2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
15 void update_rlimit_cpu(unsigned long rlim_new
)
19 cputime
= secs_to_cputime(rlim_new
);
20 if (cputime_eq(current
->signal
->it_prof_expires
, cputime_zero
) ||
21 cputime_lt(current
->signal
->it_prof_expires
, cputime
)) {
22 spin_lock_irq(¤t
->sighand
->siglock
);
23 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
24 spin_unlock_irq(¤t
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
40 read_lock(&tasklist_lock
);
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : thread_group_leader(p
))) {
46 read_unlock(&tasklist_lock
);
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return cputime_lt(now
.cpu
, then
.cpu
);
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
91 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
101 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
114 cputime_t res
= cputime_div(time
, div
);
116 return max_t(cputime_t
, res
, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer
*timer
,
124 union cpu_time_count now
)
128 if (timer
->it
.cpu
.incr
.sched
== 0)
131 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
132 unsigned long long delta
, incr
;
134 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
136 incr
= timer
->it
.cpu
.incr
.sched
;
137 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i
= 0; incr
< delta
- incr
; i
++)
141 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.expires
.sched
+= incr
;
145 timer
->it_overrun
+= 1 << i
;
149 cputime_t delta
, incr
;
151 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
153 incr
= timer
->it
.cpu
.incr
.cpu
;
154 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
155 timer
->it
.cpu
.expires
.cpu
);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
158 incr
= cputime_add(incr
, incr
);
159 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
160 if (cputime_lt(delta
, incr
))
162 timer
->it
.cpu
.expires
.cpu
=
163 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
164 timer
->it_overrun
+= 1 << i
;
165 delta
= cputime_sub(delta
, incr
);
170 static inline cputime_t
prof_ticks(struct task_struct
*p
)
172 return cputime_add(p
->utime
, p
->stime
);
174 static inline cputime_t
virt_ticks(struct task_struct
*p
)
179 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
181 int error
= check_clock(which_clock
);
184 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
185 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
197 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
203 int error
= check_clock(which_clock
);
212 * Sample a per-thread clock for the given task.
214 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
215 union cpu_time_count
*cpu
)
217 switch (CPUCLOCK_WHICH(which_clock
)) {
221 cpu
->cpu
= prof_ticks(p
);
224 cpu
->cpu
= virt_ticks(p
);
227 cpu
->sched
= p
->se
.sum_exec_runtime
+ task_delta_exec(p
);
233 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
235 struct sighand_struct
*sighand
;
236 struct signal_struct
*sig
;
237 struct task_struct
*t
;
239 *times
= INIT_CPUTIME
;
242 sighand
= rcu_dereference(tsk
->sighand
);
250 times
->utime
= cputime_add(times
->utime
, t
->utime
);
251 times
->stime
= cputime_add(times
->stime
, t
->stime
);
252 times
->sum_exec_runtime
+= t
->se
.sum_exec_runtime
;
257 times
->utime
= cputime_add(times
->utime
, sig
->utime
);
258 times
->stime
= cputime_add(times
->stime
, sig
->stime
);
259 times
->sum_exec_runtime
+= sig
->sum_sched_runtime
;
264 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
266 if (cputime_gt(b
->utime
, a
->utime
))
269 if (cputime_gt(b
->stime
, a
->stime
))
272 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
273 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
276 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
278 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
279 struct task_cputime sum
;
282 spin_lock_irqsave(&cputimer
->lock
, flags
);
283 if (!cputimer
->running
) {
284 cputimer
->running
= 1;
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
291 thread_group_cputime(tsk
, &sum
);
292 update_gt_cputime(&cputimer
->cputime
, &sum
);
294 *times
= cputimer
->cputime
;
295 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
302 static int cpu_clock_sample_group(const clockid_t which_clock
,
303 struct task_struct
*p
,
304 union cpu_time_count
*cpu
)
306 struct task_cputime cputime
;
308 thread_group_cputime(p
, &cputime
);
309 switch (CPUCLOCK_WHICH(which_clock
)) {
313 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
316 cpu
->cpu
= cputime
.utime
;
319 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
326 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
328 const pid_t pid
= CPUCLOCK_PID(which_clock
);
330 union cpu_time_count rtn
;
334 * Special case constant value for our own clocks.
335 * We don't have to do any lookup to find ourselves.
337 if (CPUCLOCK_PERTHREAD(which_clock
)) {
339 * Sampling just ourselves we can do with no locking.
341 error
= cpu_clock_sample(which_clock
,
344 read_lock(&tasklist_lock
);
345 error
= cpu_clock_sample_group(which_clock
,
347 read_unlock(&tasklist_lock
);
351 * Find the given PID, and validate that the caller
352 * should be able to see it.
