tracing/syscalls: various cleanups
[linux-2.6/mini2440.git] / mm / slub.c
blob816734ed8aa3c9c20666676b2cf25fa86d3eb547
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <trace/kmemtrace.h>
20 #include <linux/cpu.h>
21 #include <linux/cpuset.h>
22 #include <linux/mempolicy.h>
23 #include <linux/ctype.h>
24 #include <linux/debugobjects.h>
25 #include <linux/kallsyms.h>
26 #include <linux/memory.h>
27 #include <linux/math64.h>
28 #include <linux/fault-inject.h>
31 * Lock order:
32 * 1. slab_lock(page)
33 * 2. slab->list_lock
35 * The slab_lock protects operations on the object of a particular
36 * slab and its metadata in the page struct. If the slab lock
37 * has been taken then no allocations nor frees can be performed
38 * on the objects in the slab nor can the slab be added or removed
39 * from the partial or full lists since this would mean modifying
40 * the page_struct of the slab.
42 * The list_lock protects the partial and full list on each node and
43 * the partial slab counter. If taken then no new slabs may be added or
44 * removed from the lists nor make the number of partial slabs be modified.
45 * (Note that the total number of slabs is an atomic value that may be
46 * modified without taking the list lock).
48 * The list_lock is a centralized lock and thus we avoid taking it as
49 * much as possible. As long as SLUB does not have to handle partial
50 * slabs, operations can continue without any centralized lock. F.e.
51 * allocating a long series of objects that fill up slabs does not require
52 * the list lock.
54 * The lock order is sometimes inverted when we are trying to get a slab
55 * off a list. We take the list_lock and then look for a page on the list
56 * to use. While we do that objects in the slabs may be freed. We can
57 * only operate on the slab if we have also taken the slab_lock. So we use
58 * a slab_trylock() on the slab. If trylock was successful then no frees
59 * can occur anymore and we can use the slab for allocations etc. If the
60 * slab_trylock() does not succeed then frees are in progress in the slab and
61 * we must stay away from it for a while since we may cause a bouncing
62 * cacheline if we try to acquire the lock. So go onto the next slab.
63 * If all pages are busy then we may allocate a new slab instead of reusing
64 * a partial slab. A new slab has noone operating on it and thus there is
65 * no danger of cacheline contention.
67 * Interrupts are disabled during allocation and deallocation in order to
68 * make the slab allocator safe to use in the context of an irq. In addition
69 * interrupts are disabled to ensure that the processor does not change
70 * while handling per_cpu slabs, due to kernel preemption.
72 * SLUB assigns one slab for allocation to each processor.
73 * Allocations only occur from these slabs called cpu slabs.
75 * Slabs with free elements are kept on a partial list and during regular
76 * operations no list for full slabs is used. If an object in a full slab is
77 * freed then the slab will show up again on the partial lists.
78 * We track full slabs for debugging purposes though because otherwise we
79 * cannot scan all objects.
81 * Slabs are freed when they become empty. Teardown and setup is
82 * minimal so we rely on the page allocators per cpu caches for
83 * fast frees and allocs.
85 * Overloading of page flags that are otherwise used for LRU management.
87 * PageActive The slab is frozen and exempt from list processing.
88 * This means that the slab is dedicated to a purpose
89 * such as satisfying allocations for a specific
90 * processor. Objects may be freed in the slab while
91 * it is frozen but slab_free will then skip the usual
92 * list operations. It is up to the processor holding
93 * the slab to integrate the slab into the slab lists
94 * when the slab is no longer needed.
96 * One use of this flag is to mark slabs that are
97 * used for allocations. Then such a slab becomes a cpu
98 * slab. The cpu slab may be equipped with an additional
99 * freelist that allows lockless access to
100 * free objects in addition to the regular freelist
101 * that requires the slab lock.
103 * PageError Slab requires special handling due to debug
104 * options set. This moves slab handling out of
105 * the fast path and disables lockless freelists.
108 #ifdef CONFIG_SLUB_DEBUG
109 #define SLABDEBUG 1
110 #else
111 #define SLABDEBUG 0
112 #endif
115 * Issues still to be resolved:
117 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
119 * - Variable sizing of the per node arrays
122 /* Enable to test recovery from slab corruption on boot */
123 #undef SLUB_RESILIENCY_TEST
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 #define MIN_PARTIAL 5
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
136 #define MAX_PARTIAL 10
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
142 * Set of flags that will prevent slab merging
144 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
147 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148 SLAB_CACHE_DMA)
150 #ifndef ARCH_KMALLOC_MINALIGN
151 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
152 #endif
154 #ifndef ARCH_SLAB_MINALIGN
155 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
156 #endif
158 #define OO_SHIFT 16
159 #define OO_MASK ((1 << OO_SHIFT) - 1)
160 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
162 /* Internal SLUB flags */
163 #define __OBJECT_POISON 0x80000000 /* Poison object */
164 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
166 static int kmem_size = sizeof(struct kmem_cache);
168 #ifdef CONFIG_SMP
169 static struct notifier_block slab_notifier;
170 #endif
172 static enum {
173 DOWN, /* No slab functionality available */
174 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
175 UP, /* Everything works but does not show up in sysfs */
176 SYSFS /* Sysfs up */
177 } slab_state = DOWN;
179 /* A list of all slab caches on the system */
180 static DECLARE_RWSEM(slub_lock);
181 static LIST_HEAD(slab_caches);
184 * Tracking user of a slab.
186 struct track {
187 unsigned long addr; /* Called from address */
188 int cpu; /* Was running on cpu */
189 int pid; /* Pid context */
190 unsigned long when; /* When did the operation occur */
193 enum track_item { TRACK_ALLOC, TRACK_FREE };
195 #ifdef CONFIG_SLUB_DEBUG
196 static int sysfs_slab_add(struct kmem_cache *);
197 static int sysfs_slab_alias(struct kmem_cache *, const char *);
198 static void sysfs_slab_remove(struct kmem_cache *);
200 #else
201 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
202 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
203 { return 0; }
204 static inline void sysfs_slab_remove(struct kmem_cache *s)
206 kfree(s);
209 #endif
211 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
213 #ifdef CONFIG_SLUB_STATS
214 c->stat[si]++;
215 #endif
218 /********************************************************************
219 * Core slab cache functions
220 *******************************************************************/
222 int slab_is_available(void)
224 return slab_state >= UP;
227 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
229 #ifdef CONFIG_NUMA
230 return s->node[node];
231 #else
232 return &s->local_node;
233 #endif
236 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
238 #ifdef CONFIG_SMP
239 return s->cpu_slab[cpu];
240 #else
241 return &s->cpu_slab;
242 #endif
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
249 void *base;
251 if (!object)
252 return 1;
254 base = page_address(page);
255 if (object < base || object >= base + page->objects * s->size ||
256 (object - base) % s->size) {
257 return 0;
260 return 1;
264 * Slow version of get and set free pointer.
