2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <trace/kmemtrace.h>
20 #include <linux/cpu.h>
21 #include <linux/cpuset.h>
22 #include <linux/mempolicy.h>
23 #include <linux/ctype.h>
24 #include <linux/debugobjects.h>
25 #include <linux/kallsyms.h>
26 #include <linux/memory.h>
27 #include <linux/math64.h>
28 #include <linux/fault-inject.h>
35 * The slab_lock protects operations on the object of a particular
36 * slab and its metadata in the page struct. If the slab lock
37 * has been taken then no allocations nor frees can be performed
38 * on the objects in the slab nor can the slab be added or removed
39 * from the partial or full lists since this would mean modifying
40 * the page_struct of the slab.
42 * The list_lock protects the partial and full list on each node and
43 * the partial slab counter. If taken then no new slabs may be added or
44 * removed from the lists nor make the number of partial slabs be modified.
45 * (Note that the total number of slabs is an atomic value that may be
46 * modified without taking the list lock).
48 * The list_lock is a centralized lock and thus we avoid taking it as
49 * much as possible. As long as SLUB does not have to handle partial
50 * slabs, operations can continue without any centralized lock. F.e.
51 * allocating a long series of objects that fill up slabs does not require
54 * The lock order is sometimes inverted when we are trying to get a slab
55 * off a list. We take the list_lock and then look for a page on the list
56 * to use. While we do that objects in the slabs may be freed. We can
57 * only operate on the slab if we have also taken the slab_lock. So we use
58 * a slab_trylock() on the slab. If trylock was successful then no frees
59 * can occur anymore and we can use the slab for allocations etc. If the
60 * slab_trylock() does not succeed then frees are in progress in the slab and
61 * we must stay away from it for a while since we may cause a bouncing
62 * cacheline if we try to acquire the lock. So go onto the next slab.
63 * If all pages are busy then we may allocate a new slab instead of reusing
64 * a partial slab. A new slab has noone operating on it and thus there is
65 * no danger of cacheline contention.
67 * Interrupts are disabled during allocation and deallocation in order to
68 * make the slab allocator safe to use in the context of an irq. In addition
69 * interrupts are disabled to ensure that the processor does not change
70 * while handling per_cpu slabs, due to kernel preemption.
72 * SLUB assigns one slab for allocation to each processor.
73 * Allocations only occur from these slabs called cpu slabs.
75 * Slabs with free elements are kept on a partial list and during regular
76 * operations no list for full slabs is used. If an object in a full slab is
77 * freed then the slab will show up again on the partial lists.
78 * We track full slabs for debugging purposes though because otherwise we
79 * cannot scan all objects.
81 * Slabs are freed when they become empty. Teardown and setup is
82 * minimal so we rely on the page allocators per cpu caches for
83 * fast frees and allocs.
85 * Overloading of page flags that are otherwise used for LRU management.
87 * PageActive The slab is frozen and exempt from list processing.
88 * This means that the slab is dedicated to a purpose
89 * such as satisfying allocations for a specific
90 * processor. Objects may be freed in the slab while
91 * it is frozen but slab_free will then skip the usual
92 * list operations. It is up to the processor holding
93 * the slab to integrate the slab into the slab lists
94 * when the slab is no longer needed.
96 * One use of this flag is to mark slabs that are
97 * used for allocations. Then such a slab becomes a cpu
98 * slab. The cpu slab may be equipped with an additional
99 * freelist that allows lockless access to
100 * free objects in addition to the regular freelist
101 * that requires the slab lock.
103 * PageError Slab requires special handling due to debug
104 * options set. This moves slab handling out of
105 * the fast path and disables lockless freelists.
108 #ifdef CONFIG_SLUB_DEBUG
115 * Issues still to be resolved:
117 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
119 * - Variable sizing of the per node arrays
122 /* Enable to test recovery from slab corruption on boot */
123 #undef SLUB_RESILIENCY_TEST
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 #define MIN_PARTIAL 5
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
136 #define MAX_PARTIAL 10
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
142 * Set of flags that will prevent slab merging
144 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
147 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 #ifndef ARCH_KMALLOC_MINALIGN
151 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
154 #ifndef ARCH_SLAB_MINALIGN
155 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
159 #define OO_MASK ((1 << OO_SHIFT) - 1)
160 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
162 /* Internal SLUB flags */
163 #define __OBJECT_POISON 0x80000000 /* Poison object */
164 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
166 static int kmem_size
= sizeof(struct kmem_cache
);
169 static struct notifier_block slab_notifier
;
173 DOWN
, /* No slab functionality available */
174 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
175 UP
, /* Everything works but does not show up in sysfs */
179 /* A list of all slab caches on the system */
180 static DECLARE_RWSEM(slub_lock
);
181 static LIST_HEAD(slab_caches
);
184 * Tracking user of a slab.
187 unsigned long addr
; /* Called from address */
188 int cpu
; /* Was running on cpu */
189 int pid
; /* Pid context */
190 unsigned long when
; /* When did the operation occur */
193 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
195 #ifdef CONFIG_SLUB_DEBUG
196 static int sysfs_slab_add(struct kmem_cache
*);
197 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
198 static void sysfs_slab_remove(struct kmem_cache
*);
201 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
202 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
204 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
211 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
213 #ifdef CONFIG_SLUB_STATS
218 /********************************************************************
219 * Core slab cache functions
220 *******************************************************************/
222 int slab_is_available(void)
224 return slab_state
>= UP
;
227 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
230 return s
->node
[node
];
232 return &s
->local_node
;
236 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
239 return s
->cpu_slab
[cpu
];
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache
*s
,
247 struct page
*page
, const void *object
)
254 base
= page_address(page
);
255 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
256 (object
- base
) % s
->size
) {
264 * Slow version of get and set free pointer.
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
270 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
272 return *(void **)(object
+ s
->offset
);
275 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
277 *(void **)(object
+ s
->offset
) = fp
;
280 /* Loop over all objects in a slab */
281 #define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
286 #define for_each_free_object(__p, __s, __free) \
287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
292 return (p
- addr
) / s
->size
;
295 static inline struct kmem_cache_order_objects
oo_make(int order
,
298 struct kmem_cache_order_objects x
= {
299 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
305 static inline int oo_order(struct kmem_cache_order_objects x
)
307 return x
.x
>> OO_SHIFT
;
310 static inline int oo_objects(struct kmem_cache_order_objects x
)
312 return x
.x
& OO_MASK
;
315 #ifdef CONFIG_SLUB_DEBUG
319 #ifdef CONFIG_SLUB_DEBUG_ON
320 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
322 static int slub_debug
;
325 static char *slub_debug_slabs
;
330 static void print_section(char *text
, u8
*addr
, unsigned int length
)
338 for (i
= 0; i
< length
; i
++) {
340 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
343 printk(KERN_CONT
" %02x", addr
[i
]);
345 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
347 printk(KERN_CONT
" %s\n", ascii
);
354 printk(KERN_CONT
" ");
358 printk(KERN_CONT
" %s\n", ascii
);
362 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
363 enum track_item alloc
)
368 p
= object
+ s
->offset
+ sizeof(void *);
370 p
= object
+ s
->inuse
;
375 static void set_track(struct kmem_cache
*s
, void *object
,
376 enum track_item alloc
, unsigned long addr
)
381 p
= object
+ s
->offset
+ sizeof(void *);
383 p
= object
+ s
->inuse
;
388 p
->cpu
= smp_processor_id();
389 p
->pid
= current
->pid
;
392 memset(p
, 0, sizeof(struct track
));
395 static void init_tracking(struct kmem_cache
*s
, void *object
)
397 if (!(s
->flags
& SLAB_STORE_USER
))
400 set_track(s
, object
, TRACK_FREE
, 0UL);
401 set_track(s
, object
, TRACK_ALLOC
, 0UL);
404 static void print_track(const char *s
, struct track
*t
)
409 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
410 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
413 static void print_tracking(struct kmem_cache
*s
, void *object
)
415 if (!(s
->flags
& SLAB_STORE_USER
))
418 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
419 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
422 static void print_page_info(struct page
*page
)
424 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
425 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
429 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
435 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
437 printk(KERN_ERR
"========================================"
438 "=====================================\n");
439 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
440 printk(KERN_ERR
"----------------------------------------"
441 "-------------------------------------\n\n");
444 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
450 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
452 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
455 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
457 unsigned int off
; /* Offset of last byte */
458 u8
*addr
= page_address(page
);
460 print_tracking(s
, p
);
462 print_page_info(page
);
464 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
465 p
, p
- addr
, get_freepointer(s
, p
));
468 print_section("Bytes b4", p
- 16, 16);
470 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
472 if (s
->flags
& SLAB_RED_ZONE
)
473 print_section("Redzone", p
+ s
->objsize
,
474 s
->inuse
- s
->objsize
);
477 off
= s
->offset
+ sizeof(void *);
481 if (s
->flags
& SLAB_STORE_USER
)
482 off
+= 2 * sizeof(struct track
);
485 /* Beginning of the filler is the free pointer */
486 print_section("Padding", p
+ off
, s
->size
- off
);
491 static void object_err(struct kmem_cache
*s
, struct page
*page
,
492 u8
*object
, char *reason
)
494 slab_bug(s
, "%s", reason
);
495 print_trailer(s
, page
, object
);
498 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
504 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
506 slab_bug(s
, "%s", buf
);
507 print_page_info(page
);
511 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
515 if (s
->flags
& __OBJECT_POISON
) {
516 memset(p
, POISON_FREE
, s
->objsize
- 1);
517 p
[s
->objsize
- 1] = POISON_END
;
520 if (s
->flags
& SLAB_RED_ZONE
)
521 memset(p
+ s
->objsize
,
522 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
523 s
->inuse
- s
->objsize
);
526 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
529 if (*start
!= (u8
)value
)
537 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
538 void *from
, void *to
)
540 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
541 memset(from
, data
, to
- from
);
544 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
545 u8
*object
, char *what
,
546 u8
*start
, unsigned int value
, unsigned int bytes
)
551 fault
= check_bytes(start
, value
, bytes
);
556 while (end
> fault
&& end
[-1] == value
)
559 slab_bug(s
, "%s overwritten", what
);
560 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
561 fault
, end
- 1, fault
[0], value
);
562 print_trailer(s
, page
, object
);
564 restore_bytes(s
, what
, value
, fault
, end
);
572 * Bytes of the object to be managed.
573 * If the freepointer may overlay the object then the free
574 * pointer is the first word of the object.
576 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
579 * object + s->objsize
580 * Padding to reach word boundary. This is also used for Redzoning.
581 * Padding is extended by another word if Redzoning is enabled and
584 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
585 * 0xcc (RED_ACTIVE) for objects in use.
588 * Meta data starts here.
590 * A. Free pointer (if we cannot overwrite object on free)
591 * B. Tracking data for SLAB_STORE_USER
592 * C. Padding to reach required alignment boundary or at mininum
593 * one word if debugging is on to be able to detect writes
594 * before the word boundary.
596 * Padding is done using 0x5a (POISON_INUSE)
599 * Nothing is used beyond s->size.
601 * If slabcaches are merged then the objsize and inuse boundaries are mostly
602 * ignored. And therefore no slab options that rely on these boundaries
603 * may be used with merged slabcaches.
