfy the req
1586 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1587 struct ext4_buddy *e4b)
1589 struct super_block *sb = ac->ac_sb;
1590 struct ext4_group_info *grp = e4b->bd_info;
1591 void *buddy;
1592 int i;
1593 int k;
1594 int max;
1596 BUG_ON(ac->ac_2order <= 0);
1597 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1598 if (grp->bb_counters[i] == 0)
1599 continue;
1601 buddy = mb_find_buddy(e4b, i, &max);
1602 BUG_ON(buddy == NULL);
1604 k = mb_find_next_zero_bit(buddy, max, 0);
1605 BUG_ON(k >= max);
1607 ac->ac_found++;
1609 ac->ac_b_ex.fe_len = 1 << i;
1610 ac->ac_b_ex.fe_start = k << i;
1611 ac->ac_b_ex.fe_group = e4b->bd_group;
1613 ext4_mb_use_best_found(ac, e4b);
1615 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1617 if (EXT4_SB(sb)->s_mb_stats)
1618 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1620 break;
1625 * The routine scans the group and measures all found extents.
1626 * In order to optimize scanning, caller must pass number of
1627 * free blocks in the group, so the routine can know upper limit.
1629 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1630 struct ext4_buddy *e4b)
1632 struct super_block *sb = ac->ac_sb;
1633 void *bitmap = EXT4_MB_BITMAP(e4b);
1634 struct ext4_free_extent ex;
1635 int i;
1636 int free;
1638 free = e4b->bd_info->bb_free;
1639 BUG_ON(free <= 0);
1641 i = e4b->bd_info->bb_first_free;
1643 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1644 i = mb_find_next_zero_bit(bitmap,
1645 EXT4_BLOCKS_PER_GROUP(sb), i);
1646 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1648 * IF we have corrupt bitmap, we won't find any
1649 * free blocks even though group info says we
1650 * we have free blocks
1652 ext4_grp_locked_error(sb, e4b->bd_group,
1653 __func__, "%d free blocks as per "
1654 "group info. But bitmap says 0",
1655 free);
1656 break;
1659 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1660 BUG_ON(ex.fe_len <= 0);
1661 if (free < ex.fe_len) {
1662 ext4_grp_locked_error(sb, e4b->bd_group,
1663 __func__, "%d free blocks as per "
1664 "group info. But got %d blocks",
1665 free, ex.fe_len);
1667 * The number of free blocks differs. This mostly
1668 * indicate that the bitmap is corrupt. So exit
1669 * without claiming the space.
1671 break;
1674 ext4_mb_measure_extent(ac, &ex, e4b);
1676 i += ex.fe_len;
1677 free -= ex.fe_len;
1680 ext4_mb_check_limits(ac, e4b, 1);
1684 * This is a special case for storages like raid5
1685 * we try to find stripe-aligned chunks for stripe-size requests
1686 * XXX should do so at least for multiples of stripe size as well
1688 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1689 struct ext4_buddy *e4b)
1691 struct super_block *sb = ac->ac_sb;
1692 struct ext4_sb_info *sbi = EXT4_SB(sb);
1693 void *bitmap = EXT4_MB_BITMAP(e4b);
1694 struct ext4_free_extent ex;
1695 ext4_fsblk_t first_group_block;
1696 ext4_fsblk_t a;
1697 ext4_grpblk_t i;
1698 int max;
1700 BUG_ON(sbi->s_stripe == 0);
1702 /* find first stripe-aligned block in group */
1703 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1704 + le32_to_cpu(sbi->s_es->s_first_data_block);
1705 a = first_group_block + sbi->s_stripe - 1;
1706 do_div(a, sbi->s_stripe);
1707 i = (a * sbi->s_stripe) - first_group_block;
1709 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1710 if (!mb_test_bit(i, bitmap)) {
1711 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1712 if (max >= sbi->s_stripe) {
1713 ac->ac_found++;
1714 ac->ac_b_ex = ex;
1715 ext4_mb_use_best_found(ac, e4b);
1716 break;
1719 i += sbi->s_stripe;
1723 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1724 ext4_group_t group, int cr)
1726 unsigned free, fragments;
1727 unsigned i, bits;
1728 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1729 struct ext4_group_desc *desc;
1730 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1732 BUG_ON(cr < 0 || cr >= 4);
1733 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1735 free = grp->bb_free;
1736 fragments = grp->bb_fragments;
1737 if (free == 0)
1738 return 0;
1739 if (fragments == 0)
1740 return 0;
1742 switch (cr) {
1743 case 0:
1744 BUG_ON(ac->ac_2order == 0);
1745 /* If this group is uninitialized, skip it initially */
1746 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1747 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1748 return 0;
1750 /* Avoid using the first bg of a flexgroup for data files */
1751 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1752 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1753 ((group % flex_size) == 0))
1754 return 0;
1756 bits = ac->ac_sb->s_blocksize_bits + 1;
1757 for (i = ac->ac_2order; i <= bits; i++)
1758 if (grp->bb_counters[i] > 0)
1759 return 1;
1760 break;
1761 case 1:
1762 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1763 return 1;
1764 break;
1765 case 2:
1766 if (free >= ac->ac_g_ex.fe_len)
1767 return 1;
1768 break;
1769 case 3:
1770 return 1;
1771 default:
1772 BUG();
1775 return 0;
1779 * lock the group_info alloc_sem of all the groups
1780 * belonging to the same buddy cache page. This
1781 * make sure other parallel operation on the buddy
1782 * cache doesn't happen whild holding the buddy cache
1783 * lock
1785 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1787 int i;
1788 int block, pnum;
1789 int blocks_per_page;
1790 int groups_per_page;
1791 ext4_group_t first_group;
1792 struct ext4_group_info *grp;
1794 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1796 * the buddy cache inode stores the block bitmap
1797 * and buddy information in consecutive blocks.
1798 * So for each group we need two blocks.
1800 block = group * 2;
1801 pnum = block / blocks_per_page;
1802 first_group = pnum * blocks_per_page / 2;
1804 groups_per_page = blocks_per_page >> 1;
1805 if (groups_per_page == 0)
1806 groups_per_page = 1;
1807 /* read all groups the page covers into the cache */
1808 for (i = 0; i < groups_per_page; i++) {
1810 if ((first_group + i) >= EXT4_SB(sb)->s_groups_count)
1811 break;
1812 grp = ext4_get_group_info(sb, first_group + i);
1813 /* take all groups write allocation
1814 * semaphore. This make sure there is
1815 * no block allocation going on in any
1816 * of that groups
1818 down_write_nested(&grp->alloc_sem, i);
1820 return i;
1823 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1824 ext4_group_t group, int locked_group)
1826 int i;
1827 int block, pnum;
1828 int blocks_per_page;
1829 ext4_group_t first_group;
1830 struct ext4_group_info *grp;
1832 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1834 * the buddy cache inode stores the block bitmap
1835 * and buddy information in consecutive blocks.
1836 * So for each group we need two blocks.
1838 block = group * 2;
1839 pnum = block / blocks_per_page;
1840 first_group = pnum * blocks_per_page / 2;
1841 /* release locks on all the groups */
1842 for (i = 0; i < locked_group; i++) {
1844 grp = ext4_get_group_info(sb, first_group + i);
1845 /* take all groups write allocation
1846 * semaphore. This make sure there is
1847 * no block allocation going on in any
1848 * of that groups
1850 up_write(&grp->alloc_sem);
1855 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1858 int ret;
1859 void *bitmap;
1860 int blocks_per_page;
1861 int block, pnum, poff;
1862 int num_grp_locked = 0;
1863 struct ext4_group_info *this_grp;
1864 struct ext4_sb_info *sbi = EXT4_SB(sb);
1865 struct inode *inode = sbi->s_buddy_cache;
1866 struct page *page = NULL, *bitmap_page = NULL;
1868 mb_debug("init group %lu\n", group);
1869 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1870 this_grp = ext4_get_group_info(sb, group);
1872 * This ensures we don't add group
1873 * to this buddy cache via resize
1875 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
1876 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1878 * somebody initialized the group
1879 * return without doing anything
1881 ret = 0;
1882 goto err;
1885 * the buddy cache inode stores the block bitmap
1886 * and buddy information in consecutive blocks.
1887 * So for each group we need two blocks.
1889 block = group * 2;
1890 pnum = block / blocks_per_page;
1891 poff = block % blocks_per_page;
1892 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1893 if (page) {
1894 BUG_ON(page->mapping != inode->i_mapping);
1895 ret = ext4_mb_init_cache(page, NULL);
1896 if (ret) {
1897 unlock_page(page);
1898 goto err;
1900 unlock_page(page);
1902 if (page == NULL || !PageUptodate(page)) {
1903 ret = -EIO;
1904 goto err;
1906 mark_page_accessed(page);
1907 bitmap_page = page;
1908 bitmap = page_address(page) + (poff * sb->s_blocksize);
1910 /* init buddy cache */
1911 block++;
1912 pnum = block / blocks_per_page;
1913 poff = block % blocks_per_page;
1914 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1915 if (page == bitmap_page) {
1917 * If both the bitmap and buddy are in
1918 * the same page we don't need to force
1919 * init the buddy
1921 unlock_page(page);
1922 } else if (page) {
1923 BUG_ON(page->mapping != inode->i_mapping);
1924 ret = ext4_mb_init_cache(page, bitmap);
1925 if (ret) {
1926 unlock_page(page);
1927 goto err;
1929 unlock_page(page);
1931 if (page == NULL || !PageUptodate(page)) {
1932 ret = -EIO;
1933 goto err;
1935 mark_page_accessed(page);
1936 err:
1937 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1938 if (bitmap_page)
1939 page_cache_release(bitmap_page);
1940 if (page)
1941 page_cache_release(page);
1942 return ret;
1945 static noinline_for_stack int
1946 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1948 ext4_group_t group;
1949 ext4_group_t i;
1950 int cr;
1951 int err = 0;
1952 int bsbits;
1953 struct ext4_sb_info *sbi;
1954 struct super_block *sb;
1955 struct ext4_buddy e4b;
1956 loff_t size, isize;
1958 sb = ac->ac_sb;
1959 sbi = EXT4_SB(sb);
1960 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1962 /* first, try the goal */
1963 err = ext4_mb_find_by_goal(ac, &e4b);
1964 if (err || ac->ac_status == AC_STATUS_FOUND)
1965 goto out;
1967 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1968 goto out;
1971 * ac->ac2_order is set only if the fe_len is a power of 2
1972 * if ac2_order is set we also set criteria to 0 so that we
1973 * try exact allocation using buddy.
