KVM: Enable MTRR for EPT
[linux-2.6/mini2440.git] / arch / x86 / kvm / vmx.c
blobdae134fa09e7edeb79eeec34202fc521ad194fe5
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
32 #include <asm/io.h>
33 #include <asm/desc.h>
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
40 static int bypass_guest_pf = 1;
41 module_param(bypass_guest_pf, bool, 0);
43 static int enable_vpid = 1;
44 module_param(enable_vpid, bool, 0);
46 static int flexpriority_enabled = 1;
47 module_param(flexpriority_enabled, bool, 0);
49 static int enable_ept = 1;
50 module_param(enable_ept, bool, 0);
52 static int emulate_invalid_guest_state = 0;
53 module_param(emulate_invalid_guest_state, bool, 0);
55 struct vmcs {
56 u32 revision_id;
57 u32 abort;
58 char data[0];
61 struct vcpu_vmx {
62 struct kvm_vcpu vcpu;
63 struct list_head local_vcpus_link;
64 unsigned long host_rsp;
65 int launched;
66 u8 fail;
67 u32 idt_vectoring_info;
68 struct kvm_msr_entry *guest_msrs;
69 struct kvm_msr_entry *host_msrs;
70 int nmsrs;
71 int save_nmsrs;
72 int msr_offset_efer;
73 #ifdef CONFIG_X86_64
74 int msr_offset_kernel_gs_base;
75 #endif
76 struct vmcs *vmcs;
77 struct {
78 int loaded;
79 u16 fs_sel, gs_sel, ldt_sel;
80 int gs_ldt_reload_needed;
81 int fs_reload_needed;
82 int guest_efer_loaded;
83 } host_state;
84 struct {
85 struct {
86 bool pending;
87 u8 vector;
88 unsigned rip;
89 } irq;
90 } rmode;
91 int vpid;
92 bool emulation_required;
94 /* Support for vnmi-less CPUs */
95 int soft_vnmi_blocked;
96 ktime_t entry_time;
97 s64 vnmi_blocked_time;
100 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
102 return container_of(vcpu, struct vcpu_vmx, vcpu);
105 static int init_rmode(struct kvm *kvm);
106 static u64 construct_eptp(unsigned long root_hpa);
108 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
109 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
110 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
112 static struct page *vmx_io_bitmap_a;
113 static struct page *vmx_io_bitmap_b;
114 static struct page *vmx_msr_bitmap;
116 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
117 static DEFINE_SPINLOCK(vmx_vpid_lock);
119 static struct vmcs_config {
120 int size;
121 int order;
122 u32 revision_id;
123 u32 pin_based_exec_ctrl;
124 u32 cpu_based_exec_ctrl;
125 u32 cpu_based_2nd_exec_ctrl;
126 u32 vmexit_ctrl;
127 u32 vmentry_ctrl;
128 } vmcs_config;
130 struct vmx_capability {
131 u32 ept;
132 u32 vpid;
133 } vmx_capability;
135 #define VMX_SEGMENT_FIELD(seg) \
136 [VCPU_SREG_##seg] = { \
137 .selector = GUEST_##seg##_SELECTOR, \
138 .base = GUEST_##seg##_BASE, \
139 .limit = GUEST_##seg##_LIMIT, \
140 .ar_bytes = GUEST_##seg##_AR_BYTES, \
143 static struct kvm_vmx_segment_field {
144 unsigned selector;
145 unsigned base;
146 unsigned limit;
147 unsigned ar_bytes;
148 } kvm_vmx_segment_fields[] = {
149 VMX_SEGMENT_FIELD(CS),
150 VMX_SEGMENT_FIELD(DS),
151 VMX_SEGMENT_FIELD(ES),
152 VMX_SEGMENT_FIELD(FS),
153 VMX_SEGMENT_FIELD(GS),
154 VMX_SEGMENT_FIELD(SS),
155 VMX_SEGMENT_FIELD(TR),
156 VMX_SEGMENT_FIELD(LDTR),
160 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
161 * away by decrementing the array size.
163 static const u32 vmx_msr_index[] = {
164 #ifdef CONFIG_X86_64
165 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
166 #endif
167 MSR_EFER, MSR_K6_STAR,
169 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
171 static void load_msrs(struct kvm_msr_entry *e, int n)
173 int i;
175 for (i = 0; i < n; ++i)
176 wrmsrl(e[i].index, e[i].data);
179 static void save_msrs(struct kvm_msr_entry *e, int n)
181 int i;
183 for (i = 0; i < n; ++i)
184 rdmsrl(e[i].index, e[i].data);
187 static inline int is_page_fault(u32 intr_info)
189 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
190 INTR_INFO_VALID_MASK)) ==
191 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
194 static inline int is_no_device(u32 intr_info)
196 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
197 INTR_INFO_VALID_MASK)) ==
198 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
201 static inline int is_invalid_opcode(u32 intr_info)
203 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
204 INTR_INFO_VALID_MASK)) ==
205 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
208 static inline int is_external_interrupt(u32 intr_info)
210 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
211 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
214 static inline int cpu_has_vmx_msr_bitmap(void)
216 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
219 static inline int cpu_has_vmx_tpr_shadow(void)
221 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
224 static inline int vm_need_tpr_shadow(struct kvm *kvm)
226 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
229 static inline int cpu_has_secondary_exec_ctrls(void)
231 return (vmcs_config.cpu_based_exec_ctrl &
232 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
235 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
237 return flexpriority_enabled
238 && (vmcs_config.cpu_based_2nd_exec_ctrl &
239 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
242 static inline int cpu_has_vmx_invept_individual_addr(void)
244 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
247 static inline int cpu_has_vmx_invept_context(void)
249 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
252 static inline int cpu_has_vmx_invept_global(void)
254 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
257 static inline int cpu_has_vmx_ept(void)
259 return (vmcs_config.cpu_based_2nd_exec_ctrl &
260 SECONDARY_EXEC_ENABLE_EPT);
263 static inline int vm_need_ept(void)
265 return (cpu_has_vmx_ept() && enable_ept);
268 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
270 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
271 (irqchip_in_kernel(kvm)));
274 static inline int cpu_has_vmx_vpid(void)
276 return (vmcs_config.cpu_based_2nd_exec_ctrl &
277 SECONDARY_EXEC_ENABLE_VPID);
280 static inline int cpu_has_virtual_nmis(void)
282 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
285 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
287 int i;
289 for (i = 0; i < vmx->nmsrs; ++i)
290 if (vmx->guest_msrs[i].index == msr)
291 return i;
292 return -1;
295 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
297 struct {
298 u64 vpid : 16;
299 u64 rsvd : 48;
300 u64 gva;
301 } operand = { vpid, 0, gva };
303 asm volatile (__ex(ASM_VMX_INVVPID)
304 /* CF==1 or ZF==1 --> rc = -1 */
305 "; ja 1f ; ud2 ; 1:"
306 : : "a"(&operand), "c"(ext) : "cc", "memory");
309 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
311 struct {
312 u64 eptp, gpa;
313 } operand = {eptp, gpa};
315 asm volatile (__ex(ASM_VMX_INVEPT)
316 /* CF==1 or ZF==1 --> rc = -1 */
317 "; ja 1f ; ud2 ; 1:\n"
318 : : "a" (&operand), "c" (ext) : "cc", "memory");
321 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
323 int i;
325 i = __find_msr_index(vmx, msr);
326 if (i >= 0)
327 return &vmx->guest_msrs[i];
328 return NULL;
331 static void vmcs_clear(struct vmcs *vmcs)
333 u64 phys_addr = __pa(vmcs);
334 u8 error;
336 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
337 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
338 : "cc", "memory");
339 if (error)
340 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
341 vmcs, phys_addr);
344 static void __vcpu_clear(void *arg)
346 struct vcpu_vmx *vmx = arg;
347 int cpu = raw_smp_processor_id();
349 if (vmx->vcpu.cpu == cpu)
350 vmcs_clear(vmx->vmcs);
351 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
352 per_cpu(current_vmcs, cpu) = NULL;
353 rdtscll(vmx->vcpu.arch.host_tsc);
354 list_del(&vmx->local_vcpus_link);
355 vmx->vcpu.cpu = -1;
356 vmx->launched = 0;
359 static void vcpu_clear(struct vcpu_vmx *vmx)
361 if (vmx->vcpu.cpu == -1)
362 return;
363 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
366 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
368 if (vmx->vpid == 0)
369 return;
371 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
374 static inline void ept_sync_global(void)
376 if (cpu_has_vmx_invept_global())
377 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
380 static inline void ept_sync_context(u64 eptp)
382 if (vm_need_ept()) {
383 if (cpu_has_vmx_invept_context())
384 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
385 else
386 ept_sync_global();
390 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
392 if (vm_need_ept()) {
393 if (cpu_has_vmx_invept_individual_addr())
394 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
395 eptp, gpa);
396 else
397 ept_sync_context(eptp);
401 static unsigned long vmcs_readl(unsigned long field)
403 unsigned long value;
405 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
406 : "=a"(value) : "d"(field) : "cc");
407 return value;
410 static u16 vmcs_read16(unsigned long field)
412 return vmcs_readl(field);
415 static u32 vmcs_read32(unsigned long field)
417 return vmcs_readl(field);
420 static u64 vmcs_read64(unsigned long field)
422 #ifdef CONFIG_X86_64
423 return vmcs_readl(field);
424 #else
425 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
426 #endif
429 static noinline void vmwrite_error(unsigned long field, unsigned long value)
431 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
432 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
433 dump_stack();
436 static void vmcs_writel(unsigned long field, unsigned long value)
438 u8 error;
440 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
441 : "=q"(error) : "a"(value), "d"(field) : "cc");
442 if (unlikely(error))
443 vmwrite_error(field, value);
446 static void vmcs_write16(unsigned long field, u16 value)
448 vmcs_writel(field, value);
451 static void vmcs_write32(unsigned long field, u32 value)
453 vmcs_writel(field, value);
456 static void vmcs_write64(unsigned long field, u64 value)
458 vmcs_writel(field, value);
459 #ifndef CONFIG_X86_64
460 asm volatile ("");
461 vmcs_writel(field+1, value >> 32);
462 #endif
465 static void vmcs_clear_bits(unsigned long field, u32 mask)
467 vmcs_writel(field, vmcs_readl(field) & ~mask);
470 static void vmcs_set_bits(unsigned long field, u32 mask)
472 vmcs_writel(field, vmcs_readl(field) | mask);
475 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
477 u32 eb;
479 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
480 if (!vcpu->fpu_active)
481 eb |= 1u << NM_VECTOR;
482 if (vcpu->guest_debug.enabled)
483 eb |= 1u << DB_VECTOR;
484 if (vcpu->arch.rmode.active)
485 eb = ~0;
486 if (vm_need_ept())
487 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
488 vmcs_write32(EXCEPTION_BITMAP, eb);
491 static void reload_tss(void)
494 * VT restores TR but not its size. Useless.