606 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
608 unsigned long off
= s
->inuse
; /* The end of info */
611 /* Freepointer is placed after the object. */
612 off
+= sizeof(void *);
614 if (s
->flags
& SLAB_STORE_USER
)
615 /* We also have user information there */
616 off
+= 2 * sizeof(struct track
);
621 return check_bytes_and_report(s
, page
, p
, "Object padding",
622 p
+ off
, POISON_INUSE
, s
->size
- off
);
625 /* Check the pad bytes at the end of a slab page */
626 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
634 if (!(s
->flags
& SLAB_POISON
))
637 start
= page_address(page
);
638 length
= (PAGE_SIZE
<< compound_order(page
));
639 end
= start
+ length
;
640 remainder
= length
% s
->size
;
644 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
647 while (end
> fault
&& end
[-1] == POISON_INUSE
)
650 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
651 print_section("Padding", end
- remainder
, remainder
);
653 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
657 static int check_object(struct kmem_cache
*s
, struct page
*page
,
658 void *object
, int active
)
661 u8
*endobject
= object
+ s
->objsize
;
663 if (s
->flags
& SLAB_RED_ZONE
) {
665 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
667 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
668 endobject
, red
, s
->inuse
- s
->objsize
))
671 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
672 check_bytes_and_report(s
, page
, p
, "Alignment padding",
673 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
677 if (s
->flags
& SLAB_POISON
) {
678 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
679 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
680 POISON_FREE
, s
->objsize
- 1) ||
681 !check_bytes_and_report(s
, page
, p
, "Poison",
682 p
+ s
->objsize
- 1, POISON_END
, 1)))
685 * check_pad_bytes cleans up on its own.
687 check_pad_bytes(s
, page
, p
);
690 if (!s
->offset
&& active
)
692 * Object and freepointer overlap. Cannot check
693 * freepointer while object is allocated.
697 /* Check free pointer validity */
698 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
699 object_err(s
, page
, p
, "Freepointer corrupt");
701 * No choice but to zap it and thus lose the remainder
702 * of the free objects in this slab. May cause
703 * another error because the object count is now wrong.
705 set_freepointer(s
, p
, NULL
);
711 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
715 VM_BUG_ON(!irqs_disabled());
717 if (!PageSlab(page
)) {
718 slab_err(s
, page
, "Not a valid slab page");
722 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
723 if (page
->objects
> maxobj
) {
724 slab_err(s
, page
, "objects %u > max %u",
725 s
->name
, page
->objects
, maxobj
);
728 if (page
->inuse
> page
->objects
) {
729 slab_err(s
, page
, "inuse %u > max %u",
730 s
->name
, page
->inuse
, page
->objects
);
733 /* Slab_pad_check fixes things up after itself */
734 slab_pad_check(s
, page
);
739 * Determine if a certain object on a page is on the freelist. Must hold the
740 * slab lock to guarantee that the chains are in a consistent state.
742 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
745 void *fp
= page
->freelist
;
747 unsigned long max_objects
;
749 while (fp
&& nr
<= page
->objects
) {
752 if (!check_valid_pointer(s
, page
, fp
)) {
754 object_err(s
, page
, object
,
755 "Freechain corrupt");
756 set_freepointer(s
, object
, NULL
);
759 slab_err(s
, page
, "Freepointer corrupt");
760 page
->freelist
= NULL
;
761 page
->inuse
= page
->objects
;
762 slab_fix(s
, "Freelist cleared");
768 fp
= get_freepointer(s
, object
);
772 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
773 if (max_objects
> MAX_OBJS_PER_PAGE
)
774 max_objects
= MAX_OBJS_PER_PAGE
;
776 if (page
->objects
!= max_objects
) {
777 slab_err(s
, page
, "Wrong number of objects. Found %d but "
778 "should be %d", page
->objects
, max_objects
);
779 page
->objects
= max_objects
;
780 slab_fix(s
, "Number of objects adjusted.");
782 if (page
->inuse
!= page
->objects
- nr
) {
783 slab_err(s
, page
, "Wrong object count. Counter is %d but "
784 "counted were %d", page
->inuse
, page
->objects
- nr
);
785 page
->inuse
= page
->objects
- nr
;
786 slab_fix(s
, "Object count adjusted.");
788 return search
== NULL
;
791 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
794 if (s
->flags
& SLAB_TRACE
) {
795 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
797 alloc
? "alloc" : "free",
802 print_section("Object", (void *)object
, s
->objsize
);
809 * Tracking of fully allocated slabs for debugging purposes.
811 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
813 spin_lock(&n
->list_lock
);
814 list_add(&page
->lru
, &n
->full
);
815 spin_unlock(&n
->list_lock
);
818 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
820 struct kmem_cache_node
*n
;
822 if (!(s
->flags
& SLAB_STORE_USER
))
825 n
= get_node(s
, page_to_nid(page
));
827 spin_lock(&n
->list_lock
);
828 list_del(&page
->lru
);
829 spin_unlock(&n
->list_lock
);
832 /* Tracking of the number of slabs for debugging purposes */
833 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
835 struct kmem_cache_node
*n
= get_node(s
, node
);
837 return atomic_long_read(&n
->nr_slabs
);
840 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
842 struct kmem_cache_node
*n
= get_node(s
, node
);
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
850 if (!NUMA_BUILD
|| n
) {
851 atomic_long_inc(&n
->nr_slabs
);
852 atomic_long_add(objects
, &n
->total_objects
);
855 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
857 struct kmem_cache_node
*n
= get_node(s
, node
);
859 atomic_long_dec(&n
->nr_slabs
);
860 atomic_long_sub(objects
, &n
->total_objects
);
863 /* Object debug checks for alloc/free paths */
864 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
867 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
870 init_object(s
, object
, 0);
871 init_tracking(s
, object
);
874 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
875 void *object
, unsigned long addr
)
877 if (!check_slab(s
, page
))
880 if (!on_freelist(s
, page
, object
)) {
881 object_err(s
, page
, object
, "Object already allocated");
885 if (!check_valid_pointer(s
, page
, object
)) {
886 object_err(s
, page
, object
, "Freelist Pointer check fails");
890 if (!check_object(s
, page
, object
, 0))
893 /* Success perform special debug activities for allocs */
894 if (s
->flags
& SLAB_STORE_USER
)
895 set_track(s
, object
, TRACK_ALLOC
, addr
);
896 trace(s
, page
, object
, 1);
897 init_object(s
, object
, 1);
901 if (PageSlab(page
)) {
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
907 slab_fix(s
, "Marking all objects used");
908 page
->inuse
= page
->objects
;
909 page
->freelist
= NULL
;
914 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
915 void *object
, unsigned long addr
)
917 if (!check_slab(s
, page
))
920 if (!check_valid_pointer(s
, page
, object
)) {
921 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
925 if (on_freelist(s
, page
, object
)) {
926 object_err(s
, page
, object
, "Object already free");
930 if (!check_object(s
, page
, object
, 1))
933 if (unlikely(s
!= page
->slab
)) {
934 if (!PageSlab(page
)) {
935 slab_err(s
, page
, "Attempt to free object(0x%p) "
936 "outside of slab", object
);
937 } else if (!page
->slab
) {
939 "SLUB <none>: no slab for object 0x%p.\n",
943 object_err(s
, page
, object
,
944 "page slab pointer corrupt.");
948 /* Special debug activities for freeing objects */
949 if (!PageSlubFrozen(page
) && !page
->freelist
)
950 remove_full(s
, page
);
951 if (s
->flags
& SLAB_STORE_USER
)
952 set_track(s
, object
, TRACK_FREE
, addr
);
953 trace(s
, page
, object
, 0);
954 init_object(s
, object
, 0);
958 slab_fix(s
, "Object at 0x%p not freed", object
);
962 static int __init
setup_slub_debug(char *str
)
964 slub_debug
= DEBUG_DEFAULT_FLAGS
;
965 if (*str
++ != '=' || !*str
)
967 * No options specified. Switch on full debugging.
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
981 * Switch off all debugging measures.
986 * Determine which debug features should be switched on
988 for (; *str
&& *str
!= ','; str
++) {
989 switch (tolower(*str
)) {
991 slub_debug
|= SLAB_DEBUG_FREE
;
994 slub_debug
|= SLAB_RED_ZONE
;
997 slub_debug
|= SLAB_POISON
;
1000 slub_debug
|= SLAB_STORE_USER
;
1003 slub_debug
|= SLAB_TRACE
;
1006 printk(KERN_ERR
"slub_debug option '%c' "
1007 "unknown. skipped\n", *str
);
1013 slub_debug_slabs
= str
+ 1;
1018 __setup("slub_debug", setup_slub_debug
);
1020 static unsigned long kmem_cache_flags(unsigned long objsize
,
1021 unsigned long flags
, const char *name
,
1022 void (*ctor
)(void *))
1025 * Enable debugging if selected on the kernel commandline.
1027 if (slub_debug
&& (!slub_debug_slabs
||
1028 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1029 flags
|= slub_debug
;
1034 static inline void setup_object_debug(struct kmem_cache
*s
,
1035 struct page
*page
, void *object
) {}
1037 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1038 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1040 static inline int free_debug_processing(struct kmem_cache
*s
,
1041 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1043 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1045 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1046 void *object
, int active
) { return 1; }
1047 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1048 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1049 unsigned long flags
, const char *name
,
1050 void (*ctor
)(void *))
1054 #define slub_debug 0
1056 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1058 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1060 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1065 * Slab allocation and freeing
1067 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1068 struct kmem_cache_order_objects oo
)
1070 int order
= oo_order(oo
);
1073 return alloc_pages(flags
, order
);
1075 return alloc_pages_node(node
, flags
, order
);
1078 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1081 struct kmem_cache_order_objects oo
= s
->oo
;
1083 flags
|= s
->allocflags
;
1085 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1087 if (unlikely(!page
)) {
1090 * Allocation may have failed due to fragmentation.
1091 * Try a lower order alloc if possible
1093 page
= alloc_slab_page(flags
, node
, oo
);
1097 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1099 page
->objects
= oo_objects(oo
);
1100 mod_zone_page_state(page_zone(page
),
1101 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1102 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1108 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1111 setup_object_debug(s
, page
, object
);
1112 if (unlikely(s
->ctor
))
1116 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1123 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1125 page
= allocate_slab(s
,
1126 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1130 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1132 page
->flags
|= 1 << PG_slab
;
1133 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1134 SLAB_STORE_USER
| SLAB_TRACE
))
1135 __SetPageSlubDebug(page
);
1137 start
= page_address(page
);
1139 if (unlikely(s
->flags
& SLAB_POISON
))
1140 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1143 for_each_object(p
, s
, start
, page
->objects
) {
1144 setup_object(s
, page
, last
);
1145 set_freepointer(s
, last
, p
);
1148 setup_object(s
, page
, last
);
1149 set_freepointer(s
, last
, NULL
);
1151 page
->freelist
= start
;
1157 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1159 int order
= compound_order(page
);
1160 int pages
= 1 << order
;
1162 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1165 slab_pad_check(s
, page
);
1166 for_each_object(p
, s
, page_address(page
),
1168 check_object(s
, page
, p
, 0);
1169 __ClearPageSlubDebug(page
);
1172 mod_zone_page_state(page_zone(page
),
1173 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1174 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1177 __ClearPageSlab(page
);
1178 reset_page_mapcount(page
);
1179 __free_pages(page
, order
);
1182 static void rcu_free_slab(struct rcu_head
*h
)
1186 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1187 __free_slab(page
->slab
, page
);
1190 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1192 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1194 * RCU free overloads the RCU head over the LRU
1196 struct rcu_head
*head
= (void *)&page
->lru
;
1198 call_rcu(head
, rcu_free_slab
);
1200 __free_slab(s
, page
);
1203 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1205 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1210 * Per slab locking using the pagelock
1212 static __always_inline
void slab_lock(struct page
*page
)
1214 bit_spin_lock(PG_locked
, &page
->flags
);
1217 static __always_inline
void slab_unlock(struct page
*page
)
1219 __bit_spin_unlock(PG_locked
, &page
->flags
);
1222 static __always_inline
int slab_trylock(struct page
*page
)
1226 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1231 * Management of partially allocated slabs
1233 static void add_partial(struct kmem_cache_node
*n
,
1234 struct page
*page
, int tail
)
1236 spin_lock(&n
->list_lock
);
1239 list_add_tail(&page
->lru
, &n
->partial
);
1241 list_add(&page
->lru
, &n
->partial
);
1242 spin_unlock(&n
->list_lock
);
1245 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1247 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1249 spin_lock(&n
->list_lock
);
1250 list_del(&page
->lru
);
1252 spin_unlock(&n
->list_lock
);
1256 * Lock slab and remove from the partial list.