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
270 static inline void *get_freepointer(struct kmem_cache *s, void *object)
272 return *(void **)(object + s->offset);
275 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277 *(void **)(object + s->offset) = fp;
280 /* Loop over all objects in a slab */
281 #define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
283 __p += (__s)->size)
285 /* Scan freelist */
286 #define for_each_free_object(__p, __s, __free) \
287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 return (p - addr) / s->size;
295 static inline struct kmem_cache_order_objects oo_make(int order,
296 unsigned long size)
298 struct kmem_cache_order_objects x = {
299 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
302 return x;
305 static inline int oo_order(struct kmem_cache_order_objects x)
307 return x.x >> OO_SHIFT;
310 static inline int oo_objects(struct kmem_cache_order_objects x)
312 return x.x & OO_MASK;
315 #ifdef CONFIG_SLUB_DEBUG
317 * Debug settings:
319 #ifdef CONFIG_SLUB_DEBUG_ON
320 static int slub_debug = DEBUG_DEFAULT_FLAGS;
321 #else
322 static int slub_debug;
323 #endif
325 static char *slub_debug_slabs;
328 * Object debugging
330 static void print_section(char *text, u8 *addr, unsigned int length)
332 int i, offset;
333 int newline = 1;
334 char ascii[17];
336 ascii[16] = 0;
338 for (i = 0; i < length; i++) {
339 if (newline) {
340 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
341 newline = 0;
343 printk(KERN_CONT " %02x", addr[i]);
344 offset = i % 16;
345 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
346 if (offset == 15) {
347 printk(KERN_CONT " %s\n", ascii);
348 newline = 1;
351 if (!newline) {
352 i %= 16;
353 while (i < 16) {
354 printk(KERN_CONT " ");
355 ascii[i] = ' ';
356 i++;
358 printk(KERN_CONT " %s\n", ascii);
362 static struct track *get_track(struct kmem_cache *s, void *object,
363 enum track_item alloc)
365 struct track *p;
367 if (s->offset)
368 p = object + s->offset + sizeof(void *);
369 else
370 p = object + s->inuse;
372 return p + alloc;
375 static void set_track(struct kmem_cache *s, void *object,
376 enum track_item alloc, unsigned long addr)
378 struct track *p;
380 if (s->offset)
381 p = object + s->offset + sizeof(void *);
382 else
383 p = object + s->inuse;
385 p += alloc;
386 if (addr) {
387 p->addr = addr;
388 p->cpu = smp_processor_id();
389 p->pid = current->pid;
390 p->when = jiffies;
391 } else
392 memset(p, 0, sizeof(struct track));
395 static void init_tracking(struct kmem_cache *s, void *object)
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
400 set_track(s, object, TRACK_FREE, 0UL);
401 set_track(s, object, TRACK_ALLOC, 0UL);
404 static void print_track(const char *s, struct track *t)
406 if (!t->addr)
407 return;
409 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
410 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
413 static void print_tracking(struct kmem_cache *s, void *object)
415 if (!(s->flags & SLAB_STORE_USER))
416 return;
418 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
419 print_track("Freed", get_track(s, object, TRACK_FREE));
422 static void print_page_info(struct page *page)
424 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
425 page, page->objects, page->inuse, page->freelist, page->flags);
429 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
431 va_list args;
432 char buf[100];
434 va_start(args, fmt);
435 vsnprintf(buf, sizeof(buf), fmt, args);
436 va_end(args);
437 printk(KERN_ERR "========================================"
438 "=====================================\n");
439 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
440 printk(KERN_ERR "----------------------------------------"
441 "-------------------------------------\n\n");
444 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
446 va_list args;
447 char buf[100];
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
455 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
457 unsigned int off; /* Offset of last byte */
458 u8 *addr = page_address(page);
460 print_tracking(s, p);
462 print_page_info(page);
464 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
465 p, p - addr, get_freepointer(s, p));
467 if (p > addr + 16)
468 print_section("Bytes b4", p - 16, 16);
470 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
472 if (s->flags & SLAB_RED_ZONE)
473 print_section("Redzone", p + s->objsize,
474 s->inuse - s->objsize);
476 if (s->offset)
477 off = s->offset + sizeof(void *);
478 else
479 off = s->inuse;
481 if (s->flags & SLAB_STORE_USER)
482 off += 2 * sizeof(struct track);
484 if (off != s->size)
485 /* Beginning of the filler is the free pointer */
486 print_section("Padding", p + off, s->size - off);
488 dump_stack();
491 static void object_err(struct kmem_cache *s, struct page *page,
492 u8 *object, char *reason)
494 slab_bug(s, "%s", reason);
495 print_trailer(s, page, object);
498 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
500 va_list args;
501 char buf[100];
503 va_start(args, fmt);
504 vsnprintf(buf, sizeof(buf), fmt, args);
505 va_end(args);
506 slab_bug(s, "%s", buf);
507 print_page_info(page);
508 dump_stack();
511 static void init_object(struct kmem_cache *s, void *object, int active)
513 u8 *p = object;
515 if (s->flags & __OBJECT_POISON) {
516 memset(p, POISON_FREE, s->objsize - 1);
517 p[s->objsize - 1] = POISON_END;
520 if (s->flags & SLAB_RED_ZONE)
521 memset(p + s->objsize,
522 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
523 s->inuse - s->objsize);
526 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
528 while (bytes) {
529 if (*start != (u8)value)
530 return start;
531 start++;
532 bytes--;
534 return NULL;
537 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
538 void *from, void *to)
540 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
541 memset(from, data, to - from);
544 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
545 u8 *object, char *what,
546 u8 *start, unsigned int value, unsigned int bytes)
548 u8 *fault;
549 u8 *end;
551 fault = check_bytes(start, value, bytes);
552 if (!fault)
553 return 1;
555 end = start + bytes;
556 while (end > fault && end[-1] == value)
557 end--;
559 slab_bug(s, "%s overwritten", what);
560 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
561 fault, end - 1, fault[0], value);
562 print_trailer(s, page, object);
564 restore_bytes(s, what, value, fault, end);
565 return 0;
569 * Object layout:
571 * object address
572 * Bytes of the object to be managed.
573 * If the freepointer may overlay the object then the free
574 * pointer is the first word of the object.
576 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
577 * 0xa5 (POISON_END)
579 * object + s->objsize
580 * Padding to reach word boundary. This is also used for Redzoning.
581 * Padding is extended by another word if Redzoning is enabled and
582 * objsize == inuse.
584 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
585 * 0xcc (RED_ACTIVE) for objects in use.
587 * object + s->inuse
588 * Meta data starts here.
590 * A. Free pointer (if we cannot overwrite object on free)
591 * B. Tracking data for SLAB_STORE_USER
592 * C. Padding to reach required alignment boundary or at mininum
593 * one word if debugging is on to be able to detect writes
594 * before the word boundary.
596 * Padding is done using 0x5a (POISON_INUSE)
598 * object + s->size
599 * Nothing is used beyond s->size.
601 * If slabcaches are merged then the objsize and inuse boundaries are mostly
602 * ignored. And therefore no slab options that rely on these boundaries
603 * may be used with merged slabcaches.
606 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
608 unsigned long off = s->inuse; /* The end of info */
610 if (s->offset)
611 /* Freepointer is placed after the object. */
612 off += sizeof(void *);
614 if (s->flags & SLAB_STORE_USER)
615 /* We also have user information there */
616 off += 2 * sizeof(struct track);
618 if (s->size == off)
619 return 1;
621 return check_bytes_and_report(s, page, p, "Object padding",
622 p + off, POISON_INUSE, s->size - off);
625 /* Check the pad bytes at the end of a slab page */
626 static int slab_pad_check(struct kmem_cache *s, struct page *page)
628 u8 *start;
629 u8 *fault;
630 u8 *end;
631 int length;
632 int remainder;
634 if (!(s->flags & SLAB_POISON))
635 return 1;
637 start = page_address(page);
638 length = (PAGE_SIZE << compound_order(page));
639 end = start + length;
640 remainder = length % s->size;
641 if (!remainder)
642 return 1;
644 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
645 if (!fault)
646 return 1;
647 while (end > fault && end[-1] == POISON_INUSE)
648 end--;
650 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
651 print_section("Padding", end - remainder, remainder);
653 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
654 return 0;
657 static int check_object(struct kmem_cache *s, struct page *page,
658 void *object, int active)
660 u8 *p = object;
661 u8 *endobject = object + s->objsize;
663 if (s->flags & SLAB_RED_ZONE) {
664 unsigned int red =
665 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
667 if (!check_bytes_and_report(s, page, object, "Redzone",
668 endobject, red, s->inuse - s->objsize))
669 return 0;
670 } else {
671 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
672 check_bytes_and_report(s, page, p, "Alignment padding",
673 endobject, POISON_INUSE, s->inuse - s->objsize);
677 if (s->flags & SLAB_POISON) {
678 if (!active && (s->flags & __OBJECT_POISON) &&
679 (!check_bytes_and_report(s, page, p, "Poison", p,
680 POISON_FREE, s->objsize - 1) ||
681 !check_bytes_and_report(s, page, p, "Poison",
682 p + s->objsize - 1, POISON_END, 1)))
683 return 0;
685 * check_pad_bytes cleans up on its own.
687 check_pad_bytes(s, page, p);
690 if (!s->offset && active)
692 * Object and freepointer overlap. Cannot check
693 * freepointer while object is allocated.
695 return 1;
697 /* Check free pointer validity */
698 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
699 object_err(s, page, p, "Freepointer corrupt");
701 * No choice but to zap it and thus lose the remainder
702 * of the free objects in this slab. May cause
703 * another error because the object count is now wrong.
705 set_freepointer(s, p, NULL);
706 return 0;
708 return 1;
711 static int check_slab(struct kmem_cache *s, struct page *page)
713 int maxobj;
715 VM_BUG_ON(!irqs_disabled());
717 if (!PageSlab(page)) {
718 slab_err(s, page, "Not a valid slab page");
719 return 0;
722 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
723 if (page->objects > maxobj) {
724 slab_err(s, page, "objects %u > max %u",
725 s->name, page->objects, maxobj);
726 return 0;
728 if (page->inuse > page->objects) {
729 slab_err(s, page, "inuse %u > max %u",
730 s->name, page->inuse, page->objects);
731 return 0;
733 /* Slab_pad_check fixes things up after itself */
734 slab_pad_check(s, page);
735 return 1;
739 * Determine if a certain object on a page is on the freelist. Must hold the
740 * slab lock to guarantee that the chains are in a consistent state.
742 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
744 int nr = 0;
745 void *fp = page->freelist;
746 void *object = NULL;
747 unsigned long max_objects;
749 while (fp && nr <= page->objects) {
750 if (fp == search)
751 return 1;
752 if (!check_valid_pointer(s, page, fp)) {
753 if (object) {
754 object_err(s, page, object,
755 "Freechain corrupt");
756 set_freepointer(s, object, NULL);
757 break;
758 } else {
759 slab_err(s, page, "Freepointer corrupt");
760 page->freelist = NULL;
761 page->inuse = page->objects;
762 slab_fix(s, "Freelist cleared");
763 return 0;
765 break;
767 object = fp;
768 fp = get_freepointer(s, object);
769 nr++;
772 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
773 if (max_objects > MAX_OBJS_PER_PAGE)
774 max_objects = MAX_OBJS_PER_PAGE;
776 if (page->objects != max_objects) {
777 slab_err(s, page, "Wrong number of objects. Found %d but "
778 "should be %d", page->objects, max_objects);
779 page->objects = max_objects;
780 slab_fix(s, "Number of objects adjusted.");
782 if (page->inuse != page->objects - nr) {
783 slab_err(s, page, "Wrong object count. Counter is %d but "
784 "counted were %d", page->inuse, page->objects - nr);
785 page->inuse = page->objects - nr;
786 slab_fix(s, "Object count adjusted.");
788 return search == NULL;
791 static void trace(struct kmem_cache *s, struct page *page, void *object,
792 int alloc)
794 if (s->flags & SLAB_TRACE) {
795 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
796 s->name,
797 alloc ? "alloc" : "free",
798 object, page->inuse,
799 page->freelist);
801 if (!alloc)
802 print_section("Object", (void *)object, s->objsize);
804 dump_stack();
809 * Tracking of fully allocated slabs for debugging purposes.