496 struct descriptor_table gdt;
497 struct desc_struct *descs;
499 kvm_get_gdt(&gdt);
500 descs = (void *)gdt.base;
501 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
502 load_TR_desc();
505 static void load_transition_efer(struct vcpu_vmx *vmx)
507 int efer_offset = vmx->msr_offset_efer;
508 u64 host_efer = vmx->host_msrs[efer_offset].data;
509 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
510 u64 ignore_bits;
512 if (efer_offset < 0)
513 return;
515 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
516 * outside long mode
518 ignore_bits = EFER_NX | EFER_SCE;
519 #ifdef CONFIG_X86_64
520 ignore_bits |= EFER_LMA | EFER_LME;
521 /* SCE is meaningful only in long mode on Intel */
522 if (guest_efer & EFER_LMA)
523 ignore_bits &= ~(u64)EFER_SCE;
524 #endif
525 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
526 return;
528 vmx->host_state.guest_efer_loaded = 1;
529 guest_efer &= ~ignore_bits;
530 guest_efer |= host_efer & ignore_bits;
531 wrmsrl(MSR_EFER, guest_efer);
532 vmx->vcpu.stat.efer_reload++;
535 static void reload_host_efer(struct vcpu_vmx *vmx)
537 if (vmx->host_state.guest_efer_loaded) {
538 vmx->host_state.guest_efer_loaded = 0;
539 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
543 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
545 struct vcpu_vmx *vmx = to_vmx(vcpu);
547 if (vmx->host_state.loaded)
548 return;
550 vmx->host_state.loaded = 1;
552 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
553 * allow segment selectors with cpl > 0 or ti == 1.
555 vmx->host_state.ldt_sel = kvm_read_ldt();
556 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
557 vmx->host_state.fs_sel = kvm_read_fs();
558 if (!(vmx->host_state.fs_sel & 7)) {
559 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
560 vmx->host_state.fs_reload_needed = 0;
561 } else {
562 vmcs_write16(HOST_FS_SELECTOR, 0);
563 vmx->host_state.fs_reload_needed = 1;
565 vmx->host_state.gs_sel = kvm_read_gs();
566 if (!(vmx->host_state.gs_sel & 7))
567 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
568 else {
569 vmcs_write16(HOST_GS_SELECTOR, 0);
570 vmx->host_state.gs_ldt_reload_needed = 1;
573 #ifdef CONFIG_X86_64
574 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
575 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
576 #else
577 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
578 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
579 #endif
581 #ifdef CONFIG_X86_64
582 if (is_long_mode(&vmx->vcpu))
583 save_msrs(vmx->host_msrs +
584 vmx->msr_offset_kernel_gs_base, 1);
586 #endif
587 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
588 load_transition_efer(vmx);
591 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
593 unsigned long flags;
595 if (!vmx->host_state.loaded)
596 return;
598 ++vmx->vcpu.stat.host_state_reload;
599 vmx->host_state.loaded = 0;
600 if (vmx->host_state.fs_reload_needed)
601 kvm_load_fs(vmx->host_state.fs_sel);
602 if (vmx->host_state.gs_ldt_reload_needed) {
603 kvm_load_ldt(vmx->host_state.ldt_sel);
605 * If we have to reload gs, we must take care to
606 * preserve our gs base.
608 local_irq_save(flags);
609 kvm_load_gs(vmx->host_state.gs_sel);
610 #ifdef CONFIG_X86_64
611 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
612 #endif
613 local_irq_restore(flags);
615 reload_tss();
616 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
617 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
618 reload_host_efer(vmx);
621 static void vmx_load_host_state(struct vcpu_vmx *vmx)
623 preempt_disable();
624 __vmx_load_host_state(vmx);
625 preempt_enable();
629 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
630 * vcpu mutex is already taken.
632 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
634 struct vcpu_vmx *vmx = to_vmx(vcpu);
635 u64 phys_addr = __pa(vmx->vmcs);
636 u64 tsc_this, delta, new_offset;
638 if (vcpu->cpu != cpu) {
639 vcpu_clear(vmx);
640 kvm_migrate_timers(vcpu);
641 vpid_sync_vcpu_all(vmx);
642 local_irq_disable();
643 list_add(&vmx->local_vcpus_link,
644 &per_cpu(vcpus_on_cpu, cpu));
645 local_irq_enable();
648 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
649 u8 error;
651 per_cpu(current_vmcs, cpu) = vmx->vmcs;
652 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
653 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
654 : "cc");
655 if (error)
656 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
657 vmx->vmcs, phys_addr);
660 if (vcpu->cpu != cpu) {
661 struct descriptor_table dt;
662 unsigned long sysenter_esp;
664 vcpu->cpu = cpu;
666 * Linux uses per-cpu TSS and GDT, so set these when switching
667 * processors.
669 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
670 kvm_get_gdt(&dt);
671 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
673 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
674 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
677 * Make sure the time stamp counter is monotonous.
679 rdtscll(tsc_this);
680 if (tsc_this < vcpu->arch.host_tsc) {
681 delta = vcpu->arch.host_tsc - tsc_this;
682 new_offset = vmcs_read64(TSC_OFFSET) + delta;
683 vmcs_write64(TSC_OFFSET, new_offset);
688 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
690 __vmx_load_host_state(to_vmx(vcpu));
693 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
695 if (vcpu->fpu_active)
696 return;
697 vcpu->fpu_active = 1;
698 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
699 if (vcpu->arch.cr0 & X86_CR0_TS)
700 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
701 update_exception_bitmap(vcpu);
704 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
706 if (!vcpu->fpu_active)
707 return;
708 vcpu->fpu_active = 0;
709 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
710 update_exception_bitmap(vcpu);
713 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
715 return vmcs_readl(GUEST_RFLAGS);
718 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
720 if (vcpu->arch.rmode.active)
721 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
722 vmcs_writel(GUEST_RFLAGS, rflags);
725 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
727 unsigned long rip;
728 u32 interruptibility;
730 rip = kvm_rip_read(vcpu);
731 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
732 kvm_rip_write(vcpu, rip);
735 * We emulated an instruction, so temporary interrupt blocking
736 * should be removed, if set.
738 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
739 if (interruptibility & 3)
740 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
741 interruptibility & ~3);
742 vcpu->arch.interrupt_window_open = 1;
745 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
746 bool has_error_code, u32 error_code)
748 struct vcpu_vmx *vmx = to_vmx(vcpu);
750 if (has_error_code)
751 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
753 if (vcpu->arch.rmode.active) {
754 vmx->rmode.irq.pending = true;
755 vmx->rmode.irq.vector = nr;
756 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
757 if (nr == BP_VECTOR)
758 vmx->rmode.irq.rip++;
759 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
760 nr | INTR_TYPE_SOFT_INTR
761 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
762 | INTR_INFO_VALID_MASK);
763 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
764 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
765 return;
768 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
769 nr | INTR_TYPE_EXCEPTION
770 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
771 | INTR_INFO_VALID_MASK);
774 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
776 return false;
780 * Swap MSR entry in host/guest MSR entry array.
782 #ifdef CONFIG_X86_64
783 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
785 struct kvm_msr_entry tmp;
787 tmp = vmx->guest_msrs[to];
788 vmx->guest_msrs[to] = vmx->guest_msrs[from];
789 vmx->guest_msrs[from] = tmp;
790 tmp = vmx->host_msrs[to];
791 vmx->host_msrs[to] = vmx->host_msrs[from];
792 vmx->host_msrs[from] = tmp;
794 #endif
797 * Set up the vmcs to automatically save and restore system
798 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
799 * mode, as fiddling with msrs is very expensive.
801 static void setup_msrs(struct vcpu_vmx *vmx)
803 int save_nmsrs;
805 vmx_load_host_state(vmx);
806 save_nmsrs = 0;
807 #ifdef CONFIG_X86_64
808 if (is_long_mode(&vmx->vcpu)) {
809 int index;
811 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
812 if (index >= 0)
813 move_msr_up(vmx, index, save_nmsrs++);
814 index = __find_msr_index(vmx, MSR_LSTAR);
815 if (index >= 0)
816 move_msr_up(vmx, index, save_nmsrs++);
817 index = __find_msr_index(vmx, MSR_CSTAR);
818 if (index >= 0)
819 move_msr_up(vmx, index, save_nmsrs++);
820 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
821 if (index >= 0)
822 move_msr_up(vmx, index, save_nmsrs++);
824 * MSR_K6_STAR is only needed on long mode guests, and only
825 * if efer.sce is enabled.
827 index = __find_msr_index(vmx, MSR_K6_STAR);
828 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
829 move_msr_up(vmx, index, save_nmsrs++);
831 #endif
832 vmx->save_nmsrs = save_nmsrs;
834 #ifdef CONFIG_X86_64
835 vmx->msr_offset_kernel_gs_base =
836 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
837 #endif
838 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
842 * reads and returns guest's timestamp counter "register"
843 * guest_tsc = host_tsc + tsc_offset -- 21.3
845 static u64 guest_read_tsc(void)
847 u64 host_tsc, tsc_offset;
849 rdtscll(host_tsc);
850 tsc_offset = vmcs_read64(TSC_OFFSET);
851 return host_tsc + tsc_offset;
855 * writes 'guest_tsc' into guest's timestamp counter "register"
856 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
858 static void guest_write_tsc(u64 guest_tsc)
860 u64 host_tsc;
862 rdtscll(host_tsc);
863 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
867 * Reads an msr value (of 'msr_index') into 'pdata'.
868 * Returns 0 on success, non-0 otherwise.
869 * Assumes vcpu_load() was already called.
871 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
873 u64 data;
874 struct kvm_msr_entry *msr;
876 if (!pdata) {
877 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
878 return -EINVAL;
881 switch (msr_index) {
882 #ifdef CONFIG_X86_64
883 case MSR_FS_BASE:
884 data = vmcs_readl(GUEST_FS_BASE);
885 break;
886 case MSR_GS_BASE:
887 data = vmcs_readl(GUEST_GS_BASE);
888 break;
889 case MSR_EFER:
890 return kvm_get_msr_common(vcpu, msr_index, pdata);
891 #endif
892 case MSR_IA32_TIME_STAMP_COUNTER:
893 data = guest_read_tsc();
894 break;
895 case MSR_IA32_SYSENTER_CS:
896 data = vmcs_read32(GUEST_SYSENTER_CS);
897 break;
898 case MSR_IA32_SYSENTER_EIP:
899 data = vmcs_readl(GUEST_SYSENTER_EIP);
900 break;
901 case MSR_IA32_SYSENTER_ESP:
902 data = vmcs_readl(GUEST_SYSENTER_ESP);
903 break;
904 default:
905 msr = find_msr_entry(to_vmx(vcpu), msr_index);
906 if (msr) {
907 data = msr->data;
908 break;
910 return kvm_get_msr_common(vcpu, msr_index, pdata);
913 *pdata = data;
914 return 0;
918 * Writes msr value into into the appropriate "register".
919 * Returns 0 on success, non-0 otherwise.
920 * Assumes vcpu_load() was already called.