1258 * Must hold list_lock.
1260 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1263 if (slab_trylock(page
)) {
1264 list_del(&page
->lru
);
1266 __SetPageSlubFrozen(page
);
1273 * Try to allocate a partial slab from a specific node.
1275 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1280 * Racy check. If we mistakenly see no partial slabs then we
1281 * just allocate an empty slab. If we mistakenly try to get a
1282 * partial slab and there is none available then get_partials()
1285 if (!n
|| !n
->nr_partial
)
1288 spin_lock(&n
->list_lock
);
1289 list_for_each_entry(page
, &n
->partial
, lru
)
1290 if (lock_and_freeze_slab(n
, page
))
1294 spin_unlock(&n
->list_lock
);
1299 * Get a page from somewhere. Search in increasing NUMA distances.
1301 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1304 struct zonelist
*zonelist
;
1307 enum zone_type high_zoneidx
= gfp_zone(flags
);
1311 * The defrag ratio allows a configuration of the tradeoffs between
1312 * inter node defragmentation and node local allocations. A lower
1313 * defrag_ratio increases the tendency to do local allocations
1314 * instead of attempting to obtain partial slabs from other nodes.
1316 * If the defrag_ratio is set to 0 then kmalloc() always
1317 * returns node local objects. If the ratio is higher then kmalloc()
1318 * may return off node objects because partial slabs are obtained
1319 * from other nodes and filled up.
1321 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1322 * defrag_ratio = 1000) then every (well almost) allocation will
1323 * first attempt to defrag slab caches on other nodes. This means
1324 * scanning over all nodes to look for partial slabs which may be
1325 * expensive if we do it every time we are trying to find a slab
1326 * with available objects.
1328 if (!s
->remote_node_defrag_ratio
||
1329 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1332 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1333 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1334 struct kmem_cache_node
*n
;
1336 n
= get_node(s
, zone_to_nid(zone
));
1338 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1339 n
->nr_partial
> n
->min_partial
) {
1340 page
= get_partial_node(n
);
1350 * Get a partial page, lock it and return it.
1352 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1355 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1357 page
= get_partial_node(get_node(s
, searchnode
));
1358 if (page
|| (flags
& __GFP_THISNODE
))
1361 return get_any_partial(s
, flags
);
1365 * Move a page back to the lists.
1367 * Must be called with the slab lock held.
1369 * On exit the slab lock will have been dropped.
1371 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1373 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1374 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1376 __ClearPageSlubFrozen(page
);
1379 if (page
->freelist
) {
1380 add_partial(n
, page
, tail
);
1381 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1383 stat(c
, DEACTIVATE_FULL
);
1384 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1385 (s
->flags
& SLAB_STORE_USER
))
1390 stat(c
, DEACTIVATE_EMPTY
);
1391 if (n
->nr_partial
< n
->min_partial
) {
1393 * Adding an empty slab to the partial slabs in order
1394 * to avoid page allocator overhead. This slab needs
1395 * to come after the other slabs with objects in
1396 * so that the others get filled first. That way the
1397 * size of the partial list stays small.
1399 * kmem_cache_shrink can reclaim any empty slabs from
1402 add_partial(n
, page
, 1);
1406 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1407 discard_slab(s
, page
);
1413 * Remove the cpu slab
1415 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1417 struct page
*page
= c
->page
;
1421 stat(c
, DEACTIVATE_REMOTE_FREES
);
1423 * Merge cpu freelist into slab freelist. Typically we get here
1424 * because both freelists are empty. So this is unlikely
1427 while (unlikely(c
->freelist
)) {
1430 tail
= 0; /* Hot objects. Put the slab first */
1432 /* Retrieve object from cpu_freelist */
1433 object
= c
->freelist
;
1434 c
->freelist
= c
->freelist
[c
->offset
];
1436 /* And put onto the regular freelist */
1437 object
[c
->offset
] = page
->freelist
;
1438 page
->freelist
= object
;
1442 unfreeze_slab(s
, page
, tail
);
1445 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1447 stat(c
, CPUSLAB_FLUSH
);
1449 deactivate_slab(s
, c
);
1455 * Called from IPI handler with interrupts disabled.
1457 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1459 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1461 if (likely(c
&& c
->page
))
1465 static void flush_cpu_slab(void *d
)
1467 struct kmem_cache
*s
= d
;
1469 __flush_cpu_slab(s
, smp_processor_id());
1472 static void flush_all(struct kmem_cache
*s
)
1474 on_each_cpu(flush_cpu_slab
, s
, 1);
1478 * Check if the objects in a per cpu structure fit numa
1479 * locality expectations.
1481 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1484 if (node
!= -1 && c
->node
!= node
)
1491 * Slow path. The lockless freelist is empty or we need to perform
1494 * Interrupts are disabled.
1496 * Processing is still very fast if new objects have been freed to the
1497 * regular freelist. In that case we simply take over the regular freelist
1498 * as the lockless freelist and zap the regular freelist.
1500 * If that is not working then we fall back to the partial lists. We take the
1501 * first element of the freelist as the object to allocate now and move the
1502 * rest of the freelist to the lockless freelist.
1504 * And if we were unable to get a new slab from the partial slab lists then
1505 * we need to allocate a new slab. This is the slowest path since it involves
1506 * a call to the page allocator and the setup of a new slab.
1508 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1509 unsigned long addr
, struct kmem_cache_cpu
*c
)
1514 /* We handle __GFP_ZERO in the caller */
1515 gfpflags
&= ~__GFP_ZERO
;
1521 if (unlikely(!node_match(c
, node
)))
1524 stat(c
, ALLOC_REFILL
);
1527 object
= c
->page
->freelist
;
1528 if (unlikely(!object
))
1530 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1533 c
->freelist
= object
[c
->offset
];
1534 c
->page
->inuse
= c
->page
->objects
;
1535 c
->page
->freelist
= NULL
;
1536 c
->node
= page_to_nid(c
->page
);
1538 slab_unlock(c
->page
);
1539 stat(c
, ALLOC_SLOWPATH
);
1543 deactivate_slab(s
, c
);
1546 new = get_partial(s
, gfpflags
, node
);
1549 stat(c
, ALLOC_FROM_PARTIAL
);
1553 if (gfpflags
& __GFP_WAIT
)
1556 new = new_slab(s
, gfpflags
, node
);
1558 if (gfpflags
& __GFP_WAIT
)
1559 local_irq_disable();
1562 c
= get_cpu_slab(s
, smp_processor_id());
1563 stat(c
, ALLOC_SLAB
);
1567 __SetPageSlubFrozen(new);
1573 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1577 c
->page
->freelist
= object
[c
->offset
];
1583 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1584 * have the fastpath folded into their functions. So no function call
1585 * overhead for requests that can be satisfied on the fastpath.
1587 * The fastpath works by first checking if the lockless freelist can be used.
1588 * If not then __slab_alloc is called for slow processing.
1590 * Otherwise we can simply pick the next object from the lockless free list.
1592 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1593 gfp_t gfpflags
, int node
, unsigned long addr
)
1596 struct kmem_cache_cpu
*c
;
1597 unsigned long flags
;
1598 unsigned int objsize
;
1600 lockdep_trace_alloc(gfpflags
);
1601 might_sleep_if(gfpflags
& __GFP_WAIT
);
1603 if (should_failslab(s
->objsize
, gfpflags
))
1606 local_irq_save(flags
);
1607 c
= get_cpu_slab(s
, smp_processor_id());
1608 objsize
= c
->objsize
;
1609 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1611 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1614 object
= c
->freelist
;
1615 c
->freelist
= object
[c
->offset
];
1616 stat(c
, ALLOC_FASTPATH
);
1618 local_irq_restore(flags
);
1620 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1621 memset(object
, 0, objsize
);
1626 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1628 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1630 kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, ret
,
1631 s
->objsize
, s
->size
, gfpflags
);
1635 EXPORT_SYMBOL(kmem_cache_alloc
);
1637 #ifdef CONFIG_KMEMTRACE
1638 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1640 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1642 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1646 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1648 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1650 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, ret
,
1651 s
->objsize
, s
->size
, gfpflags
, node
);
1655 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1658 #ifdef CONFIG_KMEMTRACE
1659 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1663 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1665 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1669 * Slow patch handling. This may still be called frequently since objects
1670 * have a longer lifetime than the cpu slabs in most processing loads.
1672 * So we still attempt to reduce cache line usage. Just take the slab
1673 * lock and free the item. If there is no additional partial page
1674 * handling required then we can return immediately.
1676 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1677 void *x
, unsigned long addr
, unsigned int offset
)
1680 void **object
= (void *)x
;
1681 struct kmem_cache_cpu
*c
;
1683 c
= get_cpu_slab(s
, raw_smp_processor_id());
1684 stat(c
, FREE_SLOWPATH
);
1687 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1691 prior
= object
[offset
] = page
->freelist
;
1692 page
->freelist
= object
;
1695 if (unlikely(PageSlubFrozen(page
))) {
1696 stat(c
, FREE_FROZEN
);
1700 if (unlikely(!page
->inuse
))
1704 * Objects left in the slab. If it was not on the partial list before
1707 if (unlikely(!prior
)) {
1708 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1709 stat(c
, FREE_ADD_PARTIAL
);
1719 * Slab still on the partial list.
1721 remove_partial(s
, page
);
1722 stat(c
, FREE_REMOVE_PARTIAL
);
1726 discard_slab(s
, page
);
1730 if (!free_debug_processing(s
, page
, x
, addr
))
1736 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1737 * can perform fastpath freeing without additional function calls.
1739 * The fastpath is only possible if we are freeing to the current cpu slab
1740 * of this processor. This typically the case if we have just allocated
1743 * If fastpath is not possible then fall back to __slab_free where we deal
1744 * with all sorts of special processing.