1975 i = fls(ac->ac_g_ex.fe_len);
1976 ac->ac_2order = 0;
1978 * We search using buddy data only if the order of the request
1979 * is greater than equal to the sbi_s_mb_order2_reqs
1980 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1982 if (i >= sbi->s_mb_order2_reqs) {
1984 * This should tell if fe_len is exactly power of 2
1986 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1987 ac->ac_2order = i - 1;
1990 bsbits = ac->ac_sb->s_blocksize_bits;
1991 /* if stream allocation is enabled, use global goal */
1992 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1993 isize = i_size_read(ac->ac_inode) >> bsbits;
1994 if (size < isize)
1995 size = isize;
1997 if (size < sbi->s_mb_stream_request &&
1998 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1999 /* TBD: may be hot point */
2000 spin_lock(&sbi->s_md_lock);
2001 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2002 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2003 spin_unlock(&sbi->s_md_lock);
2005 /* Let's just scan groups to find more-less suitable blocks */
2006 cr = ac->ac_2order ? 0 : 1;
2008 * cr == 0 try to get exact allocation,
2009 * cr == 3 try to get anything
2011 repeat:
2012 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2013 ac->ac_criteria = cr;
2015 * searching for the right group start
2016 * from the goal value specified
2018 group = ac->ac_g_ex.fe_group;
2020 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
2021 struct ext4_group_info *grp;
2022 struct ext4_group_desc *desc;
2024 if (group == EXT4_SB(sb)->s_groups_count)
2025 group = 0;
2027 /* quick check to skip empty groups */
2028 grp = ext4_get_group_info(sb, group);
2029 if (grp->bb_free == 0)
2030 continue;
2033 * if the group is already init we check whether it is
2034 * a good group and if not we don't load the buddy
2036 if (EXT4_MB_GRP_NEED_INIT(grp)) {
2038 * we need full data about the group
2039 * to make a good selection
2041 err = ext4_mb_init_group(sb, group);
2042 if (err)
2043 goto out;
2047 * If the particular group doesn't satisfy our
2048 * criteria we continue with the next group
2050 if (!ext4_mb_good_group(ac, group, cr))
2051 continue;
2053 err = ext4_mb_load_buddy(sb, group, &e4b);
2054 if (err)
2055 goto out;
2057 ext4_lock_group(sb, group);
2058 if (!ext4_mb_good_group(ac, group, cr)) {
2059 /* someone did allocation from this group */
2060 ext4_unlock_group(sb, group);
2061 ext4_mb_release_desc(&e4b);
2062 continue;
2065 ac->ac_groups_scanned++;
2066 desc = ext4_get_group_desc(sb, group, NULL);
2067 if (cr == 0 || (desc->bg_flags &
2068 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
2069 ac->ac_2order != 0))
2070 ext4_mb_simple_scan_group(ac, &e4b);
2071 else if (cr == 1 &&
2072 ac->ac_g_ex.fe_len == sbi->s_stripe)
2073 ext4_mb_scan_aligned(ac, &e4b);
2074 else
2075 ext4_mb_complex_scan_group(ac, &e4b);
2077 ext4_unlock_group(sb, group);
2078 ext4_mb_release_desc(&e4b);
2080 if (ac->ac_status != AC_STATUS_CONTINUE)
2081 break;
2085 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2086 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2088 * We've been searching too long. Let's try to allocate
2089 * the best chunk we've found so far
2092 ext4_mb_try_best_found(ac, &e4b);
2093 if (ac->ac_status != AC_STATUS_FOUND) {
2095 * Someone more lucky has already allocated it.
2096 * The only thing we can do is just take first
2097 * found block(s)
2098 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2100 ac->ac_b_ex.fe_group = 0;
2101 ac->ac_b_ex.fe_start = 0;
2102 ac->ac_b_ex.fe_len = 0;
2103 ac->ac_status = AC_STATUS_CONTINUE;
2104 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2105 cr = 3;
2106 atomic_inc(&sbi->s_mb_lost_chunks);
2107 goto repeat;
2110 out:
2111 return err;
2114 #ifdef EXT4_MB_HISTORY
2115 struct ext4_mb_proc_session {
2116 struct ext4_mb_history *history;
2117 struct super_block *sb;
2118 int start;
2119 int max;
2122 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2123 struct ext4_mb_history *hs,
2124 int first)
2126 if (hs == s->history + s->max)
2127 hs = s->history;
2128 if (!first && hs == s->history + s->start)
2129 return NULL;
2130 while (hs->orig.fe_len == 0) {
2131 hs++;
2132 if (hs == s->history + s->max)
2133 hs = s->history;
2134 if (hs == s->history + s->start)
2135 return NULL;
2137 return hs;
2140 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2142 struct ext4_mb_proc_session *s = seq->private;
2143 struct ext4_mb_history *hs;
2144 int l = *pos;
2146 if (l == 0)
2147 return SEQ_START_TOKEN;
2148 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2149 if (!hs)
2150 return NULL;
2151 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2152 return hs;
2155 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2156 loff_t *pos)
2158 struct ext4_mb_proc_session *s = seq->private;
2159 struct ext4_mb_history *hs = v;
2161 ++*pos;
2162 if (v == SEQ_START_TOKEN)
2163 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2164 else
2165 return ext4_mb_history_skip_empty(s, ++hs, 0);
2168 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2170 char buf[25], buf2[25], buf3[25], *fmt;
2171 struct ext4_mb_history *hs = v;
2173 if (v == SEQ_START_TOKEN) {
2174 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2175 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2176 "pid", "inode", "original", "goal", "result", "found",
2177 "grps", "cr", "flags", "merge", "tail", "broken");
2178 return 0;
2181 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2182 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2183 "%-5u %-5s %-5u %-6u\n";
2184 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2185 hs->result.fe_start, hs->result.fe_len,
2186 hs->result.fe_logical);
2187 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2188 hs->orig.fe_start, hs->orig.fe_len,
2189 hs->orig.fe_logical);
2190 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2191 hs->goal.fe_start, hs->goal.fe_len,
2192 hs->goal.fe_logical);
2193 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2194 hs->found, hs->groups, hs->cr, hs->flags,
2195 hs->merged ? "M" : "", hs->tail,
2196 hs->buddy ? 1 << hs->buddy : 0);
2197 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2198 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2199 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2200 hs->result.fe_start, hs->result.fe_len,
2201 hs->result.fe_logical);
2202 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2203 hs->orig.fe_start, hs->orig.fe_len,
2204 hs->orig.fe_logical);
2205 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2206 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2207 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2208 hs->result.fe_start, hs->result.fe_len);
2209 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2210 hs->pid, hs->ino, buf2);
2211 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2212 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2213 hs->result.fe_start, hs->result.fe_len);
2214 seq_printf(seq, "%-5u %-8u %-23s free\n",
2215 hs->pid, hs->ino, buf2);
2217 return 0;
2220 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2224 static struct seq_operations ext4_mb_seq_history_ops = {
2225 .start = ext4_mb_seq_history_start,
2226 .next = ext4_mb_seq_history_next,
2227 .stop = ext4_mb_seq_history_stop,
2228 .show = ext4_mb_seq_history_show,
2231 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2233 struct super_block *sb = PDE(inode)->data;
2234 struct ext4_sb_info *sbi = EXT4_SB(sb);
2235 struct ext4_mb_proc_session *s;
2236 int rc;
2237 int size;
2239 if (unlikely(sbi->s_mb_history == NULL))
2240 return -ENOMEM;
2241 s = kmalloc(sizeof(*s), GFP_KERNEL);
2242 if (s == NULL)
2243 return -ENOMEM;
2244 s->sb = sb;
2245 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2246 s->history = kmalloc(size, GFP_KERNEL);
2247 if (s->history == NULL) {
2248 kfree(s);
2249 return -ENOMEM;
2252 spin_lock(&sbi->s_mb_history_lock);
2253 memcpy(s->history, sbi->s_mb_history, size);
2254 s->max = sbi->s_mb_history_max;
2255 s->start = sbi->s_mb_history_cur % s->max;
2256 spin_unlock(&sbi->s_mb_history_lock);
2258 rc = seq_open(file, &ext4_mb_seq_history_ops);
2259 if (rc == 0) {
2260 struct seq_file *m = (struct seq_file *)file->private_data;
2261 m->private = s;
2262 } else {
2263 kfree(s->history);
2264 kfree(s);
2266 return rc;
2270 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2272 struct seq_file *seq = (struct seq_file *)file->private_data;
2273 struct ext4_mb_proc_session *s = seq->private;
2274 kfree(s->history);
2275 kfree(s);
2276 return seq_release(inode, file);
2279 static ssize_t ext4_mb_seq_history_write(struct file *file,
2280 const char __user *buffer,
2281 size_t count, loff_t *ppos)
2283 struct seq_file *seq = (struct seq_file *)file->private_data;
2284 struct ext4_mb_proc_session *s = seq->private;
2285 struct super_block *sb = s->sb;
2286 char str[32];
2287 int value;
2289 if (count >= sizeof(str)) {
2290 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2291 "mb_history", (int)sizeof(str));
2292 return -EOVERFLOW;
2295 if (copy_from_user(str, buffer, count))
2296 return -EFAULT;
2298 value = simple_strtol(str, NULL, 0);
2299 if (value < 0)
2300 return -ERANGE;
2301 EXT4_SB(sb)->s_mb_history_filter = value;
2303 return count;
2306 static struct file_operations ext4_mb_seq_history_fops = {
2307 .owner = THIS_MODULE,
2308 .open = ext4_mb_seq_history_open,
2309 .read = seq_read,
2310 .write = ext4_mb_seq_history_write,
2311 .llseek = seq_lseek,
2312 .release = ext4_mb_seq_history_release,
2315 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2317 struct super_block *sb = seq->private;
2318 struct ext4_sb_info *sbi = EXT4_SB(sb);
2319 ext4_group_t group;
2321 if (*pos < 0 || *pos >= sbi->s_groups_count)
2322 return NULL;
2324 group = *pos + 1;
2325 return (void *) ((unsigned long) group);
2328 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2330 struct super_block *sb = seq->private;
2331 struct ext4_sb_info *sbi = EXT4_SB(sb);
2332 ext4_group_t group;
2334 ++*pos;
2335 if (*pos < 0 || *pos >= sbi->s_groups_count)
2336 return NULL;
2337 group = *pos + 1;
2338 return (void *) ((unsigned long) group);
2341 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2343 struct super_block *sb = seq->private;
2344 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2345 int i;
2346 int err;
2347 struct ext4_buddy e4b;
2348 struct sg {
2349 struct ext4_group_info info;
2350 unsigned short counters[16];
2351 } sg;
2353 group--;
2354 if (group == 0)
2355 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2356 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2357 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2358 "group", "free", "frags", "first",
2359 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2360 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2362 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2363 sizeof(struct ext4_group_info);
2364 err = ext4_mb_load_buddy(sb, group, &e4b);
2365 if (err) {
2366 seq_printf(seq, "#%-5u: I/O error\n", group);
2367 return 0;
2369 ext4_lock_group(sb, group);
2370 memcpy(&sg, ext4_get_group_info(sb, group), i);
2371 ext4_unlock_group(sb, group);
2372 ext4_mb_release_desc(&e4b);
2374 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2375 sg.info.bb_fragments, sg.info.bb_first_free);
2376 for (i = 0; i <= 13; i++)
2377 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2378 sg.info.bb_counters[i] : 0);
2379 seq_printf(seq, " ]\n");
2381 return 0;
2384 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2388 static struct seq_operations ext4_mb_seq_groups_ops = {
2389 .start = ext4_mb_seq_groups_start,
2390 .next = ext4_mb_seq_groups_next,
2391 .stop = ext4_mb_seq_groups_stop,
2392 .show = ext4_mb_seq_groups_show,
2395 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2397 struct super_block *sb = PDE(inode)->data;
2398 int rc;
2400 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2401 if (rc == 0) {
2402 struct seq_file *m = (struct seq_file *)file->private_data;
2403 m->private = sb;
2405 return rc;
2409 static struct file_operations ext4_mb_seq_groups_fops = {
2410 .owner = THIS_MODULE,
2411 .open = ext4_mb_seq_groups_open,
2412 .read = seq_read,
2413 .llseek = seq_lseek,
2414 .release = seq_release,
2417 static void ext4_mb_history_release(struct super_block *sb)
2419 struct ext4_sb_info *sbi = EXT4_SB(sb);
2421 if (sbi->s_proc != NULL) {
2422 remove_proc_entry("mb_groups", sbi->s_proc);
2423 remove_proc_entry("mb_history", sbi->s_proc);
2425 kfree(sbi->s_mb_history);
2428 static void ext4_mb_history_init(struct super_block *sb)
2430 struct ext4_sb_info *sbi = EXT4_SB(sb);
2431 int i;
2433 if (sbi->s_proc != NULL) {
2434 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2435 &ext4_mb_seq_history_fops, sb);
2436 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2437 &ext4_mb_seq_groups_fops, sb);
2440 sbi->s_mb_history_max = 1000;
2441 sbi->s_mb_history_cur = 0;
2442 spin_lock_init(&sbi->s_mb_history_lock);
2443 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2444 sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2445 /* if we can't allocate history, then we simple won't use it */
2448 static noinline_for_stack void
2449 ext4_mb_store_history(struct ext4_allocation_context *ac)
2451 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2452 struct ext4_mb_history h;
2454 if (unlikely(sbi->s_mb_history == NULL))
2455 return;
2457 if (!(ac->ac_op & sbi->s_mb_history_filter))
2458 return;
2460 h.op = ac->ac_op;
2461 h.pid = current->pid;
2462 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2463 h.orig = ac->ac_o_ex;
2464 h.result = ac->ac_b_ex;
2465 h.flags = ac->ac_flags;
2466 h.found = ac->ac_found;
2467 h.groups = ac->ac_groups_scanned;
2468 h.cr = ac->ac_criteria;
2469 h.tail = ac->ac_tail;
2470 h.buddy = ac->ac_buddy;
2471 h.merged = 0;
2472 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2473 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2474 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2475 h.merged = 1;
2476 h.goal = ac->ac_g_ex;
2477 h.result = ac->ac_f_ex;
2480 spin_lock(&sbi->s_mb_history_lock);
2481 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2482 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2483 sbi->s_mb_history_cur = 0;
2484 spin_unlock(&sbi->s_mb_history_lock);
2487 #else
2488 #define ext4_mb_history_release(sb)
2489 #define ext4_mb_history_init(sb)
2490 #endif
2493 /* Create and initialize ext4_group_info data for the given group. */
2494 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2495 struct ext4_group_desc *desc)
2497 int i, len;
2498 int metalen = 0;
2499 struct ext4_sb_info *sbi = EXT4_SB(sb);
2500 struct ext4_group_info **meta_group_info;
2503 * First check if this group is the first of a reserved block.
