md: fix up switching md arrays between read-only and read-write
[linux-2.6/mini2440.git] / fs / namespace.c
blob061e5edb4d271395a37709b4503a007a70c7bdd7
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount *mnt)
66 int res;
68 retry:
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
73 if (res == -EAGAIN)
74 goto retry;
76 return res;
79 static void mnt_free_id(struct vfsmount *mnt)
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
87 * Allocate a new peer group ID
89 * mnt_group_ida is protected by namespace_sem
91 static int mnt_alloc_group_id(struct vfsmount *mnt)
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 return -ENOMEM;
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
100 * Release a peer group ID
102 void mnt_release_group_id(struct vfsmount *mnt)
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
108 struct vfsmount *alloc_vfsmnt(const char *name)
110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 if (mnt) {
112 int err;
114 err = mnt_alloc_id(mnt);
115 if (err) {
116 kmem_cache_free(mnt_cache, mnt);
117 return NULL;
120 atomic_set(&mnt->mnt_count, 1);
121 INIT_LIST_HEAD(&mnt->mnt_hash);
122 INIT_LIST_HEAD(&mnt->mnt_child);
123 INIT_LIST_HEAD(&mnt->mnt_mounts);
124 INIT_LIST_HEAD(&mnt->mnt_list);
125 INIT_LIST_HEAD(&mnt->mnt_expire);
126 INIT_LIST_HEAD(&mnt->mnt_share);
127 INIT_LIST_HEAD(&mnt->mnt_slave_list);
128 INIT_LIST_HEAD(&mnt->mnt_slave);
129 atomic_set(&mnt->__mnt_writers, 0);
130 if (name) {
131 int size = strlen(name) + 1;
132 char *newname = kmalloc(size, GFP_KERNEL);
133 if (newname) {
134 memcpy(newname, name, size);
135 mnt->mnt_devname = newname;
139 return mnt;
143 * Most r/o checks on a fs are for operations that take
144 * discrete amounts of time, like a write() or unlink().
145 * We must keep track of when those operations start
146 * (for permission checks) and when they end, so that
147 * we can determine when writes are able to occur to
148 * a filesystem.
151 * __mnt_is_readonly: check whether a mount is read-only
152 * @mnt: the mount to check for its write status
154 * This shouldn't be used directly ouside of the VFS.
155 * It does not guarantee that the filesystem will stay
156 * r/w, just that it is right *now*. This can not and
157 * should not be used in place of IS_RDONLY(inode).
158 * mnt_want/drop_write() will _keep_ the filesystem
159 * r/w.
161 int __mnt_is_readonly(struct vfsmount *mnt)
163 if (mnt->mnt_flags & MNT_READONLY)
164 return 1;
165 if (mnt->mnt_sb->s_flags & MS_RDONLY)
166 return 1;
167 return 0;
169 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
171 struct mnt_writer {
173 * If holding multiple instances of this lock, they
174 * must be ordered by cpu number.
176 spinlock_t lock;
177 struct lock_class_key lock_class; /* compiles out with !lockdep */
178 unsigned long count;
179 struct vfsmount *mnt;
180 } ____cacheline_aligned_in_smp;
181 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
183 static int __init init_mnt_writers(void)
185 int cpu;
186 for_each_possible_cpu(cpu) {
187 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
188 spin_lock_init(&writer->lock);
189 lockdep_set_class(&writer->lock, &writer->lock_class);
190 writer->count = 0;
192 return 0;
194 fs_initcall(init_mnt_writers);
196 static void unlock_mnt_writers(void)
198 int cpu;
199 struct mnt_writer *cpu_writer;
201 for_each_possible_cpu(cpu) {
202 cpu_writer = &per_cpu(mnt_writers, cpu);
203 spin_unlock(&cpu_writer->lock);
207 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
209 if (!cpu_writer->mnt)
210 return;
212 * This is in case anyone ever leaves an invalid,
213 * old ->mnt and a count of 0.
215 if (!cpu_writer->count)
216 return;
217 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
218 cpu_writer->count = 0;
221 * must hold cpu_writer->lock
223 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
224 struct vfsmount *mnt)
226 if (cpu_writer->mnt == mnt)
227 return;
228 __clear_mnt_count(cpu_writer);
229 cpu_writer->mnt = mnt;
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
238 * a filesystem.
241 * mnt_want_write - get write access to a mount
242 * @mnt: the mount on which to take a write
244 * This tells the low-level filesystem that a write is
245 * about to be performed to it, and makes sure that
246 * writes are allowed before returning success. When
247 * the write operation is finished, mnt_drop_write()
248 * must be called. This is effectively a refcount.
250 int mnt_want_write(struct vfsmount *mnt)
252 int ret = 0;
253 struct mnt_writer *cpu_writer;
255 cpu_writer = &get_cpu_var(mnt_writers);
256 spin_lock(&cpu_writer->lock);
257 if (__mnt_is_readonly(mnt)) {
258 ret = -EROFS;
259 goto out;
261 use_cpu_writer_for_mount(cpu_writer, mnt);
262 cpu_writer->count++;
263 out:
264 spin_unlock(&cpu_writer->lock);
265 put_cpu_var(mnt_writers);
266 return ret;
268 EXPORT_SYMBOL_GPL(mnt_want_write);
270 static void lock_mnt_writers(void)
272 int cpu;
273 struct mnt_writer *cpu_writer;
275 for_each_possible_cpu(cpu) {
276 cpu_writer = &per_cpu(mnt_writers, cpu);
277 spin_lock(&cpu_writer->lock);
278 __clear_mnt_count(cpu_writer);
279 cpu_writer->mnt = NULL;
284 * These per-cpu write counts are not guaranteed to have
285 * matched increments and decrements on any given cpu.
286 * A file open()ed for write on one cpu and close()d on
287 * another cpu will imbalance this count. Make sure it
288 * does not get too far out of whack.
290 static void handle_write_count_underflow(struct vfsmount *mnt)
292 if (atomic_read(&mnt->__mnt_writers) >=
293 MNT_WRITER_UNDERFLOW_LIMIT)
294 return;
296 * It isn't necessary to hold all of the locks
297 * at the same time, but doing it this way makes
298 * us share a lot more code.
300 lock_mnt_writers();
302 * vfsmount_lock is for mnt_flags.
304 spin_lock(&vfsmount_lock);
306 * If coalescing the per-cpu writer counts did not
307 * get us back to a positive writer count, we have
308 * a bug.
310 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
311 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
312 printk(KERN_DEBUG "leak detected on mount(%p) writers "
313 "count: %d\n",
314 mnt, atomic_read(&mnt->__mnt_writers));
315 WARN_ON(1);
316 /* use the flag to keep the dmesg spam down */
317 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
319 spin_unlock(&vfsmount_lock);
320 unlock_mnt_writers();
324 * mnt_drop_write - give up write access to a mount
325 * @mnt: the mount on which to give up write access
327 * Tells the low-level filesystem that we are done
328 * performing writes to it. Must be matched with
329 * mnt_want_write() call above.
331 void mnt_drop_write(struct vfsmount *mnt)
333 int must_check_underflow = 0;
334 struct mnt_writer *cpu_writer;
336 cpu_writer = &get_cpu_var(mnt_writers);
337 spin_lock(&cpu_writer->lock);
339 use_cpu_writer_for_mount(cpu_writer, mnt);
340 if (cpu_writer->count > 0) {
341 cpu_writer->count--;
342 } else {
343 must_check_underflow = 1;
344 atomic_dec(&mnt->__mnt_writers);
347 spin_unlock(&cpu_writer->lock);
349 * Logically, we could call this each time,
350 * but the __mnt_writers cacheline tends to
351 * be cold, and makes this expensive.
353 if (must_check_underflow)
354 handle_write_count_underflow(mnt);
356 * This could be done right after the spinlock
357 * is taken because the spinlock keeps us on
358 * the cpu, and disables preemption. However,
359 * putting it here bounds the amount that
360 * __mnt_writers can underflow. Without it,
361 * we could theoretically wrap __mnt_writers.