922 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
924 struct vcpu_vmx *vmx = to_vmx(vcpu);
925 struct kvm_msr_entry *msr;
926 int ret = 0;
928 switch (msr_index) {
929 #ifdef CONFIG_X86_64
930 case MSR_EFER:
931 vmx_load_host_state(vmx);
932 ret = kvm_set_msr_common(vcpu, msr_index, data);
933 break;
934 case MSR_FS_BASE:
935 vmcs_writel(GUEST_FS_BASE, data);
936 break;
937 case MSR_GS_BASE:
938 vmcs_writel(GUEST_GS_BASE, data);
939 break;
940 #endif
941 case MSR_IA32_SYSENTER_CS:
942 vmcs_write32(GUEST_SYSENTER_CS, data);
943 break;
944 case MSR_IA32_SYSENTER_EIP:
945 vmcs_writel(GUEST_SYSENTER_EIP, data);
946 break;
947 case MSR_IA32_SYSENTER_ESP:
948 vmcs_writel(GUEST_SYSENTER_ESP, data);
949 break;
950 case MSR_IA32_TIME_STAMP_COUNTER:
951 guest_write_tsc(data);
952 break;
953 case MSR_P6_PERFCTR0:
954 case MSR_P6_PERFCTR1:
955 case MSR_P6_EVNTSEL0:
956 case MSR_P6_EVNTSEL1:
958 * Just discard all writes to the performance counters; this
959 * should keep both older linux and windows 64-bit guests
960 * happy
962 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
964 break;
965 case MSR_IA32_CR_PAT:
966 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
967 vmcs_write64(GUEST_IA32_PAT, data);
968 vcpu->arch.pat = data;
969 break;
971 /* Otherwise falls through to kvm_set_msr_common */
972 default:
973 vmx_load_host_state(vmx);
974 msr = find_msr_entry(vmx, msr_index);
975 if (msr) {
976 msr->data = data;
977 break;
979 ret = kvm_set_msr_common(vcpu, msr_index, data);
982 return ret;
985 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
987 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
988 switch (reg) {
989 case VCPU_REGS_RSP:
990 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
991 break;
992 case VCPU_REGS_RIP:
993 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
994 break;
995 default:
996 break;
1000 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
1002 unsigned long dr7 = 0x400;
1003 int old_singlestep;
1005 old_singlestep = vcpu->guest_debug.singlestep;
1007 vcpu->guest_debug.enabled = dbg->enabled;
1008 if (vcpu->guest_debug.enabled) {
1009 int i;
1011 dr7 |= 0x200; /* exact */
1012 for (i = 0; i < 4; ++i) {
1013 if (!dbg->breakpoints[i].enabled)
1014 continue;
1015 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
1016 dr7 |= 2 << (i*2); /* global enable */
1017 dr7 |= 0 << (i*4+16); /* execution breakpoint */
1020 vcpu->guest_debug.singlestep = dbg->singlestep;
1021 } else
1022 vcpu->guest_debug.singlestep = 0;
1024 if (old_singlestep && !vcpu->guest_debug.singlestep) {
1025 unsigned long flags;
1027 flags = vmcs_readl(GUEST_RFLAGS);
1028 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1029 vmcs_writel(GUEST_RFLAGS, flags);
1032 update_exception_bitmap(vcpu);
1033 vmcs_writel(GUEST_DR7, dr7);
1035 return 0;
1038 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1040 if (!vcpu->arch.interrupt.pending)
1041 return -1;
1042 return vcpu->arch.interrupt.nr;
1045 static __init int cpu_has_kvm_support(void)
1047 unsigned long ecx = cpuid_ecx(1);
1048 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1051 static __init int vmx_disabled_by_bios(void)
1053 u64 msr;
1055 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1056 return (msr & (FEATURE_CONTROL_LOCKED |
1057 FEATURE_CONTROL_VMXON_ENABLED))
1058 == FEATURE_CONTROL_LOCKED;
1059 /* locked but not enabled */
1062 static void hardware_enable(void *garbage)
1064 int cpu = raw_smp_processor_id();
1065 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1066 u64 old;
1068 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1069 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1070 if ((old & (FEATURE_CONTROL_LOCKED |
1071 FEATURE_CONTROL_VMXON_ENABLED))
1072 != (FEATURE_CONTROL_LOCKED |
1073 FEATURE_CONTROL_VMXON_ENABLED))
1074 /* enable and lock */
1075 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1076 FEATURE_CONTROL_LOCKED |
1077 FEATURE_CONTROL_VMXON_ENABLED);
1078 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1079 asm volatile (ASM_VMX_VMXON_RAX
1080 : : "a"(&phys_addr), "m"(phys_addr)
1081 : "memory", "cc");
1084 static void vmclear_local_vcpus(void)
1086 int cpu = raw_smp_processor_id();
1087 struct vcpu_vmx *vmx, *n;
1089 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1090 local_vcpus_link)
1091 __vcpu_clear(vmx);
1094 static void hardware_disable(void *garbage)
1096 vmclear_local_vcpus();
1097 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1098 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1101 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1102 u32 msr, u32 *result)
1104 u32 vmx_msr_low, vmx_msr_high;
1105 u32 ctl = ctl_min | ctl_opt;
1107 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1109 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1110 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1112 /* Ensure minimum (required) set of control bits are supported. */
1113 if (ctl_min & ~ctl)
1114 return -EIO;
1116 *result = ctl;
1117 return 0;
1120 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1122 u32 vmx_msr_low, vmx_msr_high;
1123 u32 min, opt, min2, opt2;
1124 u32 _pin_based_exec_control = 0;
1125 u32 _cpu_based_exec_control = 0;
1126 u32 _cpu_based_2nd_exec_control = 0;
1127 u32 _vmexit_control = 0;
1128 u32 _vmentry_control = 0;
1130 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1131 opt = PIN_BASED_VIRTUAL_NMIS;
1132 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1133 &_pin_based_exec_control) < 0)
1134 return -EIO;
1136 min = CPU_BASED_HLT_EXITING |
1137 #ifdef CONFIG_X86_64
1138 CPU_BASED_CR8_LOAD_EXITING |
1139 CPU_BASED_CR8_STORE_EXITING |
1140 #endif
1141 CPU_BASED_CR3_LOAD_EXITING |
1142 CPU_BASED_CR3_STORE_EXITING |
1143 CPU_BASED_USE_IO_BITMAPS |
1144 CPU_BASED_MOV_DR_EXITING |
1145 CPU_BASED_USE_TSC_OFFSETING |
1146 CPU_BASED_INVLPG_EXITING;
1147 opt = CPU_BASED_TPR_SHADOW |
1148 CPU_BASED_USE_MSR_BITMAPS |
1149 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1150 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1151 &_cpu_based_exec_control) < 0)
1152 return -EIO;
1153 #ifdef CONFIG_X86_64
1154 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1155 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1156 ~CPU_BASED_CR8_STORE_EXITING;
1157 #endif
1158 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1159 min2 = 0;
1160 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1161 SECONDARY_EXEC_WBINVD_EXITING |
1162 SECONDARY_EXEC_ENABLE_VPID |
1163 SECONDARY_EXEC_ENABLE_EPT;
1164 if (adjust_vmx_controls(min2, opt2,
1165 MSR_IA32_VMX_PROCBASED_CTLS2,
1166 &_cpu_based_2nd_exec_control) < 0)
1167 return -EIO;
1169 #ifndef CONFIG_X86_64
1170 if (!(_cpu_based_2nd_exec_control &
1171 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1172 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1173 #endif
1174 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1175 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1176 enabled */
1177 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1178 CPU_BASED_CR3_STORE_EXITING |
1179 CPU_BASED_INVLPG_EXITING);
1180 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1181 &_cpu_based_exec_control) < 0)
1182 return -EIO;
1183 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1184 vmx_capability.ept, vmx_capability.vpid);
1187 min = 0;
1188 #ifdef CONFIG_X86_64
1189 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1190 #endif
1191 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1192 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1193 &_vmexit_control) < 0)
1194 return -EIO;
1196 min = 0;
1197 opt = VM_ENTRY_LOAD_IA32_PAT;
1198 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1199 &_vmentry_control) < 0)
1200 return -EIO;
1202 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1204 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1205 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1206 return -EIO;
1208 #ifdef CONFIG_X86_64
1209 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1210 if (vmx_msr_high & (1u<<16))
1211 return -EIO;
1212 #endif
1214 /* Require Write-Back (WB) memory type for VMCS accesses. */
1215 if (((vmx_msr_high >> 18) & 15) != 6)
1216 return -EIO;
1218 vmcs_conf->size = vmx_msr_high & 0x1fff;
1219 vmcs_conf->order = get_order(vmcs_config.size);
1220 vmcs_conf->revision_id = vmx_msr_low;
1222 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1223 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1224 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1225 vmcs_conf->vmexit_ctrl = _vmexit_control;
1226 vmcs_conf->vmentry_ctrl = _vmentry_control;
1228 return 0;
1231 static struct vmcs *alloc_vmcs_cpu(int cpu)
1233 int node = cpu_to_node(cpu);
1234 struct page *pages;
1235 struct vmcs *vmcs;
1237 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1238 if (!pages)
1239 return NULL;
1240 vmcs = page_address(pages);
1241 memset(vmcs, 0, vmcs_config.size);
1242 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1243 return vmcs;
1246 static struct vmcs *alloc_vmcs(void)
1248 return alloc_vmcs_cpu(raw_smp_processor_id());
1251 static void free_vmcs(struct vmcs *vmcs)
1253 free_pages((unsigned long)vmcs, vmcs_config.order);
1256 static void free_kvm_area(void)
1258 int cpu;
1260 for_each_online_cpu(cpu)
1261 free_vmcs(per_cpu(vmxarea, cpu));
1264 static __init int alloc_kvm_area(void)
1266 int cpu;
1268 for_each_online_cpu(cpu) {
1269 struct vmcs *vmcs;
1271 vmcs = alloc_vmcs_cpu(cpu);
1272 if (!vmcs) {
1273 free_kvm_area();
1274 return -ENOMEM;
1277 per_cpu(vmxarea, cpu) = vmcs;
1279 return 0;
1282 static __init int hardware_setup(void)
1284 if (setup_vmcs_config(&vmcs_config) < 0)
1285 return -EIO;
1287 if (boot_cpu_has(X86_FEATURE_NX))
1288 kvm_enable_efer_bits(EFER_NX);
1290 return alloc_kvm_area();
1293 static __exit void hardware_unsetup(void)
1295 free_kvm_area();
1298 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1300 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1302 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1303 vmcs_write16(sf->selector, save->selector);
1304 vmcs_writel(sf->base, save->base);
1305 vmcs_write32(sf->limit, save->limit);
1306 vmcs_write32(sf->ar_bytes, save->ar);
1307 } else {
1308 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1309 << AR_DPL_SHIFT;
1310 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1314 static void enter_pmode(struct kvm_vcpu *vcpu)
1316 unsigned long flags;
1317 struct vcpu_vmx *vmx = to_vmx(vcpu);
1319 vmx->emulation_required = 1;
1320 vcpu->arch.rmode.active = 0;
1322 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1323 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1324 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1326 flags = vmcs_readl(GUEST_RFLAGS);
1327 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1328 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1329 vmcs_writel(GUEST_RFLAGS, flags);
1331 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1332 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1334 update_exception_bitmap(vcpu);
1336 if (emulate_invalid_guest_state)
1337 return;
1339 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1340 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1341 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1342 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1344 vmcs_write16(GUEST_SS_SELECTOR, 0);
1345 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1347 vmcs_write16(GUEST_CS_SELECTOR,
1348 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1349 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1352 static gva_t rmode_tss_base(struct kvm *kvm)
1354 if (!kvm->arch.tss_addr) {
1355 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1356 kvm->memslots[0].npages - 3;
1357 return base_gfn << PAGE_SHIFT;
1359 return kvm->arch.tss_addr;
1362 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1364 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1366 save->selector = vmcs_read16(sf->selector);
1367 save->base = vmcs_readl(sf->base);
1368 save->limit = vmcs_read32(sf->limit);
1369 save->ar = vmcs_read32(sf->ar_bytes);
1370 vmcs_write16(sf->selector, save->base >> 4);
1371 vmcs_write32(sf->base, save->base & 0xfffff);
1372 vmcs_write32(sf->limit, 0xffff);
1373 vmcs_write32(sf->ar_bytes, 0xf3);
1376 static void enter_rmode(struct kvm_vcpu *vcpu)
1378 unsigned long flags;
1379 struct vcpu_vmx *vmx = to_vmx(vcpu);
1381 vmx->emulation_required = 1;
1382 vcpu->arch.rmode.active = 1;
1384 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1385 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1387 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1388 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1390 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1391 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1393 flags = vmcs_readl(GUEST_RFLAGS);
1394 vcpu->arch.rmode.save_iopl