811 static void add_full(struct kmem_cache_node *n, struct page *page)
813 spin_lock(&n->list_lock);
814 list_add(&page->lru, &n->full);
815 spin_unlock(&n->list_lock);
818 static void remove_full(struct kmem_cache *s, struct page *page)
820 struct kmem_cache_node *n;
822 if (!(s->flags & SLAB_STORE_USER))
823 return;
825 n = get_node(s, page_to_nid(page));
827 spin_lock(&n->list_lock);
828 list_del(&page->lru);
829 spin_unlock(&n->list_lock);
832 /* Tracking of the number of slabs for debugging purposes */
833 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
835 struct kmem_cache_node *n = get_node(s, node);
837 return atomic_long_read(&n->nr_slabs);
840 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
842 struct kmem_cache_node *n = get_node(s, node);
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
850 if (!NUMA_BUILD || n) {
851 atomic_long_inc(&n->nr_slabs);
852 atomic_long_add(objects, &n->total_objects);
855 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
857 struct kmem_cache_node *n = get_node(s, node);
859 atomic_long_dec(&n->nr_slabs);
860 atomic_long_sub(objects, &n->total_objects);
863 /* Object debug checks for alloc/free paths */
864 static void setup_object_debug(struct kmem_cache *s, struct page *page,
865 void *object)
867 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
868 return;
870 init_object(s, object, 0);
871 init_tracking(s, object);
874 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
875 void *object, unsigned long addr)
877 if (!check_slab(s, page))
878 goto bad;
880 if (!on_freelist(s, page, object)) {
881 object_err(s, page, object, "Object already allocated");
882 goto bad;
885 if (!check_valid_pointer(s, page, object)) {
886 object_err(s, page, object, "Freelist Pointer check fails");
887 goto bad;
890 if (!check_object(s, page, object, 0))
891 goto bad;
893 /* Success perform special debug activities for allocs */
894 if (s->flags & SLAB_STORE_USER)
895 set_track(s, object, TRACK_ALLOC, addr);
896 trace(s, page, object, 1);
897 init_object(s, object, 1);
898 return 1;
900 bad:
901 if (PageSlab(page)) {
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
907 slab_fix(s, "Marking all objects used");
908 page->inuse = page->objects;
909 page->freelist = NULL;
911 return 0;
914 static int free_debug_processing(struct kmem_cache *s, struct page *page,
915 void *object, unsigned long addr)
917 if (!check_slab(s, page))
918 goto fail;
920 if (!check_valid_pointer(s, page, object)) {
921 slab_err(s, page, "Invalid object pointer 0x%p", object);
922 goto fail;
925 if (on_freelist(s, page, object)) {
926 object_err(s, page, object, "Object already free");
927 goto fail;
930 if (!check_object(s, page, object, 1))
931 return 0;
933 if (unlikely(s != page->slab)) {
934 if (!PageSlab(page)) {
935 slab_err(s, page, "Attempt to free object(0x%p) "
936 "outside of slab", object);
937 } else if (!page->slab) {
938 printk(KERN_ERR
939 "SLUB <none>: no slab for object 0x%p.\n",
940 object);
941 dump_stack();
942 } else
943 object_err(s, page, object,
944 "page slab pointer corrupt.");
945 goto fail;
948 /* Special debug activities for freeing objects */
949 if (!PageSlubFrozen(page) && !page->freelist)
950 remove_full(s, page);
951 if (s->flags & SLAB_STORE_USER)
952 set_track(s, object, TRACK_FREE, addr);
953 trace(s, page, object, 0);
954 init_object(s, object, 0);
955 return 1;
957 fail:
958 slab_fix(s, "Object at 0x%p not freed", object);
959 return 0;
962 static int __init setup_slub_debug(char *str)
964 slub_debug = DEBUG_DEFAULT_FLAGS;
965 if (*str++ != '=' || !*str)
967 * No options specified. Switch on full debugging.
969 goto out;
971 if (*str == ',')
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
976 goto check_slabs;
978 slub_debug = 0;
979 if (*str == '-')
981 * Switch off all debugging measures.
983 goto out;
986 * Determine which debug features should be switched on
988 for (; *str && *str != ','; str++) {
989 switch (tolower(*str)) {
990 case 'f':
991 slub_debug |= SLAB_DEBUG_FREE;
992 break;
993 case 'z':
994 slub_debug |= SLAB_RED_ZONE;
995 break;
996 case 'p':
997 slub_debug |= SLAB_POISON;
998 break;
999 case 'u':
1000 slub_debug |= SLAB_STORE_USER;
1001 break;
1002 case 't':
1003 slub_debug |= SLAB_TRACE;
1004 break;
1005 default:
1006 printk(KERN_ERR "slub_debug option '%c' "
1007 "unknown. skipped\n", *str);
1011 check_slabs:
1012 if (*str == ',')
1013 slub_debug_slabs = str + 1;
1014 out:
1015 return 1;
1018 __setup("slub_debug", setup_slub_debug);
1020 static unsigned long kmem_cache_flags(unsigned long objsize,
1021 unsigned long flags, const char *name,
1022 void (*ctor)(void *))
1025 * Enable debugging if selected on the kernel commandline.
1027 if (slub_debug && (!slub_debug_slabs ||
1028 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1029 flags |= slub_debug;
1031 return flags;
1033 #else
1034 static inline void setup_object_debug(struct kmem_cache *s,
1035 struct page *page, void *object) {}
1037 static inline int alloc_debug_processing(struct kmem_cache *s,
1038 struct page *page, void *object, unsigned long addr) { return 0; }
1040 static inline int free_debug_processing(struct kmem_cache *s,
1041 struct page *page, void *object, unsigned long addr) { return 0; }
1043 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1044 { return 1; }
1045 static inline int check_object(struct kmem_cache *s, struct page *page,
1046 void *object, int active) { return 1; }
1047 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1048 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1049 unsigned long flags, const char *name,
1050 void (*ctor)(void *))
1052 return flags;
1054 #define slub_debug 0
1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 { return 0; }
1058 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1059 int objects) {}
1060 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062 #endif
1065 * Slab allocation and freeing
1067 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1068 struct kmem_cache_order_objects oo)
1070 int order = oo_order(oo);
1072 if (node == -1)
1073 return alloc_pages(flags, order);
1074 else
1075 return alloc_pages_node(node, flags, order);
1078 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1080 struct page *page;
1081 struct kmem_cache_order_objects oo = s->oo;
1083 flags |= s->allocflags;
1085 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1086 oo);
1087 if (unlikely(!page)) {
1088 oo = s->min;
1090 * Allocation may have failed due to fragmentation.
1091 * Try a lower order alloc if possible
1093 page = alloc_slab_page(flags, node, oo);
1094 if (!page)
1095 return NULL;
1097 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1099 page->objects = oo_objects(oo);
1100 mod_zone_page_state(page_zone(page),
1101 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1102 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1103 1 << oo_order(oo));
1105 return page;
1108 static void setup_object(struct kmem_cache *s, struct page *page,
1109 void *object)
1111 setup_object_debug(s, page, object);
1112 if (unlikely(s->ctor))
1113 s->ctor(object);
1116 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1118 struct page *page;
1119 void *start;
1120 void *last;
1121 void *p;
1123 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1125 page = allocate_slab(s,
1126 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1127 if (!page)
1128 goto out;
1130 inc_slabs_node(s, page_to_nid(page), page->objects);
1131 page->slab = s;
1132 page->flags |= 1 << PG_slab;
1133 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1134 SLAB_STORE_USER | SLAB_TRACE))
1135 __SetPageSlubDebug(page);
1137 start = page_address(page);
1139 if (unlikely(s->flags & SLAB_POISON))
1140 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1142 last = start;
1143 for_each_object(p, s, start, page->objects) {
1144 setup_object(s, page, last);
1145 set_freepointer(s, last, p);
1146 last = p;
1148 setup_object(s, page, last);
1149 set_freepointer(s, last, NULL);
1151 page->freelist = start;
1152 page->inuse = 0;
1153 out:
1154 return page;
1157 static void __free_slab(struct kmem_cache *s, struct page *page)
1159 int order = compound_order(page);
1160 int pages = 1 << order;
1162 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1163 void *p;
1165 slab_pad_check(s, page);
1166 for_each_object(p, s, page_address(page),
1167 page->objects)
1168 check_object(s, page, p, 0);
1169 __ClearPageSlubDebug(page);
1172 mod_zone_page_state(page_zone(page),
1173 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1174 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1175 -pages);
1177 __ClearPageSlab(page);
1178 reset_page_mapcount(page);
1179 __free_pages(page, order);
1182 static void rcu_free_slab(struct rcu_head *h)
1184 struct page *page;
1186 page = container_of((struct list_head *)h, struct page, lru);
1187 __free_slab(page->slab, page);
1190 static void free_slab(struct kmem_cache *s, struct page *page)
1192 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1194 * RCU free overloads the RCU head over the LRU
1196 struct rcu_head *head = (void *)&page->lru;
1198 call_rcu(head, rcu_free_slab);
1199 } else
1200 __free_slab(s, page);
1203 static void discard_slab(struct kmem_cache *s, struct page *page)
1205 dec_slabs_node(s, page_to_nid(page), page->objects);
1206 free_slab(s, page);
1210 * Per slab locking using the pagelock
1212 static __always_inline void slab_lock(struct page *page)
1214 bit_spin_lock(PG_locked, &page->flags);
1217 static __always_inline void slab_unlock(struct page *page)
1219 __bit_spin_unlock(PG_locked, &page->flags);
1222 static __always_inline int slab_trylock(struct page *page)
1224 int rc = 1;
1226 rc = bit_spin_trylock(PG_locked, &page->flags);
1227 return rc;
1231 * Management of partially allocated slabs
1233 static void add_partial(struct kmem_cache_node *n,
1234 struct page *page, int tail)
1236 spin_lock(&n->list_lock);
1237 n->nr_partial++;
1238 if (tail)
1239 list_add_tail(&page->lru, &n->partial);
1240 else
1241 list_add(&page->lru, &n->partial);
1242 spin_unlock(&n->list_lock);
1245 static void remove_partial(struct kmem_cache *s, struct page *page)
1247 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1249 spin_lock(&n->list_lock);
1250 list_del(&page->lru);
1251 n->nr_partial--;
1252 spin_unlock(&n->list_lock);
1256 * Lock slab and remove from the partial list.