363 put_cpu_var(mnt_writers);
365 EXPORT_SYMBOL_GPL(mnt_drop_write);
367 static int mnt_make_readonly(struct vfsmount *mnt)
369 int ret = 0;
371 lock_mnt_writers();
373 * With all the locks held, this value is stable
375 if (atomic_read(&mnt->__mnt_writers) > 0) {
376 ret = -EBUSY;
377 goto out;
380 * nobody can do a successful mnt_want_write() with all
381 * of the counts in MNT_DENIED_WRITE and the locks held.
383 spin_lock(&vfsmount_lock);
384 if (!ret)
385 mnt->mnt_flags |= MNT_READONLY;
386 spin_unlock(&vfsmount_lock);
387 out:
388 unlock_mnt_writers();
389 return ret;
392 static void __mnt_unmake_readonly(struct vfsmount *mnt)
394 spin_lock(&vfsmount_lock);
395 mnt->mnt_flags &= ~MNT_READONLY;
396 spin_unlock(&vfsmount_lock);
399 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
401 mnt->mnt_sb = sb;
402 mnt->mnt_root = dget(sb->s_root);
403 return 0;
406 EXPORT_SYMBOL(simple_set_mnt);
408 void free_vfsmnt(struct vfsmount *mnt)
410 kfree(mnt->mnt_devname);
411 mnt_free_id(mnt);
412 kmem_cache_free(mnt_cache, mnt);
416 * find the first or last mount at @dentry on vfsmount @mnt depending on
417 * @dir. If @dir is set return the first mount else return the last mount.
419 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
420 int dir)
422 struct list_head *head = mount_hashtable + hash(mnt, dentry);
423 struct list_head *tmp = head;
424 struct vfsmount *p, *found = NULL;
426 for (;;) {
427 tmp = dir ? tmp->next : tmp->prev;
428 p = NULL;
429 if (tmp == head)
430 break;
431 p = list_entry(tmp, struct vfsmount, mnt_hash);
432 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
433 found = p;
434 break;
437 return found;
441 * lookup_mnt increments the ref count before returning
442 * the vfsmount struct.
444 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446 struct vfsmount *child_mnt;
447 spin_lock(&vfsmount_lock);
448 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
449 mntget(child_mnt);
450 spin_unlock(&vfsmount_lock);
451 return child_mnt;
454 static inline int check_mnt(struct vfsmount *mnt)
456 return mnt->mnt_ns == current->nsproxy->mnt_ns;
459 static void touch_mnt_namespace(struct mnt_namespace *ns)
461 if (ns) {
462 ns->event = ++event;
463 wake_up_interruptible(&ns->poll);
467 static void __touch_mnt_namespace(struct mnt_namespace *ns)
469 if (ns && ns->event != event) {
470 ns->event = event;
471 wake_up_interruptible(&ns->poll);
475 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
477 old_path->dentry = mnt->mnt_mountpoint;
478 old_path->mnt = mnt->mnt_parent;
479 mnt->mnt_parent = mnt;
480 mnt->mnt_mountpoint = mnt->mnt_root;
481 list_del_init(&mnt->mnt_child);
482 list_del_init(&mnt->mnt_hash);
483 old_path->dentry->d_mounted--;
486 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
487 struct vfsmount *child_mnt)
489 child_mnt->mnt_parent = mntget(mnt);
490 child_mnt->mnt_mountpoint = dget(dentry);
491 dentry->d_mounted++;
494 static void attach_mnt(struct vfsmount *mnt, struct path *path)
496 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
497 list_add_tail(&mnt->mnt_hash, mount_hashtable +
498 hash(path->mnt, path->dentry));
499 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
503 * the caller must hold vfsmount_lock
505 static void commit_tree(struct vfsmount *mnt)
507 struct vfsmount *parent = mnt->mnt_parent;
508 struct vfsmount *m;
509 LIST_HEAD(head);
510 struct mnt_namespace *n = parent->mnt_ns;
512 BUG_ON(parent == mnt);
514 list_add_tail(&head, &mnt->mnt_list);
515 list_for_each_entry(m, &head, mnt_list)
516 m->mnt_ns = n;
517 list_splice(&head, n->list.prev);
519 list_add_tail(&mnt->mnt_hash, mount_hashtable +
520 hash(parent, mnt->mnt_mountpoint));
521 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
522 touch_mnt_namespace(n);
525 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527 struct list_head *next = p->mnt_mounts.next;
528 if (next == &p->mnt_mounts) {
529 while (1) {
530 if (p == root)
531 return NULL;
532 next = p->mnt_child.next;
533 if (next != &p->mnt_parent->mnt_mounts)
534 break;
535 p = p->mnt_parent;
538 return list_entry(next, struct vfsmount, mnt_child);
541 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543 struct list_head *prev = p->mnt_mounts.prev;
544 while (prev != &p->mnt_mounts) {
545 p = list_entry(prev, struct vfsmount, mnt_child);
546 prev = p->mnt_mounts.prev;
548 return p;
551 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
552 int flag)
554 struct super_block *sb = old->mnt_sb;
555 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557 if (mnt) {
558 if (flag & (CL_SLAVE | CL_PRIVATE))
559 mnt->mnt_group_id = 0; /* not a peer of original */
560 else
561 mnt->mnt_group_id = old->mnt_group_id;
563 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
564 int err = mnt_alloc_group_id(mnt);
565 if (err)
566 goto out_free;
569 mnt->mnt_flags = old->mnt_flags;
570 atomic_inc(&sb->s_active);
571 mnt->mnt_sb = sb;
572 mnt->mnt_root = dget(root);
573 mnt->mnt_mountpoint = mnt->mnt_root;
574 mnt->mnt_parent = mnt;
576 if (flag & CL_SLAVE) {
577 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
578 mnt->mnt_master = old;
579 CLEAR_MNT_SHARED(mnt);
580 } else if (!(flag & CL_PRIVATE)) {
581 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
582 list_add(&mnt->mnt_share, &old->mnt_share);
583 if (IS_MNT_SLAVE(old))
584 list_add(&mnt->mnt_slave, &old->mnt_slave);
585 mnt->mnt_master = old->mnt_master;
587 if (flag & CL_MAKE_SHARED)
588 set_mnt_shared(mnt);
590 /* stick the duplicate mount on the same expiry list
591 * as the original if that was on one */
592 if (flag & CL_EXPIRE) {
593 if (!list_empty(&old->mnt_expire))
594 list_add(&mnt->mnt_expire, &old->mnt_expire);
597 return mnt;
599 out_free:
600 free_vfsmnt(mnt);
601 return NULL;
604 static inline void __mntput(struct vfsmount *mnt)
606 int cpu;
607 struct super_block *sb = mnt->mnt_sb;
609 * We don't have to hold all of the locks at the
610 * same time here because we know that we're the
611 * last reference to mnt and that no new writers
612 * can come in.
614 for_each_possible_cpu(cpu) {
615 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
616 if (cpu_writer->mnt != mnt)
617 continue;
618 spin_lock(&cpu_writer->lock);
619 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
620 cpu_writer->count = 0;
622 * Might as well do this so that no one
623 * ever sees the pointer and expects
624 * it to be valid.
626 cpu_writer->mnt = NULL;
627 spin_unlock(&cpu_writer->lock);
630 * This probably indicates that somebody messed
631 * up a mnt_want/drop_write() pair. If this
632 * happens, the filesystem was probably unable
633 * to make r/w->r/o transitions.