2504 * If it's true, we have to allocate a new table of pointers
2505 * to ext4_group_info structures
2507 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2508 metalen = sizeof(*meta_group_info) <<
2509 EXT4_DESC_PER_BLOCK_BITS(sb);
2510 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2511 if (meta_group_info == NULL) {
2512 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2513 "buddy group\n");
2514 goto exit_meta_group_info;
2516 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2517 meta_group_info;
2521 * calculate needed size. if change bb_counters size,
2522 * don't forget about ext4_mb_generate_buddy()
2524 len = offsetof(typeof(**meta_group_info),
2525 bb_counters[sb->s_blocksize_bits + 2]);
2527 meta_group_info =
2528 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2529 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2531 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2532 if (meta_group_info[i] == NULL) {
2533 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2534 goto exit_group_info;
2536 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2537 &(meta_group_info[i]->bb_state));
2540 * initialize bb_free to be able to skip
2541 * empty groups without initialization
2543 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2544 meta_group_info[i]->bb_free =
2545 ext4_free_blocks_after_init(sb, group, desc);
2546 } else {
2547 meta_group_info[i]->bb_free =
2548 ext4_free_blks_count(sb, desc);
2551 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2552 init_rwsem(&meta_group_info[i]->alloc_sem);
2553 meta_group_info[i]->bb_free_root.rb_node = NULL;;
2555 #ifdef DOUBLE_CHECK
2557 struct buffer_head *bh;
2558 meta_group_info[i]->bb_bitmap =
2559 kmalloc(sb->s_blocksize, GFP_KERNEL);
2560 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2561 bh = ext4_read_block_bitmap(sb, group);
2562 BUG_ON(bh == NULL);
2563 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2564 sb->s_blocksize);
2565 put_bh(bh);
2567 #endif
2569 return 0;
2571 exit_group_info:
2572 /* If a meta_group_info table has been allocated, release it now */
2573 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2574 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2575 exit_meta_group_info:
2576 return -ENOMEM;
2577 } /* ext4_mb_add_groupinfo */
2580 * Update an existing group.
2581 * This function is used for online resize
2583 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2585 grp->bb_free += add;
2588 static int ext4_mb_init_backend(struct super_block *sb)
2590 ext4_group_t i;
2591 int metalen;
2592 struct ext4_sb_info *sbi = EXT4_SB(sb);
2593 struct ext4_super_block *es = sbi->s_es;
2594 int num_meta_group_infos;
2595 int num_meta_group_infos_max;
2596 int array_size;
2597 struct ext4_group_info **meta_group_info;
2598 struct ext4_group_desc *desc;
2600 /* This is the number of blocks used by GDT */
2601 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2602 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2605 * This is the total number of blocks used by GDT including
2606 * the number of reserved blocks for GDT.
2607 * The s_group_info array is allocated with this value
2608 * to allow a clean online resize without a complex
2609 * manipulation of pointer.
2610 * The drawback is the unused memory when no resize
2611 * occurs but it's very low in terms of pages
2612 * (see comments below)
2613 * Need to handle this properly when META_BG resizing is allowed
2615 num_meta_group_infos_max = num_meta_group_infos +
2616 le16_to_cpu(es->s_reserved_gdt_blocks);
2619 * array_size is the size of s_group_info array. We round it
2620 * to the next power of two because this approximation is done
2621 * internally by kmalloc so we can have some more memory
2622 * for free here (e.g. may be used for META_BG resize).
2624 array_size = 1;
2625 while (array_size < sizeof(*sbi->s_group_info) *
2626 num_meta_group_infos_max)
2627 array_size = array_size << 1;
2628 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2629 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2630 * So a two level scheme suffices for now. */
2631 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2632 if (sbi->s_group_info == NULL) {
2633 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2634 return -ENOMEM;
2636 sbi->s_buddy_cache = new_inode(sb);
2637 if (sbi->s_buddy_cache == NULL) {
2638 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2639 goto err_freesgi;
2641 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2643 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2644 for (i = 0; i < num_meta_group_infos; i++) {
2645 if ((i + 1) == num_meta_group_infos)
2646 metalen = sizeof(*meta_group_info) *
2647 (sbi->s_groups_count -
2648 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2649 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2650 if (meta_group_info == NULL) {
2651 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2652 "buddy group\n");
2653 goto err_freemeta;
2655 sbi->s_group_info[i] = meta_group_info;
2658 for (i = 0; i < sbi->s_groups_count; i++) {
2659 desc = ext4_get_group_desc(sb, i, NULL);
2660 if (desc == NULL) {
2661 printk(KERN_ERR
2662 "EXT4-fs: can't read descriptor %u\n", i);
2663 goto err_freebuddy;
2665 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2666 goto err_freebuddy;
2669 return 0;
2671 err_freebuddy:
2672 while (i-- > 0)
2673 kfree(ext4_get_group_info(sb, i));
2674 i = num_meta_group_infos;
2675 err_freemeta:
2676 while (i-- > 0)
2677 kfree(sbi->s_group_info[i]);
2678 iput(sbi->s_buddy_cache);
2679 err_freesgi:
2680 kfree(sbi->s_group_info);
2681 return -ENOMEM;
2684 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2686 struct ext4_sb_info *sbi = EXT4_SB(sb);
2687 unsigned i, j;
2688 unsigned offset;
2689 unsigned max;
2690 int ret;
2692 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2694 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2695 if (sbi->s_mb_offsets == NULL) {
2696 return -ENOMEM;
2699 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2700 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2701 if (sbi->s_mb_maxs == NULL) {
2702 kfree(sbi->s_mb_offsets);
2703 return -ENOMEM;
2706 /* order 0 is regular bitmap */
2707 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2708 sbi->s_mb_offsets[0] = 0;
2710 i = 1;
2711 offset = 0;
2712 max = sb->s_blocksize << 2;
2713 do {
2714 sbi->s_mb_offsets[i] = offset;
2715 sbi->s_mb_maxs[i] = max;
2716 offset += 1 << (sb->s_blocksize_bits - i);
2717 max = max >> 1;
2718 i++;
2719 } while (i <= sb->s_blocksize_bits + 1);
2721 /* init file for buddy data */
2722 ret = ext4_mb_init_backend(sb);
2723 if (ret != 0) {
2724 kfree(sbi->s_mb_offsets);
2725 kfree(sbi->s_mb_maxs);
2726 return ret;
2729 spin_lock_init(&sbi->s_md_lock);
2730 spin_lock_init(&sbi->s_bal_lock);
2732 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2733 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2734 sbi->s_mb_stats = MB_DEFAULT_STATS;
2735 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2736 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2737 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2738 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2740 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2741 if (sbi->s_locality_groups == NULL) {
2742 kfree(sbi->s_mb_offsets);
2743 kfree(sbi->s_mb_maxs);
2744 return -ENOMEM;
2746 for_each_possible_cpu(i) {
2747 struct ext4_locality_group *lg;
2748 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2749 mutex_init(&lg->lg_mutex);
2750 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2751 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2752 spin_lock_init(&lg->lg_prealloc_lock);
2755 ext4_mb_history_init(sb);
2757 if (sbi->s_journal)
2758 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2760 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2761 return 0;
2764 /* need to called with ext4 group lock (ext4_lock_group) */
2765 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2767 struct ext4_prealloc_space *pa;
2768 struct list_head *cur, *tmp;
2769 int count = 0;
2771 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2772 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2773 list_del(&pa->pa_group_list);
2774 count++;
2775 kmem_cache_free(ext4_pspace_cachep, pa);
2777 if (count)
2778 mb_debug("mballoc: %u PAs left\n", count);
2782 int ext4_mb_release(struct super_block *sb)
2784 ext4_group_t i;
2785 int num_meta_group_infos;
2786 struct ext4_group_info *grinfo;
2787 struct ext4_sb_info *sbi = EXT4_SB(sb);
2789 if (sbi->s_group_info) {
2790 for (i = 0; i < sbi->s_groups_count; i++) {
2791 grinfo = ext4_get_group_info(sb, i);
2792 #ifdef DOUBLE_CHECK
2793 kfree(grinfo->bb_bitmap);
2794 #endif
2795 ext4_lock_group(sb, i);
2796 ext4_mb_cleanup_pa(grinfo);
2797 ext4_unlock_group(sb, i);
2798 kfree(grinfo);
2800 num_meta_group_infos = (sbi->s_groups_count +
2801 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2802 EXT4_DESC_PER_BLOCK_BITS(sb);
2803 for (i = 0; i < num_meta_group_infos; i++)
2804 kfree(sbi->s_group_info[i]);
2805 kfree(sbi->s_group_info);
2807 kfree(sbi->s_mb_offsets);
2808 kfree(sbi->s_mb_maxs);
2809 if (sbi->s_buddy_cache)
2810 iput(sbi->s_buddy_cache);
2811 if (sbi->s_mb_stats) {
2812 printk(KERN_INFO
2813 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2814 atomic_read(&sbi->s_bal_allocated),
2815 atomic_read(&sbi->s_bal_reqs),
2816 atomic_read(&sbi->s_bal_success));
2817 printk(KERN_INFO
2818 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2819 "%u 2^N hits, %u breaks, %u lost\n",
2820 atomic_read(&sbi->s_bal_ex_scanned),
2821 atomic_read(&sbi->s_bal_goals),
2822 atomic_read(&sbi->s_bal_2orders),
2823 atomic_read(&sbi->s_bal_breaks),
2824 atomic_read(&sbi->s_mb_lost_chunks));
2825 printk(KERN_INFO
2826 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2827 sbi->s_mb_buddies_generated++,
2828 sbi->s_mb_generation_time);
2829 printk(KERN_INFO
2830 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2831 atomic_read(&sbi->s_mb_preallocated),
2832 atomic_read(&sbi->s_mb_discarded));
2835 free_percpu(sbi->s_locality_groups);
2836 ext4_mb_history_release(sb);
2838 return 0;
2842 * This function is called by the jbd2 layer once the commit has finished,
2843 * so we know we can free the blocks that were released with that commit.