1395 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1397 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1399 vmcs_writel(GUEST_RFLAGS, flags);
1400 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1401 update_exception_bitmap(vcpu);
1403 if (emulate_invalid_guest_state)
1404 goto continue_rmode;
1406 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1407 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1408 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1410 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1411 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1412 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1413 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1414 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1416 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1417 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1418 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1419 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1421 continue_rmode:
1422 kvm_mmu_reset_context(vcpu);
1423 init_rmode(vcpu->kvm);
1426 #ifdef CONFIG_X86_64
1428 static void enter_lmode(struct kvm_vcpu *vcpu)
1430 u32 guest_tr_ar;
1432 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1433 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1434 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1435 __func__);
1436 vmcs_write32(GUEST_TR_AR_BYTES,
1437 (guest_tr_ar & ~AR_TYPE_MASK)
1438 | AR_TYPE_BUSY_64_TSS);
1441 vcpu->arch.shadow_efer |= EFER_LMA;
1443 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1444 vmcs_write32(VM_ENTRY_CONTROLS,
1445 vmcs_read32(VM_ENTRY_CONTROLS)
1446 | VM_ENTRY_IA32E_MODE);
1449 static void exit_lmode(struct kvm_vcpu *vcpu)
1451 vcpu->arch.shadow_efer &= ~EFER_LMA;
1453 vmcs_write32(VM_ENTRY_CONTROLS,
1454 vmcs_read32(VM_ENTRY_CONTROLS)
1455 & ~VM_ENTRY_IA32E_MODE);
1458 #endif
1460 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1462 vpid_sync_vcpu_all(to_vmx(vcpu));
1463 if (vm_need_ept())
1464 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1467 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1469 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1470 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1473 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1475 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1476 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1477 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1478 return;
1480 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1481 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1482 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1483 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1487 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1489 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1490 unsigned long cr0,
1491 struct kvm_vcpu *vcpu)
1493 if (!(cr0 & X86_CR0_PG)) {
1494 /* From paging/starting to nonpaging */
1495 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1496 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1497 (CPU_BASED_CR3_LOAD_EXITING |
1498 CPU_BASED_CR3_STORE_EXITING));
1499 vcpu->arch.cr0 = cr0;
1500 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1501 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1502 *hw_cr0 &= ~X86_CR0_WP;
1503 } else if (!is_paging(vcpu)) {
1504 /* From nonpaging to paging */
1505 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1506 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1507 ~(CPU_BASED_CR3_LOAD_EXITING |
1508 CPU_BASED_CR3_STORE_EXITING));
1509 vcpu->arch.cr0 = cr0;
1510 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1511 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1512 *hw_cr0 &= ~X86_CR0_WP;
1516 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1517 struct kvm_vcpu *vcpu)
1519 if (!is_paging(vcpu)) {
1520 *hw_cr4 &= ~X86_CR4_PAE;
1521 *hw_cr4 |= X86_CR4_PSE;
1522 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1523 *hw_cr4 &= ~X86_CR4_PAE;
1526 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1528 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1529 KVM_VM_CR0_ALWAYS_ON;
1531 vmx_fpu_deactivate(vcpu);
1533 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1534 enter_pmode(vcpu);
1536 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1537 enter_rmode(vcpu);
1539 #ifdef CONFIG_X86_64
1540 if (vcpu->arch.shadow_efer & EFER_LME) {
1541 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1542 enter_lmode(vcpu);
1543 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1544 exit_lmode(vcpu);
1546 #endif
1548 if (vm_need_ept())
1549 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1551 vmcs_writel(CR0_READ_SHADOW, cr0);
1552 vmcs_writel(GUEST_CR0, hw_cr0);
1553 vcpu->arch.cr0 = cr0;
1555 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1556 vmx_fpu_activate(vcpu);
1559 static u64 construct_eptp(unsigned long root_hpa)
1561 u64 eptp;
1563 /* TODO write the value reading from MSR */
1564 eptp = VMX_EPT_DEFAULT_MT |
1565 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1566 eptp |= (root_hpa & PAGE_MASK);
1568 return eptp;
1571 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1573 unsigned long guest_cr3;
1574 u64 eptp;
1576 guest_cr3 = cr3;
1577 if (vm_need_ept()) {
1578 eptp = construct_eptp(cr3);
1579 vmcs_write64(EPT_POINTER, eptp);
1580 ept_sync_context(eptp);
1581 ept_load_pdptrs(vcpu);
1582 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1583 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1586 vmx_flush_tlb(vcpu);
1587 vmcs_writel(GUEST_CR3, guest_cr3);
1588 if (vcpu->arch.cr0 & X86_CR0_PE)
1589 vmx_fpu_deactivate(vcpu);
1592 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1594 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1595 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1597 vcpu->arch.cr4 = cr4;
1598 if (vm_need_ept())
1599 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1601 vmcs_writel(CR4_READ_SHADOW, cr4);
1602 vmcs_writel(GUEST_CR4, hw_cr4);
1605 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1607 struct vcpu_vmx *vmx = to_vmx(vcpu);
1608 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1610 vcpu->arch.shadow_efer = efer;
1611 if (!msr)
1612 return;
1613 if (efer & EFER_LMA) {
1614 vmcs_write32(VM_ENTRY_CONTROLS,
1615 vmcs_read32(VM_ENTRY_CONTROLS) |
1616 VM_ENTRY_IA32E_MODE);
1617 msr->data = efer;
1619 } else {
1620 vmcs_write32(VM_ENTRY_CONTROLS,
1621 vmcs_read32(VM_ENTRY_CONTROLS) &
1622 ~VM_ENTRY_IA32E_MODE);
1624 msr->data = efer & ~EFER_LME;
1626 setup_msrs(vmx);
1629 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1631 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1633 return vmcs_readl(sf->base);
1636 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1637 struct kvm_segment *var, int seg)
1639 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1640 u32 ar;
1642 var->base = vmcs_readl(sf->base);
1643 var->limit = vmcs_read32(sf->limit);
1644 var->selector = vmcs_read16(sf->selector);
1645 ar = vmcs_read32(sf->ar_bytes);
1646 if (ar & AR_UNUSABLE_MASK)
1647 ar = 0;
1648 var->type = ar & 15;
1649 var->s = (ar >> 4) & 1;
1650 var->dpl = (ar >> 5) & 3;
1651 var->present = (ar >> 7) & 1;
1652 var->avl = (ar >> 12) & 1;
1653 var->l = (ar >> 13) & 1;
1654 var->db = (ar >> 14) & 1;
1655 var->g = (ar >> 15) & 1;
1656 var->unusable = (ar >> 16) & 1;
1659 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1661 struct kvm_segment kvm_seg;
1663 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1664 return 0;
1666 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1667 return 3;
1669 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1670 return kvm_seg.selector & 3;
1673 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1675 u32 ar;
1677 if (var->unusable)
1678 ar = 1 << 16;
1679 else {
1680 ar = var->type & 15;
1681 ar |= (var->s & 1) << 4;
1682 ar |= (var->dpl & 3) << 5;
1683 ar |= (var->present & 1) << 7;
1684 ar |= (var->avl & 1) << 12;
1685 ar |= (var->l & 1) << 13;
1686 ar |= (var->db & 1) << 14;
1687 ar |= (var->g & 1) << 15;
1689 if (ar == 0) /* a 0 value means unusable */
1690 ar = AR_UNUSABLE_MASK;
1692 return ar;
1695 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1696 struct kvm_segment *var, int seg)
1698 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1699 u32 ar;
1701 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1702 vcpu->arch.rmode.tr.selector = var->selector;
1703 vcpu->arch.rmode.tr.base = var->base;
1704 vcpu->arch.rmode.tr.limit = var->limit;
1705 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1706 return;
1708 vmcs_writel(sf->base, var->base);
1709 vmcs_write32(sf->limit, var->limit);
1710 vmcs_write16(sf->selector, var->selector);
1711 if (vcpu->arch.rmode.active && var->s) {
1713 * Hack real-mode segments into vm86 compatibility.
1715 if (var->base == 0xffff0000 && var->selector == 0xf000)
1716 vmcs_writel(sf->base, 0xf0000);
1717 ar = 0xf3;
1718 } else
1719 ar = vmx_segment_access_rights(var);
1720 vmcs_write32(sf->ar_bytes, ar);
1723 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1725 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1727 *db = (ar >> 14) & 1;
1728 *l = (ar >> 13) & 1;
1731 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1733 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1734 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1737 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1739 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1740 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1743 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1745 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1746 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1749 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1751 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1752 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1755 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1757 struct kvm_segment var;
1758 u32 ar;
1760 vmx_get_segment(vcpu, &var, seg);
1761 ar = vmx_segment_access_rights(&var);
1763 if (var.base != (var.selector << 4))
1764 return false;
1765 if (var.limit != 0xffff)
1766 return false;
1767 if (ar != 0xf3)
1768 return false;
1770 return true;
1773 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1775 struct kvm_segment cs;
1776 unsigned int cs_rpl;
1778 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1779 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1781 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1782 return false;
1783 if (!cs.s)
1784 return false;
1785 if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
1786 if (cs.dpl > cs_rpl)
1787 return false;
1788 } else if (cs.type & AR_TYPE_CODE_MASK) {
1789 if (cs.dpl != cs_rpl)
1790 return false;
1792 if (!cs.present)
1793 return false;
1795 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1796 return true;
1799 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1801 struct kvm_segment ss;
1802 unsigned int ss_rpl;
1804 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1805 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1807 if ((ss.type != 3) || (ss.type != 7))
1808 return false;
1809 if (!ss.s)
1810 return false;
1811 if (ss.dpl != ss_rpl) /* DPL != RPL */
1812 return false;
1813 if (!ss.present)
1814 return false;
1816 return true;
1819 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1821 struct kvm_segment var;
1822 unsigned int rpl;
1824 vmx_get_segment(vcpu, &var, seg);
1825 rpl = var.selector & SELECTOR_RPL_MASK;
1827 if (!var.s)
1828 return false;
1829 if (!var.present)
1830 return false;
1831 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1832 if (var.dpl < rpl) /* DPL < RPL */
1833 return false;
1836 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1837 * rights flags
1839 return true;
1842 static bool tr_valid(struct kvm_vcpu *vcpu)
1844 struct kvm_segment tr;
1846 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1848 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1849 return false;
1850 if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
1851 return false;
1852 if (!tr.present)
1853 return false;
1855 return true;
1858 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1860 struct kvm_segment ldtr;
1862 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1864 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1865 return false;
1866 if (ldtr.type != 2)
1867 return false;
1868 if (!ldtr.present)
1869 return false;
1871 return true;
1874 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1876 struct kvm_segment cs, ss;
1878 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1879 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1881 return ((cs.selector & SELECTOR_RPL_MASK) ==
1882 (ss.selector & SELECTOR_RPL_MASK));
1886 * Check if guest state is valid. Returns true if valid, false if
1887 * not.