635 WARN_ON(atomic_read(&mnt->__mnt_writers));
636 dput(mnt->mnt_root);
637 free_vfsmnt(mnt);
638 deactivate_super(sb);
641 void mntput_no_expire(struct vfsmount *mnt)
643 repeat:
644 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
645 if (likely(!mnt->mnt_pinned)) {
646 spin_unlock(&vfsmount_lock);
647 __mntput(mnt);
648 return;
650 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
651 mnt->mnt_pinned = 0;
652 spin_unlock(&vfsmount_lock);
653 acct_auto_close_mnt(mnt);
654 security_sb_umount_close(mnt);
655 goto repeat;
659 EXPORT_SYMBOL(mntput_no_expire);
661 void mnt_pin(struct vfsmount *mnt)
663 spin_lock(&vfsmount_lock);
664 mnt->mnt_pinned++;
665 spin_unlock(&vfsmount_lock);
668 EXPORT_SYMBOL(mnt_pin);
670 void mnt_unpin(struct vfsmount *mnt)
672 spin_lock(&vfsmount_lock);
673 if (mnt->mnt_pinned) {
674 atomic_inc(&mnt->mnt_count);
675 mnt->mnt_pinned--;
677 spin_unlock(&vfsmount_lock);
680 EXPORT_SYMBOL(mnt_unpin);
682 static inline void mangle(struct seq_file *m, const char *s)
684 seq_escape(m, s, " \t\n\\");
688 * Simple .show_options callback for filesystems which don't want to
689 * implement more complex mount option showing.
691 * See also save_mount_options().
693 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
695 const char *options = mnt->mnt_sb->s_options;
697 if (options != NULL && options[0]) {
698 seq_putc(m, ',');
699 mangle(m, options);
702 return 0;
704 EXPORT_SYMBOL(generic_show_options);
707 * If filesystem uses generic_show_options(), this function should be
708 * called from the fill_super() callback.
710 * The .remount_fs callback usually needs to be handled in a special
711 * way, to make sure, that previous options are not overwritten if the
712 * remount fails.
714 * Also note, that if the filesystem's .remount_fs function doesn't
715 * reset all options to their default value, but changes only newly
716 * given options, then the displayed options will not reflect reality
717 * any more.
719 void save_mount_options(struct super_block *sb, char *options)
721 kfree(sb->s_options);
722 sb->s_options = kstrdup(options, GFP_KERNEL);
724 EXPORT_SYMBOL(save_mount_options);
726 #ifdef CONFIG_PROC_FS
727 /* iterator */
728 static void *m_start(struct seq_file *m, loff_t *pos)
730 struct proc_mounts *p = m->private;
732 down_read(&namespace_sem);
733 return seq_list_start(&p->ns->list, *pos);
736 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
738 struct proc_mounts *p = m->private;
740 return seq_list_next(v, &p->ns->list, pos);
743 static void m_stop(struct seq_file *m, void *v)
745 up_read(&namespace_sem);
748 struct proc_fs_info {
749 int flag;
750 const char *str;
753 static void show_sb_opts(struct seq_file *m, struct super_block *sb)
755 static const struct proc_fs_info fs_info[] = {
756 { MS_SYNCHRONOUS, ",sync" },
757 { MS_DIRSYNC, ",dirsync" },
758 { MS_MANDLOCK, ",mand" },
759 { 0, NULL }
761 const struct proc_fs_info *fs_infop;
763 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
764 if (sb->s_flags & fs_infop->flag)
765 seq_puts(m, fs_infop->str);
769 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
771 static const struct proc_fs_info mnt_info[] = {
772 { MNT_NOSUID, ",nosuid" },
773 { MNT_NODEV, ",nodev" },
774 { MNT_NOEXEC, ",noexec" },
775 { MNT_NOATIME, ",noatime" },
776 { MNT_NODIRATIME, ",nodiratime" },
777 { MNT_RELATIME, ",relatime" },
778 { 0, NULL }
780 const struct proc_fs_info *fs_infop;
782 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
783 if (mnt->mnt_flags & fs_infop->flag)
784 seq_puts(m, fs_infop->str);
788 static void show_type(struct seq_file *m, struct super_block *sb)
790 mangle(m, sb->s_type->name);
791 if (sb->s_subtype && sb->s_subtype[0]) {
792 seq_putc(m, '.');
793 mangle(m, sb->s_subtype);
797 static int show_vfsmnt(struct seq_file *m, void *v)
799 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
800 int err = 0;
801 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
803 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
804 seq_putc(m, ' ');
805 seq_path(m, &mnt_path, " \t\n\\");
806 seq_putc(m, ' ');
807 show_type(m, mnt->mnt_sb);
808 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
809 show_sb_opts(m, mnt->mnt_sb);
810 show_mnt_opts(m, mnt);
811 if (mnt->mnt_sb->s_op->show_options)
812 err = mnt->mnt_sb->s_op->show_options(m, mnt);
813 seq_puts(m, " 0 0\n");
814 return err;
817 const struct seq_operations mounts_op = {
818 .start = m_start,
819 .next = m_next,
820 .stop = m_stop,
821 .show = show_vfsmnt
824 static int show_mountinfo(struct seq_file *m, void *v)
826 struct proc_mounts *p = m->private;
827 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
828 struct super_block *sb = mnt->mnt_sb;
829 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
830 struct path root = p->root;
831 int err = 0;
833 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
834 MAJOR(sb->s_dev), MINOR(sb->s_dev));
835 seq_dentry(m, mnt->mnt_root, " \t\n\\");
836 seq_putc(m, ' ');
837 seq_path_root(m, &mnt_path, &root, " \t\n\\");
838 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
840 * Mountpoint is outside root, discard that one. Ugly,
841 * but less so than trying to do that in iterator in a
842 * race-free way (due to renames).
844 return SEQ_SKIP;
846 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
847 show_mnt_opts(m, mnt);
849 /* Tagged fields ("foo:X" or "bar") */
850 if (IS_MNT_SHARED(mnt))
851 seq_printf(m, " shared:%i", mnt->mnt_group_id);
852 if (IS_MNT_SLAVE(mnt)) {
853 int master = mnt->mnt_master->mnt_group_id;
854 int dom = get_dominating_id(mnt, &p->root);
855 seq_printf(m, " master:%i", master);
856 if (dom && dom != master)
857 seq_printf(m, " propagate_from:%i", dom);
859 if (IS_MNT_UNBINDABLE(mnt))
860 seq_puts(m, " unbindable");
862 /* Filesystem specific data */
863 seq_puts(m, " - ");
864 show_type(m, sb);
865 seq_putc(m, ' ');
866 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
867 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
868 show_sb_opts(m, sb);
869 if (sb->s_op->show_options)
870 err = sb->s_op->show_options(m, mnt);
871 seq_putc(m, '\n');
872 return err;
875 const struct seq_operations mountinfo_op = {
876 .start = m_start,
877 .next = m_next,
878 .stop = m_stop,
879 .show = show_mountinfo,
882 static int show_vfsstat(struct seq_file *m, void *v)
884 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
885 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
886 int err = 0;
888 /* device */
889 if (mnt->mnt_devname) {
890 seq_puts(m, "device ");
891 mangle(m, mnt->mnt_devname);
892 } else
893 seq_puts(m, "no device");
895 /* mount point */
896 seq_puts(m, " mounted on ");
897 seq_path(m, &mnt_path, " \t\n\\");
898 seq_putc(m, ' ');
900 /* file system type */
901 seq_puts(m, "with fstype ");
902 show_type(m, mnt->mnt_sb);
904 /* optional statistics */
905 if (mnt->mnt_sb->s_op->show_stats) {
906 seq_putc(m, ' ');
907 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
910 seq_putc(m, '\n');
911 return err;
914 const struct seq_operations mountstats_op = {
915 .start = m_start,
916 .next = m_next,
917 .stop = m_stop,
918 .show = show_vfsstat,
920 #endif /* CONFIG_PROC_FS */
923 * may_umount_tree - check if a mount tree is busy
924 * @mnt: root of mount tree
926 * This is called to check if a tree of mounts has any
927 * open files, pwds, chroots or sub mounts that are
928 * busy.