1746 static __always_inline
void slab_free(struct kmem_cache
*s
,
1747 struct page
*page
, void *x
, unsigned long addr
)
1749 void **object
= (void *)x
;
1750 struct kmem_cache_cpu
*c
;
1751 unsigned long flags
;
1753 local_irq_save(flags
);
1754 c
= get_cpu_slab(s
, smp_processor_id());
1755 debug_check_no_locks_freed(object
, c
->objsize
);
1756 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1757 debug_check_no_obj_freed(object
, s
->objsize
);
1758 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1759 object
[c
->offset
] = c
->freelist
;
1760 c
->freelist
= object
;
1761 stat(c
, FREE_FASTPATH
);
1763 __slab_free(s
, page
, x
, addr
, c
->offset
);
1765 local_irq_restore(flags
);
1768 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1772 page
= virt_to_head_page(x
);
1774 slab_free(s
, page
, x
, _RET_IP_
);
1776 kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, x
);
1778 EXPORT_SYMBOL(kmem_cache_free
);
1780 /* Figure out on which slab page the object resides */
1781 static struct page
*get_object_page(const void *x
)
1783 struct page
*page
= virt_to_head_page(x
);
1785 if (!PageSlab(page
))
1792 * Object placement in a slab is made very easy because we always start at
1793 * offset 0. If we tune the size of the object to the alignment then we can
1794 * get the required alignment by putting one properly sized object after
1797 * Notice that the allocation order determines the sizes of the per cpu
1798 * caches. Each processor has always one slab available for allocations.
1799 * Increasing the allocation order reduces the number of times that slabs
1800 * must be moved on and off the partial lists and is therefore a factor in
1805 * Mininum / Maximum order of slab pages. This influences locking overhead
1806 * and slab fragmentation. A higher order reduces the number of partial slabs
1807 * and increases the number of allocations possible without having to
1808 * take the list_lock.
1810 static int slub_min_order
;
1811 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1812 static int slub_min_objects
;
1815 * Merge control. If this is set then no merging of slab caches will occur.
1816 * (Could be removed. This was introduced to pacify the merge skeptics.)
1818 static int slub_nomerge
;
1821 * Calculate the order of allocation given an slab object size.
1823 * The order of allocation has significant impact on performance and other
1824 * system components. Generally order 0 allocations should be preferred since
1825 * order 0 does not cause fragmentation in the page allocator. Larger objects
1826 * be problematic to put into order 0 slabs because there may be too much
1827 * unused space left. We go to a higher order if more than 1/16th of the slab
1830 * In order to reach satisfactory performance we must ensure that a minimum
1831 * number of objects is in one slab. Otherwise we may generate too much
1832 * activity on the partial lists which requires taking the list_lock. This is
1833 * less a concern for large slabs though which are rarely used.
1835 * slub_max_order specifies the order where we begin to stop considering the
1836 * number of objects in a slab as critical. If we reach slub_max_order then
1837 * we try to keep the page order as low as possible. So we accept more waste
1838 * of space in favor of a small page order.
1840 * Higher order allocations also allow the placement of more objects in a
1841 * slab and thereby reduce object handling overhead. If the user has
1842 * requested a higher mininum order then we start with that one instead of
1843 * the smallest order which will fit the object.
1845 static inline int slab_order(int size
, int min_objects
,
1846 int max_order
, int fract_leftover
)
1850 int min_order
= slub_min_order
;
1852 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1853 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1855 for (order
= max(min_order
,
1856 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1857 order
<= max_order
; order
++) {
1859 unsigned long slab_size
= PAGE_SIZE
<< order
;
1861 if (slab_size
< min_objects
* size
)
1864 rem
= slab_size
% size
;
1866 if (rem
<= slab_size
/ fract_leftover
)
1874 static inline int calculate_order(int size
)
1881 * Attempt to find best configuration for a slab. This
1882 * works by first attempting to generate a layout with
1883 * the best configuration and backing off gradually.
1885 * First we reduce the acceptable waste in a slab. Then
1886 * we reduce the minimum objects required in a slab.
1888 min_objects
= slub_min_objects
;
1890 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1891 while (min_objects
> 1) {
1893 while (fraction
>= 4) {
1894 order
= slab_order(size
, min_objects
,
1895 slub_max_order
, fraction
);
1896 if (order
<= slub_max_order
)
1904 * We were unable to place multiple objects in a slab. Now
1905 * lets see if we can place a single object there.
1907 order
= slab_order(size
, 1, slub_max_order
, 1);
1908 if (order
<= slub_max_order
)
1912 * Doh this slab cannot be placed using slub_max_order.
1914 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1915 if (order
<= MAX_ORDER
)
1921 * Figure out what the alignment of the objects will be.
1923 static unsigned long calculate_alignment(unsigned long flags
,
1924 unsigned long align
, unsigned long size
)
1927 * If the user wants hardware cache aligned objects then follow that
1928 * suggestion if the object is sufficiently large.
1930 * The hardware cache alignment cannot override the specified
1931 * alignment though. If that is greater then use it.
1933 if (flags
& SLAB_HWCACHE_ALIGN
) {
1934 unsigned long ralign
= cache_line_size();
1935 while (size
<= ralign
/ 2)
1937 align
= max(align
, ralign
);
1940 if (align
< ARCH_SLAB_MINALIGN
)
1941 align
= ARCH_SLAB_MINALIGN
;
1943 return ALIGN(align
, sizeof(void *));
1946 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1947 struct kmem_cache_cpu
*c
)
1952 c
->offset
= s
->offset
/ sizeof(void *);
1953 c
->objsize
= s
->objsize
;
1954 #ifdef CONFIG_SLUB_STATS
1955 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1960 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1965 * The larger the object size is, the more pages we want on the partial
1966 * list to avoid pounding the page allocator excessively.
1968 n
->min_partial
= ilog2(s
->size
);
1969 if (n
->min_partial
< MIN_PARTIAL
)
1970 n
->min_partial
= MIN_PARTIAL
;
1971 else if (n
->min_partial
> MAX_PARTIAL
)
1972 n
->min_partial
= MAX_PARTIAL
;
1974 spin_lock_init(&n
->list_lock
);
1975 INIT_LIST_HEAD(&n
->partial
);
1976 #ifdef CONFIG_SLUB_DEBUG
1977 atomic_long_set(&n
->nr_slabs
, 0);
1978 atomic_long_set(&n
->total_objects
, 0);
1979 INIT_LIST_HEAD(&n
->full
);
1985 * Per cpu array for per cpu structures.
1987 * The per cpu array places all kmem_cache_cpu structures from one processor
1988 * close together meaning that it becomes possible that multiple per cpu
1989 * structures are contained in one cacheline. This may be particularly
1990 * beneficial for the kmalloc caches.
1992 * A desktop system typically has around 60-80 slabs. With 100 here we are
1993 * likely able to get per cpu structures for all caches from the array defined
1994 * here. We must be able to cover all kmalloc caches during bootstrap.
1996 * If the per cpu array is exhausted then fall back to kmalloc
1997 * of individual cachelines. No sharing is possible then.
1999 #define NR_KMEM_CACHE_CPU 100
2001 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
2002 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
2004 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2005 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
2007 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2008 int cpu
, gfp_t flags
)
2010 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2013 per_cpu(kmem_cache_cpu_free
, cpu
) =
2014 (void *)c
->freelist
;
2016 /* Table overflow: So allocate ourselves */
2018 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2019 flags
, cpu_to_node(cpu
));
2024 init_kmem_cache_cpu(s
, c
);
2028 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2030 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2031 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2035 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2036 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2039 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2043 for_each_online_cpu(cpu
) {
2044 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2047 s
->cpu_slab
[cpu
] = NULL
;
2048 free_kmem_cache_cpu(c
, cpu
);
2053 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2057 for_each_online_cpu(cpu
) {
2058 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2063 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2065 free_kmem_cache_cpus(s
);
2068 s
->cpu_slab
[cpu
] = c
;
2074 * Initialize the per cpu array.
2076 static void init_alloc_cpu_cpu(int cpu
)
2080 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2083 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2084 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2086 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2089 static void __init
init_alloc_cpu(void)
2093 for_each_online_cpu(cpu
)
2094 init_alloc_cpu_cpu(cpu
);
2098 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2099 static inline void init_alloc_cpu(void) {}
2101 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2103 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2110 * No kmalloc_node yet so do it by hand. We know that this is the first
2111 * slab on the node for this slabcache. There are no concurrent accesses
2114 * Note that this function only works on the kmalloc_node_cache
2115 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2116 * memory on a fresh node that has no slab structures yet.
2118 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2121 struct kmem_cache_node
*n
;
2122 unsigned long flags
;
2124 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2126 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2129 if (page_to_nid(page
) != node
) {
2130 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2132 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2133 "in order to be able to continue\n");
2138 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2140 kmalloc_caches
->node
[node
] = n
;
2141 #ifdef CONFIG_SLUB_DEBUG
2142 init_object(kmalloc_caches
, n
, 1);
2143 init_tracking(kmalloc_caches
, n
);
2145 init_kmem_cache_node(n
, kmalloc_caches
);
2146 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2149 * lockdep requires consistent irq usage for each lock
2150 * so even though there cannot be a race this early in
2151 * the boot sequence, we still disable irqs.
2153 local_irq_save(flags
);
2154 add_partial(n
, page
, 0);
2155 local_irq_restore(flags
);
2158 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2162 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2163 struct kmem_cache_node
*n
= s
->node
[node
];
2164 if (n
&& n
!= &s
->local_node
)
2165 kmem_cache_free(kmalloc_caches
, n
);
2166 s
->node
[node
] = NULL
;
2170 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2175 if (slab_state
>= UP
)
2176 local_node
= page_to_nid(virt_to_page(s
));
2180 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2181 struct kmem_cache_node
*n
;
2183 if (local_node
== node
)
2186 if (slab_state
== DOWN
) {
2187 early_kmem_cache_node_alloc(gfpflags
, node
);
2190 n
= kmem_cache_alloc_node(kmalloc_caches
,
2194 free_kmem_cache_nodes(s
);
2200 init_kmem_cache_node(n
, s
);
2205 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2209 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2211 init_kmem_cache_node(&s
->local_node
, s
);
2217 * calculate_sizes() determines the order and the distribution of data within
2220 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2222 unsigned long flags
= s
->flags
;
2223 unsigned long size
= s
->objsize
;
2224 unsigned long align
= s
->align
;
2228 * Round up object size to the next word boundary. We can only
2229 * place the free pointer at word boundaries and this determines
2230 * the possible location of the free pointer.
2232 size
= ALIGN(size
, sizeof(void *));
2234 #ifdef CONFIG_SLUB_DEBUG
2236 * Determine if we can poison the object itself. If the user of
2237 * the slab may touch the object after free or before allocation
2238 * then we should never poison the object itself.
2240 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2242 s
->flags
|= __OBJECT_POISON
;
2244 s
->flags
&= ~__OBJECT_POISON
;
2248 * If we are Redzoning then check if there is some space between the
2249 * end of the object and the free pointer. If not then add an
2250 * additional word to have some bytes to store Redzone information.
2252 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2253 size
+= sizeof(void *);
2257 * With that we have determined the number of bytes in actual use
2258 * by the object. This is the potential offset to the free pointer.
2262 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2265 * Relocate free pointer after the object if it is not
2266 * permitted to overwrite the first word of the object on
2269 * This is the case if we do RCU, have a constructor or
2270 * destructor or are poisoning the objects.