354 struct task_struct
*p
;
356 p
= find_task_by_vpid(pid
);
358 if (CPUCLOCK_PERTHREAD(which_clock
)) {
359 if (same_thread_group(p
, current
)) {
360 error
= cpu_clock_sample(which_clock
,
364 read_lock(&tasklist_lock
);
365 if (thread_group_leader(p
) && p
->signal
) {
367 cpu_clock_sample_group(which_clock
,
370 read_unlock(&tasklist_lock
);
378 sample_to_timespec(which_clock
, rtn
, tp
);
384 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
385 * This is called from sys_timer_create with the new timer already locked.
387 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
390 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
391 struct task_struct
*p
;
393 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
396 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
397 new_timer
->it
.cpu
.incr
.sched
= 0;
398 new_timer
->it
.cpu
.expires
.sched
= 0;
400 read_lock(&tasklist_lock
);
401 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
405 p
= find_task_by_vpid(pid
);
406 if (p
&& !same_thread_group(p
, current
))
411 p
= current
->group_leader
;
413 p
= find_task_by_vpid(pid
);
414 if (p
&& !thread_group_leader(p
))
418 new_timer
->it
.cpu
.task
= p
;
424 read_unlock(&tasklist_lock
);
430 * Clean up a CPU-clock timer that is about to be destroyed.
431 * This is called from timer deletion with the timer already locked.
432 * If we return TIMER_RETRY, it's necessary to release the timer's lock
433 * and try again. (This happens when the timer is in the middle of firing.)
435 int posix_cpu_timer_del(struct k_itimer
*timer
)
437 struct task_struct
*p
= timer
->it
.cpu
.task
;
440 if (likely(p
!= NULL
)) {
441 read_lock(&tasklist_lock
);
442 if (unlikely(p
->signal
== NULL
)) {
444 * We raced with the reaping of the task.
445 * The deletion should have cleared us off the list.
447 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
449 spin_lock(&p
->sighand
->siglock
);
450 if (timer
->it
.cpu
.firing
)
453 list_del(&timer
->it
.cpu
.entry
);
454 spin_unlock(&p
->sighand
->siglock
);
456 read_unlock(&tasklist_lock
);
466 * Clean out CPU timers still ticking when a thread exited. The task
467 * pointer is cleared, and the expiry time is replaced with the residual
468 * time for later timer_gettime calls to return.
469 * This must be called with the siglock held.
471 static void cleanup_timers(struct list_head
*head
,
472 cputime_t utime
, cputime_t stime
,
473 unsigned long long sum_exec_runtime
)
475 struct cpu_timer_list
*timer
, *next
;
476 cputime_t ptime
= cputime_add(utime
, stime
);
478 list_for_each_entry_safe(timer
, next
, head
, entry
) {
479 list_del_init(&timer
->entry
);
480 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
481 timer
->expires
.cpu
= cputime_zero
;
483 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
489 list_for_each_entry_safe(timer
, next
, head
, entry
) {
490 list_del_init(&timer
->entry
);
491 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
492 timer
->expires
.cpu
= cputime_zero
;
494 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
500 list_for_each_entry_safe(timer
, next
, head
, entry
) {
501 list_del_init(&timer
->entry
);
502 if (timer
->expires
.sched
< sum_exec_runtime
) {
503 timer
->expires
.sched
= 0;
505 timer
->expires
.sched
-= sum_exec_runtime
;
511 * These are both called with the siglock held, when the current thread
512 * is being reaped. When the final (leader) thread in the group is reaped,
513 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515 void posix_cpu_timers_exit(struct task_struct
*tsk
)
517 cleanup_timers(tsk
->cpu_timers
,
518 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
521 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
523 struct task_cputime cputime
;
525 thread_group_cputimer(tsk
, &cputime
);
526 cleanup_timers(tsk
->signal
->cpu_timers
,
527 cputime
.utime
, cputime
.stime
, cputime
.sum_exec_runtime
);
530 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
533 * That's all for this thread or process.
534 * We leave our residual in expires to be reported.
536 put_task_struct(timer
->it
.cpu
.task
);
537 timer
->it
.cpu
.task
= NULL
;
538 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
539 timer
->it
.cpu
.expires
,
544 * Insert the timer on the appropriate list before any timers that
545 * expire later. This must be called with the tasklist_lock held
546 * for reading, and interrupts disabled.