1888 * We assume that registers are always usable
1890 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1892 /* real mode guest state checks */
1893 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1894 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1895 return false;
1896 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1897 return false;
1898 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1899 return false;
1900 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1901 return false;
1902 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1903 return false;
1904 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1905 return false;
1906 } else {
1907 /* protected mode guest state checks */
1908 if (!cs_ss_rpl_check(vcpu))
1909 return false;
1910 if (!code_segment_valid(vcpu))
1911 return false;
1912 if (!stack_segment_valid(vcpu))
1913 return false;
1914 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1915 return false;
1916 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1917 return false;
1918 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1919 return false;
1920 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1921 return false;
1922 if (!tr_valid(vcpu))
1923 return false;
1924 if (!ldtr_valid(vcpu))
1925 return false;
1927 /* TODO:
1928 * - Add checks on RIP
1929 * - Add checks on RFLAGS
1932 return true;
1935 static int init_rmode_tss(struct kvm *kvm)
1937 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1938 u16 data = 0;
1939 int ret = 0;
1940 int r;
1942 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1943 if (r < 0)
1944 goto out;
1945 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1946 r = kvm_write_guest_page(kvm, fn++, &data,
1947 TSS_IOPB_BASE_OFFSET, sizeof(u16));
1948 if (r < 0)
1949 goto out;
1950 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1951 if (r < 0)
1952 goto out;
1953 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1954 if (r < 0)
1955 goto out;
1956 data = ~0;
1957 r = kvm_write_guest_page(kvm, fn, &data,
1958 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1959 sizeof(u8));
1960 if (r < 0)
1961 goto out;
1963 ret = 1;
1964 out:
1965 return ret;
1968 static int init_rmode_identity_map(struct kvm *kvm)
1970 int i, r, ret;
1971 pfn_t identity_map_pfn;
1972 u32 tmp;
1974 if (!vm_need_ept())
1975 return 1;
1976 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1977 printk(KERN_ERR "EPT: identity-mapping pagetable "
1978 "haven't been allocated!\n");
1979 return 0;
1981 if (likely(kvm->arch.ept_identity_pagetable_done))
1982 return 1;
1983 ret = 0;
1984 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1985 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1986 if (r < 0)
1987 goto out;
1988 /* Set up identity-mapping pagetable for EPT in real mode */
1989 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1990 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1991 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1992 r = kvm_write_guest_page(kvm, identity_map_pfn,
1993 &tmp, i * sizeof(tmp), sizeof(tmp));
1994 if (r < 0)
1995 goto out;
1997 kvm->arch.ept_identity_pagetable_done = true;
1998 ret = 1;
1999 out:
2000 return ret;
2003 static void seg_setup(int seg)
2005 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2007 vmcs_write16(sf->selector, 0);
2008 vmcs_writel(sf->base, 0);
2009 vmcs_write32(sf->limit, 0xffff);
2010 vmcs_write32(sf->ar_bytes, 0xf3);
2013 static int alloc_apic_access_page(struct kvm *kvm)
2015 struct kvm_userspace_memory_region kvm_userspace_mem;
2016 int r = 0;
2018 down_write(&kvm->slots_lock);
2019 if (kvm->arch.apic_access_page)
2020 goto out;
2021 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2022 kvm_userspace_mem.flags = 0;
2023 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2024 kvm_userspace_mem.memory_size = PAGE_SIZE;
2025 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2026 if (r)
2027 goto out;
2029 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2030 out:
2031 up_write(&kvm->slots_lock);
2032 return r;
2035 static int alloc_identity_pagetable(struct kvm *kvm)
2037 struct kvm_userspace_memory_region kvm_userspace_mem;
2038 int r = 0;
2040 down_write(&kvm->slots_lock);
2041 if (kvm->arch.ept_identity_pagetable)
2042 goto out;
2043 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2044 kvm_userspace_mem.flags = 0;
2045 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2046 kvm_userspace_mem.memory_size = PAGE_SIZE;
2047 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2048 if (r)
2049 goto out;
2051 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2052 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2053 out:
2054 up_write(&kvm->slots_lock);
2055 return r;
2058 static void allocate_vpid(struct vcpu_vmx *vmx)
2060 int vpid;
2062 vmx->vpid = 0;
2063 if (!enable_vpid || !cpu_has_vmx_vpid())
2064 return;
2065 spin_lock(&vmx_vpid_lock);
2066 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2067 if (vpid < VMX_NR_VPIDS) {
2068 vmx->vpid = vpid;
2069 __set_bit(vpid, vmx_vpid_bitmap);
2071 spin_unlock(&vmx_vpid_lock);
2074 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
2076 void *va;
2078 if (!cpu_has_vmx_msr_bitmap())
2079 return;
2082 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2083 * have the write-low and read-high bitmap offsets the wrong way round.
2084 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2086 va = kmap(msr_bitmap);
2087 if (msr <= 0x1fff) {
2088 __clear_bit(msr, va + 0x000); /* read-low */
2089 __clear_bit(msr, va + 0x800); /* write-low */
2090 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2091 msr &= 0x1fff;
2092 __clear_bit(msr, va + 0x400); /* read-high */
2093 __clear_bit(msr, va + 0xc00); /* write-high */
2095 kunmap(msr_bitmap);
2099 * Sets up the vmcs for emulated real mode.
2101 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2103 u32 host_sysenter_cs, msr_low, msr_high;
2104 u32 junk;
2105 u64 host_pat;
2106 unsigned long a;
2107 struct descriptor_table dt;
2108 int i;
2109 unsigned long kvm_vmx_return;
2110 u32 exec_control;
2112 /* I/O */
2113 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
2114 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
2116 if (cpu_has_vmx_msr_bitmap())
2117 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
2119 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2121 /* Control */
2122 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2123 vmcs_config.pin_based_exec_ctrl);
2125 exec_control = vmcs_config.cpu_based_exec_ctrl;
2126 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2127 exec_control &= ~CPU_BASED_TPR_SHADOW;
2128 #ifdef CONFIG_X86_64
2129 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2130 CPU_BASED_CR8_LOAD_EXITING;
2131 #endif
2133 if (!vm_need_ept())
2134 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2135 CPU_BASED_CR3_LOAD_EXITING |
2136 CPU_BASED_INVLPG_EXITING;
2137 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2139 if (cpu_has_secondary_exec_ctrls()) {
2140 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2141 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2142 exec_control &=
2143 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2144 if (vmx->vpid == 0)
2145 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2146 if (!vm_need_ept())
2147 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2148 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2151 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2152 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2153 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2155 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2156 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2157 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2159 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2160 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2161 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2162 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2163 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2164 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2165 #ifdef CONFIG_X86_64
2166 rdmsrl(MSR_FS_BASE, a);
2167 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2168 rdmsrl(MSR_GS_BASE, a);
2169 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2170 #else
2171 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2172 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2173 #endif
2175 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2177 kvm_get_idt(&dt);
2178 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2180 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2181 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2182 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2183 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2184 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2186 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2187 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2188 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2189 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2190 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2191 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2193 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2194 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2195 host_pat = msr_low | ((u64) msr_high << 32);
2196 vmcs_write64(HOST_IA32_PAT, host_pat);
2198 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2199 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2200 host_pat = msr_low | ((u64) msr_high << 32);
2201 /* Write the default value follow host pat */
2202 vmcs_write64(GUEST_IA32_PAT, host_pat);
2203 /* Keep arch.pat sync with GUEST_IA32_PAT */
2204 vmx->vcpu.arch.pat = host_pat;
2207 for (i = 0; i < NR_VMX_MSR; ++i) {
2208 u32 index = vmx_msr_index[i];
2209 u32 data_low, data_high;
2210 u64 data;
2211 int j = vmx->nmsrs;
2213 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2214 continue;
2215 if (wrmsr_safe(index, data_low, data_high) < 0)
2216 continue;
2217 data = data_low | ((u64)data_high << 32);
2218 vmx->host_msrs[j].index = index;
2219 vmx->host_msrs[j].reserved = 0;
2220 vmx->host_msrs[j].data = data;
2221 vmx->guest_msrs[j] = vmx->host_msrs[j];
2222 ++vmx->nmsrs;
2225 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2227 /* 22.2.1, 20.8.1 */
2228 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2230 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2231 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2234 return 0;
2237 static int init_rmode(struct kvm *kvm)
2239 if (!init_rmode_tss(kvm))
2240 return 0;
2241 if (!init_rmode_identity_map(kvm))
2242 return 0;
2243 return 1;
2246 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2248 struct vcpu_vmx *vmx = to_vmx(vcpu);
2249 u64 msr;
2250 int ret;
2252 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2253 down_read(&vcpu->kvm->slots_lock);
2254 if (!init_rmode(vmx->vcpu.kvm)) {
2255 ret = -ENOMEM;
2256 goto out;
2259 vmx->vcpu.arch.rmode.active = 0;
2261 vmx->soft_vnmi_blocked = 0;
2263 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2264 kvm_set_cr8(&vmx->vcpu, 0);
2265 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2266 if (vmx->vcpu.vcpu_id == 0)
2267 msr |= MSR_IA32_APICBASE_BSP;
2268 kvm_set_apic_base(&vmx->vcpu, msr);
2270 fx_init(&vmx->vcpu);
2272 seg_setup(VCPU_SREG_CS);
2274 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2275 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2277 if (vmx->vcpu.vcpu_id == 0) {
2278 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2279 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2280 } else {
2281 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2282 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2285 seg_setup(VCPU_SREG_DS);
2286 seg_setup(VCPU_SREG_ES);
2287 seg_setup(VCPU_SREG_FS);
2288 seg_setup(VCPU_SREG_GS);
2289 seg_setup(VCPU_SREG_SS);
2291 vmcs_write16(GUEST_TR_SELECTOR, 0);
2292 vmcs_writel(GUEST_TR_BASE, 0);
2293 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2294 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2296 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2297 vmcs_writel(GUEST_LDTR_BASE, 0);
2298 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2299 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2301 vmcs_write32(GUEST_SYSENTER_CS, 0);
2302 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2303 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2305 vmcs_writel(GUEST_RFLAGS, 0x02);
2306 if (vmx->vcpu.vcpu_id == 0)
2307 kvm_rip_write(vcpu, 0xfff0);
2308 else
2309 kvm_rip_write(vcpu, 0);
2310 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2312 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2313 vmcs_writel(GUEST_DR7, 0x400);
2315 vmcs_writel(GUEST_GDTR_BASE, 0);
2316 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2318 vmcs_writel(GUEST_IDTR_BASE, 0);
2319 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2321 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2322 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2323 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2325 guest_write_tsc(0);
2327 /* Special registers */
2328 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2330 setup_msrs(vmx);
2332 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2334 if (cpu_has_vmx_tpr_shadow()) {
2335 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2336 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2337 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2338 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2339 vmcs_write32(TPR_THRESHOLD, 0);
2342 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2343 vmcs_write64(APIC_ACCESS_ADDR,
2344 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2346 if (vmx->vpid != 0)
2347 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2349 vmx->vcpu.arch.cr0 = 0x60000010;
2350 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2351 vmx_set_cr4(&vmx->vcpu, 0);
2352 vmx_set_efer(&vmx->vcpu, 0);
2353 vmx_fpu_activate(&vmx->vcpu);
2354 update_exception_bitmap(&vmx->vcpu);
2356 vpid_sync_vcpu_all(vmx);
2358 ret = 0;
2360 /* HACK: Don't enable emulation on guest boot/reset */
2361 vmx->emulation_required = 0;
2363 out:
2364 up_read(&vcpu->kvm->slots_lock);
2365 return ret;
2368 static void enable_irq_window(struct kvm_vcpu *vcpu)
2370 u32 cpu_based_vm_exec_control;
2372 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2373 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2374 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2377 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2379 u32 cpu_based_vm_exec_control;
2381 if (!cpu_has_virtual_nmis()) {
2382 enable_irq_window(vcpu);
2383 return;
2386 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2387 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2388 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2391 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2393 struct vcpu_vmx *vmx = to_vmx(vcpu);
2395 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2397 ++vcpu->stat.irq_injections;
2398 if (vcpu->arch.rmode.active) {
2399 vmx->rmode.irq.pending = true;
2400 vmx->rmode.irq.vector = irq;
2401 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2402 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2403 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2404 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2405 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2406 return;
2408 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2409 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2412 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2414 struct vcpu_vmx *vmx = to_vmx(vcpu);
2416 if (!cpu_has_virtual_nmis()) {
2418 * Tracking the NMI-blocked state in software is built upon
2419 * finding the next open IRQ window. This, in turn, depends on
2420 * well-behaving guests: They have to keep IRQs disabled at
2421 * least as long as the NMI handler runs. Otherwise we may
2422 * cause NMI nesting, maybe breaking the guest. But as this is
2423 * highly unlikely, we can live with the residual risk.