930 int may_umount_tree(struct vfsmount *mnt)
932 int actual_refs = 0;
933 int minimum_refs = 0;
934 struct vfsmount *p;
936 spin_lock(&vfsmount_lock);
937 for (p = mnt; p; p = next_mnt(p, mnt)) {
938 actual_refs += atomic_read(&p->mnt_count);
939 minimum_refs += 2;
941 spin_unlock(&vfsmount_lock);
943 if (actual_refs > minimum_refs)
944 return 0;
946 return 1;
949 EXPORT_SYMBOL(may_umount_tree);
952 * may_umount - check if a mount point is busy
953 * @mnt: root of mount
955 * This is called to check if a mount point has any
956 * open files, pwds, chroots or sub mounts. If the
957 * mount has sub mounts this will return busy
958 * regardless of whether the sub mounts are busy.
960 * Doesn't take quota and stuff into account. IOW, in some cases it will
961 * give false negatives. The main reason why it's here is that we need
962 * a non-destructive way to look for easily umountable filesystems.
964 int may_umount(struct vfsmount *mnt)
966 int ret = 1;
967 spin_lock(&vfsmount_lock);
968 if (propagate_mount_busy(mnt, 2))
969 ret = 0;
970 spin_unlock(&vfsmount_lock);
971 return ret;
974 EXPORT_SYMBOL(may_umount);
976 void release_mounts(struct list_head *head)
978 struct vfsmount *mnt;
979 while (!list_empty(head)) {
980 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
981 list_del_init(&mnt->mnt_hash);
982 if (mnt->mnt_parent != mnt) {
983 struct dentry *dentry;
984 struct vfsmount *m;
985 spin_lock(&vfsmount_lock);
986 dentry = mnt->mnt_mountpoint;
987 m = mnt->mnt_parent;
988 mnt->mnt_mountpoint = mnt->mnt_root;
989 mnt->mnt_parent = mnt;
990 m->mnt_ghosts--;
991 spin_unlock(&vfsmount_lock);
992 dput(dentry);
993 mntput(m);
995 mntput(mnt);
999 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1001 struct vfsmount *p;
1003 for (p = mnt; p; p = next_mnt(p, mnt))
1004 list_move(&p->mnt_hash, kill);
1006 if (propagate)
1007 propagate_umount(kill);
1009 list_for_each_entry(p, kill, mnt_hash) {
1010 list_del_init(&p->mnt_expire);
1011 list_del_init(&p->mnt_list);
1012 __touch_mnt_namespace(p->mnt_ns);
1013 p->mnt_ns = NULL;
1014 list_del_init(&p->mnt_child);
1015 if (p->mnt_parent != p) {
1016 p->mnt_parent->mnt_ghosts++;
1017 p->mnt_mountpoint->d_mounted--;
1019 change_mnt_propagation(p, MS_PRIVATE);
1023 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1025 static int do_umount(struct vfsmount *mnt, int flags)
1027 struct super_block *sb = mnt->mnt_sb;
1028 int retval;
1029 LIST_HEAD(umount_list);
1031 retval = security_sb_umount(mnt, flags);
1032 if (retval)
1033 return retval;
1036 * Allow userspace to request a mountpoint be expired rather than
1037 * unmounting unconditionally. Unmount only happens if:
1038 * (1) the mark is already set (the mark is cleared by mntput())
1039 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1041 if (flags & MNT_EXPIRE) {
1042 if (mnt == current->fs->root.mnt ||
1043 flags & (MNT_FORCE | MNT_DETACH))
1044 return -EINVAL;
1046 if (atomic_read(&mnt->mnt_count) != 2)
1047 return -EBUSY;
1049 if (!xchg(&mnt->mnt_expiry_mark, 1))
1050 return -EAGAIN;
1054 * If we may have to abort operations to get out of this
1055 * mount, and they will themselves hold resources we must
1056 * allow the fs to do things. In the Unix tradition of
1057 * 'Gee thats tricky lets do it in userspace' the umount_begin
1058 * might fail to complete on the first run through as other tasks
1059 * must return, and the like. Thats for the mount program to worry
1060 * about for the moment.
1063 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1064 lock_kernel();
1065 sb->s_op->umount_begin(sb);
1066 unlock_kernel();
1070 * No sense to grab the lock for this test, but test itself looks
1071 * somewhat bogus. Suggestions for better replacement?
1072 * Ho-hum... In principle, we might treat that as umount + switch
1073 * to rootfs. GC would eventually take care of the old vfsmount.
1074 * Actually it makes sense, especially if rootfs would contain a
1075 * /reboot - static binary that would close all descriptors and
1076 * call reboot(9). Then init(8) could umount root and exec /reboot.
1078 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1080 * Special case for "unmounting" root ...
1081 * we just try to remount it readonly.
1083 down_write(&sb->s_umount);
1084 if (!(sb->s_flags & MS_RDONLY)) {
1085 lock_kernel();
1086 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1087 unlock_kernel();
1089 up_write(&sb->s_umount);
1090 return retval;
1093 down_write(&namespace_sem);
1094 spin_lock(&vfsmount_lock);
1095 event++;
1097 if (!(flags & MNT_DETACH))
1098 shrink_submounts(mnt, &umount_list);
1100 retval = -EBUSY;
1101 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1102 if (!list_empty(&mnt->mnt_list))
1103 umount_tree(mnt, 1, &umount_list);
1104 retval = 0;
1106 spin_unlock(&vfsmount_lock);
1107 if (retval)
1108 security_sb_umount_busy(mnt);
1109 up_write(&namespace_sem);
1110 release_mounts(&umount_list);
1111 return retval;
1115 * Now umount can handle mount points as well as block devices.
1116 * This is important for filesystems which use unnamed block devices.
1118 * We now support a flag for forced unmount like the other 'big iron'
1119 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1122 asmlinkage long sys_umount(char __user * name, int flags)
1124 struct nameidata nd;
1125 int retval;
1127 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1128 if (retval)
1129 goto out;
1130 retval = -EINVAL;
1131 if (nd.path.dentry != nd.path.mnt->mnt_root)
1132 goto dput_and_out;
1133 if (!check_mnt(nd.path.mnt))
1134 goto dput_and_out;
1136 retval = -EPERM;
1137 if (!capable(CAP_SYS_ADMIN))
1138 goto dput_and_out;
1140 retval = do_umount(nd.path.mnt, flags);
1141 dput_and_out:
1142 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1143 dput(nd.path.dentry);
1144 mntput_no_expire(nd.path.mnt);
1145 out:
1146 return retval;
1149 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1152 * The 2.0 compatible umount. No flags.