548 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
550 struct task_struct
*p
= timer
->it
.cpu
.task
;
551 struct list_head
*head
, *listpos
;
552 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
553 struct cpu_timer_list
*next
;
556 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
557 p
->cpu_timers
: p
->signal
->cpu_timers
);
558 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
560 BUG_ON(!irqs_disabled());
561 spin_lock(&p
->sighand
->siglock
);
564 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
565 list_for_each_entry(next
, head
, entry
) {
566 if (next
->expires
.sched
> nt
->expires
.sched
)
568 listpos
= &next
->entry
;
571 list_for_each_entry(next
, head
, entry
) {
572 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
574 listpos
= &next
->entry
;
577 list_add(&nt
->entry
, listpos
);
579 if (listpos
== head
) {
581 * We are the new earliest-expiring timer.
582 * If we are a thread timer, there can always
583 * be a process timer telling us to stop earlier.
586 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
587 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
591 if (cputime_eq(p
->cputime_expires
.prof_exp
,
593 cputime_gt(p
->cputime_expires
.prof_exp
,
595 p
->cputime_expires
.prof_exp
=
599 if (cputime_eq(p
->cputime_expires
.virt_exp
,
601 cputime_gt(p
->cputime_expires
.virt_exp
,
603 p
->cputime_expires
.virt_exp
=
607 if (p
->cputime_expires
.sched_exp
== 0 ||
608 p
->cputime_expires
.sched_exp
>
610 p
->cputime_expires
.sched_exp
=
616 * For a process timer, set the cached expiration time.
618 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
622 if (!cputime_eq(p
->signal
->it_virt_expires
,
624 cputime_lt(p
->signal
->it_virt_expires
,
625 timer
->it
.cpu
.expires
.cpu
))
627 p
->signal
->cputime_expires
.virt_exp
=
628 timer
->it
.cpu
.expires
.cpu
;
631 if (!cputime_eq(p
->signal
->it_prof_expires
,
633 cputime_lt(p
->signal
->it_prof_expires
,
634 timer
->it
.cpu
.expires
.cpu
))
636 i
= p
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
;
637 if (i
!= RLIM_INFINITY
&&
638 i
<= cputime_to_secs(timer
->it
.cpu
.expires
.cpu
))
640 p
->signal
->cputime_expires
.prof_exp
=
641 timer
->it
.cpu
.expires
.cpu
;
644 p
->signal
->cputime_expires
.sched_exp
=
645 timer
->it
.cpu
.expires
.sched
;
651 spin_unlock(&p
->sighand
->siglock
);
655 * The timer is locked, fire it and arrange for its reload.
657 static void cpu_timer_fire(struct k_itimer
*timer
)
659 if (unlikely(timer
->sigq
== NULL
)) {
661 * This a special case for clock_nanosleep,
662 * not a normal timer from sys_timer_create.
664 wake_up_process(timer
->it_process
);
665 timer
->it
.cpu
.expires
.sched
= 0;
666 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
668 * One-shot timer. Clear it as soon as it's fired.
670 posix_timer_event(timer
, 0);
671 timer
->it
.cpu
.expires
.sched
= 0;
672 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
674 * The signal did not get queued because the signal
675 * was ignored, so we won't get any callback to
676 * reload the timer. But we need to keep it
677 * ticking in case the signal is deliverable next time.
679 posix_cpu_timer_schedule(timer
);
684 * Sample a process (thread group) timer for the given group_leader task.
685 * Must be called with tasklist_lock held for reading.
687 static int cpu_timer_sample_group(const clockid_t which_clock
,
688 struct task_struct
*p
,
689 union cpu_time_count
*cpu
)
691 struct task_cputime cputime
;
693 thread_group_cputimer(p
, &cputime
);
694 switch (CPUCLOCK_WHICH(which_clock
)) {
698 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
701 cpu
->cpu
= cputime
.utime
;
704 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
711 * Guts of sys_timer_settime for CPU timers.
712 * This is called with the timer locked and interrupts disabled.
713 * If we return TIMER_RETRY, it's necessary to release the timer's lock
714 * and try again. (This happens when the timer is in the middle of firing.)
716 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
717 struct itimerspec
*new, struct itimerspec
*old
)
719 struct task_struct
*p
= timer
->it
.cpu
.task
;
720 union cpu_time_count old_expires
, new_expires
, val
;
723 if (unlikely(p
== NULL
)) {
725 * Timer refers to a dead task's clock.
730 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
732 read_lock(&tasklist_lock
);
734 * We need the tasklist_lock to protect against reaping that
735 * clears p->signal. If p has just been reaped, we can no
736 * longer get any information about it at all.
738 if (unlikely(p
->signal
== NULL
)) {
739 read_unlock(&tasklist_lock
);
741 timer
->it
.cpu
.task
= NULL
;
746 * Disarm any old timer after extracting its expiry time.