2845 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2847 struct super_block *sb = journal->j_private;
2848 struct ext4_buddy e4b;
2849 struct ext4_group_info *db;
2850 int err, count = 0, count2 = 0;
2851 struct ext4_free_data *entry;
2852 ext4_fsblk_t discard_block;
2853 struct list_head *l, *ltmp;
2855 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2856 entry = list_entry(l, struct ext4_free_data, list);
2858 mb_debug("gonna free %u blocks in group %u (0x%p):",
2859 entry->count, entry->group, entry);
2861 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2862 /* we expect to find existing buddy because it's pinned */
2863 BUG_ON(err != 0);
2865 db = e4b.bd_info;
2866 /* there are blocks to put in buddy to make them really free */
2867 count += entry->count;
2868 count2++;
2869 ext4_lock_group(sb, entry->group);
2870 /* Take it out of per group rb tree */
2871 rb_erase(&entry->node, &(db->bb_free_root));
2872 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2874 if (!db->bb_free_root.rb_node) {
2875 /* No more items in the per group rb tree
2876 * balance refcounts from ext4_mb_free_metadata()
2878 page_cache_release(e4b.bd_buddy_page);
2879 page_cache_release(e4b.bd_bitmap_page);
2881 ext4_unlock_group(sb, entry->group);
2882 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2883 + entry->start_blk
2884 + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2885 trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u",
2886 sb->s_id, (unsigned long long) discard_block,
2887 entry->count);
2888 sb_issue_discard(sb, discard_block, entry->count);
2890 kmem_cache_free(ext4_free_ext_cachep, entry);
2891 ext4_mb_release_desc(&e4b);
2894 mb_debug("freed %u blocks in %u structures\n", count, count2);
2897 int __init init_ext4_mballoc(void)
2899 ext4_pspace_cachep =
2900 kmem_cache_create("ext4_prealloc_space",
2901 sizeof(struct ext4_prealloc_space),
2902 0, SLAB_RECLAIM_ACCOUNT, NULL);
2903 if (ext4_pspace_cachep == NULL)
2904 return -ENOMEM;
2906 ext4_ac_cachep =
2907 kmem_cache_create("ext4_alloc_context",
2908 sizeof(struct ext4_allocation_context),
2909 0, SLAB_RECLAIM_ACCOUNT, NULL);
2910 if (ext4_ac_cachep == NULL) {
2911 kmem_cache_destroy(ext4_pspace_cachep);
2912 return -ENOMEM;
2915 ext4_free_ext_cachep =
2916 kmem_cache_create("ext4_free_block_extents",
2917 sizeof(struct ext4_free_data),
2918 0, SLAB_RECLAIM_ACCOUNT, NULL);
2919 if (ext4_free_ext_cachep == NULL) {
2920 kmem_cache_destroy(ext4_pspace_cachep);
2921 kmem_cache_destroy(ext4_ac_cachep);
2922 return -ENOMEM;
2924 return 0;
2927 void exit_ext4_mballoc(void)
2929 /* XXX: synchronize_rcu(); */
2930 kmem_cache_destroy(ext4_pspace_cachep);
2931 kmem_cache_destroy(ext4_ac_cachep);
2932 kmem_cache_destroy(ext4_free_ext_cachep);
2937 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2938 * Returns 0 if success or error code
2940 static noinline_for_stack int
2941 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2942 handle_t *handle, unsigned int reserv_blks)
2944 struct buffer_head *bitmap_bh = NULL;
2945 struct ext4_super_block *es;
2946 struct ext4_group_desc *gdp;
2947 struct buffer_head *gdp_bh;
2948 struct ext4_sb_info *sbi;
2949 struct super_block *sb;
2950 ext4_fsblk_t block;
2951 int err, len;
2953 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2954 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2956 sb = ac->ac_sb;
2957 sbi = EXT4_SB(sb);
2958 es = sbi->s_es;
2961 err = -EIO;
2962 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2963 if (!bitmap_bh)
2964 goto out_err;
2966 err = ext4_journal_get_write_access(handle, bitmap_bh);
2967 if (err)
2968 goto out_err;
2970 err = -EIO;
2971 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2972 if (!gdp)
2973 goto out_err;
2975 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2976 ext4_free_blks_count(sb, gdp));
2978 err = ext4_journal_get_write_access(handle, gdp_bh);
2979 if (err)
2980 goto out_err;
2982 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2983 + ac->ac_b_ex.fe_start
2984 + le32_to_cpu(es->s_first_data_block);
2986 len = ac->ac_b_ex.fe_len;
2987 if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
2988 in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
2989 in_range(block, ext4_inode_table(sb, gdp),
2990 EXT4_SB(sb)->s_itb_per_group) ||
2991 in_range(block + len - 1, ext4_inode_table(sb, gdp),
2992 EXT4_SB(sb)->s_itb_per_group)) {
2993 ext4_error(sb, __func__,
2994 "Allocating block %llu in system zone of %d group\n",
2995 block, ac->ac_b_ex.fe_group);
2996 /* File system mounted not to panic on error
2997 * Fix the bitmap and repeat the block allocation
2998 * We leak some of the blocks here.
3000 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
3001 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3002 ac->ac_b_ex.fe_len);
3003 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3004 if (!err)
3005 err = -EAGAIN;
3006 goto out_err;
3008 #ifdef AGGRESSIVE_CHECK
3010 int i;
3011 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3012 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3013 bitmap_bh->b_data));
3016 #endif
3017 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3018 mb_set_bits(NULL, bitmap_bh->b_data,
3019 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
3020 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3021 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3022 ext4_free_blks_set(sb, gdp,
3023 ext4_free_blocks_after_init(sb,
3024 ac->ac_b_ex.fe_group, gdp));
3026 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3027 ext4_free_blks_set(sb, gdp, len);
3028 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3029 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3030 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3032 * Now reduce the dirty block count also. Should not go negative
3034 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3035 /* release all the reserved blocks if non delalloc */
3036 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3037 else {
3038 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3039 ac->ac_b_ex.fe_len);
3040 /* convert reserved quota blocks to real quota blocks */
3041 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
3044 if (sbi->s_log_groups_per_flex) {
3045 ext4_group_t flex_group = ext4_flex_group(sbi,
3046 ac->ac_b_ex.fe_group);
3047 atomic_sub(ac->ac_b_ex.fe_len,
3048 &sbi->s_flex_groups[flex_group].free_blocks);
3051 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3052 if (err)
3053 goto out_err;
3054 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3056 out_err:
3057 sb->s_dirt = 1;
3058 brelse(bitmap_bh);
3059 return err;
3063 * here we normalize request for locality group
3064 * Group request are normalized to s_strip size if we set the same via mount
3065 * option. If not we set it to s_mb_group_prealloc which can be configured via
3066 * /sys/fs/ext4/<partition>/mb_group_prealloc
3068 * XXX: should we try to preallocate more than the group has now?
3070 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3072 struct super_block *sb = ac->ac_sb;
3073 struct ext4_locality_group *lg = ac->ac_lg;
3075 BUG_ON(lg == NULL);
3076 if (EXT4_SB(sb)->s_stripe)
3077 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3078 else
3079 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3080 mb_debug("#%u: goal %u blocks for locality group\n",
3081 current->pid, ac->ac_g_ex.fe_len);
3085 * Normalization means making request better in terms of
3086 * size and alignment
3088 static noinline_for_stack void
3089 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3090 struct ext4_allocation_request *ar)
3092 int bsbits, max;
3093 ext4_lblk_t end;
3094 loff_t size, orig_size, start_off;
3095 ext4_lblk_t start, orig_start;
3096 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3097 struct ext4_prealloc_space *pa;
3099 /* do normalize only data requests, metadata requests
3100 do not need preallocation */
3101 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3102 return;
3104 /* sometime caller may want exact blocks */
3105 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3106 return;
3108 /* caller may indicate that preallocation isn't
3109 * required (it's a tail, for example) */
3110 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3111 return;
3113 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3114 ext4_mb_normalize_group_request(ac);
3115 return ;
3118 bsbits = ac->ac_sb->s_blocksize_bits;
3120 /* first, let's learn actual file size
3121 * given current request is allocated */
3122 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3123 size = size << bsbits;
3124 if (size < i_size_read(ac->ac_inode))
3125 size = i_size_read(ac->ac_inode);
3127 /* max size of free chunks */
3128 max = 2 << bsbits;
3130 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3131 (req <= (size) || max <= (chunk_size))
3133 /* first, try to predict filesize */
3134 /* XXX: should this table be tunable? */
3135 start_off = 0;
3136 if (size <= 16 * 1024) {
3137 size = 16 * 1024;
3138 } else if (size <= 32 * 1024) {
3139 size = 32 * 1024;
3140 } else if (size <= 64 * 1024) {
3141 size = 64 * 1024;
3142 } else if (size <= 128 * 1024) {
3143 size = 128 * 1024;
3144 } else if (size <= 256 * 1024) {
3145 size = 256 * 1024;
3146 } else if (size <= 512 * 1024) {
3147 size = 512 * 1024;
3148 } else if (size <= 1024 * 1024) {
3149 size = 1024 * 1024;
3150 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3151 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3152 (21 - bsbits)) << 21;
3153 size = 2 * 1024 * 1024;
3154 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3155 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3156 (22 - bsbits)) << 22;
3157 size = 4 * 1024 * 1024;
3158 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3159 (8<<20)>>bsbits, max, 8 * 1024)) {
3160 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3161 (23 - bsbits)) << 23;
3162 size = 8 * 1024 * 1024;
3163 } else {
3164 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3165 size = ac->ac_o_ex.fe_len << bsbits;
3167 orig_size = size = size >> bsbits;
3168 orig_start = start = start_off >> bsbits;
3170 /* don't cover already allocated blocks in selected range */
3171 if (ar->pleft && start <= ar->lleft) {
3172 size -= ar->lleft + 1 - start;
3173 start = ar->lleft + 1;
3175 if (ar->pright && start + size - 1 >= ar->lright)
3176 size -= start + size - ar->lright;
3178 end = start + size;
3180 /* check we don't cross already preallocated blocks */
3181 rcu_read_lock();
3182 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3183 ext4_lblk_t pa_end;
3185 if (pa->pa_deleted)
3186 continue;
3187 spin_lock(&pa->pa_lock);
3188 if (pa->pa_deleted) {
3189 spin_unlock(&pa->pa_lock);
3190 continue;
3193 pa_end = pa->pa_lstart + pa->pa_len;
3195 /* PA must not overlap original request */
3196 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3197 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3199 /* skip PA normalized request doesn't overlap with */
3200 if (pa->pa_lstart >= end) {
3201 spin_unlock(&pa->pa_lock);
3202 continue;
3204 if (pa_end <= start) {
3205 spin_unlock(&pa->pa_lock);
3206 continue;
3208 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3210 if (pa_end <= ac->ac_o_ex.fe_logical) {
3211 BUG_ON(pa_end < start);
3212 start = pa_end;
3215 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3216 BUG_ON(pa->pa_lstart > end);
3217 end = pa->pa_lstart;
3219 spin_unlock(&pa->pa_lock);
3221 rcu_read_unlock();
3222 size = end - start;
3224 /* XXX: extra loop to check we really don't overlap preallocations */
3225 rcu_read_lock();
3226 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3227 ext4_lblk_t pa_end;
3228 spin_lock(&pa->pa_lock);
3229 if (pa->pa_deleted == 0) {
3230 pa_end = pa->pa_lstart + pa->pa_len;
3231 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3233 spin_unlock(&pa->pa_lock);
3235 rcu_read_unlock();
3237 if (start + size <= ac->ac_o_ex.fe_logical &&
3238 start > ac->ac_o_ex.fe_logical) {
3239 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3240 (unsigned long) start, (unsigned long) size,
3241 (unsigned long) ac->ac_o_ex.fe_logical);
3243 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3244 start > ac->ac_o_ex.fe_logical);
3245 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3247 /* now prepare goal request */
3249 /* XXX: is it better to align blocks WRT to logical
3250 * placement or satisfy big request as is */
3251 ac->ac_g_ex.fe_logical = start;
3252 ac->ac_g_ex.fe_len = size;
3254 /* define goal start in order to merge */
3255 if (ar->pright && (ar->lright == (start + size))) {
3256 /* merge to the right */
3257 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3258 &ac->ac_f_ex.fe_group,
3259 &ac->ac_f_ex.fe_start);
3260 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3262 if (ar->pleft && (ar->lleft + 1 == start)) {
3263 /* merge to the left */
3264 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3265 &ac->ac_f_ex.fe_group,
3266 &ac->ac_f_ex.fe_start);
3267 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3270 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3271 (unsigned) orig_size, (unsigned) start);
3274 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3276 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3278 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3279 atomic_inc(&sbi->s_bal_reqs);
3280 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3281 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3282 atomic_inc(&sbi->s_bal_success);
3283 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3284 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3285 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3286 atomic_inc(&sbi->s_bal_goals);
3287 if (ac->ac_found > sbi->s_mb_max_to_scan)
3288 atomic_inc(&sbi->s_bal_breaks);
3291 ext4_mb_store_history(ac);
3295 * use blocks preallocated to inode
3297 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3298 struct ext4_prealloc_space *pa)
3300 ext4_fsblk_t start;
3301 ext4_fsblk_t end;
3302 int len;
3304 /* found preallocated blocks, use them */
3305 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3306 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3307 len = end - start;
3308 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3309 &ac->ac_b_ex.fe_start);
3310 ac->ac_b_ex.fe_len = len;
3311 ac->ac_status = AC_STATUS_FOUND;
3312 ac->ac_pa = pa;
3314 BUG_ON(start < pa->pa_pstart);
3315 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3316 BUG_ON(pa->pa_free < len);
3317 pa->pa_free -= len;
3319 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3323 * use blocks preallocated to locality group
3325 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3326 struct ext4_prealloc_space *pa)
3328 unsigned int len = ac->ac_o_ex.fe_len;
3330 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3331 &ac->ac_b_ex.fe_group,
3332 &ac->ac_b_ex.fe_start);
3333 ac->ac_b_ex.fe_len = len;
3334 ac->ac_status = AC_STATUS_FOUND;
3335 ac->ac_pa = pa;
3337 /* we don't correct pa_pstart or pa_plen here to avoid
3338 * possible race when the group is being loaded concurrently
3339 * instead we correct pa later, after blocks are marked
3340 * in on-disk bitmap -- see ext4_mb_release_context()
3341 * Other CPUs are prevented from allocating from this pa by lg_mutex
3343 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3347 * Return the prealloc space that have minimal distance
3348 * from the goal block. @cpa is the prealloc
3349 * space that is having currently known minimal distance
3350 * from the goal block.