1258 * Must hold list_lock.
1260 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1261 struct page *page)
1263 if (slab_trylock(page)) {
1264 list_del(&page->lru);
1265 n->nr_partial--;
1266 __SetPageSlubFrozen(page);
1267 return 1;
1269 return 0;
1273 * Try to allocate a partial slab from a specific node.
1275 static struct page *get_partial_node(struct kmem_cache_node *n)
1277 struct page *page;
1280 * Racy check. If we mistakenly see no partial slabs then we
1281 * just allocate an empty slab. If we mistakenly try to get a
1282 * partial slab and there is none available then get_partials()
1283 * will return NULL.
1285 if (!n || !n->nr_partial)
1286 return NULL;
1288 spin_lock(&n->list_lock);
1289 list_for_each_entry(page, &n->partial, lru)
1290 if (lock_and_freeze_slab(n, page))
1291 goto out;
1292 page = NULL;
1293 out:
1294 spin_unlock(&n->list_lock);
1295 return page;
1299 * Get a page from somewhere. Search in increasing NUMA distances.
1301 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1303 #ifdef CONFIG_NUMA
1304 struct zonelist *zonelist;
1305 struct zoneref *z;
1306 struct zone *zone;
1307 enum zone_type high_zoneidx = gfp_zone(flags);
1308 struct page *page;
1311 * The defrag ratio allows a configuration of the tradeoffs between
1312 * inter node defragmentation and node local allocations. A lower
1313 * defrag_ratio increases the tendency to do local allocations
1314 * instead of attempting to obtain partial slabs from other nodes.
1316 * If the defrag_ratio is set to 0 then kmalloc() always
1317 * returns node local objects. If the ratio is higher then kmalloc()
1318 * may return off node objects because partial slabs are obtained
1319 * from other nodes and filled up.
1321 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1322 * defrag_ratio = 1000) then every (well almost) allocation will
1323 * first attempt to defrag slab caches on other nodes. This means
1324 * scanning over all nodes to look for partial slabs which may be
1325 * expensive if we do it every time we are trying to find a slab
1326 * with available objects.
1328 if (!s->remote_node_defrag_ratio ||
1329 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1330 return NULL;
1332 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1333 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1334 struct kmem_cache_node *n;
1336 n = get_node(s, zone_to_nid(zone));
1338 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1339 n->nr_partial > n->min_partial) {
1340 page = get_partial_node(n);
1341 if (page)
1342 return page;
1345 #endif
1346 return NULL;
1350 * Get a partial page, lock it and return it.
1352 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1354 struct page *page;
1355 int searchnode = (node == -1) ? numa_node_id() : node;
1357 page = get_partial_node(get_node(s, searchnode));
1358 if (page || (flags & __GFP_THISNODE))
1359 return page;
1361 return get_any_partial(s, flags);
1365 * Move a page back to the lists.
1367 * Must be called with the slab lock held.
1369 * On exit the slab lock will have been dropped.
1371 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1373 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1374 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1376 __ClearPageSlubFrozen(page);
1377 if (page->inuse) {
1379 if (page->freelist) {
1380 add_partial(n, page, tail);
1381 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1382 } else {
1383 stat(c, DEACTIVATE_FULL);
1384 if (SLABDEBUG && PageSlubDebug(page) &&
1385 (s->flags & SLAB_STORE_USER))
1386 add_full(n, page);
1388 slab_unlock(page);
1389 } else {
1390 stat(c, DEACTIVATE_EMPTY);
1391 if (n->nr_partial < n->min_partial) {
1393 * Adding an empty slab to the partial slabs in order
1394 * to avoid page allocator overhead. This slab needs
1395 * to come after the other slabs with objects in
1396 * so that the others get filled first. That way the
1397 * size of the partial list stays small.
1399 * kmem_cache_shrink can reclaim any empty slabs from
1400 * the partial list.
1402 add_partial(n, page, 1);
1403 slab_unlock(page);
1404 } else {
1405 slab_unlock(page);
1406 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1407 discard_slab(s, page);
1413 * Remove the cpu slab
1415 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1417 struct page *page = c->page;
1418 int tail = 1;
1420 if (page->freelist)
1421 stat(c, DEACTIVATE_REMOTE_FREES);
1423 * Merge cpu freelist into slab freelist. Typically we get here
1424 * because both freelists are empty. So this is unlikely
1425 * to occur.
1427 while (unlikely(c->freelist)) {
1428 void **object;
1430 tail = 0; /* Hot objects. Put the slab first */
1432 /* Retrieve object from cpu_freelist */
1433 object = c->freelist;
1434 c->freelist = c->freelist[c->offset];
1436 /* And put onto the regular freelist */
1437 object[c->offset] = page->freelist;
1438 page->freelist = object;
1439 page->inuse--;
1441 c->page = NULL;
1442 unfreeze_slab(s, page, tail);
1445 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1447 stat(c, CPUSLAB_FLUSH);
1448 slab_lock(c->page);
1449 deactivate_slab(s, c);
1453 * Flush cpu slab.
1455 * Called from IPI handler with interrupts disabled.
1457 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1459 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1461 if (likely(c && c->page))
1462 flush_slab(s, c);
1465 static void flush_cpu_slab(void *d)
1467 struct kmem_cache *s = d;
1469 __flush_cpu_slab(s, smp_processor_id());
1472 static void flush_all(struct kmem_cache *s)
1474 on_each_cpu(flush_cpu_slab, s, 1);
1478 * Check if the objects in a per cpu structure fit numa
1479 * locality expectations.
1481 static inline int node_match(struct kmem_cache_cpu *c, int node)
1483 #ifdef CONFIG_NUMA
1484 if (node != -1 && c->node != node)
1485 return 0;
1486 #endif
1487 return 1;
1491 * Slow path. The lockless freelist is empty or we need to perform
1492 * debugging duties.
1494 * Interrupts are disabled.
1496 * Processing is still very fast if new objects have been freed to the
1497 * regular freelist. In that case we simply take over the regular freelist
1498 * as the lockless freelist and zap the regular freelist.
1500 * If that is not working then we fall back to the partial lists. We take the
1501 * first element of the freelist as the object to allocate now and move the
1502 * rest of the freelist to the lockless freelist.
1504 * And if we were unable to get a new slab from the partial slab lists then
1505 * we need to allocate a new slab. This is the slowest path since it involves
1506 * a call to the page allocator and the setup of a new slab.
1508 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1509 unsigned long addr, struct kmem_cache_cpu *c)
1511 void **object;
1512 struct page *new;
1514 /* We handle __GFP_ZERO in the caller */
1515 gfpflags &= ~__GFP_ZERO;
1517 if (!c->page)
1518 goto new_slab;
1520 slab_lock(c->page);
1521 if (unlikely(!node_match(c, node)))
1522 goto another_slab;
1524 stat(c, ALLOC_REFILL);
1526 load_freelist:
1527 object = c->page->freelist;
1528 if (unlikely(!object))
1529 goto another_slab;
1530 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1531 goto debug;
1533 c->freelist = object[c->offset];
1534 c->page->inuse = c->page->objects;
1535 c->page->freelist = NULL;
1536 c->node = page_to_nid(c->page);
1537 unlock_out:
1538 slab_unlock(c->page);
1539 stat(c, ALLOC_SLOWPATH);
1540 return object;
1542 another_slab:
1543 deactivate_slab(s, c);
1545 new_slab:
1546 new = get_partial(s, gfpflags, node);
1547 if (new) {
1548 c->page = new;
1549 stat(c, ALLOC_FROM_PARTIAL);
1550 goto load_freelist;
1553 if (gfpflags & __GFP_WAIT)
1554 local_irq_enable();
1556 new = new_slab(s, gfpflags, node);
1558 if (gfpflags & __GFP_WAIT)
1559 local_irq_disable();
1561 if (new) {
1562 c = get_cpu_slab(s, smp_processor_id());
1563 stat(c, ALLOC_SLAB);
1564 if (c->page)
1565 flush_slab(s, c);
1566 slab_lock(new);
1567 __SetPageSlubFrozen(new);
1568 c->page = new;
1569 goto load_freelist;
1571 return NULL;
1572 debug:
1573 if (!alloc_debug_processing(s, c->page, object, addr))
1574 goto another_slab;
1576 c->page->inuse++;
1577 c->page->freelist = object[c->offset];
1578 c->node = -1;
1579 goto unlock_out;
1583 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1584 * have the fastpath folded into their functions. So no function call
1585 * overhead for requests that can be satisfied on the fastpath.