2425 vmx->soft_vnmi_blocked = 1;
2426 vmx->vnmi_blocked_time = 0;
2429 ++vcpu->stat.nmi_injections;
2430 if (vcpu->arch.rmode.active) {
2431 vmx->rmode.irq.pending = true;
2432 vmx->rmode.irq.vector = NMI_VECTOR;
2433 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2434 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2435 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2436 INTR_INFO_VALID_MASK);
2437 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2438 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2439 return;
2441 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2442 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2445 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2447 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2449 vcpu->arch.nmi_window_open =
2450 !(guest_intr & (GUEST_INTR_STATE_STI |
2451 GUEST_INTR_STATE_MOV_SS |
2452 GUEST_INTR_STATE_NMI));
2453 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2454 vcpu->arch.nmi_window_open = 0;
2456 vcpu->arch.interrupt_window_open =
2457 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2458 !(guest_intr & (GUEST_INTR_STATE_STI |
2459 GUEST_INTR_STATE_MOV_SS)));
2462 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2464 int word_index = __ffs(vcpu->arch.irq_summary);
2465 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2466 int irq = word_index * BITS_PER_LONG + bit_index;
2468 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2469 if (!vcpu->arch.irq_pending[word_index])
2470 clear_bit(word_index, &vcpu->arch.irq_summary);
2471 kvm_queue_interrupt(vcpu, irq);
2474 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2475 struct kvm_run *kvm_run)
2477 vmx_update_window_states(vcpu);
2479 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2480 if (vcpu->arch.nmi_window_open) {
2481 vcpu->arch.nmi_pending = false;
2482 vcpu->arch.nmi_injected = true;
2483 } else {
2484 enable_nmi_window(vcpu);
2485 return;
2488 if (vcpu->arch.nmi_injected) {
2489 vmx_inject_nmi(vcpu);
2490 if (vcpu->arch.nmi_pending || kvm_run->request_nmi_window)
2491 enable_nmi_window(vcpu);
2492 else if (vcpu->arch.irq_summary
2493 || kvm_run->request_interrupt_window)
2494 enable_irq_window(vcpu);
2495 return;
2497 if (!vcpu->arch.nmi_window_open || kvm_run->request_nmi_window)
2498 enable_nmi_window(vcpu);
2500 if (vcpu->arch.interrupt_window_open) {
2501 if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
2502 kvm_do_inject_irq(vcpu);
2504 if (vcpu->arch.interrupt.pending)
2505 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2507 if (!vcpu->arch.interrupt_window_open &&
2508 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2509 enable_irq_window(vcpu);
2512 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2514 int ret;
2515 struct kvm_userspace_memory_region tss_mem = {
2516 .slot = 8,
2517 .guest_phys_addr = addr,
2518 .memory_size = PAGE_SIZE * 3,
2519 .flags = 0,
2522 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2523 if (ret)
2524 return ret;
2525 kvm->arch.tss_addr = addr;
2526 return 0;
2529 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2531 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2533 set_debugreg(dbg->bp[0], 0);
2534 set_debugreg(dbg->bp[1], 1);
2535 set_debugreg(dbg->bp[2], 2);
2536 set_debugreg(dbg->bp[3], 3);
2538 if (dbg->singlestep) {
2539 unsigned long flags;
2541 flags = vmcs_readl(GUEST_RFLAGS);
2542 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2543 vmcs_writel(GUEST_RFLAGS, flags);
2547 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2548 int vec, u32 err_code)
2551 * Instruction with address size override prefix opcode 0x67
2552 * Cause the #SS fault with 0 error code in VM86 mode.
2554 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2555 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2556 return 1;
2558 * Forward all other exceptions that are valid in real mode.
2559 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2560 * the required debugging infrastructure rework.
2562 switch (vec) {
2563 case DE_VECTOR:
2564 case DB_VECTOR:
2565 case BP_VECTOR:
2566 case OF_VECTOR:
2567 case BR_VECTOR:
2568 case UD_VECTOR:
2569 case DF_VECTOR:
2570 case SS_VECTOR:
2571 case GP_VECTOR:
2572 case MF_VECTOR:
2573 kvm_queue_exception(vcpu, vec);
2574 return 1;
2576 return 0;
2579 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2581 struct vcpu_vmx *vmx = to_vmx(vcpu);
2582 u32 intr_info, error_code;
2583 unsigned long cr2, rip;
2584 u32 vect_info;
2585 enum emulation_result er;
2587 vect_info = vmx->idt_vectoring_info;
2588 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2590 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2591 !is_page_fault(intr_info))
2592 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2593 "intr info 0x%x\n", __func__, vect_info, intr_info);
2595 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2596 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2597 set_bit(irq, vcpu->arch.irq_pending);
2598 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2601 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2602 return 1; /* already handled by vmx_vcpu_run() */
2604 if (is_no_device(intr_info)) {
2605 vmx_fpu_activate(vcpu);
2606 return 1;
2609 if (is_invalid_opcode(intr_info)) {
2610 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2611 if (er != EMULATE_DONE)
2612 kvm_queue_exception(vcpu, UD_VECTOR);
2613 return 1;
2616 error_code = 0;
2617 rip = kvm_rip_read(vcpu);
2618 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2619 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2620 if (is_page_fault(intr_info)) {
2621 /* EPT won't cause page fault directly */
2622 if (vm_need_ept())
2623 BUG();
2624 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2625 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2626 (u32)((u64)cr2 >> 32), handler);
2627 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2628 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2629 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2632 if (vcpu->arch.rmode.active &&
2633 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2634 error_code)) {
2635 if (vcpu->arch.halt_request) {
2636 vcpu->arch.halt_request = 0;
2637 return kvm_emulate_halt(vcpu);
2639 return 1;
2642 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2643 (INTR_TYPE_EXCEPTION | 1)) {
2644 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2645 return 0;
2647 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2648 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2649 kvm_run->ex.error_code = error_code;
2650 return 0;
2653 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2654 struct kvm_run *kvm_run)
2656 ++vcpu->stat.irq_exits;
2657 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2658 return 1;
2661 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2663 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2664 return 0;
2667 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2669 unsigned long exit_qualification;
2670 int size, down, in, string, rep;
2671 unsigned port;
2673 ++vcpu->stat.io_exits;
2674 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2675 string = (exit_qualification & 16) != 0;
2677 if (string) {
2678 if (emulate_instruction(vcpu,
2679 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2680 return 0;
2681 return 1;
2684 size = (exit_qualification & 7) + 1;
2685 in = (exit_qualification & 8) != 0;
2686 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2687 rep = (exit_qualification & 32) != 0;
2688 port = exit_qualification >> 16;
2690 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2693 static void
2694 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2697 * Patch in the VMCALL instruction:
2699 hypercall[0] = 0x0f;
2700 hypercall[1] = 0x01;
2701 hypercall[2] = 0xc1;
2704 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2706 unsigned long exit_qualification;
2707 int cr;
2708 int reg;
2710 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2711 cr = exit_qualification & 15;
2712 reg = (exit_qualification >> 8) & 15;
2713 switch ((exit_qualification >> 4) & 3) {
2714 case 0: /* mov to cr */
2715 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2716 (u32)kvm_register_read(vcpu, reg),
2717 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2718 handler);
2719 switch (cr) {
2720 case 0:
2721 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2722 skip_emulated_instruction(vcpu);
2723 return 1;
2724 case 3:
2725 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2726 skip_emulated_instruction(vcpu);
2727 return 1;
2728 case 4:
2729 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2730 skip_emulated_instruction(vcpu);
2731 return 1;
2732 case 8:
2733 kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2734 skip_emulated_instruction(vcpu);
2735 if (irqchip_in_kernel(vcpu->kvm))
2736 return 1;
2737 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2738 return 0;
2740 break;
2741 case 2: /* clts */
2742 vmx_fpu_deactivate(vcpu);
2743 vcpu->arch.cr0 &= ~X86_CR0_TS;
2744 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2745 vmx_fpu_activate(vcpu);
2746 KVMTRACE_0D(CLTS, vcpu, handler);
2747 skip_emulated_instruction(vcpu);
2748 return 1;
2749 case 1: /*mov from cr*/
2750 switch (cr) {
2751 case 3:
2752 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2753 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2754 (u32)kvm_register_read(vcpu, reg),
2755 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2756 handler);
2757 skip_emulated_instruction(vcpu);
2758 return 1;
2759 case 8:
2760 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2761 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2762 (u32)kvm_register_read(vcpu, reg), handler);
2763 skip_emulated_instruction(vcpu);
2764 return 1;
2766 break;
2767 case 3: /* lmsw */
2768 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2770 skip_emulated_instruction(vcpu);
2771 return 1;
2772 default:
2773 break;
2775 kvm_run->exit_reason = 0;
2776 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2777 (int)(exit_qualification >> 4) & 3, cr);
2778 return 0;
2781 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2783 unsigned long exit_qualification;
2784 unsigned long val;
2785 int dr, reg;
2788 * FIXME: this code assumes the host is debugging the guest.
2789 * need to deal with guest debugging itself too.