3352 static struct ext4_prealloc_space *
3353 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3354 struct ext4_prealloc_space *pa,
3355 struct ext4_prealloc_space *cpa)
3357 ext4_fsblk_t cur_distance, new_distance;
3359 if (cpa == NULL) {
3360 atomic_inc(&pa->pa_count);
3361 return pa;
3363 cur_distance = abs(goal_block - cpa->pa_pstart);
3364 new_distance = abs(goal_block - pa->pa_pstart);
3366 if (cur_distance < new_distance)
3367 return cpa;
3369 /* drop the previous reference */
3370 atomic_dec(&cpa->pa_count);
3371 atomic_inc(&pa->pa_count);
3372 return pa;
3376 * search goal blocks in preallocated space
3378 static noinline_for_stack int
3379 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3381 int order, i;
3382 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3383 struct ext4_locality_group *lg;
3384 struct ext4_prealloc_space *pa, *cpa = NULL;
3385 ext4_fsblk_t goal_block;
3387 /* only data can be preallocated */
3388 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3389 return 0;
3391 /* first, try per-file preallocation */
3392 rcu_read_lock();
3393 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3395 /* all fields in this condition don't change,
3396 * so we can skip locking for them */
3397 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3398 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3399 continue;
3401 /* found preallocated blocks, use them */
3402 spin_lock(&pa->pa_lock);
3403 if (pa->pa_deleted == 0 && pa->pa_free) {
3404 atomic_inc(&pa->pa_count);
3405 ext4_mb_use_inode_pa(ac, pa);
3406 spin_unlock(&pa->pa_lock);
3407 ac->ac_criteria = 10;
3408 rcu_read_unlock();
3409 return 1;
3411 spin_unlock(&pa->pa_lock);
3413 rcu_read_unlock();
3415 /* can we use group allocation? */
3416 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3417 return 0;
3419 /* inode may have no locality group for some reason */
3420 lg = ac->ac_lg;
3421 if (lg == NULL)
3422 return 0;
3423 order = fls(ac->ac_o_ex.fe_len) - 1;
3424 if (order > PREALLOC_TB_SIZE - 1)
3425 /* The max size of hash table is PREALLOC_TB_SIZE */
3426 order = PREALLOC_TB_SIZE - 1;
3428 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3429 ac->ac_g_ex.fe_start +
3430 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3432 * search for the prealloc space that is having
3433 * minimal distance from the goal block.
3435 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3436 rcu_read_lock();
3437 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3438 pa_inode_list) {
3439 spin_lock(&pa->pa_lock);
3440 if (pa->pa_deleted == 0 &&
3441 pa->pa_free >= ac->ac_o_ex.fe_len) {
3443 cpa = ext4_mb_check_group_pa(goal_block,
3444 pa, cpa);
3446 spin_unlock(&pa->pa_lock);
3448 rcu_read_unlock();
3450 if (cpa) {
3451 ext4_mb_use_group_pa(ac, cpa);
3452 ac->ac_criteria = 20;
3453 return 1;
3455 return 0;
3459 * the function goes through all block freed in the group
3460 * but not yet committed and marks them used in in-core bitmap.
3461 * buddy must be generated from this bitmap
3462 * Need to be called with ext4 group lock (ext4_lock_group)
3464 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3465 ext4_group_t group)
3467 struct rb_node *n;
3468 struct ext4_group_info *grp;
3469 struct ext4_free_data *entry;
3471 grp = ext4_get_group_info(sb, group);
3472 n = rb_first(&(grp->bb_free_root));
3474 while (n) {
3475 entry = rb_entry(n, struct ext4_free_data, node);
3476 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3477 bitmap, entry->start_blk,
3478 entry->count);
3479 n = rb_next(n);
3481 return;
3485 * the function goes through all preallocation in this group and marks them
3486 * used in in-core bitmap. buddy must be generated from this bitmap
3487 * Need to be called with ext4 group lock (ext4_lock_group)
3489 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3490 ext4_group_t group)
3492 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3493 struct ext4_prealloc_space *pa;
3494 struct list_head *cur;
3495 ext4_group_t groupnr;
3496 ext4_grpblk_t start;
3497 int preallocated = 0;
3498 int count = 0;
3499 int len;
3501 /* all form of preallocation discards first load group,
3502 * so the only competing code is preallocation use.
3503 * we don't need any locking here
3504 * notice we do NOT ignore preallocations with pa_deleted
3505 * otherwise we could leave used blocks available for
3506 * allocation in buddy when concurrent ext4_mb_put_pa()
3507 * is dropping preallocation
3509 list_for_each(cur, &grp->bb_prealloc_list) {
3510 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3511 spin_lock(&pa->pa_lock);
3512 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3513 &groupnr, &start);
3514 len = pa->pa_len;
3515 spin_unlock(&pa->pa_lock);
3516 if (unlikely(len == 0))
3517 continue;
3518 BUG_ON(groupnr != group);
3519 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3520 bitmap, start, len);
3521 preallocated += len;
3522 count++;
3524 mb_debug("prellocated %u for group %u\n", preallocated, group);
3527 static void ext4_mb_pa_callback(struct rcu_head *head)
3529 struct ext4_prealloc_space *pa;
3530 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3531 kmem_cache_free(ext4_pspace_cachep, pa);
3535 * drops a reference to preallocated space descriptor
3536 * if this was the last reference and the space is consumed
3538 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3539 struct super_block *sb, struct ext4_prealloc_space *pa)
3541 ext4_group_t grp;
3542 ext4_fsblk_t grp_blk;
3544 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3545 return;
3547 /* in this short window concurrent discard can set pa_deleted */
3548 spin_lock(&pa->pa_lock);
3549 if (pa->pa_deleted == 1) {
3550 spin_unlock(&pa->pa_lock);
3551 return;
3554 pa->pa_deleted = 1;
3555 spin_unlock(&pa->pa_lock);
3557 grp_blk = pa->pa_pstart;
3559 * If doing group-based preallocation, pa_pstart may be in the
3560 * next group when pa is used up
3562 if (pa->pa_type == MB_GROUP_PA)
3563 grp_blk--;
3565 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3568 * possible race:
3570 * P1 (buddy init) P2 (regular allocation)
3571 * find block B in PA
3572 * copy on-disk bitmap to buddy
3573 * mark B in on-disk bitmap
3574 * drop PA from group
3575 * mark all PAs in buddy
3577 * thus, P1 initializes buddy with B available. to prevent this
3578 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3579 * against that pair
3581 ext4_lock_group(sb, grp);
3582 list_del(&pa->pa_group_list);
3583 ext4_unlock_group(sb, grp);
3585 spin_lock(pa->pa_obj_lock);
3586 list_del_rcu(&pa->pa_inode_list);
3587 spin_unlock(pa->pa_obj_lock);
3589 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3593 * creates new preallocated space for given inode
3595 static noinline_for_stack int
3596 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3598 struct super_block *sb = ac->ac_sb;
3599 struct ext4_prealloc_space *pa;
3600 struct ext4_group_info *grp;
3601 struct ext4_inode_info *ei;
3603 /* preallocate only when found space is larger then requested */
3604 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3605 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3606 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3608 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3609 if (pa == NULL)
3610 return -ENOMEM;
3612 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3613 int winl;
3614 int wins;
3615 int win;
3616 int offs;
3618 /* we can't allocate as much as normalizer wants.
3619 * so, found space must get proper lstart
3620 * to cover original request */
3621 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3622 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3624 /* we're limited by original request in that
3625 * logical block must be covered any way
3626 * winl is window we can move our chunk within */
3627 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3629 /* also, we should cover whole original request */
3630 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3632 /* the smallest one defines real window */
3633 win = min(winl, wins);
3635 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3636 if (offs && offs < win)
3637 win = offs;
3639 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3640 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3641 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3644 /* preallocation can change ac_b_ex, thus we store actually
3645 * allocated blocks for history */
3646 ac->ac_f_ex = ac->ac_b_ex;
3648 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3649 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3650 pa->pa_len = ac->ac_b_ex.fe_len;
3651 pa->pa_free = pa->pa_len;
3652 atomic_set(&pa->pa_count, 1);
3653 spin_lock_init(&pa->pa_lock);
3654 INIT_LIST_HEAD(&pa->pa_inode_list);
3655 INIT_LIST_HEAD(&pa->pa_group_list);
3656 pa->pa_deleted = 0;
3657 pa->pa_type = MB_INODE_PA;
3659 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3660 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3661 trace_mark(ext4_mb_new_inode_pa,
3662 "dev %s ino %lu pstart %llu len %u lstart %u",
3663 sb->s_id, ac->ac_inode->i_ino,
3664 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3666 ext4_mb_use_inode_pa(ac, pa);
3667 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3669 ei = EXT4_I(ac->ac_inode);
3670 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3672 pa->pa_obj_lock = &ei->i_prealloc_lock;
3673 pa->pa_inode = ac->ac_inode;
3675 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3676 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3677 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3679 spin_lock(pa->pa_obj_lock);
3680 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3681 spin_unlock(pa->pa_obj_lock);
3683 return 0;
3687 * creates new preallocated space for locality group inodes belongs to
3689 static noinline_for_stack int
3690 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3692 struct super_block *sb = ac->ac_sb;
3693 struct ext4_locality_group *lg;
3694 struct ext4_prealloc_space *pa;
3695 struct ext4_group_info *grp;
3697 /* preallocate only when found space is larger then requested */
3698 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3699 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3700 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3702 BUG_ON(ext4_pspace_cachep == NULL);
3703 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3704 if (pa == NULL)
3705 return -ENOMEM;
3707 /* preallocation can change ac_b_ex, thus we store actually
3708 * allocated blocks for history */
3709 ac->ac_f_ex = ac->ac_b_ex;
3711 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3712 pa->pa_lstart = pa->pa_pstart;
3713 pa->pa_len = ac->ac_b_ex.fe_len;
3714 pa->pa_free = pa->pa_len;
3715 atomic_set(&pa->pa_count, 1);
3716 spin_lock_init(&pa->pa_lock);
3717 INIT_LIST_HEAD(&pa->pa_inode_list);
3718 INIT_LIST_HEAD(&pa->pa_group_list);
3719 pa->pa_deleted = 0;
3720 pa->pa_type = MB_GROUP_PA;
3722 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3723 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3724 trace_mark(ext4_mb_new_group_pa, "dev %s pstart %llu len %u lstart %u",
3725 sb->s_id, pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3727 ext4_mb_use_group_pa(ac, pa);
3728 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3730 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3731 lg = ac->ac_lg;
3732 BUG_ON(lg == NULL);
3734 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3735 pa->pa_inode = NULL;
3737 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3738 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3739 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3742 * We will later add the new pa to the right bucket
3743 * after updating the pa_free in ext4_mb_release_context
3745 return 0;
3748 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3750 int err;
3752 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3753 err = ext4_mb_new_group_pa(ac);
3754 else
3755 err = ext4_mb_new_inode_pa(ac);
3756 return err;
3760 * finds all unused blocks in on-disk bitmap, frees them in
3761 * in-core bitmap and buddy.