1154 asmlinkage long sys_oldumount(char __user * name)
1156 return sys_umount(name, 0);
1159 #endif
1161 static int mount_is_safe(struct nameidata *nd)
1163 if (capable(CAP_SYS_ADMIN))
1164 return 0;
1165 return -EPERM;
1166 #ifdef notyet
1167 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1168 return -EPERM;
1169 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1170 if (current->uid != nd->path.dentry->d_inode->i_uid)
1171 return -EPERM;
1173 if (vfs_permission(nd, MAY_WRITE))
1174 return -EPERM;
1175 return 0;
1176 #endif
1179 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1180 int flag)
1182 struct vfsmount *res, *p, *q, *r, *s;
1183 struct path path;
1185 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1186 return NULL;
1188 res = q = clone_mnt(mnt, dentry, flag);
1189 if (!q)
1190 goto Enomem;
1191 q->mnt_mountpoint = mnt->mnt_mountpoint;
1193 p = mnt;
1194 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1195 if (!is_subdir(r->mnt_mountpoint, dentry))
1196 continue;
1198 for (s = r; s; s = next_mnt(s, r)) {
1199 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1200 s = skip_mnt_tree(s);
1201 continue;
1203 while (p != s->mnt_parent) {
1204 p = p->mnt_parent;
1205 q = q->mnt_parent;
1207 p = s;
1208 path.mnt = q;
1209 path.dentry = p->mnt_mountpoint;
1210 q = clone_mnt(p, p->mnt_root, flag);
1211 if (!q)
1212 goto Enomem;
1213 spin_lock(&vfsmount_lock);
1214 list_add_tail(&q->mnt_list, &res->mnt_list);
1215 attach_mnt(q, &path);
1216 spin_unlock(&vfsmount_lock);
1219 return res;
1220 Enomem:
1221 if (res) {
1222 LIST_HEAD(umount_list);
1223 spin_lock(&vfsmount_lock);
1224 umount_tree(res, 0, &umount_list);
1225 spin_unlock(&vfsmount_lock);
1226 release_mounts(&umount_list);
1228 return NULL;
1231 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1233 struct vfsmount *tree;
1234 down_write(&namespace_sem);
1235 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1236 up_write(&namespace_sem);
1237 return tree;
1240 void drop_collected_mounts(struct vfsmount *mnt)
1242 LIST_HEAD(umount_list);
1243 down_write(&namespace_sem);
1244 spin_lock(&vfsmount_lock);
1245 umount_tree(mnt, 0, &umount_list);
1246 spin_unlock(&vfsmount_lock);
1247 up_write(&namespace_sem);
1248 release_mounts(&umount_list);
1251 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1253 struct vfsmount *p;
1255 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1256 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1257 mnt_release_group_id(p);
1261 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1263 struct vfsmount *p;
1265 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1266 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1267 int err = mnt_alloc_group_id(p);
1268 if (err) {
1269 cleanup_group_ids(mnt, p);
1270 return err;
1275 return 0;
1279 * @source_mnt : mount tree to be attached
1280 * @nd : place the mount tree @source_mnt is attached
1281 * @parent_nd : if non-null, detach the source_mnt from its parent and
1282 * store the parent mount and mountpoint dentry.
1283 * (done when source_mnt is moved)
1285 * NOTE: in the table below explains the semantics when a source mount
1286 * of a given type is attached to a destination mount of a given type.
1287 * ---------------------------------------------------------------------------
1288 * | BIND MOUNT OPERATION |
1289 * |**************************************************************************
1290 * | source-->| shared | private | slave | unbindable |
1291 * | dest | | | | |
1292 * | | | | | | |
1293 * | v | | | | |
1294 * |**************************************************************************
1295 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1296 * | | | | | |
1297 * |non-shared| shared (+) | private | slave (*) | invalid |
1298 * ***************************************************************************
1299 * A bind operation clones the source mount and mounts the clone on the
1300 * destination mount.
1302 * (++) the cloned mount is propagated to all the mounts in the propagation
1303 * tree of the destination mount and the cloned mount is added to
1304 * the peer group of the source mount.
1305 * (+) the cloned mount is created under the destination mount and is marked
1306 * as shared. The cloned mount is added to the peer group of the source
1307 * mount.
1308 * (+++) the mount is propagated to all the mounts in the propagation tree
1309 * of the destination mount and the cloned mount is made slave
1310 * of the same master as that of the source mount. The cloned mount
1311 * is marked as 'shared and slave'.
1312 * (*) the cloned mount is made a slave of the same master as that of the
1313 * source mount.
1315 * ---------------------------------------------------------------------------
1316 * | MOVE MOUNT OPERATION |
1317 * |**************************************************************************
1318 * | source-->| shared | private | slave | unbindable |
1319 * | dest | | | | |
1320 * | | | | | | |
1321 * | v | | | | |
1322 * |**************************************************************************
1323 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1324 * | | | | | |
1325 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1326 * ***************************************************************************
1328 * (+) the mount is moved to the destination. And is then propagated to
1329 * all the mounts in the propagation tree of the destination mount.
1330 * (+*) the mount is moved to the destination.
1331 * (+++) the mount is moved to the destination and is then propagated to
1332 * all the mounts belonging to the destination mount's propagation tree.
1333 * the mount is marked as 'shared and slave'.
1334 * (*) the mount continues to be a slave at the new location.
1336 * if the source mount is a tree, the operations explained above is
1337 * applied to each mount in the tree.
1338 * Must be called without spinlocks held, since this function can sleep
1339 * in allocations.
1341 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1342 struct path *path, struct path *parent_path)
1344 LIST_HEAD(tree_list);
1345 struct vfsmount *dest_mnt = path->mnt;
1346 struct dentry *dest_dentry = path->dentry;
1347 struct vfsmount *child, *p;
1348 int err;
1350 if (IS_MNT_SHARED(dest_mnt)) {
1351 err = invent_group_ids(source_mnt, true);
1352 if (err)
1353 goto out;
1355 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1356 if (err)
1357 goto out_cleanup_ids;
1359 if (IS_MNT_SHARED(dest_mnt)) {
1360 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1361 set_mnt_shared(p);
1364 spin_lock(&vfsmount_lock);
1365 if (parent_path) {
1366 detach_mnt(source_mnt, parent_path);
1367 attach_mnt(source_mnt, path);
1368 touch_mnt_namespace(current->nsproxy->mnt_ns);
1369 } else {
1370 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1371 commit_tree(source_mnt);
1374 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1375 list_del_init(&child->mnt_hash);
1376 commit_tree(child);
1378 spin_unlock(&vfsmount_lock);
1379 return 0;
1381 out_cleanup_ids:
1382 if (IS_MNT_SHARED(dest_mnt))
1383 cleanup_group_ids(source_mnt, NULL);
1384 out:
1385 return err;
1388 static int graft_tree(struct vfsmount *mnt, struct path *path)
1390 int err;
1391 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1392 return -EINVAL;
1394 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1395 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1396 return -ENOTDIR;
1398 err = -ENOENT;
1399 mutex_lock(&path->dentry->d_inode->i_mutex);
1400 if (IS_DEADDIR(path->dentry->d_inode))
1401 goto out_unlock;
1403 err = security_sb_check_sb(mnt, path);
1404 if (err)
1405 goto out_unlock;
1407 err = -ENOENT;
1408 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1409 err = attach_recursive_mnt(mnt, path, NULL);
1410 out_unlock:
1411 mutex_unlock(&path->dentry->d_inode->i_mutex);
1412 if (!err)
1413 security_sb_post_addmount(mnt, path);
1414 return err;
1418 * recursively change the type of the mountpoint.
1419 * noinline this do_mount helper to save do_mount stack space.
1421 static noinline int do_change_type(struct nameidata *nd, int flag)
1423 struct vfsmount *m, *mnt = nd->path.mnt;
1424 int recurse = flag & MS_REC;
1425 int type = flag & ~MS_REC;
1426 int err = 0;
1428 if (!capable(CAP_SYS_ADMIN))
1429 return -EPERM;
1431 if (nd->path.dentry != nd->path.mnt->mnt_root)
1432 return -EINVAL;
1434 down_write(&namespace_sem);
1435 if (type == MS_SHARED) {
1436 err = invent_group_ids(mnt, recurse);
1437 if (err)
1438 goto out_unlock;
1441 spin_lock(&vfsmount_lock);
1442 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1443 change_mnt_propagation(m, type);
1444 spin_unlock(&vfsmount_lock);
1446 out_unlock:
1447 up_write(&namespace_sem);
1448 return err;
1452 * do loopback mount.
1453 * noinline this do_mount helper to save do_mount stack space.
1455 static noinline int do_loopback(struct nameidata *nd, char *old_name,
1456 int recurse)
1458 struct nameidata old_nd;
1459 struct vfsmount *mnt = NULL;
1460 int err = mount_is_safe(nd);
1461 if (err)
1462 return err;
1463 if (!old_name || !*old_name)
1464 return -EINVAL;
1465 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1466 if (err)
1467 return err;
1469 down_write(&namespace_sem);
1470 err = -EINVAL;
1471 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1472 goto out;
1474 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1475 goto out;
1477 err = -ENOMEM;
1478 if (recurse)
1479 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1480 else
1481 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1483 if (!mnt)
1484 goto out;
1486 err = graft_tree(mnt, &nd->path);
1487 if (err) {
1488 LIST_HEAD(umount_list);
1489 spin_lock(&vfsmount_lock);
1490 umount_tree(mnt, 0, &umount_list);
1491 spin_unlock(&vfsmount_lock);
1492 release_mounts(&umount_list);
1495 out:
1496 up_write(&namespace_sem);
1497 path_put(&old_nd.path);
1498 return err;
1501 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1503 int error = 0;
1504 int readonly_request = 0;
1506 if (ms_flags & MS_RDONLY)
1507 readonly_request = 1;
1508 if (readonly_request == __mnt_is_readonly(mnt))
1509 return 0;
1511 if (readonly_request)
1512 error = mnt_make_readonly(mnt);
1513 else
1514 __mnt_unmake_readonly(mnt);
1515 return error;
1519 * change filesystem flags. dir should be a physical root of filesystem.