748 BUG_ON(!irqs_disabled());
751 spin_lock(&p
->sighand
->siglock
);
752 old_expires
= timer
->it
.cpu
.expires
;
753 if (unlikely(timer
->it
.cpu
.firing
)) {
754 timer
->it
.cpu
.firing
= -1;
757 list_del_init(&timer
->it
.cpu
.entry
);
758 spin_unlock(&p
->sighand
->siglock
);
761 * We need to sample the current value to convert the new
762 * value from to relative and absolute, and to convert the
763 * old value from absolute to relative. To set a process
764 * timer, we need a sample to balance the thread expiry
765 * times (in arm_timer). With an absolute time, we must
766 * check if it's already passed. In short, we need a sample.
768 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
769 cpu_clock_sample(timer
->it_clock
, p
, &val
);
771 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
775 if (old_expires
.sched
== 0) {
776 old
->it_value
.tv_sec
= 0;
777 old
->it_value
.tv_nsec
= 0;
780 * Update the timer in case it has
781 * overrun already. If it has,
782 * we'll report it as having overrun
783 * and with the next reloaded timer
784 * already ticking, though we are
785 * swallowing that pending
786 * notification here to install the
789 bump_cpu_timer(timer
, val
);
790 if (cpu_time_before(timer
->it_clock
, val
,
791 timer
->it
.cpu
.expires
)) {
792 old_expires
= cpu_time_sub(
794 timer
->it
.cpu
.expires
, val
);
795 sample_to_timespec(timer
->it_clock
,
799 old
->it_value
.tv_nsec
= 1;
800 old
->it_value
.tv_sec
= 0;
807 * We are colliding with the timer actually firing.
808 * Punt after filling in the timer's old value, and
809 * disable this firing since we are already reporting
810 * it as an overrun (thanks to bump_cpu_timer above).
812 read_unlock(&tasklist_lock
);
816 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
817 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
821 * Install the new expiry time (or zero).
822 * For a timer with no notification action, we don't actually
823 * arm the timer (we'll just fake it for timer_gettime).
825 timer
->it
.cpu
.expires
= new_expires
;
826 if (new_expires
.sched
!= 0 &&
827 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
828 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
829 arm_timer(timer
, val
);
832 read_unlock(&tasklist_lock
);
835 * Install the new reload setting, and
836 * set up the signal and overrun bookkeeping.
838 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
842 * This acts as a modification timestamp for the timer,
843 * so any automatic reload attempt will punt on seeing
844 * that we have reset the timer manually.
846 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
848 timer
->it_overrun_last
= 0;
849 timer
->it_overrun
= -1;
851 if (new_expires
.sched
!= 0 &&
852 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
853 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
855 * The designated time already passed, so we notify
856 * immediately, even if the thread never runs to
857 * accumulate more time on this clock.
859 cpu_timer_fire(timer
);
865 sample_to_timespec(timer
->it_clock
,
866 timer
->it
.cpu
.incr
, &old
->it_interval
);
871 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
873 union cpu_time_count now
;
874 struct task_struct
*p
= timer
->it
.cpu
.task
;
878 * Easy part: convert the reload time.
880 sample_to_timespec(timer
->it_clock
,
881 timer
->it
.cpu
.incr
, &itp
->it_interval
);
883 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
884 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
888 if (unlikely(p
== NULL
)) {
890 * This task already died and the timer will never fire.
891 * In this case, expires is actually the dead value.
894 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
900 * Sample the clock to take the difference with the expiry time.
902 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
903 cpu_clock_sample(timer
->it_clock
, p
, &now
);
904 clear_dead
= p
->exit_state
;
906 read_lock(&tasklist_lock
);
907 if (unlikely(p
->signal
== NULL
)) {
909 * The process has been reaped.
910 * We can't even collect a sample any more.
911 * Call the timer disarmed, nothing else to do.
914 timer
->it
.cpu
.task
= NULL
;
915 timer
->it
.cpu
.expires
.sched
= 0;
916 read_unlock(&tasklist_lock
);
919 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
920 clear_dead
= (unlikely(p
->exit_state
) &&
921 thread_group_empty(p
));
923 read_unlock(&tasklist_lock
);
926 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
927 if (timer
->it
.cpu
.incr
.sched
== 0 &&
928 cpu_time_before(timer
->it_clock
,
929 timer
->it
.cpu
.expires
, now
)) {
931 * Do-nothing timer expired and has no reload,
932 * so it's as if it was never set.
934 timer
->it
.cpu
.expires
.sched
= 0;
935 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
939 * Account for any expirations and reloads that should
942 bump_cpu_timer(timer
, now
);
945 if (unlikely(clear_dead
)) {
947 * We've noticed that the thread is dead, but
948 * not yet reaped. Take this opportunity to
951 clear_dead_task(timer
, now
);
955 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
956 sample_to_timespec(timer
->it_clock
,
957 cpu_time_sub(timer
->it_clock
,
958 timer
->it
.cpu
.expires
, now
),
962 * The timer should have expired already, but the firing
963 * hasn't taken place yet. Say it's just about to expire.