1587 * The fastpath works by first checking if the lockless freelist can be used.
1588 * If not then __slab_alloc is called for slow processing.
1590 * Otherwise we can simply pick the next object from the lockless free list.
1592 static __always_inline void *slab_alloc(struct kmem_cache *s,
1593 gfp_t gfpflags, int node, unsigned long addr)
1595 void **object;
1596 struct kmem_cache_cpu *c;
1597 unsigned long flags;
1598 unsigned int objsize;
1600 lockdep_trace_alloc(gfpflags);
1601 might_sleep_if(gfpflags & __GFP_WAIT);
1603 if (should_failslab(s->objsize, gfpflags))
1604 return NULL;
1606 local_irq_save(flags);
1607 c = get_cpu_slab(s, smp_processor_id());
1608 objsize = c->objsize;
1609 if (unlikely(!c->freelist || !node_match(c, node)))
1611 object = __slab_alloc(s, gfpflags, node, addr, c);
1613 else {
1614 object = c->freelist;
1615 c->freelist = object[c->offset];
1616 stat(c, ALLOC_FASTPATH);
1618 local_irq_restore(flags);
1620 if (unlikely((gfpflags & __GFP_ZERO) && object))
1621 memset(object, 0, objsize);
1623 return object;
1626 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1628 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1630 kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
1631 s->objsize, s->size, gfpflags);
1633 return ret;
1635 EXPORT_SYMBOL(kmem_cache_alloc);
1637 #ifdef CONFIG_KMEMTRACE
1638 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1640 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1642 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1643 #endif
1645 #ifdef CONFIG_NUMA
1646 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1648 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1650 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
1651 s->objsize, s->size, gfpflags, node);
1653 return ret;
1655 EXPORT_SYMBOL(kmem_cache_alloc_node);
1656 #endif
1658 #ifdef CONFIG_KMEMTRACE
1659 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1660 gfp_t gfpflags,
1661 int node)
1663 return slab_alloc(s, gfpflags, node, _RET_IP_);
1665 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1666 #endif
1669 * Slow patch handling. This may still be called frequently since objects
1670 * have a longer lifetime than the cpu slabs in most processing loads.
1672 * So we still attempt to reduce cache line usage. Just take the slab
1673 * lock and free the item. If there is no additional partial page
1674 * handling required then we can return immediately.
1676 static void __slab_free(struct kmem_cache *s, struct page *page,
1677 void *x, unsigned long addr, unsigned int offset)
1679 void *prior;
1680 void **object = (void *)x;
1681 struct kmem_cache_cpu *c;
1683 c = get_cpu_slab(s, raw_smp_processor_id());
1684 stat(c, FREE_SLOWPATH);
1685 slab_lock(page);
1687 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1688 goto debug;
1690 checks_ok:
1691 prior = object[offset] = page->freelist;
1692 page->freelist = object;
1693 page->inuse--;
1695 if (unlikely(PageSlubFrozen(page))) {
1696 stat(c, FREE_FROZEN);
1697 goto out_unlock;
1700 if (unlikely(!page->inuse))
1701 goto slab_empty;
1704 * Objects left in the slab. If it was not on the partial list before
1705 * then add it.
1707 if (unlikely(!prior)) {
1708 add_partial(get_node(s, page_to_nid(page)), page, 1);
1709 stat(c, FREE_ADD_PARTIAL);
1712 out_unlock:
1713 slab_unlock(page);
1714 return;
1716 slab_empty:
1717 if (prior) {
1719 * Slab still on the partial list.
1721 remove_partial(s, page);
1722 stat(c, FREE_REMOVE_PARTIAL);
1724 slab_unlock(page);
1725 stat(c, FREE_SLAB);
1726 discard_slab(s, page);
1727 return;
1729 debug:
1730 if (!free_debug_processing(s, page, x, addr))
1731 goto out_unlock;
1732 goto checks_ok;
1736 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1737 * can perform fastpath freeing without additional function calls.
1739 * The fastpath is only possible if we are freeing to the current cpu slab
1740 * of this processor. This typically the case if we have just allocated
1741 * the item before.
1743 * If fastpath is not possible then fall back to __slab_free where we deal
1744 * with all sorts of special processing.
1746 static __always_inline void slab_free(struct kmem_cache *s,
1747 struct page *page, void *x, unsigned long addr)
1749 void **object = (void *)x;
1750 struct kmem_cache_cpu *c;
1751 unsigned long flags;
1753 local_irq_save(flags);
1754 c = get_cpu_slab(s, smp_processor_id());
1755 debug_check_no_locks_freed(object, c->objsize);
1756 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1757 debug_check_no_obj_freed(object, s->objsize);
1758 if (likely(page == c->page && c->node >= 0)) {
1759 object[c->offset] = c->freelist;
1760 c->freelist = object;
1761 stat(c, FREE_FASTPATH);
1762 } else
1763 __slab_free(s, page, x, addr, c->offset);
1765 local_irq_restore(flags);
1768 void kmem_cache_free(struct kmem_cache *s, void *x)
1770 struct page *page;
1772 page = virt_to_head_page(x);
1774 slab_free(s, page, x, _RET_IP_);
1776 kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, x);
1778 EXPORT_SYMBOL(kmem_cache_free);
1780 /* Figure out on which slab page the object resides */
1781 static struct page *get_object_page(const void *x)
1783 struct page *page = virt_to_head_page(x);
1785 if (!PageSlab(page))
1786 return NULL;
1788 return page;
1792 * Object placement in a slab is made very easy because we always start at
1793 * offset 0. If we tune the size of the object to the alignment then we can
1794 * get the required alignment by putting one properly sized object after
1795 * another.
1797 * Notice that the allocation order determines the sizes of the per cpu
1798 * caches. Each processor has always one slab available for allocations.
1799 * Increasing the allocation order reduces the number of times that slabs
1800 * must be moved on and off the partial lists and is therefore a factor in
1801 * locking overhead.
1805 * Mininum / Maximum order of slab pages. This influences locking overhead
1806 * and slab fragmentation. A higher order reduces the number of partial slabs
1807 * and increases the number of allocations possible without having to
1808 * take the list_lock.
1810 static int slub_min_order;
1811 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1812 static int slub_min_objects;
1815 * Merge control. If this is set then no merging of slab caches will occur.
1816 * (Could be removed. This was introduced to pacify the merge skeptics.)
1818 static int slub_nomerge;
1821 * Calculate the order of allocation given an slab object size.
1823 * The order of allocation has significant impact on performance and other
1824 * system components. Generally order 0 allocations should be preferred since
1825 * order 0 does not cause fragmentation in the page allocator. Larger objects
1826 * be problematic to put into order 0 slabs because there may be too much
1827 * unused space left. We go to a higher order if more than 1/16th of the slab
1828 * would be wasted.
1830 * In order to reach satisfactory performance we must ensure that a minimum
1831 * number of objects is in one slab. Otherwise we may generate too much
1832 * activity on the partial lists which requires taking the list_lock. This is
1833 * less a concern for large slabs though which are rarely used.
1835 * slub_max_order specifies the order where we begin to stop considering the
1836 * number of objects in a slab as critical. If we reach slub_max_order then
1837 * we try to keep the page order as low as possible. So we accept more waste
1838 * of space in favor of a small page order.
1840 * Higher order allocations also allow the placement of more objects in a
1841 * slab and thereby reduce object handling overhead. If the user has
1842 * requested a higher mininum order then we start with that one instead of
1843 * the smallest order which will fit the object.
1845 static inline int slab_order(int size, int min_objects,
1846 int max_order, int fract_leftover)
1848 int order;
1849 int rem;
1850 int min_order = slub_min_order;
1852 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1853 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1855 for (order = max(min_order,
1856 fls(min_objects * size - 1) - PAGE_SHIFT);
1857 order <= max_order; order++) {
1859 unsigned long slab_size = PAGE_SIZE << order;
1861 if (slab_size < min_objects * size)
1862 continue;
1864 rem = slab_size % size;
1866 if (rem <= slab_size / fract_leftover)
1867 break;
1871 return order;
1874 static inline int calculate_order(int size)
1876 int order;
1877 int min_objects;
1878 int fraction;
1881 * Attempt to find best configuration for a slab. This
1882 * works by first attempting to generate a layout with
1883 * the best configuration and backing off gradually.
1885 * First we reduce the acceptable waste in a slab. Then
1886 * we reduce the minimum objects required in a slab.
1888 min_objects = slub_min_objects;
1889 if (!min_objects)
1890 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1891 while (min_objects > 1) {
1892 fraction = 16;
1893 while (fraction >= 4) {
1894 order = slab_order(size, min_objects,
1895 slub_max_order, fraction);
1896 if (order <= slub_max_order)
1897 return order;
1898 fraction /= 2;
1900 min_objects /= 2;
1904 * We were unable to place multiple objects in a slab. Now
1905 * lets see if we can place a single object there.
1907 order = slab_order(size, 1, slub_max_order, 1);
1908 if (order <= slub_max_order)
1909 return order;
1912 * Doh this slab cannot be placed using slub_max_order.
1914 order = slab_order(size, 1, MAX_ORDER, 1);
1915 if (order <= MAX_ORDER)
1916 return order;
1917 return -ENOSYS;
1921 * Figure out what the alignment of the objects will be.