2273 size
+= sizeof(void *);
2276 #ifdef CONFIG_SLUB_DEBUG
2277 if (flags
& SLAB_STORE_USER
)
2279 * Need to store information about allocs and frees after
2282 size
+= 2 * sizeof(struct track
);
2284 if (flags
& SLAB_RED_ZONE
)
2286 * Add some empty padding so that we can catch
2287 * overwrites from earlier objects rather than let
2288 * tracking information or the free pointer be
2289 * corrupted if a user writes before the start
2292 size
+= sizeof(void *);
2296 * Determine the alignment based on various parameters that the
2297 * user specified and the dynamic determination of cache line size
2300 align
= calculate_alignment(flags
, align
, s
->objsize
);
2303 * SLUB stores one object immediately after another beginning from
2304 * offset 0. In order to align the objects we have to simply size
2305 * each object to conform to the alignment.
2307 size
= ALIGN(size
, align
);
2309 if (forced_order
>= 0)
2310 order
= forced_order
;
2312 order
= calculate_order(size
);
2319 s
->allocflags
|= __GFP_COMP
;
2321 if (s
->flags
& SLAB_CACHE_DMA
)
2322 s
->allocflags
|= SLUB_DMA
;
2324 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2325 s
->allocflags
|= __GFP_RECLAIMABLE
;
2328 * Determine the number of objects per slab
2330 s
->oo
= oo_make(order
, size
);
2331 s
->min
= oo_make(get_order(size
), size
);
2332 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2335 return !!oo_objects(s
->oo
);
2339 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2340 const char *name
, size_t size
,
2341 size_t align
, unsigned long flags
,
2342 void (*ctor
)(void *))
2344 memset(s
, 0, kmem_size
);
2349 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2351 if (!calculate_sizes(s
, -1))
2356 s
->remote_node_defrag_ratio
= 1000;
2358 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2361 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2363 free_kmem_cache_nodes(s
);
2365 if (flags
& SLAB_PANIC
)
2366 panic("Cannot create slab %s size=%lu realsize=%u "
2367 "order=%u offset=%u flags=%lx\n",
2368 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2374 * Check if a given pointer is valid
2376 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2380 page
= get_object_page(object
);
2382 if (!page
|| s
!= page
->slab
)
2383 /* No slab or wrong slab */
2386 if (!check_valid_pointer(s
, page
, object
))
2390 * We could also check if the object is on the slabs freelist.
2391 * But this would be too expensive and it seems that the main
2392 * purpose of kmem_ptr_valid() is to check if the object belongs
2393 * to a certain slab.
2397 EXPORT_SYMBOL(kmem_ptr_validate
);
2400 * Determine the size of a slab object
2402 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2406 EXPORT_SYMBOL(kmem_cache_size
);
2408 const char *kmem_cache_name(struct kmem_cache
*s
)
2412 EXPORT_SYMBOL(kmem_cache_name
);
2414 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2417 #ifdef CONFIG_SLUB_DEBUG
2418 void *addr
= page_address(page
);
2420 DECLARE_BITMAP(map
, page
->objects
);
2422 bitmap_zero(map
, page
->objects
);
2423 slab_err(s
, page
, "%s", text
);
2425 for_each_free_object(p
, s
, page
->freelist
)
2426 set_bit(slab_index(p
, s
, addr
), map
);
2428 for_each_object(p
, s
, addr
, page
->objects
) {
2430 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2431 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2433 print_tracking(s
, p
);
2441 * Attempt to free all partial slabs on a node.
2443 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2445 unsigned long flags
;
2446 struct page
*page
, *h
;
2448 spin_lock_irqsave(&n
->list_lock
, flags
);
2449 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2451 list_del(&page
->lru
);
2452 discard_slab(s
, page
);
2455 list_slab_objects(s
, page
,
2456 "Objects remaining on kmem_cache_close()");
2459 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2463 * Release all resources used by a slab cache.
2465 static inline int kmem_cache_close(struct kmem_cache
*s
)
2471 /* Attempt to free all objects */
2472 free_kmem_cache_cpus(s
);
2473 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2474 struct kmem_cache_node
*n
= get_node(s
, node
);
2477 if (n
->nr_partial
|| slabs_node(s
, node
))
2480 free_kmem_cache_nodes(s
);
2485 * Close a cache and release the kmem_cache structure
2486 * (must be used for caches created using kmem_cache_create)
2488 void kmem_cache_destroy(struct kmem_cache
*s
)
2490 down_write(&slub_lock
);
2494 up_write(&slub_lock
);
2495 if (kmem_cache_close(s
)) {
2496 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2497 "still has objects.\n", s
->name
, __func__
);
2500 sysfs_slab_remove(s
);
2502 up_write(&slub_lock
);
2504 EXPORT_SYMBOL(kmem_cache_destroy
);
2506 /********************************************************************
2508 *******************************************************************/
2510 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2511 EXPORT_SYMBOL(kmalloc_caches
);
2513 static int __init
setup_slub_min_order(char *str
)
2515 get_option(&str
, &slub_min_order
);
2520 __setup("slub_min_order=", setup_slub_min_order
);
2522 static int __init
setup_slub_max_order(char *str
)
2524 get_option(&str
, &slub_max_order
);
2529 __setup("slub_max_order=", setup_slub_max_order
);
2531 static int __init
setup_slub_min_objects(char *str
)
2533 get_option(&str
, &slub_min_objects
);
2538 __setup("slub_min_objects=", setup_slub_min_objects
);
2540 static int __init
setup_slub_nomerge(char *str
)
2546 __setup("slub_nomerge", setup_slub_nomerge
);
2548 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2549 const char *name
, int size
, gfp_t gfp_flags
)
2551 unsigned int flags
= 0;
2553 if (gfp_flags
& SLUB_DMA
)
2554 flags
= SLAB_CACHE_DMA
;
2556 down_write(&slub_lock
);
2557 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2561 list_add(&s
->list
, &slab_caches
);
2562 up_write(&slub_lock
);
2563 if (sysfs_slab_add(s
))
2568 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2571 #ifdef CONFIG_ZONE_DMA
2572 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2574 static void sysfs_add_func(struct work_struct
*w
)
2576 struct kmem_cache
*s
;
2578 down_write(&slub_lock
);
2579 list_for_each_entry(s
, &slab_caches
, list
) {
2580 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2581 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2585 up_write(&slub_lock
);
2588 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2590 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2592 struct kmem_cache
*s
;
2596 s
= kmalloc_caches_dma
[index
];
2600 /* Dynamically create dma cache */
2601 if (flags
& __GFP_WAIT
)
2602 down_write(&slub_lock
);
2604 if (!down_write_trylock(&slub_lock
))
2608 if (kmalloc_caches_dma
[index
])
2611 realsize
= kmalloc_caches
[index
].objsize
;
2612 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2613 (unsigned int)realsize
);
2614 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2616 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2617 realsize
, ARCH_KMALLOC_MINALIGN
,
2618 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2624 list_add(&s
->list
, &slab_caches
);
2625 kmalloc_caches_dma
[index
] = s
;
2627 schedule_work(&sysfs_add_work
);
2630 up_write(&slub_lock
);
2632 return kmalloc_caches_dma
[index
];
2637 * Conversion table for small slabs sizes / 8 to the index in the
2638 * kmalloc array. This is necessary for slabs < 192 since we have non power
2639 * of two cache sizes there. The size of larger slabs can be determined using
2642 static s8 size_index
[24] = {
2669 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2675 return ZERO_SIZE_PTR
;
2677 index
= size_index
[(size
- 1) / 8];
2679 index
= fls(size
- 1);
2681 #ifdef CONFIG_ZONE_DMA
2682 if (unlikely((flags
& SLUB_DMA
)))
2683 return dma_kmalloc_cache(index
, flags
);
2686 return &kmalloc_caches
[index
];
2689 void *__kmalloc(size_t size
, gfp_t flags
)
2691 struct kmem_cache
*s
;
2694 if (unlikely(size
> SLUB_MAX_SIZE
))
2695 return kmalloc_large(size
, flags
);
2697 s
= get_slab(size
, flags
);
2699 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2702 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2704 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC
, _RET_IP_
, ret
,
2705 size
, s
->size
, flags
);
2709 EXPORT_SYMBOL(__kmalloc
);
2711 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2713 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2717 return page_address(page
);
2723 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2725 struct kmem_cache
*s
;
2728 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2729 ret
= kmalloc_large_node(size
, flags
, node
);
2731 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC
,
2733 size
, PAGE_SIZE
<< get_order(size
),
2739 s
= get_slab(size
, flags
);
2741 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2744 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2746 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC
, _RET_IP_
, ret
,
2747 size
, s
->size
, flags
, node
);
2751 EXPORT_SYMBOL(__kmalloc_node
);
2754 size_t ksize(const void *object
)
2757 struct kmem_cache
*s
;
2759 if (unlikely(object
== ZERO_SIZE_PTR
))
2762 page
= virt_to_head_page(object
);
2764 if (unlikely(!PageSlab(page
))) {
2765 WARN_ON(!PageCompound(page
));
2766 return PAGE_SIZE
<< compound_order(page
);
2770 #ifdef CONFIG_SLUB_DEBUG
2772 * Debugging requires use of the padding between object
2773 * and whatever may come after it.
2775 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2780 * If we have the need to store the freelist pointer
2781 * back there or track user information then we can
2782 * only use the space before that information.
2784 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2787 * Else we can use all the padding etc for the allocation
2791 EXPORT_SYMBOL(ksize
);
2793 void kfree(const void *x
)
2796 void *object
= (void *)x
;
2798 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2801 page
= virt_to_head_page(x
);
2802 if (unlikely(!PageSlab(page
))) {
2803 BUG_ON(!PageCompound(page
));
2807 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2809 kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC
, _RET_IP_
, x
);
2811 EXPORT_SYMBOL(kfree
);
2814 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2815 * the remaining slabs by the number of items in use. The slabs with the
2816 * most items in use come first. New allocations will then fill those up
2817 * and thus they can be removed from the partial lists.
2819 * The slabs with the least items are placed last. This results in them
2820 * being allocated from last increasing the chance that the last objects
2821 * are freed in them.
2823 int kmem_cache_shrink(struct kmem_cache
*s
)
2827 struct kmem_cache_node
*n
;
2830 int objects
= oo_objects(s
->max
);
2831 struct list_head
*slabs_by_inuse
=
2832 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2833 unsigned long flags
;
2835 if (!slabs_by_inuse
)
2839 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2840 n
= get_node(s
, node
);
2845 for (i
= 0; i
< objects
; i
++)
2846 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2848 spin_lock_irqsave(&n
->list_lock
, flags
);
2851 * Build lists indexed by the items in use in each slab.
2853 * Note that concurrent frees may occur while we hold the
2854 * list_lock. page->inuse here is the upper limit.
2856 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2857 if (!page
->inuse
&& slab_trylock(page
)) {
2859 * Must hold slab lock here because slab_free
2860 * may have freed the last object and be
2861 * waiting to release the slab.
2863 list_del(&page
->lru
);
2866 discard_slab(s
, page
);
2868 list_move(&page
->lru
,
2869 slabs_by_inuse
+ page
->inuse
);
2874 * Rebuild the partial list with the slabs filled up most
2875 * first and the least used slabs at the end.