965 itp
->it_value
.tv_nsec
= 1;
966 itp
->it_value
.tv_sec
= 0;
971 * Check for any per-thread CPU timers that have fired and move them off
972 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
973 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
975 static void check_thread_timers(struct task_struct
*tsk
,
976 struct list_head
*firing
)
979 struct list_head
*timers
= tsk
->cpu_timers
;
980 struct signal_struct
*const sig
= tsk
->signal
;
983 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
984 while (!list_empty(timers
)) {
985 struct cpu_timer_list
*t
= list_first_entry(timers
,
986 struct cpu_timer_list
,
988 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
989 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
993 list_move_tail(&t
->entry
, firing
);
998 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
999 while (!list_empty(timers
)) {
1000 struct cpu_timer_list
*t
= list_first_entry(timers
,
1001 struct cpu_timer_list
,
1003 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
1004 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
1008 list_move_tail(&t
->entry
, firing
);
1013 tsk
->cputime_expires
.sched_exp
= 0;
1014 while (!list_empty(timers
)) {
1015 struct cpu_timer_list
*t
= list_first_entry(timers
,
1016 struct cpu_timer_list
,
1018 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
1019 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
1023 list_move_tail(&t
->entry
, firing
);
1027 * Check for the special case thread timers.
1029 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
!= RLIM_INFINITY
) {
1030 unsigned long hard
= sig
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1031 unsigned long *soft
= &sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1033 if (hard
!= RLIM_INFINITY
&&
1034 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
1036 * At the hard limit, we just die.
1037 * No need to calculate anything else now.
1039 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1042 if (tsk
->rt
.timeout
> DIV_ROUND_UP(*soft
, USEC_PER_SEC
/HZ
)) {
1044 * At the soft limit, send a SIGXCPU every second.
1046 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
1047 < sig
->rlim
[RLIMIT_RTTIME
].rlim_max
) {
1048 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
+=
1052 "RT Watchdog Timeout: %s[%d]\n",
1053 tsk
->comm
, task_pid_nr(tsk
));
1054 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1059 static void stop_process_timers(struct task_struct
*tsk
)
1061 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
1062 unsigned long flags
;
1064 if (!cputimer
->running
)
1067 spin_lock_irqsave(&cputimer
->lock
, flags
);
1068 cputimer
->running
= 0;
1069 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1073 * Check for any per-thread CPU timers that have fired and move them
1074 * off the tsk->*_timers list onto the firing list. Per-thread timers
1075 * have already been taken off.
1077 static void check_process_timers(struct task_struct
*tsk
,
1078 struct list_head
*firing
)
1081 struct signal_struct
*const sig
= tsk
->signal
;
1082 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1083 unsigned long long sum_sched_runtime
, sched_expires
;
1084 struct list_head
*timers
= sig
->cpu_timers
;
1085 struct task_cputime cputime
;
1088 * Don't sample the current process CPU clocks if there are no timers.
1090 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1091 cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1092 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1093 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1094 cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1095 list_empty(&timers
[CPUCLOCK_SCHED
])) {
1096 stop_process_timers(tsk
);
1101 * Collect the current process totals.
1103 thread_group_cputimer(tsk
, &cputime
);
1104 utime
= cputime
.utime
;
1105 ptime
= cputime_add(utime
, cputime
.stime
);
1106 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1108 prof_expires
= cputime_zero
;
1109 while (!list_empty(timers
)) {
1110 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1111 struct cpu_timer_list
,
1113 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1114 prof_expires
= tl
->expires
.cpu
;
1118 list_move_tail(&tl
->entry
, firing
);
1123 virt_expires
= cputime_zero
;
1124 while (!list_empty(timers
)) {
1125 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1126 struct cpu_timer_list
,
1128 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1129 virt_expires
= tl
->expires
.cpu
;
1133 list_move_tail(&tl
->entry
, firing
);
1139 while (!list_empty(timers
)) {
1140 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1141 struct cpu_timer_list
,
1143 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1144 sched_expires
= tl
->expires
.sched
;
1148 list_move_tail(&tl
->entry
, firing
);
1152 * Check for the special case process timers.