1923 static unsigned long calculate_alignment(unsigned long flags,
1924 unsigned long align, unsigned long size)
1927 * If the user wants hardware cache aligned objects then follow that
1928 * suggestion if the object is sufficiently large.
1930 * The hardware cache alignment cannot override the specified
1931 * alignment though. If that is greater then use it.
1933 if (flags & SLAB_HWCACHE_ALIGN) {
1934 unsigned long ralign = cache_line_size();
1935 while (size <= ralign / 2)
1936 ralign /= 2;
1937 align = max(align, ralign);
1940 if (align < ARCH_SLAB_MINALIGN)
1941 align = ARCH_SLAB_MINALIGN;
1943 return ALIGN(align, sizeof(void *));
1946 static void init_kmem_cache_cpu(struct kmem_cache *s,
1947 struct kmem_cache_cpu *c)
1949 c->page = NULL;
1950 c->freelist = NULL;
1951 c->node = 0;
1952 c->offset = s->offset / sizeof(void *);
1953 c->objsize = s->objsize;
1954 #ifdef CONFIG_SLUB_STATS
1955 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1956 #endif
1959 static void
1960 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1962 n->nr_partial = 0;
1965 * The larger the object size is, the more pages we want on the partial
1966 * list to avoid pounding the page allocator excessively.
1968 n->min_partial = ilog2(s->size);
1969 if (n->min_partial < MIN_PARTIAL)
1970 n->min_partial = MIN_PARTIAL;
1971 else if (n->min_partial > MAX_PARTIAL)
1972 n->min_partial = MAX_PARTIAL;
1974 spin_lock_init(&n->list_lock);
1975 INIT_LIST_HEAD(&n->partial);
1976 #ifdef CONFIG_SLUB_DEBUG
1977 atomic_long_set(&n->nr_slabs, 0);
1978 atomic_long_set(&n->total_objects, 0);
1979 INIT_LIST_HEAD(&n->full);
1980 #endif
1983 #ifdef CONFIG_SMP
1985 * Per cpu array for per cpu structures.
1987 * The per cpu array places all kmem_cache_cpu structures from one processor
1988 * close together meaning that it becomes possible that multiple per cpu
1989 * structures are contained in one cacheline. This may be particularly
1990 * beneficial for the kmalloc caches.
1992 * A desktop system typically has around 60-80 slabs. With 100 here we are
1993 * likely able to get per cpu structures for all caches from the array defined
1994 * here. We must be able to cover all kmalloc caches during bootstrap.
1996 * If the per cpu array is exhausted then fall back to kmalloc
1997 * of individual cachelines. No sharing is possible then.
1999 #define NR_KMEM_CACHE_CPU 100
2001 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2002 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2004 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2005 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2007 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2008 int cpu, gfp_t flags)
2010 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2012 if (c)
2013 per_cpu(kmem_cache_cpu_free, cpu) =
2014 (void *)c->freelist;
2015 else {
2016 /* Table overflow: So allocate ourselves */
2017 c = kmalloc_node(
2018 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2019 flags, cpu_to_node(cpu));
2020 if (!c)
2021 return NULL;
2024 init_kmem_cache_cpu(s, c);
2025 return c;
2028 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2030 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2031 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2032 kfree(c);
2033 return;
2035 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2036 per_cpu(kmem_cache_cpu_free, cpu) = c;
2039 static void free_kmem_cache_cpus(struct kmem_cache *s)
2041 int cpu;
2043 for_each_online_cpu(cpu) {
2044 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2046 if (c) {
2047 s->cpu_slab[cpu] = NULL;
2048 free_kmem_cache_cpu(c, cpu);
2053 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2055 int cpu;
2057 for_each_online_cpu(cpu) {
2058 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2060 if (c)
2061 continue;
2063 c = alloc_kmem_cache_cpu(s, cpu, flags);
2064 if (!c) {
2065 free_kmem_cache_cpus(s);
2066 return 0;
2068 s->cpu_slab[cpu] = c;
2070 return 1;
2074 * Initialize the per cpu array.
2076 static void init_alloc_cpu_cpu(int cpu)
2078 int i;
2080 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2081 return;
2083 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2084 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2086 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2089 static void __init init_alloc_cpu(void)
2091 int cpu;
2093 for_each_online_cpu(cpu)
2094 init_alloc_cpu_cpu(cpu);
2097 #else
2098 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2099 static inline void init_alloc_cpu(void) {}
2101 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2103 init_kmem_cache_cpu(s, &s->cpu_slab);
2104 return 1;
2106 #endif
2108 #ifdef CONFIG_NUMA
2110 * No kmalloc_node yet so do it by hand. We know that this is the first
2111 * slab on the node for this slabcache. There are no concurrent accesses
2112 * possible.
2114 * Note that this function only works on the kmalloc_node_cache
2115 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2116 * memory on a fresh node that has no slab structures yet.
2118 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2120 struct page *page;
2121 struct kmem_cache_node *n;
2122 unsigned long flags;
2124 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2126 page = new_slab(kmalloc_caches, gfpflags, node);
2128 BUG_ON(!page);
2129 if (page_to_nid(page) != node) {
2130 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2131 "node %d\n", node);
2132 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2133 "in order to be able to continue\n");
2136 n = page->freelist;
2137 BUG_ON(!n);
2138 page->freelist = get_freepointer(kmalloc_caches, n);
2139 page->inuse++;
2140 kmalloc_caches->node[node] = n;
2141 #ifdef CONFIG_SLUB_DEBUG
2142 init_object(kmalloc_caches, n, 1);
2143 init_tracking(kmalloc_caches, n);
2144 #endif
2145 init_kmem_cache_node(n, kmalloc_caches);
2146 inc_slabs_node(kmalloc_caches, node, page->objects);
2149 * lockdep requires consistent irq usage for each lock
2150 * so even though there cannot be a race this early in
2151 * the boot sequence, we still disable irqs.
2153 local_irq_save(flags);
2154 add_partial(n, page, 0);
2155 local_irq_restore(flags);
2158 static void free_kmem_cache_nodes(struct kmem_cache *s)
2160 int node;
2162 for_each_node_state(node, N_NORMAL_MEMORY) {
2163 struct kmem_cache_node *n = s->node[node];
2164 if (n && n != &s->local_node)
2165 kmem_cache_free(kmalloc_caches, n);
2166 s->node[node] = NULL;
2170 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2172 int node;
2173 int local_node;
2175 if (slab_state >= UP)
2176 local_node = page_to_nid(virt_to_page(s));
2177 else
2178 local_node = 0;
2180 for_each_node_state(node, N_NORMAL_MEMORY) {
2181 struct kmem_cache_node *n;
2183 if (local_node == node)
2184 n = &s->local_node;
2185 else {
2186 if (slab_state == DOWN) {
2187 early_kmem_cache_node_alloc(gfpflags, node);
2188 continue;
2190 n = kmem_cache_alloc_node(kmalloc_caches,
2191 gfpflags, node);
2193 if (!n) {
2194 free_kmem_cache_nodes(s);
2195 return 0;
2199 s->node[node] = n;
2200 init_kmem_cache_node(n, s);
2202 return 1;
2204 #else
2205 static void free_kmem_cache_nodes(struct kmem_cache *s)
2209 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2211 init_kmem_cache_node(&s->local_node, s);
2212 return 1;
2214 #endif
2217 * calculate_sizes() determines the order and the distribution of data within
2218 * a slab object.
2220 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2222 unsigned long flags = s->flags;
2223 unsigned long size = s->objsize;
2224 unsigned long align = s->align;
2225 int order;
2228 * Round up object size to the next word boundary. We can only
2229 * place the free pointer at word boundaries and this determines
2230 * the possible location of the free pointer.
2232 size = ALIGN(size, sizeof(void *));
2234 #ifdef CONFIG_SLUB_DEBUG
2236 * Determine if we can poison the object itself. If the user of
2237 * the slab may touch the object after free or before allocation
2238 * then we should never poison the object itself.
2240 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2241 !s->ctor)
2242 s->flags |= __OBJECT_POISON;
2243 else
2244 s->flags &= ~__OBJECT_POISON;
2248 * If we are Redzoning then check if there is some space between the
2249 * end of the object and the free pointer. If not then add an
2250 * additional word to have some bytes to store Redzone information.
2252 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2253 size += sizeof(void *);
2254 #endif
2257 * With that we have determined the number of bytes in actual use
2258 * by the object. This is the potential offset to the free pointer.
2260 s->inuse = size;
2262 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2263 s->ctor)) {
2265 * Relocate free pointer after the object if it is not
2266 * permitted to overwrite the first word of the object on
2267 * kmem_cache_free.
2269 * This is the case if we do RCU, have a constructor or
2270 * destructor or are poisoning the objects.
2272 s->offset = size;
2273 size += sizeof(void *);
2276 #ifdef CONFIG_SLUB_DEBUG
2277 if (flags & SLAB_STORE_USER)
2279 * Need to store information about allocs and frees after
2280 * the object.
2282 size += 2 * sizeof(struct track);
2284 if (flags & SLAB_RED_ZONE)
2286 * Add some empty padding so that we can catch
2287 * overwrites from earlier objects rather than let
2288 * tracking information or the free pointer be
2289 * corrupted if a user writes before the start
2290 * of the object.
2292 size += sizeof(void *);
2293 #endif
2296 * Determine the alignment based on various parameters that the
2297 * user specified and the dynamic determination of cache line size
2298 * on bootup.
2300 align = calculate_alignment(flags, align, s->objsize);
2303 * SLUB stores one object immediately after another beginning from
2304 * offset 0. In order to align the objects we have to simply size
2305 * each object to conform to the alignment.