2791 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2792 dr = exit_qualification & 7;
2793 reg = (exit_qualification >> 8) & 15;
2794 if (exit_qualification & 16) {
2795 /* mov from dr */
2796 switch (dr) {
2797 case 6:
2798 val = 0xffff0ff0;
2799 break;
2800 case 7:
2801 val = 0x400;
2802 break;
2803 default:
2804 val = 0;
2806 kvm_register_write(vcpu, reg, val);
2807 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2808 } else {
2809 /* mov to dr */
2811 skip_emulated_instruction(vcpu);
2812 return 1;
2815 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2817 kvm_emulate_cpuid(vcpu);
2818 return 1;
2821 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2823 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2824 u64 data;
2826 if (vmx_get_msr(vcpu, ecx, &data)) {
2827 kvm_inject_gp(vcpu, 0);
2828 return 1;
2831 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2832 handler);
2834 /* FIXME: handling of bits 32:63 of rax, rdx */
2835 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2836 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2837 skip_emulated_instruction(vcpu);
2838 return 1;
2841 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2843 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2844 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2845 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2847 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2848 handler);
2850 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2851 kvm_inject_gp(vcpu, 0);
2852 return 1;
2855 skip_emulated_instruction(vcpu);
2856 return 1;
2859 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2860 struct kvm_run *kvm_run)
2862 return 1;
2865 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2866 struct kvm_run *kvm_run)
2868 u32 cpu_based_vm_exec_control;
2870 /* clear pending irq */
2871 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2872 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2873 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2875 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2876 ++vcpu->stat.irq_window_exits;
2879 * If the user space waits to inject interrupts, exit as soon as
2880 * possible
2882 if (kvm_run->request_interrupt_window &&
2883 !vcpu->arch.irq_summary) {
2884 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2885 return 0;
2887 return 1;
2890 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2892 skip_emulated_instruction(vcpu);
2893 return kvm_emulate_halt(vcpu);
2896 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2898 skip_emulated_instruction(vcpu);
2899 kvm_emulate_hypercall(vcpu);
2900 return 1;
2903 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2905 u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2907 kvm_mmu_invlpg(vcpu, exit_qualification);
2908 skip_emulated_instruction(vcpu);
2909 return 1;
2912 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2914 skip_emulated_instruction(vcpu);
2915 /* TODO: Add support for VT-d/pass-through device */
2916 return 1;
2919 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2921 u64 exit_qualification;
2922 enum emulation_result er;
2923 unsigned long offset;
2925 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2926 offset = exit_qualification & 0xffful;
2928 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2930 if (er != EMULATE_DONE) {
2931 printk(KERN_ERR
2932 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2933 offset);
2934 return -ENOTSUPP;
2936 return 1;
2939 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2941 struct vcpu_vmx *vmx = to_vmx(vcpu);
2942 unsigned long exit_qualification;
2943 u16 tss_selector;
2944 int reason;
2946 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2948 reason = (u32)exit_qualification >> 30;
2949 if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
2950 (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
2951 (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
2952 == INTR_TYPE_NMI_INTR) {
2953 vcpu->arch.nmi_injected = false;
2954 if (cpu_has_virtual_nmis())
2955 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2956 GUEST_INTR_STATE_NMI);
2958 tss_selector = exit_qualification;
2960 return kvm_task_switch(vcpu, tss_selector, reason);
2963 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2965 u64 exit_qualification;
2966 enum emulation_result er;
2967 gpa_t gpa;
2968 unsigned long hva;
2969 int gla_validity;
2970 int r;
2972 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2974 if (exit_qualification & (1 << 6)) {
2975 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2976 return -ENOTSUPP;
2979 gla_validity = (exit_qualification >> 7) & 0x3;
2980 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2981 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2982 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2983 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2984 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2985 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2986 (long unsigned int)exit_qualification);
2987 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2988 kvm_run->hw.hardware_exit_reason = 0;
2989 return -ENOTSUPP;
2992 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2993 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2994 if (!kvm_is_error_hva(hva)) {
2995 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2996 if (r < 0) {
2997 printk(KERN_ERR "EPT: Not enough memory!\n");
2998 return -ENOMEM;
3000 return 1;
3001 } else {
3002 /* must be MMIO */
3003 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3005 if (er == EMULATE_FAIL) {
3006 printk(KERN_ERR
3007 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
3008 er);
3009 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3010 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3011 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
3012 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3013 (long unsigned int)exit_qualification);
3014 return -ENOTSUPP;
3015 } else if (er == EMULATE_DO_MMIO)
3016 return 0;
3018 return 1;
3021 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3023 u32 cpu_based_vm_exec_control;
3025 /* clear pending NMI */
3026 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3027 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3028 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3029 ++vcpu->stat.nmi_window_exits;
3032 * If the user space waits to inject a NMI, exit as soon as possible
3034 if (kvm_run->request_nmi_window && !vcpu->arch.nmi_pending) {
3035 kvm_run->exit_reason = KVM_EXIT_NMI_WINDOW_OPEN;
3036 return 0;
3039 return 1;
3042 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3043 struct kvm_run *kvm_run)
3045 struct vcpu_vmx *vmx = to_vmx(vcpu);
3046 int err;
3048 preempt_enable();
3049 local_irq_enable();
3051 while (!guest_state_valid(vcpu)) {
3052 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3054 switch (err) {
3055 case EMULATE_DONE:
3056 break;
3057 case EMULATE_DO_MMIO:
3058 kvm_report_emulation_failure(vcpu, "mmio");
3059 /* TODO: Handle MMIO */
3060 return;
3061 default:
3062 kvm_report_emulation_failure(vcpu, "emulation failure");
3063 return;
3066 if (signal_pending(current))
3067 break;
3068 if (need_resched())
3069 schedule();
3072 local_irq_disable();
3073 preempt_disable();
3075 /* Guest state should be valid now, no more emulation should be needed */
3076 vmx->emulation_required = 0;
3080 * The exit handlers return 1 if the exit was handled fully and guest execution
3081 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3082 * to be done to userspace and return 0.
3084 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3085 struct kvm_run *kvm_run) = {
3086 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3087 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3088 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3089 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3090 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3091 [EXIT_REASON_CR_ACCESS] = handle_cr,
3092 [EXIT_REASON_DR_ACCESS] = handle_dr,
3093 [EXIT_REASON_CPUID] = handle_cpuid,
3094 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3095 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3096 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3097 [EXIT_REASON_HLT] = handle_halt,
3098 [EXIT_REASON_INVLPG] = handle_invlpg,
3099 [EXIT_REASON_VMCALL] = handle_vmcall,
3100 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3101 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3102 [EXIT_REASON_WBINVD] = handle_wbinvd,
3103 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3104 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3107 static const int kvm_vmx_max_exit_handlers =
3108 ARRAY_SIZE(kvm_vmx_exit_handlers);
3111 * The guest has exited. See if we can fix it or if we need userspace
3112 * assistance.
3114 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3116 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3117 struct vcpu_vmx *vmx = to_vmx(vcpu);
3118 u32 vectoring_info = vmx->idt_vectoring_info;
3120 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3121 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3123 /* Access CR3 don't cause VMExit in paging mode, so we need
3124 * to sync with guest real CR3. */
3125 if (vm_need_ept() && is_paging(vcpu)) {
3126 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3127 ept_load_pdptrs(vcpu);
3130 if (unlikely(vmx->fail)) {
3131 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3132 kvm_run->fail_entry.hardware_entry_failure_reason
3133 = vmcs_read32(VM_INSTRUCTION_ERROR);
3134 return 0;
3137 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3138 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3139 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3140 exit_reason != EXIT_REASON_TASK_SWITCH))
3141 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3142 "(0x%x) and exit reason is 0x%x\n",
3143 __func__, vectoring_info, exit_reason);
3145 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3146 if (vcpu->arch.interrupt_window_open) {
3147 vmx->soft_vnmi_blocked = 0;
3148 vcpu->arch.nmi_window_open = 1;
3149 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3150 (kvm_run->request_nmi_window || vcpu->arch.nmi_pending)) {
3152 * This CPU don't support us in finding the end of an
3153 * NMI-blocked window if the guest runs with IRQs
3154 * disabled. So we pull the trigger after 1 s of
3155 * futile waiting, but inform the user about this.
3157 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3158 "state on VCPU %d after 1 s timeout\n",
3159 __func__, vcpu->vcpu_id);
3160 vmx->soft_vnmi_blocked = 0;
3161 vmx->vcpu.arch.nmi_window_open = 1;
3165 * If the user space waits to inject an NNI, exit ASAP
3167 if (vcpu->arch.nmi_window_open && kvm_run->request_nmi_window
3168 && !vcpu->arch.nmi_pending) {
3169 kvm_run->exit_reason = KVM_EXIT_NMI_WINDOW_OPEN;
3170 ++vcpu->stat.nmi_window_exits;
3171 return 0;
3175 if (exit_reason < kvm_vmx_max_exit_handlers
3176 && kvm_vmx_exit_handlers[exit_reason])
3177 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3178 else {
3179 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3180 kvm_run->hw.hardware_exit_reason = exit_reason;
3182 return 0;
3185 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3187 int max_irr, tpr;
3189 if (!vm_need_tpr_shadow(vcpu->kvm))
3190 return;
3192 if (!kvm_lapic_enabled(vcpu) ||
3193 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3194 vmcs_write32(TPR_THRESHOLD, 0);
3195 return;
3198 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3199 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3202 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3204 u32 exit_intr_info;
3205 u32 idt_vectoring_info;
3206 bool unblock_nmi;
3207 u8 vector;
3208 int type;
3209 bool idtv_info_valid;
3210 u32 error;
3212 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3213 if (cpu_has_virtual_nmis()) {
3214 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3215 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3217 * SDM 3: 25.7.1.2
3218 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3219 * a guest IRET fault.
3221 if (unblock_nmi && vector != DF_VECTOR)
3222 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3223 GUEST_INTR_STATE_NMI);
3224 } else if (unlikely(vmx->soft_vnmi_blocked))
3225 vmx->vnmi_blocked_time +=
3226 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3228 idt_vectoring_info = vmx->idt_vectoring_info;
3229 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3230 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3231 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3232 if (vmx->vcpu.arch.nmi_injected) {
3234 * SDM 3: 25.7.1.2
3235 * Clear bit "block by NMI" before VM entry if a NMI delivery
3236 * faulted.
3238 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
3239 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3240 GUEST_INTR_STATE_NMI);
3241 else
3242 vmx->vcpu.arch.nmi_injected = false;
3244 kvm_clear_exception_queue(&vmx->vcpu);
3245 if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
3246 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3247 error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3248 kvm_queue_exception_e(&vmx->vcpu, vector, error);
3249 } else
3250 kvm_queue_exception(&vmx->vcpu, vector);
3251 vmx->idt_vectoring_info = 0;
3253 kvm_clear_interrupt_queue(&vmx->vcpu);
3254 if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
3255 kvm_queue_interrupt(&vmx->vcpu, vector);
3256 vmx->idt_vectoring_info = 0;
3260 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
3262 update_tpr_threshold(vcpu);
3264 vmx_update_window_states(vcpu);
3266 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
3267 if (vcpu->arch.interrupt.pending) {
3268 enable_nmi_window(vcpu);
3269 } else if (vcpu->arch.nmi_window_open) {
3270 vcpu->arch.nmi_pending = false;
3271 vcpu->arch.nmi_injected = true;
3272 } else {
3273 enable_nmi_window(vcpu);
3274 return;
3277 if (vcpu->arch.nmi_injected) {
3278 vmx_inject_nmi(vcpu);
3279 if (vcpu->arch.nmi_pending)
3280 enable_nmi_window(vcpu);
3281 else if (kvm_cpu_has_interrupt(vcpu))
3282 enable_irq_window(vcpu);
3283 return;
3285 if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
3286 if (vcpu->arch.interrupt_window_open)
3287 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3288 else
3289 enable_irq_window(vcpu);
3291 if (vcpu->arch.interrupt.pending) {
3292 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3293 kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
3298 * Failure to inject an interrupt should give us the information
3299 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3300 * when fetching the interrupt redirection bitmap in the real-mode
3301 * tss, this doesn't happen. So we do it ourselves.