1154 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1155 if (cputime_ge(ptime
, sig
->it_prof_expires
)) {
1156 /* ITIMER_PROF fires and reloads. */
1157 sig
->it_prof_expires
= sig
->it_prof_incr
;
1158 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1159 sig
->it_prof_expires
= cputime_add(
1160 sig
->it_prof_expires
, ptime
);
1162 __group_send_sig_info(SIGPROF
, SEND_SIG_PRIV
, tsk
);
1164 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1165 (cputime_eq(prof_expires
, cputime_zero
) ||
1166 cputime_lt(sig
->it_prof_expires
, prof_expires
))) {
1167 prof_expires
= sig
->it_prof_expires
;
1170 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1171 if (cputime_ge(utime
, sig
->it_virt_expires
)) {
1172 /* ITIMER_VIRTUAL fires and reloads. */
1173 sig
->it_virt_expires
= sig
->it_virt_incr
;
1174 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1175 sig
->it_virt_expires
= cputime_add(
1176 sig
->it_virt_expires
, utime
);
1178 __group_send_sig_info(SIGVTALRM
, SEND_SIG_PRIV
, tsk
);
1180 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1181 (cputime_eq(virt_expires
, cputime_zero
) ||
1182 cputime_lt(sig
->it_virt_expires
, virt_expires
))) {
1183 virt_expires
= sig
->it_virt_expires
;
1186 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1187 unsigned long psecs
= cputime_to_secs(ptime
);
1189 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1191 * At the hard limit, we just die.
1192 * No need to calculate anything else now.
1194 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1197 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1199 * At the soft limit, send a SIGXCPU every second.
1201 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1202 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1203 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1204 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1207 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1208 if (cputime_eq(prof_expires
, cputime_zero
) ||
1209 cputime_lt(x
, prof_expires
)) {
1214 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1215 (cputime_eq(sig
->cputime_expires
.prof_exp
, cputime_zero
) ||
1216 cputime_gt(sig
->cputime_expires
.prof_exp
, prof_expires
)))
1217 sig
->cputime_expires
.prof_exp
= prof_expires
;
1218 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1219 (cputime_eq(sig
->cputime_expires
.virt_exp
, cputime_zero
) ||
1220 cputime_gt(sig
->cputime_expires
.virt_exp
, virt_expires
)))
1221 sig
->cputime_expires
.virt_exp
= virt_expires
;
1222 if (sched_expires
!= 0 &&
1223 (sig
->cputime_expires
.sched_exp
== 0 ||
1224 sig
->cputime_expires
.sched_exp
> sched_expires
))
1225 sig
->cputime_expires
.sched_exp
= sched_expires
;
1229 * This is called from the signal code (via do_schedule_next_timer)
1230 * when the last timer signal was delivered and we have to reload the timer.
1232 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1234 struct task_struct
*p
= timer
->it
.cpu
.task
;
1235 union cpu_time_count now
;
1237 if (unlikely(p
== NULL
))
1239 * The task was cleaned up already, no future firings.
1244 * Fetch the current sample and update the timer's expiry time.
1246 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1247 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1248 bump_cpu_timer(timer
, now
);
1249 if (unlikely(p
->exit_state
)) {
1250 clear_dead_task(timer
, now
);
1253 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1255 read_lock(&tasklist_lock
);
1256 if (unlikely(p
->signal
== NULL
)) {
1258 * The process has been reaped.
1259 * We can't even collect a sample any more.
1262 timer
->it
.cpu
.task
= p
= NULL
;
1263 timer
->it
.cpu
.expires
.sched
= 0;
1265 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1267 * We've noticed that the thread is dead, but
1268 * not yet reaped. Take this opportunity to
1269 * drop our task ref.
1271 clear_dead_task(timer
, now
);
1274 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1275 bump_cpu_timer(timer
, now
);
1276 /* Leave the tasklist_lock locked for the call below. */
1280 * Now re-arm for the new expiry time.
1282 arm_timer(timer
, now
);
1285 read_unlock(&tasklist_lock
);
1288 timer
->it_overrun_last
= timer
->it_overrun
;
1289 timer
->it_overrun
= -1;
1290 ++timer
->it_requeue_pending
;
1294 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1296 * @cputime: The struct to compare.
1298 * Checks @cputime to see if all fields are zero. Returns true if all fields
1299 * are zero, false if any field is nonzero.
1301 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1303 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1304 cputime_eq(cputime
->stime
, cputime_zero
) &&
1305 cputime
->sum_exec_runtime
== 0)
1311 * task_cputime_expired - Compare two task_cputime entities.
1313 * @sample: The task_cputime structure to be checked for expiration.
1314 * @expires: Expiration times, against which @sample will be checked.
1316 * Checks @sample against @expires to see if any field of @sample has expired.
1317 * Returns true if any field of the former is greater than the corresponding
1318 * field of the latter if the latter field is set. Otherwise returns false.
1320 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1321 const struct task_cputime
*expires
)
1323 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1324 cputime_ge(sample
->utime
, expires
->utime
))
1326 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1327 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1330 if (expires
->sum_exec_runtime
!= 0 &&
1331 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1337 * fastpath_timer_check - POSIX CPU timers fast path.