2307 size = ALIGN(size, align);
2308 s->size = size;
2309 if (forced_order >= 0)
2310 order = forced_order;
2311 else
2312 order = calculate_order(size);
2314 if (order < 0)
2315 return 0;
2317 s->allocflags = 0;
2318 if (order)
2319 s->allocflags |= __GFP_COMP;
2321 if (s->flags & SLAB_CACHE_DMA)
2322 s->allocflags |= SLUB_DMA;
2324 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2325 s->allocflags |= __GFP_RECLAIMABLE;
2328 * Determine the number of objects per slab
2330 s->oo = oo_make(order, size);
2331 s->min = oo_make(get_order(size), size);
2332 if (oo_objects(s->oo) > oo_objects(s->max))
2333 s->max = s->oo;
2335 return !!oo_objects(s->oo);
2339 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2340 const char *name, size_t size,
2341 size_t align, unsigned long flags,
2342 void (*ctor)(void *))
2344 memset(s, 0, kmem_size);
2345 s->name = name;
2346 s->ctor = ctor;
2347 s->objsize = size;
2348 s->align = align;
2349 s->flags = kmem_cache_flags(size, flags, name, ctor);
2351 if (!calculate_sizes(s, -1))
2352 goto error;
2354 s->refcount = 1;
2355 #ifdef CONFIG_NUMA
2356 s->remote_node_defrag_ratio = 1000;
2357 #endif
2358 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2359 goto error;
2361 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2362 return 1;
2363 free_kmem_cache_nodes(s);
2364 error:
2365 if (flags & SLAB_PANIC)
2366 panic("Cannot create slab %s size=%lu realsize=%u "
2367 "order=%u offset=%u flags=%lx\n",
2368 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2369 s->offset, flags);
2370 return 0;
2374 * Check if a given pointer is valid
2376 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2378 struct page *page;
2380 page = get_object_page(object);
2382 if (!page || s != page->slab)
2383 /* No slab or wrong slab */
2384 return 0;
2386 if (!check_valid_pointer(s, page, object))
2387 return 0;
2390 * We could also check if the object is on the slabs freelist.
2391 * But this would be too expensive and it seems that the main
2392 * purpose of kmem_ptr_valid() is to check if the object belongs
2393 * to a certain slab.
2395 return 1;
2397 EXPORT_SYMBOL(kmem_ptr_validate);
2400 * Determine the size of a slab object
2402 unsigned int kmem_cache_size(struct kmem_cache *s)
2404 return s->objsize;
2406 EXPORT_SYMBOL(kmem_cache_size);
2408 const char *kmem_cache_name(struct kmem_cache *s)
2410 return s->name;
2412 EXPORT_SYMBOL(kmem_cache_name);
2414 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2415 const char *text)
2417 #ifdef CONFIG_SLUB_DEBUG
2418 void *addr = page_address(page);
2419 void *p;
2420 DECLARE_BITMAP(map, page->objects);
2422 bitmap_zero(map, page->objects);
2423 slab_err(s, page, "%s", text);
2424 slab_lock(page);
2425 for_each_free_object(p, s, page->freelist)
2426 set_bit(slab_index(p, s, addr), map);
2428 for_each_object(p, s, addr, page->objects) {
2430 if (!test_bit(slab_index(p, s, addr), map)) {
2431 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2432 p, p - addr);
2433 print_tracking(s, p);
2436 slab_unlock(page);
2437 #endif
2441 * Attempt to free all partial slabs on a node.
2443 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2445 unsigned long flags;
2446 struct page *page, *h;
2448 spin_lock_irqsave(&n->list_lock, flags);
2449 list_for_each_entry_safe(page, h, &n->partial, lru) {
2450 if (!page->inuse) {
2451 list_del(&page->lru);
2452 discard_slab(s, page);
2453 n->nr_partial--;
2454 } else {
2455 list_slab_objects(s, page,
2456 "Objects remaining on kmem_cache_close()");
2459 spin_unlock_irqrestore(&n->list_lock, flags);
2463 * Release all resources used by a slab cache.
2465 static inline int kmem_cache_close(struct kmem_cache *s)
2467 int node;
2469 flush_all(s);
2471 /* Attempt to free all objects */
2472 free_kmem_cache_cpus(s);
2473 for_each_node_state(node, N_NORMAL_MEMORY) {
2474 struct kmem_cache_node *n = get_node(s, node);
2476 free_partial(s, n);
2477 if (n->nr_partial || slabs_node(s, node))
2478 return 1;
2480 free_kmem_cache_nodes(s);
2481 return 0;
2485 * Close a cache and release the kmem_cache structure
2486 * (must be used for caches created using kmem_cache_create)
2488 void kmem_cache_destroy(struct kmem_cache *s)
2490 down_write(&slub_lock);
2491 s->refcount--;
2492 if (!s->refcount) {
2493 list_del(&s->list);
2494 up_write(&slub_lock);
2495 if (kmem_cache_close(s)) {
2496 printk(KERN_ERR "SLUB %s: %s called for cache that "
2497 "still has objects.\n", s->name, __func__);
2498 dump_stack();
2500 sysfs_slab_remove(s);
2501 } else
2502 up_write(&slub_lock);
2504 EXPORT_SYMBOL(kmem_cache_destroy);
2506 /********************************************************************
2507 * Kmalloc subsystem
2508 *******************************************************************/
2510 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2511 EXPORT_SYMBOL(kmalloc_caches);
2513 static int __init setup_slub_min_order(char *str)
2515 get_option(&str, &slub_min_order);
2517 return 1;
2520 __setup("slub_min_order=", setup_slub_min_order);
2522 static int __init setup_slub_max_order(char *str)
2524 get_option(&str, &slub_max_order);
2526 return 1;
2529 __setup("slub_max_order=", setup_slub_max_order);
2531 static int __init setup_slub_min_objects(char *str)
2533 get_option(&str, &slub_min_objects);
2535 return 1;
2538 __setup("slub_min_objects=", setup_slub_min_objects);
2540 static int __init setup_slub_nomerge(char *str)
2542 slub_nomerge = 1;
2543 return 1;
2546 __setup("slub_nomerge", setup_slub_nomerge);
2548 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2549 const char *name, int size, gfp_t gfp_flags)
2551 unsigned int flags = 0;
2553 if (gfp_flags & SLUB_DMA)
2554 flags = SLAB_CACHE_DMA;
2556 down_write(&slub_lock);
2557 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2558 flags, NULL))
2559 goto panic;
2561 list_add(&s->list, &slab_caches);
2562 up_write(&slub_lock);
2563 if (sysfs_slab_add(s))
2564 goto panic;
2565 return s;
2567 panic:
2568 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2571 #ifdef CONFIG_ZONE_DMA
2572 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2574 static void sysfs_add_func(struct work_struct *w)
2576 struct kmem_cache *s;
2578 down_write(&slub_lock);
2579 list_for_each_entry(s, &slab_caches, list) {
2580 if (s->flags & __SYSFS_ADD_DEFERRED) {
2581 s->flags &= ~__SYSFS_ADD_DEFERRED;
2582 sysfs_slab_add(s);
2585 up_write(&slub_lock);
2588 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2590 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2592 struct kmem_cache *s;
2593 char *text;
2594 size_t realsize;
2596 s = kmalloc_caches_dma[index];
2597 if (s)
2598 return s;
2600 /* Dynamically create dma cache */
2601 if (flags & __GFP_WAIT)
2602 down_write(&slub_lock);
2603 else {
2604 if (!down_write_trylock(&slub_lock))
2605 goto out;
2608 if (kmalloc_caches_dma[index])
2609 goto unlock_out;
2611 realsize = kmalloc_caches[index].objsize;
2612 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2613 (unsigned int)realsize);
2614 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2616 if (!s || !text || !kmem_cache_open(s, flags, text,
2617 realsize, ARCH_KMALLOC_MINALIGN,
2618 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2619 kfree(s);
2620 kfree(text);
2621 goto unlock_out;
2624 list_add(&s->list, &slab_caches);
2625 kmalloc_caches_dma[index] = s;
2627 schedule_work(&sysfs_add_work);
2629 unlock_out:
2630 up_write(&slub_lock);
2631 out:
2632 return kmalloc_caches_dma[index];
2634 #endif
2637 * Conversion table for small slabs sizes / 8 to the index in the
2638 * kmalloc array. This is necessary for slabs < 192 since we have non power
2639 * of two cache sizes there. The size of larger slabs can be determined using
2640 * fls.