3762 * @pa must be unlinked from inode and group lists, so that
3763 * nobody else can find/use it.
3764 * the caller MUST hold group/inode locks.
3765 * TODO: optimize the case when there are no in-core structures yet
3767 static noinline_for_stack int
3768 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3769 struct ext4_prealloc_space *pa,
3770 struct ext4_allocation_context *ac)
3772 struct super_block *sb = e4b->bd_sb;
3773 struct ext4_sb_info *sbi = EXT4_SB(sb);
3774 unsigned int end;
3775 unsigned int next;
3776 ext4_group_t group;
3777 ext4_grpblk_t bit;
3778 unsigned long long grp_blk_start;
3779 sector_t start;
3780 int err = 0;
3781 int free = 0;
3783 BUG_ON(pa->pa_deleted == 0);
3784 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3785 grp_blk_start = pa->pa_pstart - bit;
3786 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3787 end = bit + pa->pa_len;
3789 if (ac) {
3790 ac->ac_sb = sb;
3791 ac->ac_inode = pa->pa_inode;
3792 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3795 while (bit < end) {
3796 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3797 if (bit >= end)
3798 break;
3799 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3800 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3801 le32_to_cpu(sbi->s_es->s_first_data_block);
3802 mb_debug(" free preallocated %u/%u in group %u\n",
3803 (unsigned) start, (unsigned) next - bit,
3804 (unsigned) group);
3805 free += next - bit;
3807 if (ac) {
3808 ac->ac_b_ex.fe_group = group;
3809 ac->ac_b_ex.fe_start = bit;
3810 ac->ac_b_ex.fe_len = next - bit;
3811 ac->ac_b_ex.fe_logical = 0;
3812 ext4_mb_store_history(ac);
3815 trace_mark(ext4_mb_release_inode_pa,
3816 "dev %s ino %lu block %llu count %u",
3817 sb->s_id, pa->pa_inode->i_ino, grp_blk_start + bit,
3818 next - bit);
3819 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3820 bit = next + 1;
3822 if (free != pa->pa_free) {
3823 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3824 pa, (unsigned long) pa->pa_lstart,
3825 (unsigned long) pa->pa_pstart,
3826 (unsigned long) pa->pa_len);
3827 ext4_grp_locked_error(sb, group,
3828 __func__, "free %u, pa_free %u",
3829 free, pa->pa_free);
3831 * pa is already deleted so we use the value obtained
3832 * from the bitmap and continue.
3835 atomic_add(free, &sbi->s_mb_discarded);
3837 return err;
3840 static noinline_for_stack int
3841 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3842 struct ext4_prealloc_space *pa,
3843 struct ext4_allocation_context *ac)
3845 struct super_block *sb = e4b->bd_sb;
3846 ext4_group_t group;
3847 ext4_grpblk_t bit;
3849 if (ac)
3850 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3852 trace_mark(ext4_mb_release_group_pa, "dev %s pstart %llu len %d",
3853 sb->s_id, pa->pa_pstart, pa->pa_len);
3854 BUG_ON(pa->pa_deleted == 0);
3855 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3856 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3857 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3858 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3860 if (ac) {
3861 ac->ac_sb = sb;
3862 ac->ac_inode = NULL;
3863 ac->ac_b_ex.fe_group = group;
3864 ac->ac_b_ex.fe_start = bit;
3865 ac->ac_b_ex.fe_len = pa->pa_len;
3866 ac->ac_b_ex.fe_logical = 0;
3867 ext4_mb_store_history(ac);
3870 return 0;
3874 * releases all preallocations in given group
3876 * first, we need to decide discard policy:
3877 * - when do we discard
3878 * 1) ENOSPC
3879 * - how many do we discard
3880 * 1) how many requested
3882 static noinline_for_stack int
3883 ext4_mb_discard_group_preallocations(struct super_block *sb,
3884 ext4_group_t group, int needed)
3886 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3887 struct buffer_head *bitmap_bh = NULL;
3888 struct ext4_prealloc_space *pa, *tmp;
3889 struct ext4_allocation_context *ac;
3890 struct list_head list;
3891 struct ext4_buddy e4b;
3892 int err;
3893 int busy = 0;
3894 int free = 0;
3896 mb_debug("discard preallocation for group %u\n", group);
3898 if (list_empty(&grp->bb_prealloc_list))
3899 return 0;
3901 bitmap_bh = ext4_read_block_bitmap(sb, group);
3902 if (bitmap_bh == NULL) {
3903 ext4_error(sb, __func__, "Error in reading block "
3904 "bitmap for %u", group);
3905 return 0;
3908 err = ext4_mb_load_buddy(sb, group, &e4b);
3909 if (err) {
3910 ext4_error(sb, __func__, "Error in loading buddy "
3911 "information for %u", group);
3912 put_bh(bitmap_bh);
3913 return 0;
3916 if (needed == 0)
3917 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3919 INIT_LIST_HEAD(&list);
3920 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3921 repeat:
3922 ext4_lock_group(sb, group);
3923 list_for_each_entry_safe(pa, tmp,
3924 &grp->bb_prealloc_list, pa_group_list) {
3925 spin_lock(&pa->pa_lock);
3926 if (atomic_read(&pa->pa_count)) {
3927 spin_unlock(&pa->pa_lock);
3928 busy = 1;
3929 continue;
3931 if (pa->pa_deleted) {
3932 spin_unlock(&pa->pa_lock);
3933 continue;
3936 /* seems this one can be freed ... */
3937 pa->pa_deleted = 1;
3939 /* we can trust pa_free ... */
3940 free += pa->pa_free;
3942 spin_unlock(&pa->pa_lock);
3944 list_del(&pa->pa_group_list);
3945 list_add(&pa->u.pa_tmp_list, &list);
3948 /* if we still need more blocks and some PAs were used, try again */
3949 if (free < needed && busy) {
3950 busy = 0;
3951 ext4_unlock_group(sb, group);
3953 * Yield the CPU here so that we don't get soft lockup
3954 * in non preempt case.
3956 yield();
3957 goto repeat;
3960 /* found anything to free? */
3961 if (list_empty(&list)) {
3962 BUG_ON(free != 0);
3963 goto out;
3966 /* now free all selected PAs */
3967 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3969 /* remove from object (inode or locality group) */
3970 spin_lock(pa->pa_obj_lock);
3971 list_del_rcu(&pa->pa_inode_list);
3972 spin_unlock(pa->pa_obj_lock);
3974 if (pa->pa_type == MB_GROUP_PA)
3975 ext4_mb_release_group_pa(&e4b, pa, ac);
3976 else
3977 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3979 list_del(&pa->u.pa_tmp_list);
3980 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3983 out:
3984 ext4_unlock_group(sb, group);
3985 if (ac)
3986 kmem_cache_free(ext4_ac_cachep, ac);
3987 ext4_mb_release_desc(&e4b);
3988 put_bh(bitmap_bh);
3989 return free;
3993 * releases all non-used preallocated blocks for given inode
3995 * It's important to discard preallocations under i_data_sem
3996 * We don't want another block to be served from the prealloc
3997 * space when we are discarding the inode prealloc space.
3999 * FIXME!! Make sure it is valid at all the call sites
4001 void ext4_discard_preallocations(struct inode *inode)
4003 struct ext4_inode_info *ei = EXT4_I(inode);
4004 struct super_block *sb = inode->i_sb;
4005 struct buffer_head *bitmap_bh = NULL;
4006 struct ext4_prealloc_space *pa, *tmp;
4007 struct ext4_allocation_context *ac;
4008 ext4_group_t group = 0;
4009 struct list_head list;
4010 struct ext4_buddy e4b;
4011 int err;
4013 if (!S_ISREG(inode->i_mode)) {
4014 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4015 return;
4018 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
4019 trace_mark(ext4_discard_preallocations, "dev %s ino %lu", sb->s_id,
4020 inode->i_ino);
4022 INIT_LIST_HEAD(&list);
4024 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4025 repeat:
4026 /* first, collect all pa's in the inode */
4027 spin_lock(&ei->i_prealloc_lock);
4028 while (!list_empty(&ei->i_prealloc_list)) {
4029 pa = list_entry(ei->i_prealloc_list.next,
4030 struct ext4_prealloc_space, pa_inode_list);
4031 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4032 spin_lock(&pa->pa_lock);
4033 if (atomic_read(&pa->pa_count)) {
4034 /* this shouldn't happen often - nobody should
4035 * use preallocation while we're discarding it */
4036 spin_unlock(&pa->pa_lock);
4037 spin_unlock(&ei->i_prealloc_lock);
4038 printk(KERN_ERR "uh-oh! used pa while discarding\n");
4039 WARN_ON(1);
4040 schedule_timeout_uninterruptible(HZ);
4041 goto repeat;
4044 if (pa->pa_deleted == 0) {
4045 pa->pa_deleted = 1;
4046 spin_unlock(&pa->pa_lock);
4047 list_del_rcu(&pa->pa_inode_list);
4048 list_add(&pa->u.pa_tmp_list, &list);
4049 continue;
4052 /* someone is deleting pa right now */
4053 spin_unlock(&pa->pa_lock);
4054 spin_unlock(&ei->i_prealloc_lock);
4056 /* we have to wait here because pa_deleted
4057 * doesn't mean pa is already unlinked from
4058 * the list. as we might be called from
4059 * ->clear_inode() the inode will get freed
4060 * and concurrent thread which is unlinking
4061 * pa from inode's list may access already
4062 * freed memory, bad-bad-bad */
4064 /* XXX: if this happens too often, we can
4065 * add a flag to force wait only in case
4066 * of ->clear_inode(), but not in case of
4067 * regular truncate */
4068 schedule_timeout_uninterruptible(HZ);
4069 goto repeat;
4071 spin_unlock(&ei->i_prealloc_lock);
4073 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4074 BUG_ON(pa->pa_type != MB_INODE_PA);
4075 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4077 err = ext4_mb_load_buddy(sb, group, &e4b);
4078 if (err) {
4079 ext4_error(sb, __func__, "Error in loading buddy "
4080 "information for %u", group);
4081 continue;
4084 bitmap_bh = ext4_read_block_bitmap(sb, group);
4085 if (bitmap_bh == NULL) {
4086 ext4_error(sb, __func__, "Error in reading block "
4087 "bitmap for %u", group);
4088 ext4_mb_release_desc(&e4b);
4089 continue;
4092 ext4_lock_group(sb, group);
4093 list_del(&pa->pa_group_list);
4094 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4095 ext4_unlock_group(sb, group);
4097 ext4_mb_release_desc(&e4b);
4098 put_bh(bitmap_bh);
4100 list_del(&pa->u.pa_tmp_list);
4101 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4103 if (ac)
4104 kmem_cache_free(ext4_ac_cachep, ac);
4108 * finds all preallocated spaces and return blocks being freed to them
4109 * if preallocated space becomes full (no block is used from the space)
4110 * then the function frees space in buddy
4111 * XXX: at the moment, truncate (which is the only way to free blocks)
4112 * discards all preallocations
4114 static void ext4_mb_return_to_preallocation(struct inode *inode,
4115 struct ext4_buddy *e4b,
4116 sector_t block, int count)
4118 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4120 #ifdef MB_DEBUG
4121 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4123 struct super_block *sb = ac->ac_sb;
4124 ext4_group_t i;
4126 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4127 " Allocation context details:\n");
4128 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4129 ac->ac_status, ac->ac_flags);
4130 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4131 "best %lu/%lu/%lu@%lu cr %d\n",
4132 (unsigned long)ac->ac_o_ex.fe_group,
4133 (unsigned long)ac->ac_o_ex.fe_start,
4134 (unsigned long)ac->ac_o_ex.fe_len,
4135 (unsigned long)ac->ac_o_ex.fe_logical,
4136 (unsigned long)ac->ac_g_ex.fe_group,
4137 (unsigned long)ac->ac_g_ex.fe_start,
4138 (unsigned long)ac->ac_g_ex.fe_len,
4139 (unsigned long)ac->ac_g_ex.fe_logical,
4140 (unsigned long)ac->ac_b_ex.fe_group,
4141 (unsigned long)ac->ac_b_ex.fe_start,
4142 (unsigned long)ac->ac_b_ex.fe_len,
4143 (unsigned long)ac->ac_b_ex.fe_logical,
4144 (int)ac->ac_criteria);
4145 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4146 ac->ac_found);
4147 printk(KERN_ERR "EXT4-fs: groups: \n");
4148 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4149 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4150 struct ext4_prealloc_space *pa;
4151 ext4_grpblk_t start;
4152 struct list_head *cur;
4153 ext4_lock_group(sb, i);
4154 list_for_each(cur, &grp->bb_prealloc_list) {
4155 pa = list_entry(cur, struct ext4_prealloc_space,
4156 pa_group_list);
4157 spin_lock(&pa->pa_lock);
4158 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4159 NULL, &start);
4160 spin_unlock(&pa->pa_lock);
4161 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4162 start, pa->pa_len);
4164 ext4_unlock_group(sb, i);
4166 if (grp->bb_free == 0)
4167 continue;
4168 printk(KERN_ERR "%lu: %d/%d \n",
4169 i, grp->bb_free, grp->bb_fragments);
4171 printk(KERN_ERR "\n");
4173 #else
4174 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4176 return;
4178 #endif
4181 * We use locality group preallocation for small size file. The size of the
4182 * file is determined by the current size or the resulting size after
4183 * allocation which ever is larger
4185 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4187 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4190 int bsbits = ac->ac_sb->s_blocksize_bits;
4191 loff_t size, isize;
4193 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4194 return;
4196 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4197 isize = i_size_read(ac->ac_inode) >> bsbits;
4198 size = max(size, isize);
4200 /* don't use group allocation for large files */
4201 if (size >= sbi->s_mb_stream_request)
4202 return;
4204 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4205 return;
4207 BUG_ON(ac->ac_lg != NULL);
4209 * locality group prealloc space are per cpu. The reason for having
4210 * per cpu locality group is to reduce the contention between block
4211 * request from multiple CPUs.