1339 * @tsk: The task (thread) being checked.
1341 * Check the task and thread group timers. If both are zero (there are no
1342 * timers set) return false. Otherwise snapshot the task and thread group
1343 * timers and compare them with the corresponding expiration times. Return
1344 * true if a timer has expired, else return false.
1346 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1348 struct signal_struct
*sig
;
1350 /* tsk == current, ensure it is safe to use ->signal/sighand */
1351 if (unlikely(tsk
->exit_state
))
1354 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1355 struct task_cputime task_sample
= {
1356 .utime
= tsk
->utime
,
1357 .stime
= tsk
->stime
,
1358 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1361 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1366 if (!task_cputime_zero(&sig
->cputime_expires
)) {
1367 struct task_cputime group_sample
;
1369 thread_group_cputimer(tsk
, &group_sample
);
1370 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1374 return sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
;
1378 * This is called from the timer interrupt handler. The irq handler has
1379 * already updated our counts. We need to check if any timers fire now.
1380 * Interrupts are disabled.
1382 void run_posix_cpu_timers(struct task_struct
*tsk
)
1385 struct k_itimer
*timer
, *next
;
1387 BUG_ON(!irqs_disabled());
1390 * The fast path checks that there are no expired thread or thread
1391 * group timers. If that's so, just return.
1393 if (!fastpath_timer_check(tsk
))
1396 spin_lock(&tsk
->sighand
->siglock
);
1398 * Here we take off tsk->signal->cpu_timers[N] and
1399 * tsk->cpu_timers[N] all the timers that are firing, and
1400 * put them on the firing list.
1402 check_thread_timers(tsk
, &firing
);
1403 check_process_timers(tsk
, &firing
);
1406 * We must release these locks before taking any timer's lock.
1407 * There is a potential race with timer deletion here, as the
1408 * siglock now protects our private firing list. We have set
1409 * the firing flag in each timer, so that a deletion attempt
1410 * that gets the timer lock before we do will give it up and
1411 * spin until we've taken care of that timer below.
1413 spin_unlock(&tsk
->sighand
->siglock
);
1416 * Now that all the timers on our list have the firing flag,
1417 * noone will touch their list entries but us. We'll take
1418 * each timer's lock before clearing its firing flag, so no
1419 * timer call will interfere.
1421 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1423 spin_lock(&timer
->it_lock
);
1424 list_del_init(&timer
->it
.cpu
.entry
);
1425 firing
= timer
->it
.cpu
.firing
;
1426 timer
->it
.cpu
.firing
= 0;
1428 * The firing flag is -1 if we collided with a reset
1429 * of the timer, which already reported this
1430 * almost-firing as an overrun. So don't generate an event.
1432 if (likely(firing
>= 0)) {
1433 cpu_timer_fire(timer
);
1435 spin_unlock(&timer
->it_lock
);
1440 * Set one of the process-wide special case CPU timers.
1441 * The tsk->sighand->siglock must be held by the caller.
1442 * The *newval argument is relative and we update it to be absolute, *oldval
1443 * is absolute and we update it to be relative.
1445 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1446 cputime_t
*newval
, cputime_t
*oldval
)
1448 union cpu_time_count now
;
1449 struct list_head
*head
;
1451 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1452 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1455 if (!cputime_eq(*oldval
, cputime_zero
)) {
1456 if (cputime_le(*oldval
, now
.cpu
)) {
1457 /* Just about to fire. */
1458 *oldval
= jiffies_to_cputime(1);
1460 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1464 if (cputime_eq(*newval
, cputime_zero
))
1466 *newval
= cputime_add(*newval
, now
.cpu
);
1469 * If the RLIMIT_CPU timer will expire before the
1470 * ITIMER_PROF timer, we have nothing else to do.
1472 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1473 < cputime_to_secs(*newval
))
1478 * Check whether there are any process timers already set to fire
1479 * before this one. If so, we don't have anything more to do.
1481 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1482 if (list_empty(head
) ||
1483 cputime_ge(list_first_entry(head
,
1484 struct cpu_timer_list
, entry
)->expires
.cpu
,
1486 switch (clock_idx
) {
1488 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1491 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1497 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1498 struct timespec
*rqtp
, struct itimerspec
*it
)
1500 struct k_itimer timer
;
1504 * Set up a temporary timer and then wait for it to go off.