2877 for (i
= objects
- 1; i
>= 0; i
--)
2878 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2880 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2883 kfree(slabs_by_inuse
);
2886 EXPORT_SYMBOL(kmem_cache_shrink
);
2888 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2889 static int slab_mem_going_offline_callback(void *arg
)
2891 struct kmem_cache
*s
;
2893 down_read(&slub_lock
);
2894 list_for_each_entry(s
, &slab_caches
, list
)
2895 kmem_cache_shrink(s
);
2896 up_read(&slub_lock
);
2901 static void slab_mem_offline_callback(void *arg
)
2903 struct kmem_cache_node
*n
;
2904 struct kmem_cache
*s
;
2905 struct memory_notify
*marg
= arg
;
2908 offline_node
= marg
->status_change_nid
;
2911 * If the node still has available memory. we need kmem_cache_node
2914 if (offline_node
< 0)
2917 down_read(&slub_lock
);
2918 list_for_each_entry(s
, &slab_caches
, list
) {
2919 n
= get_node(s
, offline_node
);
2922 * if n->nr_slabs > 0, slabs still exist on the node
2923 * that is going down. We were unable to free them,
2924 * and offline_pages() function shoudn't call this
2925 * callback. So, we must fail.
2927 BUG_ON(slabs_node(s
, offline_node
));
2929 s
->node
[offline_node
] = NULL
;
2930 kmem_cache_free(kmalloc_caches
, n
);
2933 up_read(&slub_lock
);
2936 static int slab_mem_going_online_callback(void *arg
)
2938 struct kmem_cache_node
*n
;
2939 struct kmem_cache
*s
;
2940 struct memory_notify
*marg
= arg
;
2941 int nid
= marg
->status_change_nid
;
2945 * If the node's memory is already available, then kmem_cache_node is
2946 * already created. Nothing to do.
2952 * We are bringing a node online. No memory is available yet. We must
2953 * allocate a kmem_cache_node structure in order to bring the node
2956 down_read(&slub_lock
);
2957 list_for_each_entry(s
, &slab_caches
, list
) {
2959 * XXX: kmem_cache_alloc_node will fallback to other nodes
2960 * since memory is not yet available from the node that
2963 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2968 init_kmem_cache_node(n
, s
);
2972 up_read(&slub_lock
);
2976 static int slab_memory_callback(struct notifier_block
*self
,
2977 unsigned long action
, void *arg
)
2982 case MEM_GOING_ONLINE
:
2983 ret
= slab_mem_going_online_callback(arg
);
2985 case MEM_GOING_OFFLINE
:
2986 ret
= slab_mem_going_offline_callback(arg
);
2989 case MEM_CANCEL_ONLINE
:
2990 slab_mem_offline_callback(arg
);
2993 case MEM_CANCEL_OFFLINE
:
2997 ret
= notifier_from_errno(ret
);
3003 #endif /* CONFIG_MEMORY_HOTPLUG */
3005 /********************************************************************
3006 * Basic setup of slabs
3007 *******************************************************************/
3009 void __init
kmem_cache_init(void)
3018 * Must first have the slab cache available for the allocations of the
3019 * struct kmem_cache_node's. There is special bootstrap code in
3020 * kmem_cache_open for slab_state == DOWN.
3022 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3023 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
3024 kmalloc_caches
[0].refcount
= -1;
3027 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3030 /* Able to allocate the per node structures */
3031 slab_state
= PARTIAL
;
3033 /* Caches that are not of the two-to-the-power-of size */
3034 if (KMALLOC_MIN_SIZE
<= 64) {
3035 create_kmalloc_cache(&kmalloc_caches
[1],
3036 "kmalloc-96", 96, GFP_KERNEL
);
3038 create_kmalloc_cache(&kmalloc_caches
[2],
3039 "kmalloc-192", 192, GFP_KERNEL
);
3043 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3044 create_kmalloc_cache(&kmalloc_caches
[i
],
3045 "kmalloc", 1 << i
, GFP_KERNEL
);
3051 * Patch up the size_index table if we have strange large alignment
3052 * requirements for the kmalloc array. This is only the case for
3053 * MIPS it seems. The standard arches will not generate any code here.
3055 * Largest permitted alignment is 256 bytes due to the way we
3056 * handle the index determination for the smaller caches.
3058 * Make sure that nothing crazy happens if someone starts tinkering
3059 * around with ARCH_KMALLOC_MINALIGN
3061 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3062 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3064 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3065 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3067 if (KMALLOC_MIN_SIZE
== 128) {
3069 * The 192 byte sized cache is not used if the alignment
3070 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3073 for (i
= 128 + 8; i
<= 192; i
+= 8)
3074 size_index
[(i
- 1) / 8] = 8;
3079 /* Provide the correct kmalloc names now that the caches are up */
3080 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3081 kmalloc_caches
[i
]. name
=
3082 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3085 register_cpu_notifier(&slab_notifier
);
3086 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3087 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3089 kmem_size
= sizeof(struct kmem_cache
);
3093 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3094 " CPUs=%d, Nodes=%d\n",
3095 caches
, cache_line_size(),
3096 slub_min_order
, slub_max_order
, slub_min_objects
,
3097 nr_cpu_ids
, nr_node_ids
);
3101 * Find a mergeable slab cache
3103 static int slab_unmergeable(struct kmem_cache
*s
)
3105 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3112 * We may have set a slab to be unmergeable during bootstrap.
3114 if (s
->refcount
< 0)
3120 static struct kmem_cache
*find_mergeable(size_t size
,
3121 size_t align
, unsigned long flags
, const char *name
,
3122 void (*ctor
)(void *))
3124 struct kmem_cache
*s
;
3126 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3132 size
= ALIGN(size
, sizeof(void *));
3133 align
= calculate_alignment(flags
, align
, size
);
3134 size
= ALIGN(size
, align
);
3135 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3137 list_for_each_entry(s
, &slab_caches
, list
) {
3138 if (slab_unmergeable(s
))
3144 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3147 * Check if alignment is compatible.
3148 * Courtesy of Adrian Drzewiecki
3150 if ((s
->size
& ~(align
- 1)) != s
->size
)
3153 if (s
->size
- size
>= sizeof(void *))
3161 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3162 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3164 struct kmem_cache
*s
;
3166 down_write(&slub_lock
);
3167 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3173 * Adjust the object sizes so that we clear
3174 * the complete object on kzalloc.
3176 s
->objsize
= max(s
->objsize
, (int)size
);
3179 * And then we need to update the object size in the
3180 * per cpu structures
3182 for_each_online_cpu(cpu
)
3183 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3185 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3186 up_write(&slub_lock
);
3188 if (sysfs_slab_alias(s
, name
)) {
3189 down_write(&slub_lock
);
3191 up_write(&slub_lock
);
3197 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3199 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3200 size
, align
, flags
, ctor
)) {
3201 list_add(&s
->list
, &slab_caches
);
3202 up_write(&slub_lock
);
3203 if (sysfs_slab_add(s
)) {
3204 down_write(&slub_lock
);
3206 up_write(&slub_lock
);
3214 up_write(&slub_lock
);
3217 if (flags
& SLAB_PANIC
)
3218 panic("Cannot create slabcache %s\n", name
);
3223 EXPORT_SYMBOL(kmem_cache_create
);
3227 * Use the cpu notifier to insure that the cpu slabs are flushed when
3230 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3231 unsigned long action
, void *hcpu
)
3233 long cpu
= (long)hcpu
;
3234 struct kmem_cache
*s
;
3235 unsigned long flags
;
3238 case CPU_UP_PREPARE
:
3239 case CPU_UP_PREPARE_FROZEN
:
3240 init_alloc_cpu_cpu(cpu
);
3241 down_read(&slub_lock
);
3242 list_for_each_entry(s
, &slab_caches
, list
)
3243 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3245 up_read(&slub_lock
);
3248 case CPU_UP_CANCELED
:
3249 case CPU_UP_CANCELED_FROZEN
:
3251 case CPU_DEAD_FROZEN
:
3252 down_read(&slub_lock
);
3253 list_for_each_entry(s
, &slab_caches
, list
) {
3254 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3256 local_irq_save(flags
);
3257 __flush_cpu_slab(s
, cpu
);
3258 local_irq_restore(flags
);
3259 free_kmem_cache_cpu(c
, cpu
);
3260 s
->cpu_slab
[cpu
] = NULL
;
3262 up_read(&slub_lock
);
3270 static struct notifier_block __cpuinitdata slab_notifier
= {
3271 .notifier_call
= slab_cpuup_callback
3276 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3278 struct kmem_cache
*s
;
3281 if (unlikely(size
> SLUB_MAX_SIZE
))
3282 return kmalloc_large(size
, gfpflags
);
3284 s
= get_slab(size
, gfpflags
);
3286 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3289 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3291 /* Honor the call site pointer we recieved. */
3292 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC
, caller
, ret
, size
,
3298 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3299 int node
, unsigned long caller
)
3301 struct kmem_cache
*s
;
3304 if (unlikely(size
> SLUB_MAX_SIZE
))
3305 return kmalloc_large_node(size
, gfpflags
, node
);
3307 s
= get_slab(size
, gfpflags
);
3309 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3312 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3314 /* Honor the call site pointer we recieved. */
3315 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC
, caller
, ret
,
3316 size
, s
->size
, gfpflags
, node
);
3321 #ifdef CONFIG_SLUB_DEBUG
3322 static unsigned long count_partial(struct kmem_cache_node
*n
,
3323 int (*get_count
)(struct page
*))
3325 unsigned long flags
;
3326 unsigned long x
= 0;
3329 spin_lock_irqsave(&n
->list_lock
, flags
);
3330 list_for_each_entry(page
, &n
->partial
, lru
)
3331 x
+= get_count(page
);
3332 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3336 static int count_inuse(struct page
*page
)
3341 static int count_total(struct page
*page
)
3343 return page
->objects
;
3346 static int count_free(struct page
*page
)
3348 return page
->objects
- page
->inuse
;
3351 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3355 void *addr
= page_address(page
);
3357 if (!check_slab(s
, page
) ||
3358 !on_freelist(s
, page
, NULL
))
3361 /* Now we know that a valid freelist exists */
3362 bitmap_zero(map
, page
->objects
);
3364 for_each_free_object(p
, s
, page
->freelist
) {
3365 set_bit(slab_index(p
, s
, addr
), map
);
3366 if (!check_object(s
, page
, p
, 0))
3370 for_each_object(p
, s
, addr
, page
->objects
)
3371 if (!test_bit(slab_index(p
, s
, addr
), map
))
3372 if (!check_object(s
, page
, p
, 1))
3377 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3380 if (slab_trylock(page
)) {
3381 validate_slab(s
, page
, map
);
3384 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3387 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3388 if (!PageSlubDebug(page
))
3389 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3390 "on slab 0x%p\n", s
->name
, page
);
3392 if (PageSlubDebug(page
))
3393 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3394 "slab 0x%p\n", s
->name
, page
);
3398 static int validate_slab_node(struct kmem_cache
*s
,
3399 struct kmem_cache_node
*n
, unsigned long *map
)
3401 unsigned long count
= 0;
3403 unsigned long flags
;
3405 spin_lock_irqsave(&n
->list_lock
, flags
);
3407 list_for_each_entry(page
, &n
->partial
, lru
) {
3408 validate_slab_slab(s
, page
, map
);
3411 if (count
!= n
->nr_partial
)
3412 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3413 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3415 if (!(s
->flags
& SLAB_STORE_USER
))
3418 list_for_each_entry(page
, &n
->full
, lru
) {
3419 validate_slab_slab(s
, page
, map
);
3422 if (count
!= atomic_long_read(&n
->nr_slabs
))
3423 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3424 "counter=%ld\n", s
->name
, count
,
3425 atomic_long_read(&n
->nr_slabs
));
3428 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3432 static long validate_slab_cache(struct kmem_cache
*s
)
3435 unsigned long count
= 0;
3436 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3437 sizeof(unsigned long), GFP_KERNEL
);
3443 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3444 struct kmem_cache_node
*n
= get_node(s
, node
);
3446 count
+= validate_slab_node(s
, n
, map
);
3452 #ifdef SLUB_RESILIENCY_TEST
3453 static void resiliency_test(void)
3457 printk(KERN_ERR
"SLUB resiliency testing\n");
3458 printk(KERN_ERR
"-----------------------\n");
3459 printk(KERN_ERR
"A. Corruption after allocation\n");
3461 p
= kzalloc(16, GFP_KERNEL
);
3463 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3464 " 0x12->0x%p\n\n", p
+ 16);
3466 validate_slab_cache(kmalloc_caches
+ 4);
3468 /* Hmmm... The next two are dangerous */
3469 p
= kzalloc(32, GFP_KERNEL
);
3470 p
[32 + sizeof(void *)] = 0x34;
3471 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3472 " 0x34 -> -0x%p\n", p
);
3474 "If allocated object is overwritten then not detectable\n\n");
3476 validate_slab_cache(kmalloc_caches
+ 5);
3477 p
= kzalloc(64, GFP_KERNEL
);
3478 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3480 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3483 "If allocated object is overwritten then not detectable\n\n");
3484 validate_slab_cache(kmalloc_caches
+ 6);
3486 printk(KERN_ERR
"\nB. Corruption after free\n");
3487 p
= kzalloc(128, GFP_KERNEL
);
3490 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3491 validate_slab_cache(kmalloc_caches
+ 7);
3493 p
= kzalloc(256, GFP_KERNEL
);
3496 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3498 validate_slab_cache(kmalloc_caches
+ 8);
3500 p
= kzalloc(512, GFP_KERNEL
);
3503 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3504 validate_slab_cache(kmalloc_caches
+ 9);
3507 static void resiliency_test(void) {};
3511 * Generate lists of code addresses where slabcache objects are allocated
3516 unsigned long count
;
3523 DECLARE_BITMAP(cpus
, NR_CPUS
);
3529 unsigned long count
;
3530 struct location
*loc
;
3533 static void free_loc_track(struct loc_track
*t
)
3536 free_pages((unsigned long)t
->loc
,
3537 get_order(sizeof(struct location
) * t
->max
));
3540 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3545 order
= get_order(sizeof(struct location
) * max
);
3547 l
= (void *)__get_free_pages(flags
, order
);
3552 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3560 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3561 const struct track
*track
)
3563 long start
, end
, pos
;
3565 unsigned long caddr
;
3566 unsigned long age
= jiffies
- track
->when
;
3572 pos
= start
+ (end
- start
+ 1) / 2;
3575 * There is nothing at "end". If we end up there
3576 * we need to add something to before end.