1520 * If you've mounted a non-root directory somewhere and want to do remount
1521 * on it - tough luck.
1522 * noinline this do_mount helper to save do_mount stack space.
1524 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1525 void *data)
1527 int err;
1528 struct super_block *sb = nd->path.mnt->mnt_sb;
1530 if (!capable(CAP_SYS_ADMIN))
1531 return -EPERM;
1533 if (!check_mnt(nd->path.mnt))
1534 return -EINVAL;
1536 if (nd->path.dentry != nd->path.mnt->mnt_root)
1537 return -EINVAL;
1539 down_write(&sb->s_umount);
1540 if (flags & MS_BIND)
1541 err = change_mount_flags(nd->path.mnt, flags);
1542 else
1543 err = do_remount_sb(sb, flags, data, 0);
1544 if (!err)
1545 nd->path.mnt->mnt_flags = mnt_flags;
1546 up_write(&sb->s_umount);
1547 if (!err)
1548 security_sb_post_remount(nd->path.mnt, flags, data);
1549 return err;
1552 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1554 struct vfsmount *p;
1555 for (p = mnt; p; p = next_mnt(p, mnt)) {
1556 if (IS_MNT_UNBINDABLE(p))
1557 return 1;
1559 return 0;
1563 * noinline this do_mount helper to save do_mount stack space.
1565 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1567 struct nameidata old_nd;
1568 struct path parent_path;
1569 struct vfsmount *p;
1570 int err = 0;
1571 if (!capable(CAP_SYS_ADMIN))
1572 return -EPERM;
1573 if (!old_name || !*old_name)
1574 return -EINVAL;
1575 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1576 if (err)
1577 return err;
1579 down_write(&namespace_sem);
1580 while (d_mountpoint(nd->path.dentry) &&
1581 follow_down(&nd->path.mnt, &nd->path.dentry))
1583 err = -EINVAL;
1584 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1585 goto out;
1587 err = -ENOENT;
1588 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1589 if (IS_DEADDIR(nd->path.dentry->d_inode))
1590 goto out1;
1592 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1593 goto out1;
1595 err = -EINVAL;
1596 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1597 goto out1;
1599 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1600 goto out1;
1602 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1603 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1604 goto out1;
1606 * Don't move a mount residing in a shared parent.
1608 if (old_nd.path.mnt->mnt_parent &&
1609 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1610 goto out1;
1612 * Don't move a mount tree containing unbindable mounts to a destination
1613 * mount which is shared.
1615 if (IS_MNT_SHARED(nd->path.mnt) &&
1616 tree_contains_unbindable(old_nd.path.mnt))
1617 goto out1;
1618 err = -ELOOP;
1619 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1620 if (p == old_nd.path.mnt)
1621 goto out1;
1623 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1624 if (err)
1625 goto out1;
1627 /* if the mount is moved, it should no longer be expire
1628 * automatically */
1629 list_del_init(&old_nd.path.mnt->mnt_expire);
1630 out1:
1631 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1632 out:
1633 up_write(&namespace_sem);
1634 if (!err)
1635 path_put(&parent_path);
1636 path_put(&old_nd.path);
1637 return err;
1641 * create a new mount for userspace and request it to be added into the
1642 * namespace's tree
1643 * noinline this do_mount helper to save do_mount stack space.
1645 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1646 int mnt_flags, char *name, void *data)
1648 struct vfsmount *mnt;
1650 if (!type || !memchr(type, 0, PAGE_SIZE))
1651 return -EINVAL;
1653 /* we need capabilities... */
1654 if (!capable(CAP_SYS_ADMIN))
1655 return -EPERM;
1657 mnt = do_kern_mount(type, flags, name, data);
1658 if (IS_ERR(mnt))
1659 return PTR_ERR(mnt);
1661 return do_add_mount(mnt, nd, mnt_flags, NULL);
1665 * add a mount into a namespace's mount tree
1666 * - provide the option of adding the new mount to an expiration list
1668 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1669 int mnt_flags, struct list_head *fslist)
1671 int err;
1673 down_write(&namespace_sem);
1674 /* Something was mounted here while we slept */
1675 while (d_mountpoint(nd->path.dentry) &&
1676 follow_down(&nd->path.mnt, &nd->path.dentry))
1678 err = -EINVAL;
1679 if (!check_mnt(nd->path.mnt))
1680 goto unlock;
1682 /* Refuse the same filesystem on the same mount point */
1683 err = -EBUSY;
1684 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1685 nd->path.mnt->mnt_root == nd->path.dentry)
1686 goto unlock;
1688 err = -EINVAL;
1689 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1690 goto unlock;
1692 newmnt->mnt_flags = mnt_flags;
1693 if ((err = graft_tree(newmnt, &nd->path)))
1694 goto unlock;
1696 if (fslist) /* add to the specified expiration list */
1697 list_add_tail(&newmnt->mnt_expire, fslist);
1699 up_write(&namespace_sem);
1700 return 0;
1702 unlock:
1703 up_write(&namespace_sem);
1704 mntput(newmnt);
1705 return err;
1708 EXPORT_SYMBOL_GPL(do_add_mount);
1711 * process a list of expirable mountpoints with the intent of discarding any
1712 * mountpoints that aren't in use and haven't been touched since last we came
1713 * here
1715 void mark_mounts_for_expiry(struct list_head *mounts)
1717 struct vfsmount *mnt, *next;
1718 LIST_HEAD(graveyard);
1719 LIST_HEAD(umounts);
1721 if (list_empty(mounts))
1722 return;
1724 down_write(&namespace_sem);
1725 spin_lock(&vfsmount_lock);
1727 /* extract from the expiration list every vfsmount that matches the
1728 * following criteria:
1729 * - only referenced by its parent vfsmount
1730 * - still marked for expiry (marked on the last call here; marks are
1731 * cleared by mntput())
1733 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1734 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1735 propagate_mount_busy(mnt, 1))
1736 continue;
1737 list_move(&mnt->mnt_expire, &graveyard);
1739 while (!list_empty(&graveyard)) {
1740 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1741 touch_mnt_namespace(mnt->mnt_ns);
1742 umount_tree(mnt, 1, &umounts);
1744 spin_unlock(&vfsmount_lock);
1745 up_write(&namespace_sem);
1747 release_mounts(&umounts);
1750 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1753 * Ripoff of 'select_parent()'
1755 * search the list of submounts for a given mountpoint, and move any
1756 * shrinkable submounts to the 'graveyard' list.
1758 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1760 struct vfsmount *this_parent = parent;
1761 struct list_head *next;
1762 int found = 0;
1764 repeat:
1765 next = this_parent->mnt_mounts.next;
1766 resume:
1767 while (next != &this_parent->mnt_mounts) {
1768 struct list_head *tmp = next;
1769 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1771 next = tmp->next;
1772 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1773 continue;
1775 * Descend a level if the d_mounts list is non-empty.