4213 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4215 /* we're going to use group allocation */
4216 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4218 /* serialize all allocations in the group */
4219 mutex_lock(&ac->ac_lg->lg_mutex);
4222 static noinline_for_stack int
4223 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4224 struct ext4_allocation_request *ar)
4226 struct super_block *sb = ar->inode->i_sb;
4227 struct ext4_sb_info *sbi = EXT4_SB(sb);
4228 struct ext4_super_block *es = sbi->s_es;
4229 ext4_group_t group;
4230 unsigned int len;
4231 ext4_fsblk_t goal;
4232 ext4_grpblk_t block;
4234 /* we can't allocate > group size */
4235 len = ar->len;
4237 /* just a dirty hack to filter too big requests */
4238 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4239 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4241 /* start searching from the goal */
4242 goal = ar->goal;
4243 if (goal < le32_to_cpu(es->s_first_data_block) ||
4244 goal >= ext4_blocks_count(es))
4245 goal = le32_to_cpu(es->s_first_data_block);
4246 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4248 /* set up allocation goals */
4249 ac->ac_b_ex.fe_logical = ar->logical;
4250 ac->ac_b_ex.fe_group = 0;
4251 ac->ac_b_ex.fe_start = 0;
4252 ac->ac_b_ex.fe_len = 0;
4253 ac->ac_status = AC_STATUS_CONTINUE;
4254 ac->ac_groups_scanned = 0;
4255 ac->ac_ex_scanned = 0;
4256 ac->ac_found = 0;
4257 ac->ac_sb = sb;
4258 ac->ac_inode = ar->inode;
4259 ac->ac_o_ex.fe_logical = ar->logical;
4260 ac->ac_o_ex.fe_group = group;
4261 ac->ac_o_ex.fe_start = block;
4262 ac->ac_o_ex.fe_len = len;
4263 ac->ac_g_ex.fe_logical = ar->logical;
4264 ac->ac_g_ex.fe_group = group;
4265 ac->ac_g_ex.fe_start = block;
4266 ac->ac_g_ex.fe_len = len;
4267 ac->ac_f_ex.fe_len = 0;
4268 ac->ac_flags = ar->flags;
4269 ac->ac_2order = 0;
4270 ac->ac_criteria = 0;
4271 ac->ac_pa = NULL;
4272 ac->ac_bitmap_page = NULL;
4273 ac->ac_buddy_page = NULL;
4274 ac->alloc_semp = NULL;
4275 ac->ac_lg = NULL;
4277 /* we have to define context: we'll we work with a file or
4278 * locality group. this is a policy, actually */
4279 ext4_mb_group_or_file(ac);
4281 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4282 "left: %u/%u, right %u/%u to %swritable\n",
4283 (unsigned) ar->len, (unsigned) ar->logical,
4284 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4285 (unsigned) ar->lleft, (unsigned) ar->pleft,
4286 (unsigned) ar->lright, (unsigned) ar->pright,
4287 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4288 return 0;
4292 static noinline_for_stack void
4293 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4294 struct ext4_locality_group *lg,
4295 int order, int total_entries)
4297 ext4_group_t group = 0;
4298 struct ext4_buddy e4b;
4299 struct list_head discard_list;
4300 struct ext4_prealloc_space *pa, *tmp;
4301 struct ext4_allocation_context *ac;
4303 mb_debug("discard locality group preallocation\n");
4305 INIT_LIST_HEAD(&discard_list);
4306 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4308 spin_lock(&lg->lg_prealloc_lock);
4309 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4310 pa_inode_list) {
4311 spin_lock(&pa->pa_lock);
4312 if (atomic_read(&pa->pa_count)) {
4314 * This is the pa that we just used
4315 * for block allocation. So don't
4316 * free that
4318 spin_unlock(&pa->pa_lock);
4319 continue;
4321 if (pa->pa_deleted) {
4322 spin_unlock(&pa->pa_lock);
4323 continue;
4325 /* only lg prealloc space */
4326 BUG_ON(pa->pa_type != MB_GROUP_PA);
4328 /* seems this one can be freed ... */
4329 pa->pa_deleted = 1;
4330 spin_unlock(&pa->pa_lock);
4332 list_del_rcu(&pa->pa_inode_list);
4333 list_add(&pa->u.pa_tmp_list, &discard_list);
4335 total_entries--;
4336 if (total_entries <= 5) {
4338 * we want to keep only 5 entries
4339 * allowing it to grow to 8. This
4340 * mak sure we don't call discard
4341 * soon for this list.
4343 break;
4346 spin_unlock(&lg->lg_prealloc_lock);
4348 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4350 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4351 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4352 ext4_error(sb, __func__, "Error in loading buddy "
4353 "information for %u", group);
4354 continue;
4356 ext4_lock_group(sb, group);
4357 list_del(&pa->pa_group_list);
4358 ext4_mb_release_group_pa(&e4b, pa, ac);
4359 ext4_unlock_group(sb, group);
4361 ext4_mb_release_desc(&e4b);
4362 list_del(&pa->u.pa_tmp_list);
4363 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4365 if (ac)
4366 kmem_cache_free(ext4_ac_cachep, ac);
4370 * We have incremented pa_count. So it cannot be freed at this
4371 * point. Also we hold lg_mutex. So no parallel allocation is
4372 * possible from this lg. That means pa_free cannot be updated.
4374 * A parallel ext4_mb_discard_group_preallocations is possible.
4375 * which can cause the lg_prealloc_list to be updated.
4378 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4380 int order, added = 0, lg_prealloc_count = 1;
4381 struct super_block *sb = ac->ac_sb;
4382 struct ext4_locality_group *lg = ac->ac_lg;
4383 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4385 order = fls(pa->pa_free) - 1;
4386 if (order > PREALLOC_TB_SIZE - 1)
4387 /* The max size of hash table is PREALLOC_TB_SIZE */
4388 order = PREALLOC_TB_SIZE - 1;
4389 /* Add the prealloc space to lg */
4390 rcu_read_lock();
4391 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4392 pa_inode_list) {
4393 spin_lock(&tmp_pa->pa_lock);
4394 if (tmp_pa->pa_deleted) {
4395 spin_unlock(&tmp_pa->pa_lock);
4396 continue;
4398 if (!added && pa->pa_free < tmp_pa->pa_free) {
4399 /* Add to the tail of the previous entry */
4400 list_add_tail_rcu(&pa->pa_inode_list,
4401 &tmp_pa->pa_inode_list);
4402 added = 1;
4404 * we want to count the total
4405 * number of entries in the list
4408 spin_unlock(&tmp_pa->pa_lock);
4409 lg_prealloc_count++;
4411 if (!added)
4412 list_add_tail_rcu(&pa->pa_inode_list,
4413 &lg->lg_prealloc_list[order]);
4414 rcu_read_unlock();
4416 /* Now trim the list to be not more than 8 elements */
4417 if (lg_prealloc_count > 8) {
4418 ext4_mb_discard_lg_preallocations(sb, lg,
4419 order, lg_prealloc_count);
4420 return;
4422 return ;
4426 * release all resource we used in allocation
4428 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4430 struct ext4_prealloc_space *pa = ac->ac_pa;
4431 if (pa) {
4432 if (pa->pa_type == MB_GROUP_PA) {
4433 /* see comment in ext4_mb_use_group_pa() */
4434 spin_lock(&pa->pa_lock);
4435 pa->pa_pstart += ac->ac_b_ex.fe_len;
4436 pa->pa_lstart += ac->ac_b_ex.fe_len;
4437 pa->pa_free -= ac->ac_b_ex.fe_len;
4438 pa->pa_len -= ac->ac_b_ex.fe_len;
4439 spin_unlock(&pa->pa_lock);
4442 if (ac->alloc_semp)
4443 up_read(ac->alloc_semp);
4444 if (pa) {
4446 * We want to add the pa to the right bucket.
4447 * Remove it from the list and while adding
4448 * make sure the list to which we are adding
4449 * doesn't grow big. We need to release
4450 * alloc_semp before calling ext4_mb_add_n_trim()
4452 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4453 spin_lock(pa->pa_obj_lock);
4454 list_del_rcu(&pa->pa_inode_list);
4455 spin_unlock(pa->pa_obj_lock);
4456 ext4_mb_add_n_trim(ac);
4458 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4460 if (ac->ac_bitmap_page)
4461 page_cache_release(ac->ac_bitmap_page);
4462 if (ac->ac_buddy_page)
4463 page_cache_release(ac->ac_buddy_page);
4464 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4465 mutex_unlock(&ac->ac_lg->lg_mutex);
4466 ext4_mb_collect_stats(ac);
4467 return 0;
4470 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4472 ext4_group_t i;
4473 int ret;
4474 int freed = 0;
4476 trace_mark(ext4_mb_discard_preallocations, "dev %s needed %d",
4477 sb->s_id, needed);
4478 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4479 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4480 freed += ret;
4481 needed -= ret;
4484 return freed;
4488 * Main entry point into mballoc to allocate blocks
4489 * it tries to use preallocation first, then falls back
4490 * to usual allocation
4492 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4493 struct ext4_allocation_request *ar, int *errp)
4495 int freed;
4496 struct ext4_allocation_context *ac = NULL;
4497 struct ext4_sb_info *sbi;
4498 struct super_block *sb;
4499 ext4_fsblk_t block = 0;
4500 unsigned int inquota = 0;
4501 unsigned int reserv_blks = 0;
4503 sb = ar->inode->i_sb;
4504 sbi = EXT4_SB(sb);
4506 trace_mark(ext4_request_blocks, "dev %s flags %u len %u ino %lu "
4507 "lblk %llu goal %llu lleft %llu lright %llu "
4508 "pleft %llu pright %llu ",
4509 sb->s_id, ar->flags, ar->len,
4510 ar->inode ? ar->inode->i_ino : 0,
4511 (unsigned long long) ar->logical,
4512 (unsigned long long) ar->goal,
4513 (unsigned long long) ar->lleft,
4514 (unsigned long long) ar->lright,
4515 (unsigned long long) ar->pleft,
4516 (unsigned long long) ar->pright);
4519 * For delayed allocation, we could skip the ENOSPC and
4520 * EDQUOT check, as blocks and quotas have been already
4521 * reserved when data being copied into pagecache.