3581 caddr
= t
->loc
[pos
].addr
;
3582 if (track
->addr
== caddr
) {
3588 if (age
< l
->min_time
)
3590 if (age
> l
->max_time
)
3593 if (track
->pid
< l
->min_pid
)
3594 l
->min_pid
= track
->pid
;
3595 if (track
->pid
> l
->max_pid
)
3596 l
->max_pid
= track
->pid
;
3598 cpumask_set_cpu(track
->cpu
,
3599 to_cpumask(l
->cpus
));
3601 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3605 if (track
->addr
< caddr
)
3612 * Not found. Insert new tracking element.
3614 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3620 (t
->count
- pos
) * sizeof(struct location
));
3623 l
->addr
= track
->addr
;
3627 l
->min_pid
= track
->pid
;
3628 l
->max_pid
= track
->pid
;
3629 cpumask_clear(to_cpumask(l
->cpus
));
3630 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3631 nodes_clear(l
->nodes
);
3632 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3636 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3637 struct page
*page
, enum track_item alloc
)
3639 void *addr
= page_address(page
);
3640 DECLARE_BITMAP(map
, page
->objects
);
3643 bitmap_zero(map
, page
->objects
);
3644 for_each_free_object(p
, s
, page
->freelist
)
3645 set_bit(slab_index(p
, s
, addr
), map
);
3647 for_each_object(p
, s
, addr
, page
->objects
)
3648 if (!test_bit(slab_index(p
, s
, addr
), map
))
3649 add_location(t
, s
, get_track(s
, p
, alloc
));
3652 static int list_locations(struct kmem_cache
*s
, char *buf
,
3653 enum track_item alloc
)
3657 struct loc_track t
= { 0, 0, NULL
};
3660 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3662 return sprintf(buf
, "Out of memory\n");
3664 /* Push back cpu slabs */
3667 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3668 struct kmem_cache_node
*n
= get_node(s
, node
);
3669 unsigned long flags
;
3672 if (!atomic_long_read(&n
->nr_slabs
))
3675 spin_lock_irqsave(&n
->list_lock
, flags
);
3676 list_for_each_entry(page
, &n
->partial
, lru
)
3677 process_slab(&t
, s
, page
, alloc
);
3678 list_for_each_entry(page
, &n
->full
, lru
)
3679 process_slab(&t
, s
, page
, alloc
);
3680 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3683 for (i
= 0; i
< t
.count
; i
++) {
3684 struct location
*l
= &t
.loc
[i
];
3686 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3688 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3691 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3693 len
+= sprintf(buf
+ len
, "<not-available>");
3695 if (l
->sum_time
!= l
->min_time
) {
3696 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3698 (long)div_u64(l
->sum_time
, l
->count
),
3701 len
+= sprintf(buf
+ len
, " age=%ld",
3704 if (l
->min_pid
!= l
->max_pid
)
3705 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3706 l
->min_pid
, l
->max_pid
);
3708 len
+= sprintf(buf
+ len
, " pid=%ld",
3711 if (num_online_cpus() > 1 &&
3712 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3713 len
< PAGE_SIZE
- 60) {
3714 len
+= sprintf(buf
+ len
, " cpus=");
3715 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3716 to_cpumask(l
->cpus
));
3719 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3720 len
< PAGE_SIZE
- 60) {
3721 len
+= sprintf(buf
+ len
, " nodes=");
3722 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3726 len
+= sprintf(buf
+ len
, "\n");
3731 len
+= sprintf(buf
, "No data\n");
3735 enum slab_stat_type
{
3736 SL_ALL
, /* All slabs */
3737 SL_PARTIAL
, /* Only partially allocated slabs */
3738 SL_CPU
, /* Only slabs used for cpu caches */
3739 SL_OBJECTS
, /* Determine allocated objects not slabs */
3740 SL_TOTAL
/* Determine object capacity not slabs */
3743 #define SO_ALL (1 << SL_ALL)
3744 #define SO_PARTIAL (1 << SL_PARTIAL)
3745 #define SO_CPU (1 << SL_CPU)
3746 #define SO_OBJECTS (1 << SL_OBJECTS)
3747 #define SO_TOTAL (1 << SL_TOTAL)
3749 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3750 char *buf
, unsigned long flags
)
3752 unsigned long total
= 0;
3755 unsigned long *nodes
;
3756 unsigned long *per_cpu
;
3758 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3761 per_cpu
= nodes
+ nr_node_ids
;
3763 if (flags
& SO_CPU
) {
3766 for_each_possible_cpu(cpu
) {
3767 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3769 if (!c
|| c
->node
< 0)
3773 if (flags
& SO_TOTAL
)
3774 x
= c
->page
->objects
;
3775 else if (flags
& SO_OBJECTS
)
3781 nodes
[c
->node
] += x
;
3787 if (flags
& SO_ALL
) {
3788 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3789 struct kmem_cache_node
*n
= get_node(s
, node
);
3791 if (flags
& SO_TOTAL
)
3792 x
= atomic_long_read(&n
->total_objects
);
3793 else if (flags
& SO_OBJECTS
)
3794 x
= atomic_long_read(&n
->total_objects
) -
3795 count_partial(n
, count_free
);
3798 x
= atomic_long_read(&n
->nr_slabs
);
3803 } else if (flags
& SO_PARTIAL
) {
3804 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3805 struct kmem_cache_node
*n
= get_node(s
, node
);
3807 if (flags
& SO_TOTAL
)
3808 x
= count_partial(n
, count_total
);
3809 else if (flags
& SO_OBJECTS
)
3810 x
= count_partial(n
, count_inuse
);
3817 x
= sprintf(buf
, "%lu", total
);
3819 for_each_node_state(node
, N_NORMAL_MEMORY
)
3821 x
+= sprintf(buf
+ x
, " N%d=%lu",
3825 return x
+ sprintf(buf
+ x
, "\n");
3828 static int any_slab_objects(struct kmem_cache
*s
)
3832 for_each_online_node(node
) {
3833 struct kmem_cache_node
*n
= get_node(s
, node
);
3838 if (atomic_long_read(&n
->total_objects
))
3844 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3845 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3847 struct slab_attribute
{
3848 struct attribute attr
;
3849 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3850 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3853 #define SLAB_ATTR_RO(_name) \
3854 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3856 #define SLAB_ATTR(_name) \
3857 static struct slab_attribute _name##_attr = \
3858 __ATTR(_name, 0644, _name##_show, _name##_store)
3860 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3862 return sprintf(buf
, "%d\n", s
->size
);
3864 SLAB_ATTR_RO(slab_size
);
3866 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3868 return sprintf(buf
, "%d\n", s
->align
);
3870 SLAB_ATTR_RO(align
);
3872 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3874 return sprintf(buf
, "%d\n", s
->objsize
);
3876 SLAB_ATTR_RO(object_size
);
3878 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3880 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3882 SLAB_ATTR_RO(objs_per_slab
);
3884 static ssize_t
order_store(struct kmem_cache
*s
,
3885 const char *buf
, size_t length
)
3887 unsigned long order
;
3890 err
= strict_strtoul(buf
, 10, &order
);
3894 if (order
> slub_max_order
|| order
< slub_min_order
)
3897 calculate_sizes(s
, order
);
3901 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3903 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3907 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3910 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3912 return n
+ sprintf(buf
+ n
, "\n");
3918 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3920 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3922 SLAB_ATTR_RO(aliases
);
3924 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3926 return show_slab_objects(s
, buf
, SO_ALL
);
3928 SLAB_ATTR_RO(slabs
);
3930 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3932 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3934 SLAB_ATTR_RO(partial
);
3936 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3938 return show_slab_objects(s
, buf
, SO_CPU
);
3940 SLAB_ATTR_RO(cpu_slabs
);
3942 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3944 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3946 SLAB_ATTR_RO(objects
);
3948 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3950 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3952 SLAB_ATTR_RO(objects_partial
);
3954 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3956 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3958 SLAB_ATTR_RO(total_objects
);
3960 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3962 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3965 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3966 const char *buf
, size_t length
)
3968 s
->flags
&= ~SLAB_DEBUG_FREE
;
3970 s
->flags
|= SLAB_DEBUG_FREE
;
3973 SLAB_ATTR(sanity_checks
);
3975 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3977 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3980 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3983 s
->flags
&= ~SLAB_TRACE
;
3985 s
->flags
|= SLAB_TRACE
;
3990 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3992 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3995 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3996 const char *buf
, size_t length
)
3998 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4000 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4003 SLAB_ATTR(reclaim_account
);
4005 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4007 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4009 SLAB_ATTR_RO(hwcache_align
);
4011 #ifdef CONFIG_ZONE_DMA
4012 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4014 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4016 SLAB_ATTR_RO(cache_dma
);
4019 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4021 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4023 SLAB_ATTR_RO(destroy_by_rcu
);
4025 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4027 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4030 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4031 const char *buf
, size_t length
)
4033 if (any_slab_objects(s
))
4036 s
->flags
&= ~SLAB_RED_ZONE
;
4038 s
->flags
|= SLAB_RED_ZONE
;
4039 calculate_sizes(s
, -1);
4042 SLAB_ATTR(red_zone
);
4044 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4046 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4049 static ssize_t
poison_store(struct kmem_cache
*s
,
4050 const char *buf
, size_t length
)
4052 if (any_slab_objects(s
))
4055 s
->flags
&= ~SLAB_POISON
;
4057 s
->flags
|= SLAB_POISON
;
4058 calculate_sizes(s
, -1);
4063 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4065 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4068 static ssize_t
store_user_store(struct kmem_cache
*s
,
4069 const char *buf
, size_t length
)
4071 if (any_slab_objects(s
))
4074 s
->flags
&= ~SLAB_STORE_USER
;
4076 s
->flags
|= SLAB_STORE_USER
;
4077 calculate_sizes(s
, -1);
4080 SLAB_ATTR(store_user