1506 memset(&timer
, 0, sizeof timer
);
1507 spin_lock_init(&timer
.it_lock
);
1508 timer
.it_clock
= which_clock
;
1509 timer
.it_overrun
= -1;
1510 error
= posix_cpu_timer_create(&timer
);
1511 timer
.it_process
= current
;
1513 static struct itimerspec zero_it
;
1515 memset(it
, 0, sizeof *it
);
1516 it
->it_value
= *rqtp
;
1518 spin_lock_irq(&timer
.it_lock
);
1519 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1521 spin_unlock_irq(&timer
.it_lock
);
1525 while (!signal_pending(current
)) {
1526 if (timer
.it
.cpu
.expires
.sched
== 0) {
1528 * Our timer fired and was reset.
1530 spin_unlock_irq(&timer
.it_lock
);
1535 * Block until cpu_timer_fire (or a signal) wakes us.
1537 __set_current_state(TASK_INTERRUPTIBLE
);
1538 spin_unlock_irq(&timer
.it_lock
);
1540 spin_lock_irq(&timer
.it_lock
);
1544 * We were interrupted by a signal.
1546 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1547 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1548 spin_unlock_irq(&timer
.it_lock
);
1550 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1552 * It actually did fire already.
1557 error
= -ERESTART_RESTARTBLOCK
;
1563 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1564 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1566 struct restart_block
*restart_block
=
1567 ¤t_thread_info()->restart_block
;
1568 struct itimerspec it
;
1572 * Diagnose required errors first.
1574 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1575 (CPUCLOCK_PID(which_clock
) == 0 ||
1576 CPUCLOCK_PID(which_clock
) == current
->pid
))
1579 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1581 if (error
== -ERESTART_RESTARTBLOCK
) {
1583 if (flags
& TIMER_ABSTIME
)
1584 return -ERESTARTNOHAND
;
1586 * Report back to the user the time still remaining.
1588 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1591 restart_block
->fn
= posix_cpu_nsleep_restart
;
1592 restart_block
->arg0
= which_clock
;
1593 restart_block
->arg1
= (unsigned long) rmtp
;
1594 restart_block
->arg2
= rqtp
->tv_sec
;
1595 restart_block
->arg3
= rqtp
->tv_nsec
;
1600 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1602 clockid_t which_clock
= restart_block
->arg0
;
1603 struct timespec __user
*rmtp
;
1605 struct itimerspec it
;
1608 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1609 t
.tv_sec
= restart_block
->arg2
;
1610 t
.tv_nsec
= restart_block
->arg3
;
1612 restart_block
->fn
= do_no_restart_syscall
;
1613 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1615 if (error
== -ERESTART_RESTARTBLOCK
) {
1617 * Report back to the user the time still remaining.
1619 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1622 restart_block
->fn
= posix_cpu_nsleep_restart
;
1623 restart_block
->arg0
= which_clock
;
1624 restart_block
->arg1
= (unsigned long) rmtp
;
1625 restart_block
->arg2
= t
.tv_sec
;
1626 restart_block
->arg3
= t
.tv_nsec
;
1633 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1634 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1636 static int process_cpu_clock_getres(const clockid_t which_clock
,
1637 struct timespec
*tp
)
1639 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1641 static int process_cpu_clock_get(const clockid_t which_clock
,
1642 struct timespec
*tp
)
1644 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1646 static int process_cpu_timer_create(struct k_itimer
*timer
)
1648 timer
->it_clock
= PROCESS_CLOCK
;
1649 return posix_cpu_timer_create(timer
);
1651 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1652 struct timespec
*rqtp
,
1653 struct timespec __user
*rmtp
)
1655 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1657 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1661 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1662 struct timespec
*tp
)
1664 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1666 static int thread_cpu_clock_get(const clockid_t which_clock
,
1667 struct timespec
*tp
)
1669 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1671 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1673 timer
->it_clock
= THREAD_CLOCK
;
1674 return posix_cpu_timer_create(timer
);
1676 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1677 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1681 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1686 static __init
int init_posix_cpu_timers(void)
1688 struct k_clock process
= {
1689 .clock_getres
= process_cpu_clock_getres
,
1690 .clock_get
= process_cpu_clock_get
,
1691 .clock_set
= do_posix_clock_nosettime
,
1692 .timer_create
= process_cpu_timer_create
,
1693 .nsleep
= process_cpu_nsleep
,
1694 .nsleep_restart
= process_cpu_nsleep_restart
,
1696 struct k_clock thread
= {
1697 .clock_getres
= thread_cpu_clock_getres
,
1698 .clock_get
= thread_cpu_clock_get
,
1699 .clock_set
= do_posix_clock_nosettime
,
1700 .timer_create
= thread_cpu_timer_create
,
1701 .nsleep
= thread_cpu_nsleep
,
1702 .nsleep_restart
= thread_cpu_nsleep_restart
,
1705 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1706 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1710 __initcall(init_posix_cpu_timers
);