4523 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4524 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4525 else {
4526 /* Without delayed allocation we need to verify
4527 * there is enough free blocks to do block allocation
4528 * and verify allocation doesn't exceed the quota limits.
4530 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4531 /* let others to free the space */
4532 yield();
4533 ar->len = ar->len >> 1;
4535 if (!ar->len) {
4536 *errp = -ENOSPC;
4537 return 0;
4539 reserv_blks = ar->len;
4540 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4541 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4542 ar->len--;
4544 inquota = ar->len;
4545 if (ar->len == 0) {
4546 *errp = -EDQUOT;
4547 goto out3;
4551 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4552 if (!ac) {
4553 ar->len = 0;
4554 *errp = -ENOMEM;
4555 goto out1;
4558 *errp = ext4_mb_initialize_context(ac, ar);
4559 if (*errp) {
4560 ar->len = 0;
4561 goto out2;
4564 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4565 if (!ext4_mb_use_preallocated(ac)) {
4566 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4567 ext4_mb_normalize_request(ac, ar);
4568 repeat:
4569 /* allocate space in core */
4570 ext4_mb_regular_allocator(ac);
4572 /* as we've just preallocated more space than
4573 * user requested orinally, we store allocated
4574 * space in a special descriptor */
4575 if (ac->ac_status == AC_STATUS_FOUND &&
4576 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4577 ext4_mb_new_preallocation(ac);
4579 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4580 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4581 if (*errp == -EAGAIN) {
4583 * drop the reference that we took
4584 * in ext4_mb_use_best_found
4586 ext4_mb_release_context(ac);
4587 ac->ac_b_ex.fe_group = 0;
4588 ac->ac_b_ex.fe_start = 0;
4589 ac->ac_b_ex.fe_len = 0;
4590 ac->ac_status = AC_STATUS_CONTINUE;
4591 goto repeat;
4592 } else if (*errp) {
4593 ac->ac_b_ex.fe_len = 0;
4594 ar->len = 0;
4595 ext4_mb_show_ac(ac);
4596 } else {
4597 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4598 ar->len = ac->ac_b_ex.fe_len;
4600 } else {
4601 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4602 if (freed)
4603 goto repeat;
4604 *errp = -ENOSPC;
4605 ac->ac_b_ex.fe_len = 0;
4606 ar->len = 0;
4607 ext4_mb_show_ac(ac);
4610 ext4_mb_release_context(ac);
4612 out2:
4613 kmem_cache_free(ext4_ac_cachep, ac);
4614 out1:
4615 if (inquota && ar->len < inquota)
4616 vfs_dq_free_block(ar->inode, inquota - ar->len);
4617 out3:
4618 if (!ar->len) {
4619 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4620 /* release all the reserved blocks if non delalloc */
4621 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4622 reserv_blks);
4625 trace_mark(ext4_allocate_blocks,
4626 "dev %s block %llu flags %u len %u ino %lu "
4627 "logical %llu goal %llu lleft %llu lright %llu "
4628 "pleft %llu pright %llu ",
4629 sb->s_id, (unsigned long long) block,
4630 ar->flags, ar->len, ar->inode ? ar->inode->i_ino : 0,
4631 (unsigned long long) ar->logical,
4632 (unsigned long long) ar->goal,
4633 (unsigned long long) ar->lleft,
4634 (unsigned long long) ar->lright,
4635 (unsigned long long) ar->pleft,
4636 (unsigned long long) ar->pright);
4638 return block;
4642 * We can merge two free data extents only if the physical blocks
4643 * are contiguous, AND the extents were freed by the same transaction,
4644 * AND the blocks are associated with the same group.
4646 static int can_merge(struct ext4_free_data *entry1,
4647 struct ext4_free_data *entry2)
4649 if ((entry1->t_tid == entry2->t_tid) &&
4650 (entry1->group == entry2->group) &&
4651 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4652 return 1;
4653 return 0;
4656 static noinline_for_stack int
4657 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4658 struct ext4_free_data *new_entry)
4660 ext4_grpblk_t block;
4661 struct ext4_free_data *entry;
4662 struct ext4_group_info *db = e4b->bd_info;
4663 struct super_block *sb = e4b->bd_sb;
4664 struct ext4_sb_info *sbi = EXT4_SB(sb);
4665 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4666 struct rb_node *parent = NULL, *new_node;
4668 BUG_ON(!ext4_handle_valid(handle));
4669 BUG_ON(e4b->bd_bitmap_page == NULL);
4670 BUG_ON(e4b->bd_buddy_page == NULL);
4672 new_node = &new_entry->node;
4673 block = new_entry->start_blk;
4675 if (!*n) {
4676 /* first free block exent. We need to
4677 protect buddy cache from being freed,
4678 * otherwise we'll refresh it from
4679 * on-disk bitmap and lose not-yet-available
4680 * blocks */
4681 page_cache_get(e4b->bd_buddy_page);
4682 page_cache_get(e4b->bd_bitmap_page);
4684 while (*n) {
4685 parent = *n;
4686 entry = rb_entry(parent, struct ext4_free_data, node);
4687 if (block < entry->start_blk)
4688 n = &(*n)->rb_left;
4689 else if (block >= (entry->start_blk + entry->count))
4690 n = &(*n)->rb_right;
4691 else {
4692 ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4693 "Double free of blocks %d (%d %d)",
4694 block, entry->start_blk, entry->count);
4695 return 0;
4699 rb_link_node(new_node, parent, n);
4700 rb_insert_color(new_node, &db->bb_free_root);
4702 /* Now try to see the extent can be merged to left and right */
4703 node = rb_prev(new_node);
4704 if (node) {
4705 entry = rb_entry(node, struct ext4_free_data, node);
4706 if (can_merge(entry, new_entry)) {
4707 new_entry->start_blk = entry->start_blk;
4708 new_entry->count += entry->count;
4709 rb_erase(node, &(db->bb_free_root));
4710 spin_lock(&sbi->s_md_lock);
4711 list_del(&entry->list);
4712 spin_unlock(&sbi->s_md_lock);
4713 kmem_cache_free(ext4_free_ext_cachep, entry);
4717 node = rb_next(new_node);
4718 if (node) {
4719 entry = rb_entry(node, struct ext4_free_data, node);
4720 if (can_merge(new_entry, entry)) {
4721 new_entry->count += entry->count;
4722 rb_erase(node, &(db->bb_free_root));
4723 spin_lock(&sbi->s_md_lock);
4724 list_del(&entry->list);
4725 spin_unlock(&sbi->s_md_lock);
4726 kmem_cache_free(ext4_free_ext_cachep, entry);
4729 /* Add the extent to transaction's private list */
4730 spin_lock(&sbi->s_md_lock);
4731 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4732 spin_unlock(&sbi->s_md_lock);
4733 return 0;
4737 * Main entry point into mballoc to free blocks
4739 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4740 unsigned long block, unsigned long count,
4741 int metadata, unsigned long *freed)
4743 struct buffer_head *bitmap_bh = NULL;
4744 struct super_block *sb = inode->i_sb;
4745 struct ext4_allocation_context *ac = NULL;
4746 struct ext4_group_desc *gdp;
4747 struct ext4_super_block *es;
4748 unsigned int overflow;
4749 ext4_grpblk_t bit;
4750 struct buffer_head *gd_bh;
4751 ext4_group_t block_group;
4752 struct ext4_sb_info *sbi;
4753 struct ext4_buddy e4b;
4754 int err = 0;
4755 int ret;
4757 *freed = 0;
4759 sbi = EXT4_SB(sb);
4760 es = EXT4_SB(sb)->s_es;
4761 if (block < le32_to_cpu(es->s_first_data_block) ||
4762 block + count < block ||
4763 block + count > ext4_blocks_count(es)) {
4764 ext4_error(sb, __func__,
4765 "Freeing blocks not in datazone - "
4766 "block = %lu, count = %lu", block, count);
4767 goto error_return;
4770 ext4_debug("freeing block %lu\n", block);
4771 trace_mark(ext4_free_blocks,
4772 "dev %s block %llu count %lu metadata %d ino %lu",
4773 sb->s_id, (unsigned long long) block, count, metadata,
4774 inode ? inode->i_ino : 0);
4776 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4777 if (ac) {
4778 ac->ac_op = EXT4_MB_HISTORY_FREE;
4779 ac->ac_inode = inode;
4780 ac->ac_sb = sb;
4783 do_more:
4784 overflow = 0;
4785 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4788 * Check to see if we are freeing blocks across a group
4789 * boundary.
4791 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4792 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4793 count -= overflow;
4795 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4796 if (!bitmap_bh) {
4797 err = -EIO;
4798 goto error_return;
4800 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4801 if (!gdp) {
4802 err = -EIO;
4803 goto error_return;
4806 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4807 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4808 in_range(block, ext4_inode_table(sb, gdp),
4809 EXT4_SB(sb)->s_itb_per_group) ||
4810 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4811 EXT4_SB(sb)->s_itb_per_group)) {
4813 ext4_error(sb, __func__,
4814 "Freeing blocks in system zone - "
4815 "Block = %lu, count = %lu", block, count);
4816 /* err = 0. ext4_std_error should be a no op */
4817 goto error_return;
4820 BUFFER_TRACE(bitmap_bh, "getting write access");
4821 err = ext4_journal_get_write_access(handle, bitmap_bh);
4822 if (err)
4823 goto error_return;
4826 * We are about to modify some metadata. Call the journal APIs
4827 * to unshare ->b_data if a currently-committing transaction is
4828 * using it
4830 BUFFER_TRACE(gd_bh, "get_write_access");
4831 err = ext4_journal_get_write_access(handle, gd_bh);
4832 if (err)
4833 goto error_return;
4834 #ifdef AGGRESSIVE_CHECK
4836 int i;
4837 for (i = 0; i < count; i++)
4838 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4840 #endif
4841 if (ac) {
4842 ac->ac_b_ex.fe_group = block_group;
4843 ac->ac_b_ex.fe_start = bit;
4844 ac->ac_b_ex.fe_len = count;
4845 ext4_mb_store_history(ac);
4848 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4849 if (err)
4850 goto error_return;
4851 if (metadata && ext4_handle_valid(handle)) {
4852 struct ext4_free_data *new_entry;
4854 * blocks being freed are metadata. these blocks shouldn't
4855 * be used until this transaction is committed
4857 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4858 new_entry->start_blk = bit;
4859 new_entry->group = block_group;
4860 new_entry->count = count;
4861 new_entry->t_tid = handle->h_transaction->t_tid;
4862 ext4_lock_group(sb, block_group);
4863 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4864 bit, count);
4865 ext4_mb_free_metadata(handle, &e4b, new_entry);
4866 ext4_unlock_group(sb, block_group);
4867 } else {
4868 ext4_lock_group(sb, block_group);
4869 /* need to update group_info->bb_free and bitmap
4870 * with group lock held. generate_buddy look at
4871 * them with group lock_held
4873 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4874 bit, count);
4875 mb_free_blocks(inode, &e4b, bit, count);
4876 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4877 ext4_unlock_group(sb, block_group);
4880 spin_lock(sb_bgl_lock(sbi, block_group));
4881 ret = ext4_free_blks_count(sb, gdp) + count;
4882 ext4_free_blks_set(sb, gdp, ret);
4883 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4884 spin_unlock(sb_bgl_lock(sbi, block_group));
4885 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4887 if (sbi->s_log_groups_per_flex) {
4888 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4889 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4892 ext4_mb_release_desc(&e4b);
4894 *freed += count;
4896 /* We dirtied the bitmap block */
4897 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4898 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4900 /* And the group descriptor block */
4901 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4902 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4903 if (!err)
4904 err = ret;
4906 if (overflow && !err) {
4907 block += count;
4908 count = overflow;
4909 put_bh(bitmap_bh);
4910 goto do_more;
4912 sb->s_dirt = 1;
4913 error_return:
4914 brelse(bitmap_bh);
4915 ext4_std_error(sb, err);
4916 if (ac)
4917 kmem_cache_free(ext4_ac_cachep, ac);
4918 return;