1777 if (!list_empty(&mnt->mnt_mounts)) {
1778 this_parent = mnt;
1779 goto repeat;
1782 if (!propagate_mount_busy(mnt, 1)) {
1783 list_move_tail(&mnt->mnt_expire, graveyard);
1784 found++;
1788 * All done at this level ... ascend and resume the search
1790 if (this_parent != parent) {
1791 next = this_parent->mnt_child.next;
1792 this_parent = this_parent->mnt_parent;
1793 goto resume;
1795 return found;
1799 * process a list of expirable mountpoints with the intent of discarding any
1800 * submounts of a specific parent mountpoint
1802 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1804 LIST_HEAD(graveyard);
1805 struct vfsmount *m;
1807 /* extract submounts of 'mountpoint' from the expiration list */
1808 while (select_submounts(mnt, &graveyard)) {
1809 while (!list_empty(&graveyard)) {
1810 m = list_first_entry(&graveyard, struct vfsmount,
1811 mnt_expire);
1812 touch_mnt_namespace(mnt->mnt_ns);
1813 umount_tree(mnt, 1, umounts);
1819 * Some copy_from_user() implementations do not return the exact number of
1820 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1821 * Note that this function differs from copy_from_user() in that it will oops
1822 * on bad values of `to', rather than returning a short copy.
1824 static long exact_copy_from_user(void *to, const void __user * from,
1825 unsigned long n)
1827 char *t = to;
1828 const char __user *f = from;
1829 char c;
1831 if (!access_ok(VERIFY_READ, from, n))
1832 return n;
1834 while (n) {
1835 if (__get_user(c, f)) {
1836 memset(t, 0, n);
1837 break;
1839 *t++ = c;
1840 f++;
1841 n--;
1843 return n;
1846 int copy_mount_options(const void __user * data, unsigned long *where)
1848 int i;
1849 unsigned long page;
1850 unsigned long size;
1852 *where = 0;
1853 if (!data)
1854 return 0;
1856 if (!(page = __get_free_page(GFP_KERNEL)))
1857 return -ENOMEM;
1859 /* We only care that *some* data at the address the user
1860 * gave us is valid. Just in case, we'll zero
1861 * the remainder of the page.
1863 /* copy_from_user cannot cross TASK_SIZE ! */
1864 size = TASK_SIZE - (unsigned long)data;
1865 if (size > PAGE_SIZE)
1866 size = PAGE_SIZE;
1868 i = size - exact_copy_from_user((void *)page, data, size);
1869 if (!i) {
1870 free_page(page);
1871 return -EFAULT;
1873 if (i != PAGE_SIZE)
1874 memset((char *)page + i, 0, PAGE_SIZE - i);
1875 *where = page;
1876 return 0;
1880 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1881 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1883 * data is a (void *) that can point to any structure up to
1884 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1885 * information (or be NULL).
1887 * Pre-0.97 versions of mount() didn't have a flags word.
1888 * When the flags word was introduced its top half was required
1889 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1890 * Therefore, if this magic number is present, it carries no information
1891 * and must be discarded.
1893 long do_mount(char *dev_name, char *dir_name, char *type_page,
1894 unsigned long flags, void *data_page)
1896 struct nameidata nd;
1897 int retval = 0;
1898 int mnt_flags = 0;
1900 /* Discard magic */
1901 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1902 flags &= ~MS_MGC_MSK;
1904 /* Basic sanity checks */
1906 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1907 return -EINVAL;
1908 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1909 return -EINVAL;
1911 if (data_page)
1912 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1914 /* Separate the per-mountpoint flags */
1915 if (flags & MS_NOSUID)
1916 mnt_flags |= MNT_NOSUID;
1917 if (flags & MS_NODEV)
1918 mnt_flags |= MNT_NODEV;
1919 if (flags & MS_NOEXEC)
1920 mnt_flags |= MNT_NOEXEC;
1921 if (flags & MS_NOATIME)
1922 mnt_flags |= MNT_NOATIME;
1923 if (flags & MS_NODIRATIME)
1924 mnt_flags |= MNT_NODIRATIME;
1925 if (flags & MS_RELATIME)
1926 mnt_flags |= MNT_RELATIME;
1927 if (flags & MS_RDONLY)
1928 mnt_flags |= MNT_READONLY;
1930 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1931 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1933 /* ... and get the mountpoint */
1934 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1935 if (retval)
1936 return retval;
1938 retval = security_sb_mount(dev_name, &nd.path,
1939 type_page, flags, data_page);
1940 if (retval)
1941 goto dput_out;
1943 if (flags & MS_REMOUNT)
1944 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1945 data_page);
1946 else if (flags & MS_BIND)
1947 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1948 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1949 retval = do_change_type(&nd, flags);
1950 else if (flags & MS_MOVE)
1951 retval = do_move_mount(&nd, dev_name);
1952 else
1953 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1954 dev_name, data_page);
1955 dput_out:
1956 path_put(&nd.path);
1957 return retval;
1961 * Allocate a new namespace structure and populate it with contents
1962 * copied from the namespace of the passed in task structure.
1964 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1965 struct fs_struct *fs)
1967 struct mnt_namespace *new_ns;
1968 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1969 struct vfsmount *p, *q;
1971 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1972 if (!new_ns)
1973 return ERR_PTR(-ENOMEM);
1975 atomic_set(&new_ns->count, 1);
1976 INIT_LIST_HEAD(&new_ns->list);
1977 init_waitqueue_head(&new_ns->poll);
1978 new_ns->event = 0;
1980 down_write(&namespace_sem);
1981 /* First pass: copy the tree topology */
1982 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1983 CL_COPY_ALL | CL_EXPIRE);
1984 if (!new_ns->root) {
1985 up_write(&namespace_sem);
1986 kfree(new_ns);
1987 return ERR_PTR(-ENOMEM);;
1989 spin_lock(&vfsmount_lock);
1990 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1991 spin_unlock(&vfsmount_lock);
1994 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1995 * as belonging to new namespace. We have already acquired a private
1996 * fs_struct, so tsk->fs->lock is not needed.
1998 p = mnt_ns->root;
1999 q = new_ns->root;
2000 while (p) {
2001 q->mnt_ns = new_ns;
2002 if (fs) {
2003 if (p == fs->root.mnt) {
2004 rootmnt = p;
2005 fs->root.mnt = mntget(q);
2007 if (p == fs->pwd.mnt) {
2008 pwdmnt = p;
2009 fs->pwd.mnt = mntget(q);
2011 if (p == fs->altroot.mnt) {
2012 altrootmnt = p;
2013 fs->altroot.mnt = mntget(q);
2016 p = next_mnt(p, mnt_ns->root);
2017 q = next_mnt(q, new_ns->root);
2019 up_write(&namespace_sem);
2021 if (rootmnt)
2022 mntput(rootmnt);
2023 if (pwdmnt)
2024 mntput(pwdmnt);
2025 if (altrootmnt)
2026 mntput(altrootmnt);
2028 return new_ns;
2031 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2032 struct fs_struct *new_fs)
2034 struct mnt_namespace *new_ns;
2036 BUG_ON(!ns);
2037 get_mnt_ns(ns);
2039 if (!(flags & CLONE_NEWNS))
2040 return ns;
2042 new_ns = dup_mnt_ns(ns, new_fs);
2044 put_mnt_ns(ns);
2045 return new_ns;
2048 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2049 char __user * type, unsigned long flags,
2050 void __user * data)
2052 int retval;
2053 unsigned long data_page;
2054 unsigned long type_page;
2055 unsigned long dev_page;
2056 char *dir_page;
2058 retval = copy_mount_options(type, &type_page);
2059 if (retval < 0)
2060 return retval;
2062 dir_page = getname(dir_name);
2063 retval = PTR_ERR(dir_page);
2064 if (IS_ERR(dir_page))
2065 goto out1;
2067 retval = copy_mount_options(dev_name, &dev_page);
2068 if (retval < 0)
2069 goto out2;
2071 retval = copy_mount_options(data, &data_page);
2072 if (retval < 0)
2073 goto out3;
2075 lock_kernel();
2076 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2077 flags, (void *)data_page);
2078 unlock_kernel();
2079 free_page(data_page);
2081 out3:
2082 free_page(dev_page);
2083 out2:
2084 putname(dir_page);
2085 out1:
2086 free_page(type_page);
2087 return retval;
2091 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2092 * It can block. Requires the big lock held.