3303 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3305 vmx->rmode.irq.pending = 0;
3306 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3307 return;
3308 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3309 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3310 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3311 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3312 return;
3314 vmx->idt_vectoring_info =
3315 VECTORING_INFO_VALID_MASK
3316 | INTR_TYPE_EXT_INTR
3317 | vmx->rmode.irq.vector;
3320 #ifdef CONFIG_X86_64
3321 #define R "r"
3322 #define Q "q"
3323 #else
3324 #define R "e"
3325 #define Q "l"
3326 #endif
3328 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3330 struct vcpu_vmx *vmx = to_vmx(vcpu);
3331 u32 intr_info;
3333 /* Record the guest's net vcpu time for enforced NMI injections. */
3334 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3335 vmx->entry_time = ktime_get();
3337 /* Handle invalid guest state instead of entering VMX */
3338 if (vmx->emulation_required && emulate_invalid_guest_state) {
3339 handle_invalid_guest_state(vcpu, kvm_run);
3340 return;
3343 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3344 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3345 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3346 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3349 * Loading guest fpu may have cleared host cr0.ts
3351 vmcs_writel(HOST_CR0, read_cr0());
3353 asm(
3354 /* Store host registers */
3355 "push %%"R"dx; push %%"R"bp;"
3356 "push %%"R"cx \n\t"
3357 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3358 "je 1f \n\t"
3359 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3360 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3361 "1: \n\t"
3362 /* Check if vmlaunch of vmresume is needed */
3363 "cmpl $0, %c[launched](%0) \n\t"
3364 /* Load guest registers. Don't clobber flags. */
3365 "mov %c[cr2](%0), %%"R"ax \n\t"
3366 "mov %%"R"ax, %%cr2 \n\t"
3367 "mov %c[rax](%0), %%"R"ax \n\t"
3368 "mov %c[rbx](%0), %%"R"bx \n\t"
3369 "mov %c[rdx](%0), %%"R"dx \n\t"
3370 "mov %c[rsi](%0), %%"R"si \n\t"
3371 "mov %c[rdi](%0), %%"R"di \n\t"
3372 "mov %c[rbp](%0), %%"R"bp \n\t"
3373 #ifdef CONFIG_X86_64
3374 "mov %c[r8](%0), %%r8 \n\t"
3375 "mov %c[r9](%0), %%r9 \n\t"
3376 "mov %c[r10](%0), %%r10 \n\t"
3377 "mov %c[r11](%0), %%r11 \n\t"
3378 "mov %c[r12](%0), %%r12 \n\t"
3379 "mov %c[r13](%0), %%r13 \n\t"
3380 "mov %c[r14](%0), %%r14 \n\t"
3381 "mov %c[r15](%0), %%r15 \n\t"
3382 #endif
3383 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3385 /* Enter guest mode */
3386 "jne .Llaunched \n\t"
3387 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3388 "jmp .Lkvm_vmx_return \n\t"
3389 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3390 ".Lkvm_vmx_return: "
3391 /* Save guest registers, load host registers, keep flags */
3392 "xchg %0, (%%"R"sp) \n\t"
3393 "mov %%"R"ax, %c[rax](%0) \n\t"
3394 "mov %%"R"bx, %c[rbx](%0) \n\t"
3395 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3396 "mov %%"R"dx, %c[rdx](%0) \n\t"
3397 "mov %%"R"si, %c[rsi](%0) \n\t"
3398 "mov %%"R"di, %c[rdi](%0) \n\t"
3399 "mov %%"R"bp, %c[rbp](%0) \n\t"
3400 #ifdef CONFIG_X86_64
3401 "mov %%r8, %c[r8](%0) \n\t"
3402 "mov %%r9, %c[r9](%0) \n\t"
3403 "mov %%r10, %c[r10](%0) \n\t"
3404 "mov %%r11, %c[r11](%0) \n\t"
3405 "mov %%r12, %c[r12](%0) \n\t"
3406 "mov %%r13, %c[r13](%0) \n\t"
3407 "mov %%r14, %c[r14](%0) \n\t"
3408 "mov %%r15, %c[r15](%0) \n\t"
3409 #endif
3410 "mov %%cr2, %%"R"ax \n\t"
3411 "mov %%"R"ax, %c[cr2](%0) \n\t"
3413 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3414 "setbe %c[fail](%0) \n\t"
3415 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3416 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3417 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3418 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3419 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3420 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3421 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3422 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3423 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3424 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3425 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3426 #ifdef CONFIG_X86_64
3427 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3428 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3429 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3430 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3431 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3432 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3433 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3434 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3435 #endif
3436 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3437 : "cc", "memory"
3438 , R"bx", R"di", R"si"
3439 #ifdef CONFIG_X86_64
3440 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3441 #endif
3444 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3445 vcpu->arch.regs_dirty = 0;
3447 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3448 if (vmx->rmode.irq.pending)
3449 fixup_rmode_irq(vmx);
3451 vmx_update_window_states(vcpu);
3453 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3454 vmx->launched = 1;
3456 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3458 /* We need to handle NMIs before interrupts are enabled */
3459 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3460 (intr_info & INTR_INFO_VALID_MASK)) {
3461 KVMTRACE_0D(NMI, vcpu, handler);
3462 asm("int $2");
3465 vmx_complete_interrupts(vmx);
3468 #undef R
3469 #undef Q
3471 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3473 struct vcpu_vmx *vmx = to_vmx(vcpu);
3475 if (vmx->vmcs) {
3476 vcpu_clear(vmx);
3477 free_vmcs(vmx->vmcs);
3478 vmx->vmcs = NULL;
3482 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3484 struct vcpu_vmx *vmx = to_vmx(vcpu);
3486 spin_lock(&vmx_vpid_lock);
3487 if (vmx->vpid != 0)
3488 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3489 spin_unlock(&vmx_vpid_lock);
3490 vmx_free_vmcs(vcpu);
3491 kfree(vmx->host_msrs);
3492 kfree(vmx->guest_msrs);
3493 kvm_vcpu_uninit(vcpu);
3494 kmem_cache_free(kvm_vcpu_cache, vmx);
3497 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3499 int err;
3500 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3501 int cpu;
3503 if (!vmx)
3504 return ERR_PTR(-ENOMEM);
3506 allocate_vpid(vmx);
3508 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3509 if (err)
3510 goto free_vcpu;
3512 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3513 if (!vmx->guest_msrs) {
3514 err = -ENOMEM;
3515 goto uninit_vcpu;
3518 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3519 if (!vmx->host_msrs)
3520 goto free_guest_msrs;
3522 vmx->vmcs = alloc_vmcs();
3523 if (!vmx->vmcs)
3524 goto free_msrs;
3526 vmcs_clear(vmx->vmcs);
3528 cpu = get_cpu();
3529 vmx_vcpu_load(&vmx->vcpu, cpu);
3530 err = vmx_vcpu_setup(vmx);
3531 vmx_vcpu_put(&vmx->vcpu);
3532 put_cpu();
3533 if (err)
3534 goto free_vmcs;
3535 if (vm_need_virtualize_apic_accesses(kvm))
3536 if (alloc_apic_access_page(kvm) != 0)
3537 goto free_vmcs;
3539 if (vm_need_ept())
3540 if (alloc_identity_pagetable(kvm) != 0)
3541 goto free_vmcs;
3543 return &vmx->vcpu;
3545 free_vmcs:
3546 free_vmcs(vmx->vmcs);
3547 free_msrs:
3548 kfree(vmx->host_msrs);
3549 free_guest_msrs:
3550 kfree(vmx->guest_msrs);
3551 uninit_vcpu:
3552 kvm_vcpu_uninit(&vmx->vcpu);
3553 free_vcpu:
3554 kmem_cache_free(kvm_vcpu_cache, vmx);
3555 return ERR_PTR(err);
3558 static void __init vmx_check_processor_compat(void *rtn)
3560 struct vmcs_config vmcs_conf;
3562 *(int *)rtn = 0;
3563 if (setup_vmcs_config(&vmcs_conf) < 0)
3564 *(int *)rtn = -EIO;
3565 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3566 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3567 smp_processor_id());
3568 *(int *)rtn = -EIO;
3572 static int get_ept_level(void)
3574 return VMX_EPT_DEFAULT_GAW + 1;
3577 static int vmx_get_mt_mask_shift(void)
3579 return VMX_EPT_MT_EPTE_SHIFT;
3582 static struct kvm_x86_ops vmx_x86_ops = {
3583 .cpu_has_kvm_support = cpu_has_kvm_support,
3584 .disabled_by_bios = vmx_disabled_by_bios,
3585 .hardware_setup = hardware_setup,
3586 .hardware_unsetup = hardware_unsetup,
3587 .check_processor_compatibility = vmx_check_processor_compat,
3588 .hardware_enable = hardware_enable,
3589 .hardware_disable = hardware_disable,
3590 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3592 .vcpu_create = vmx_create_vcpu,
3593 .vcpu_free = vmx_free_vcpu,
3594 .vcpu_reset = vmx_vcpu_reset,
3596 .prepare_guest_switch = vmx_save_host_state,
3597 .vcpu_load = vmx_vcpu_load,
3598 .vcpu_put = vmx_vcpu_put,
3600 .set_guest_debug = set_guest_debug,
3601 .guest_debug_pre = kvm_guest_debug_pre,
3602 .get_msr = vmx_get_msr,
3603 .set_msr = vmx_set_msr,
3604 .get_segment_base = vmx_get_segment_base,
3605 .get_segment = vmx_get_segment,
3606 .set_segment = vmx_set_segment,
3607 .get_cpl = vmx_get_cpl,
3608 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3609 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3610 .set_cr0 = vmx_set_cr0,
3611 .set_cr3 = vmx_set_cr3,
3612 .set_cr4 = vmx_set_cr4,
3613 .set_efer = vmx_set_efer,
3614 .get_idt = vmx_get_idt,
3615 .set_idt = vmx_set_idt,
3616 .get_gdt = vmx_get_gdt,
3617 .set_gdt = vmx_set_gdt,
3618 .cache_reg = vmx_cache_reg,
3619 .get_rflags = vmx_get_rflags,
3620 .set_rflags = vmx_set_rflags,
3622 .tlb_flush = vmx_flush_tlb,
3624 .run = vmx_vcpu_run,
3625 .handle_exit = kvm_handle_exit,
3626 .skip_emulated_instruction = skip_emulated_instruction,
3627 .patch_hypercall = vmx_patch_hypercall,
3628 .get_irq = vmx_get_irq,
3629 .set_irq = vmx_inject_irq,
3630 .queue_exception = vmx_queue_exception,
3631 .exception_injected = vmx_exception_injected,
3632 .inject_pending_irq = vmx_intr_assist,
3633 .inject_pending_vectors = do_interrupt_requests,
3635 .set_tss_addr = vmx_set_tss_addr,
3636 .get_tdp_level = get_ept_level,
3637 .get_mt_mask_shift = vmx_get_mt_mask_shift,
3640 static int __init vmx_init(void)
3642 void *va;
3643 int r;
3645 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3646 if (!vmx_io_bitmap_a)
3647 return -ENOMEM;
3649 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3650 if (!vmx_io_bitmap_b) {
3651 r = -ENOMEM;
3652 goto out;
3655 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3656 if (!vmx_msr_bitmap) {
3657 r = -ENOMEM;
3658 goto out1;
3662 * Allow direct access to the PC debug port (it is often used for I/O
3663 * delays, but the vmexits simply slow things down).
3665 va = kmap(vmx_io_bitmap_a);
3666 memset(va, 0xff, PAGE_SIZE);
3667 clear_bit(0x80, va);
3668 kunmap(vmx_io_bitmap_a);
3670 va = kmap(vmx_io_bitmap_b);
3671 memset(va, 0xff, PAGE_SIZE);
3672 kunmap(vmx_io_bitmap_b);
3674 va = kmap(vmx_msr_bitmap);
3675 memset(va, 0xff, PAGE_SIZE);
3676 kunmap(vmx_msr_bitmap);
3678 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3680 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3681 if (r)
3682 goto out2;
3684 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3685 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3686 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3687 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3688 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3690 if (vm_need_ept()) {
3691 bypass_guest_pf = 0;
3692 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3693 VMX_EPT_WRITABLE_MASK |
3694 VMX_EPT_IGMT_BIT);
3695 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3696 VMX_EPT_EXECUTABLE_MASK,
3697 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3698 kvm_enable_tdp();
3699 } else
3700 kvm_disable_tdp();
3702 if (bypass_guest_pf)
3703 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3705 ept_sync_global();
3707 return 0;
3709 out2:
3710 __free_page(vmx_msr_bitmap);
3711 out1:
3712 __free_page(vmx_io_bitmap_b);
3713 out:
3714 __free_page(vmx_io_bitmap_a);
3715 return r;
3718 static void __exit vmx_exit(void)
3720 __free_page(vmx_msr_bitmap);
3721 __free_page(vmx_io_bitmap_b);
3722 __free_page(vmx_io_bitmap_a);
3724 kvm_exit();
3727 module_init(vmx_init)
3728 module_exit(vmx_exit)