);
4082 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4087 static ssize_t
validate_store(struct kmem_cache
*s
,
4088 const char *buf
, size_t length
)
4092 if (buf
[0] == '1') {
4093 ret
= validate_slab_cache(s
);
4099 SLAB_ATTR(validate
);
4101 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4106 static ssize_t
shrink_store(struct kmem_cache
*s
,
4107 const char *buf
, size_t length
)
4109 if (buf
[0] == '1') {
4110 int rc
= kmem_cache_shrink(s
);
4120 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4122 if (!(s
->flags
& SLAB_STORE_USER
))
4124 return list_locations(s
, buf
, TRACK_ALLOC
);
4126 SLAB_ATTR_RO(alloc_calls
);
4128 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4130 if (!(s
->flags
& SLAB_STORE_USER
))
4132 return list_locations(s
, buf
, TRACK_FREE
);
4134 SLAB_ATTR_RO(free_calls
);
4137 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4139 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4142 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4143 const char *buf
, size_t length
)
4145 unsigned long ratio
;
4148 err
= strict_strtoul(buf
, 10, &ratio
);
4153 s
->remote_node_defrag_ratio
= ratio
* 10;
4157 SLAB_ATTR(remote_node_defrag_ratio
);
4160 #ifdef CONFIG_SLUB_STATS
4161 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4163 unsigned long sum
= 0;
4166 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4171 for_each_online_cpu(cpu
) {
4172 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4178 len
= sprintf(buf
, "%lu", sum
);
4181 for_each_online_cpu(cpu
) {
4182 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4183 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4187 return len
+ sprintf(buf
+ len
, "\n");
4190 #define STAT_ATTR(si, text) \
4191 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4193 return show_stat(s, buf, si); \
4195 SLAB_ATTR_RO(text); \
4197 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4198 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4199 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4200 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4201 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4202 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4203 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4204 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4205 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4206 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4207 STAT_ATTR(FREE_SLAB
, free_slab
);
4208 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4209 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4210 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4211 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4212 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4213 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4214 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4217 static struct attribute
*slab_attrs
[] = {
4218 &slab_size_attr
.attr
,
4219 &object_size_attr
.attr
,
4220 &objs_per_slab_attr
.attr
,
4223 &objects_partial_attr
.attr
,
4224 &total_objects_attr
.attr
,
4227 &cpu_slabs_attr
.attr
,
4231 &sanity_checks_attr
.attr
,
4233 &hwcache_align_attr
.attr
,
4234 &reclaim_account_attr
.attr
,
4235 &destroy_by_rcu_attr
.attr
,
4236 &red_zone_attr
.attr
,
4238 &store_user_attr
.attr
,
4239 &validate_attr
.attr
,
4241 &alloc_calls_attr
.attr
,
4242 &free_calls_attr
.attr
,
4243 #ifdef CONFIG_ZONE_DMA
4244 &cache_dma_attr
.attr
,
4247 &remote_node_defrag_ratio_attr
.attr
,
4249 #ifdef CONFIG_SLUB_STATS
4250 &alloc_fastpath_attr
.attr
,
4251 &alloc_slowpath_attr
.attr
,
4252 &free_fastpath_attr
.attr
,
4253 &free_slowpath_attr
.attr
,
4254 &free_frozen_attr
.attr
,
4255 &free_add_partial_attr
.attr
,
4256 &free_remove_partial_attr
.attr
,
4257 &alloc_from_partial_attr
.attr
,
4258 &alloc_slab_attr
.attr
,
4259 &alloc_refill_attr
.attr
,
4260 &free_slab_attr
.attr
,
4261 &cpuslab_flush_attr
.attr
,
4262 &deactivate_full_attr
.attr
,
4263 &deactivate_empty_attr
.attr
,
4264 &deactivate_to_head_attr
.attr
,
4265 &deactivate_to_tail_attr
.attr
,
4266 &deactivate_remote_frees_attr
.attr
,
4267 &order_fallback_attr
.attr
,
4272 static struct attribute_group slab_attr_group
= {
4273 .attrs
= slab_attrs
,
4276 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4277 struct attribute
*attr
,
4280 struct slab_attribute
*attribute
;
4281 struct kmem_cache
*s
;
4284 attribute
= to_slab_attr(attr
);
4287 if (!attribute
->show
)
4290 err
= attribute
->show(s
, buf
);
4295 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4296 struct attribute
*attr
,
4297 const char *buf
, size_t len
)
4299 struct slab_attribute
*attribute
;
4300 struct kmem_cache
*s
;
4303 attribute
= to_slab_attr(attr
);
4306 if (!attribute
->store
)
4309 err
= attribute
->store(s
, buf
, len
);
4314 static void kmem_cache_release(struct kobject
*kobj
)
4316 struct kmem_cache
*s
= to_slab(kobj
);
4321 static struct sysfs_ops slab_sysfs_ops
= {
4322 .show
= slab_attr_show
,
4323 .store
= slab_attr_store
,
4326 static struct kobj_type slab_ktype
= {
4327 .sysfs_ops
= &slab_sysfs_ops
,
4328 .release
= kmem_cache_release
4331 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4333 struct kobj_type
*ktype
= get_ktype(kobj
);
4335 if (ktype
== &slab_ktype
)
4340 static struct kset_uevent_ops slab_uevent_ops
= {
4341 .filter
= uevent_filter
,
4344 static struct kset
*slab_kset
;
4346 #define ID_STR_LENGTH 64
4348 /* Create a unique string id for a slab cache:
4350 * Format :[flags-]size
4352 static char *create_unique_id(struct kmem_cache
*s
)
4354 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4361 * First flags affecting slabcache operations. We will only
4362 * get here for aliasable slabs so we do not need to support
4363 * too many flags. The flags here must cover all flags that
4364 * are matched during merging to guarantee that the id is
4367 if (s
->flags
& SLAB_CACHE_DMA
)
4369 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4371 if (s
->flags
& SLAB_DEBUG_FREE
)
4375 p
+= sprintf(p
, "%07d", s
->size
);
4376 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4380 static int sysfs_slab_add(struct kmem_cache
*s
)
4386 if (slab_state
< SYSFS
)
4387 /* Defer until later */
4390 unmergeable
= slab_unmergeable(s
);
4393 * Slabcache can never be merged so we can use the name proper.
4394 * This is typically the case for debug situations. In that
4395 * case we can catch duplicate names easily.
4397 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4401 * Create a unique name for the slab as a target
4404 name
= create_unique_id(s
);
4407 s
->kobj
.kset
= slab_kset
;
4408 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4410 kobject_put(&s
->kobj
);
4414 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4417 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4419 /* Setup first alias */
4420 sysfs_slab_alias(s
, s
->name
);
4426 static void sysfs_slab_remove(struct kmem_cache
*s
)
4428 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4429 kobject_del(&s
->kobj
);
4430 kobject_put(&s
->kobj
);
4434 * Need to buffer aliases during bootup until sysfs becomes
4435 * available lest we lose that information.
4437 struct saved_alias
{
4438 struct kmem_cache
*s
;
4440 struct saved_alias
*next
;
4443 static struct saved_alias
*alias_list
;
4445 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4447 struct saved_alias
*al
;
4449 if (slab_state
== SYSFS
) {
4451 * If we have a leftover link then remove it.
4453 sysfs_remove_link(&slab_kset
->kobj
, name
);
4454 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4457 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4463 al
->next
= alias_list
;
4468 static int __init
slab_sysfs_init(void)
4470 struct kmem_cache
*s
;
4473 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4475 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4481 list_for_each_entry(s
, &slab_caches
, list
) {
4482 err
= sysfs_slab_add(s
);
4484 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4485 " to sysfs\n", s
->name
);
4488 while (alias_list
) {
4489 struct saved_alias
*al
= alias_list
;
4491 alias_list
= alias_list
->next
;
4492 err
= sysfs_slab_alias(al
->s
, al
->name
);
4494 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4495 " %s to sysfs\n", s
->name
);
4503 __initcall(slab_sysfs_init
);
4507 * The /proc/slabinfo ABI
4509 #ifdef CONFIG_SLABINFO
4510 static void print_slabinfo_header(struct seq_file
*m
)
4512 seq_puts(m
, "slabinfo - version: 2.1\n");
4513 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4514 "<objperslab> <pagesperslab>");
4515 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4516 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4520 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4524 down_read(&slub_lock
);
4526 print_slabinfo_header(m
);
4528 return seq_list_start(&slab_caches
, *pos
);
4531 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4533 return seq_list_next(p
, &slab_caches
, pos
);
4536 static void s_stop(struct seq_file
*m
, void *p
)
4538 up_read(&slub_lock
);
4541 static int s_show(struct seq_file
*m
, void *p
)
4543 unsigned long nr_partials
= 0;
4544 unsigned long nr_slabs
= 0;
4545 unsigned long nr_inuse
= 0;
4546 unsigned long nr_objs
= 0;
4547 unsigned long nr_free
= 0;
4548 struct kmem_cache
*s
;
4551 s
= list_entry(p
, struct kmem_cache
, list
);
4553 for_each_online_node(node
) {
4554 struct kmem_cache_node
*n
= get_node(s
, node
);
4559 nr_partials
+= n
->nr_partial
;
4560 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4561 nr_objs
+= atomic_long_read(&n
->total_objects
);
4562 nr_free
+= count_partial(n
, count_free
);
4565 nr_inuse
= nr_objs
- nr_free
;
4567 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4568 nr_objs
, s
->size
, oo_objects(s
->oo
),
4569 (1 << oo_order(s
->oo
)));
4570 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4571 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4577 static const struct seq_operations slabinfo_op
= {
4584 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4586 return seq_open(file
, &slabinfo_op
);
4589 static const struct file_operations proc_slabinfo_operations
= {
4590 .open
= slabinfo_open
,
4592 .llseek
= seq_lseek
,
4593 .release
= seq_release
,
4596 static int __init
slab_proc_init(void)
4598 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4601 module_init(slab_proc_init
);
4602 #endif /* CONFIG_SLABINFO */