2094 void set_fs_root(struct fs_struct *fs, struct path *path)
2096 struct path old_root;
2098 write_lock(&fs->lock);
2099 old_root = fs->root;
2100 fs->root = *path;
2101 path_get(path);
2102 write_unlock(&fs->lock);
2103 if (old_root.dentry)
2104 path_put(&old_root);
2108 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2109 * It can block. Requires the big lock held.
2111 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2113 struct path old_pwd;
2115 write_lock(&fs->lock);
2116 old_pwd = fs->pwd;
2117 fs->pwd = *path;
2118 path_get(path);
2119 write_unlock(&fs->lock);
2121 if (old_pwd.dentry)
2122 path_put(&old_pwd);
2125 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2127 struct task_struct *g, *p;
2128 struct fs_struct *fs;
2130 read_lock(&tasklist_lock);
2131 do_each_thread(g, p) {
2132 task_lock(p);
2133 fs = p->fs;
2134 if (fs) {
2135 atomic_inc(&fs->count);
2136 task_unlock(p);
2137 if (fs->root.dentry == old_root->dentry
2138 && fs->root.mnt == old_root->mnt)
2139 set_fs_root(fs, new_root);
2140 if (fs->pwd.dentry == old_root->dentry
2141 && fs->pwd.mnt == old_root->mnt)
2142 set_fs_pwd(fs, new_root);
2143 put_fs_struct(fs);
2144 } else
2145 task_unlock(p);
2146 } while_each_thread(g, p);
2147 read_unlock(&tasklist_lock);
2151 * pivot_root Semantics:
2152 * Moves the root file system of the current process to the directory put_old,
2153 * makes new_root as the new root file system of the current process, and sets
2154 * root/cwd of all processes which had them on the current root to new_root.
2156 * Restrictions:
2157 * The new_root and put_old must be directories, and must not be on the
2158 * same file system as the current process root. The put_old must be
2159 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2160 * pointed to by put_old must yield the same directory as new_root. No other
2161 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2163 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2164 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2165 * in this situation.
2167 * Notes:
2168 * - we don't move root/cwd if they are not at the root (reason: if something
2169 * cared enough to change them, it's probably wrong to force them elsewhere)
2170 * - it's okay to pick a root that isn't the root of a file system, e.g.
2171 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2172 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2173 * first.
2175 asmlinkage long sys_pivot_root(const char __user * new_root,
2176 const char __user * put_old)
2178 struct vfsmount *tmp;
2179 struct nameidata new_nd, old_nd;
2180 struct path parent_path, root_parent, root;
2181 int error;
2183 if (!capable(CAP_SYS_ADMIN))
2184 return -EPERM;
2186 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2187 &new_nd);
2188 if (error)
2189 goto out0;
2190 error = -EINVAL;
2191 if (!check_mnt(new_nd.path.mnt))
2192 goto out1;
2194 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
2195 if (error)
2196 goto out1;
2198 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
2199 if (error) {
2200 path_put(&old_nd.path);
2201 goto out1;
2204 read_lock(&current->fs->lock);
2205 root = current->fs->root;
2206 path_get(&current->fs->root);
2207 read_unlock(&current->fs->lock);
2208 down_write(&namespace_sem);
2209 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
2210 error = -EINVAL;
2211 if (IS_MNT_SHARED(old_nd.path.mnt) ||
2212 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
2213 IS_MNT_SHARED(root.mnt->mnt_parent))
2214 goto out2;
2215 if (!check_mnt(root.mnt))
2216 goto out2;
2217 error = -ENOENT;
2218 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
2219 goto out2;
2220 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
2221 goto out2;
2222 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
2223 goto out2;
2224 error = -EBUSY;
2225 if (new_nd.path.mnt == root.mnt ||
2226 old_nd.path.mnt == root.mnt)
2227 goto out2; /* loop, on the same file system */
2228 error = -EINVAL;
2229 if (root.mnt->mnt_root != root.dentry)
2230 goto out2; /* not a mountpoint */
2231 if (root.mnt->mnt_parent == root.mnt)
2232 goto out2; /* not attached */
2233 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
2234 goto out2; /* not a mountpoint */
2235 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
2236 goto out2; /* not attached */
2237 /* make sure we can reach put_old from new_root */
2238 tmp = old_nd.path.mnt;
2239 spin_lock(&vfsmount_lock);
2240 if (tmp != new_nd.path.mnt) {
2241 for (;;) {
2242 if (tmp->mnt_parent == tmp)
2243 goto out3; /* already mounted on put_old */
2244 if (tmp->mnt_parent == new_nd.path.mnt)
2245 break;
2246 tmp = tmp->mnt_parent;
2248 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
2249 goto out3;
2250 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
2251 goto out3;
2252 detach_mnt(new_nd.path.mnt, &parent_path);
2253 detach_mnt(root.mnt, &root_parent);
2254 /* mount old root on put_old */
2255 attach_mnt(root.mnt, &old_nd.path);
2256 /* mount new_root on / */
2257 attach_mnt(new_nd.path.mnt, &root_parent);
2258 touch_mnt_namespace(current->nsproxy->mnt_ns);
2259 spin_unlock(&vfsmount_lock);
2260 chroot_fs_refs(&root, &new_nd.path);
2261 security_sb_post_pivotroot(&root, &new_nd.path);
2262 error = 0;
2263 path_put(&root_parent);
2264 path_put(&parent_path);
2265 out2:
2266 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
2267 up_write(&namespace_sem);
2268 path_put(&root);
2269 path_put(&old_nd.path);
2270 out1:
2271 path_put(&new_nd.path);
2272 out0:
2273 return error;
2274 out3:
2275 spin_unlock(&vfsmount_lock);
2276 goto out2;
2279 static void __init init_mount_tree(void)
2281 struct vfsmount *mnt;
2282 struct mnt_namespace *ns;
2283 struct path root;
2285 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2286 if (IS_ERR(mnt))
2287 panic("Can't create rootfs");
2288 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2289 if (!ns)
2290 panic("Can't allocate initial namespace");
2291 atomic_set(&ns->count, 1);
2292 INIT_LIST_HEAD(&ns->list);
2293 init_waitqueue_head(&ns->poll);
2294 ns->event = 0;
2295 list_add(&mnt->mnt_list, &ns->list);
2296 ns->root = mnt;
2297 mnt->mnt_ns = ns;
2299 init_task.nsproxy->mnt_ns = ns;
2300 get_mnt_ns(ns);
2302 root.mnt = ns->root;
2303 root.dentry = ns->root->mnt_root;
2305 set_fs_pwd(current->fs, &root);
2306 set_fs_root(current->fs, &root);
2309 void __init mnt_init(void)
2311 unsigned u;
2312 int err;
2314 init_rwsem(&namespace_sem);
2316 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2317 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2319 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2321 if (!mount_hashtable)
2322 panic("Failed to allocate mount hash table\n");
2324 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2326 for (u = 0; u < HASH_SIZE; u++)
2327 INIT_LIST_HEAD(&mount_hashtable[u]);
2329 err = sysfs_init();
2330 if (err)
2331 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2332 __FUNCTION__, err);
2333 fs_kobj = kobject_create_and_add("fs", NULL);
2334 if (!fs_kobj)
2335 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
2336 init_rootfs();
2337 init_mount_tree();
2340 void __put_mnt_ns(struct mnt_namespace *ns)
2342 struct vfsmount *root = ns->root;
2343 LIST_HEAD(umount_list);
2344 ns->root = NULL;
2345 spin_unlock(&vfsmount_lock);
2346 down_write(&namespace_sem);
2347 spin_lock(&vfsmount_lock);
2348 umount_tree(root, 0, &umount_list);
2349 spin_unlock(&vfsmount_lock);
2350 up_write(&namespace_sem);
2351 release_mounts(&umount_list);
2352 kfree(ns);