2642 static s8 size_index[24] = {
2643 3, /* 8 */
2644 4, /* 16 */
2645 5, /* 24 */
2646 5, /* 32 */
2647 6, /* 40 */
2648 6, /* 48 */
2649 6, /* 56 */
2650 6, /* 64 */
2651 1, /* 72 */
2652 1, /* 80 */
2653 1, /* 88 */
2654 1, /* 96 */
2655 7, /* 104 */
2656 7, /* 112 */
2657 7, /* 120 */
2658 7, /* 128 */
2659 2, /* 136 */
2660 2, /* 144 */
2661 2, /* 152 */
2662 2, /* 160 */
2663 2, /* 168 */
2664 2, /* 176 */
2665 2, /* 184 */
2666 2 /* 192 */
2669 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2671 int index;
2673 if (size <= 192) {
2674 if (!size)
2675 return ZERO_SIZE_PTR;
2677 index = size_index[(size - 1) / 8];
2678 } else
2679 index = fls(size - 1);
2681 #ifdef CONFIG_ZONE_DMA
2682 if (unlikely((flags & SLUB_DMA)))
2683 return dma_kmalloc_cache(index, flags);
2685 #endif
2686 return &kmalloc_caches[index];
2689 void *__kmalloc(size_t size, gfp_t flags)
2691 struct kmem_cache *s;
2692 void *ret;
2694 if (unlikely(size > SLUB_MAX_SIZE))
2695 return kmalloc_large(size, flags);
2697 s = get_slab(size, flags);
2699 if (unlikely(ZERO_OR_NULL_PTR(s)))
2700 return s;
2702 ret = slab_alloc(s, flags, -1, _RET_IP_);
2704 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret,
2705 size, s->size, flags);
2707 return ret;
2709 EXPORT_SYMBOL(__kmalloc);
2711 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2713 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2714 get_order(size));
2716 if (page)
2717 return page_address(page);
2718 else
2719 return NULL;
2722 #ifdef CONFIG_NUMA
2723 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2725 struct kmem_cache *s;
2726 void *ret;
2728 if (unlikely(size > SLUB_MAX_SIZE)) {
2729 ret = kmalloc_large_node(size, flags, node);
2731 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC,
2732 _RET_IP_, ret,
2733 size, PAGE_SIZE << get_order(size),
2734 flags, node);
2736 return ret;
2739 s = get_slab(size, flags);
2741 if (unlikely(ZERO_OR_NULL_PTR(s)))
2742 return s;
2744 ret = slab_alloc(s, flags, node, _RET_IP_);
2746 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret,
2747 size, s->size, flags, node);
2749 return ret;
2751 EXPORT_SYMBOL(__kmalloc_node);
2752 #endif
2754 size_t ksize(const void *object)
2756 struct page *page;
2757 struct kmem_cache *s;
2759 if (unlikely(object == ZERO_SIZE_PTR))
2760 return 0;
2762 page = virt_to_head_page(object);
2764 if (unlikely(!PageSlab(page))) {
2765 WARN_ON(!PageCompound(page));
2766 return PAGE_SIZE << compound_order(page);
2768 s = page->slab;
2770 #ifdef CONFIG_SLUB_DEBUG
2772 * Debugging requires use of the padding between object
2773 * and whatever may come after it.
2775 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2776 return s->objsize;
2778 #endif
2780 * If we have the need to store the freelist pointer
2781 * back there or track user information then we can
2782 * only use the space before that information.
2784 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2785 return s->inuse;
2787 * Else we can use all the padding etc for the allocation
2789 return s->size;
2791 EXPORT_SYMBOL(ksize);
2793 void kfree(const void *x)
2795 struct page *page;
2796 void *object = (void *)x;
2798 if (unlikely(ZERO_OR_NULL_PTR(x)))
2799 return;
2801 page = virt_to_head_page(x);
2802 if (unlikely(!PageSlab(page))) {
2803 BUG_ON(!PageCompound(page));
2804 put_page(page);
2805 return;
2807 slab_free(page->slab, page, object, _RET_IP_);
2809 kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, x);
2811 EXPORT_SYMBOL(kfree);
2814 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2815 * the remaining slabs by the number of items in use. The slabs with the
2816 * most items in use come first. New allocations will then fill those up
2817 * and thus they can be removed from the partial lists.
2819 * The slabs with the least items are placed last. This results in them
2820 * being allocated from last increasing the chance that the last objects
2821 * are freed in them.
2823 int kmem_cache_shrink(struct kmem_cache *s)
2825 int node;
2826 int i;
2827 struct kmem_cache_node *n;
2828 struct page *page;
2829 struct page *t;
2830 int objects = oo_objects(s->max);
2831 struct list_head *slabs_by_inuse =
2832 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2833 unsigned long flags;
2835 if (!slabs_by_inuse)
2836 return -ENOMEM;
2838 flush_all(s);
2839 for_each_node_state(node, N_NORMAL_MEMORY) {
2840 n = get_node(s, node);
2842 if (!n->nr_partial)
2843 continue;
2845 for (i = 0; i < objects; i++)
2846 INIT_LIST_HEAD(slabs_by_inuse + i);
2848 spin_lock_irqsave(&n->list_lock, flags);
2851 * Build lists indexed by the items in use in each slab.
2853 * Note that concurrent frees may occur while we hold the
2854 * list_lock. page->inuse here is the upper limit.
2856 list_for_each_entry_safe(page, t, &n->partial, lru) {
2857 if (!page->inuse && slab_trylock(page)) {
2859 * Must hold slab lock here because slab_free
2860 * may have freed the last object and be
2861 * waiting to release the slab.
2863 list_del(&page->lru);
2864 n->nr_partial--;
2865 slab_unlock(page);
2866 discard_slab(s, page);
2867 } else {
2868 list_move(&page->lru,
2869 slabs_by_inuse + page->inuse);
2874 * Rebuild the partial list with the slabs filled up most
2875 * first and the least used slabs at the end.
2877 for (i = objects - 1; i >= 0; i--)
2878 list_splice(slabs_by_inuse + i, n->partial.prev);
2880 spin_unlock_irqrestore(&n->list_lock, flags);
2883 kfree(slabs_by_inuse);
2884 return 0;
2886 EXPORT_SYMBOL(kmem_cache_shrink);
2888 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2889 static int slab_mem_going_offline_callback(void *arg)
2891 struct kmem_cache *s;
2893 down_read(&slub_lock);
2894 list_for_each_entry(s, &slab_caches, list)
2895 kmem_cache_shrink(s);
2896 up_read(&slub_lock);
2898 return 0;
2901 static void slab_mem_offline_callback(void *arg)
2903 struct kmem_cache_node *n;
2904 struct kmem_cache *s;
2905 struct memory_notify *marg = arg;
2906 int offline_node;
2908 offline_node = marg->status_change_nid;
2911 * If the node still has available memory. we need kmem_cache_node
2912 * for it yet.
2914 if (offline_node < 0)
2915 return;
2917 down_read(&slub_lock);
2918 list_for_each_entry(s, &slab_caches, list) {
2919 n = get_node(s, offline_node);
2920 if (n) {
2922 * if n->nr_slabs > 0, slabs still exist on the node
2923 * that is going down. We were unable to free them,
2924 * and offline_pages() function shoudn't call this
2925 * callback. So, we must fail.
2927 BUG_ON(slabs_node(s, offline_node));
2929 s->node[offline_node] = NULL;
2930 kmem_cache_free(kmalloc_caches, n);
2933 up_read(&slub_lock);
2936 static int slab_mem_going_online_callback(void *arg)
2938 struct kmem_cache_node *n;
2939 struct kmem_cache *s;
2940 struct memory_notify *marg = arg;
2941 int nid = marg->status_change_nid;
2942 int ret = 0;
2945 * If the node's memory is already available, then kmem_cache_node is
2946 * already created. Nothing to do.
2948 if (nid < 0)
2949 return 0;
2952 * We are bringing a node online. No memory is available yet. We must
2953 * allocate a kmem_cache_node structure in order to bring the node
2954 * online.
2956 down_read(&slub_lock);
2957 list_for_each_entry(s, &slab_caches, list) {
2959 * XXX: kmem_cache_alloc_node will fallback to other nodes
2960 * since memory is not yet available from the node that
2961 * is brought up.
2963 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2964 if (!n) {
2965 ret = -ENOMEM;
2966 goto out;
2968 init_kmem_cache_node(n, s);
2969 s->node[nid] = n;
2971 out:
2972 up_read(&slub_lock);
2973 return ret;
2976 static int slab_memory_callback(struct notifier_block *self,
2977 unsigned long action, void *arg)
2979 int ret = 0;
2981 switch (action) {
2982 case MEM_GOING_ONLINE:
2983 ret = slab_mem_going_online_callback(arg);
2984 break;
2985 case MEM_GOING_OFFLINE:
2986 ret = slab_mem_going_offline_callback(arg);
2987 break;
2988 case MEM_OFFLINE:
2989 case MEM_CANCEL_ONLINE:
2990 slab_mem_offline_callback(arg);
2991 break;
2992 case MEM_ONLINE:
2993 case MEM_CANCEL_OFFLINE:
2994 break;
2996 if (ret)
2997 ret = notifier_from_errno(ret);
2998 else
2999 ret = NOTIFY_OK;
3000 return ret;
3003 #endif /* CONFIG_MEMORY_HOTPLUG */
3005 /********************************************************************
3006 * Basic setup of slabs
3007 *******************************************************************/
3009 void __init kmem_cache_init(void)
3011 int i;
3012 int caches = 0;
3014 init_alloc_cpu();
3016 #ifdef CONFIG_NUMA
3018 * Must first have the slab cache available for the allocations of the
3019 * struct kmem_cache_node's. There is special bootstrap code in
3020 * kmem_cache_open for slab_state == DOWN.
3022 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3023 sizeof(struct kmem_cache_node), GFP_KERNEL);
3024 kmalloc_caches[0].refcount = -1;
3025 caches++;
3027 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3028 #endif
3030 /* Able to allocate the per node structures */
3031 slab_state = PARTIAL;
3033 /* Caches that are not of the two-to-the-power-of size */
3034 if (KMALLOC_MIN_SIZE <= 64) {
3035 create_kmalloc_cache(&kmalloc_caches[1],
3036 "kmalloc-96", 96, GFP_KERNEL);
3037 caches++;
3038 create_kmalloc_cache(&kmalloc_caches[2],
3039 "kmalloc-192", 192, GFP_KERNEL);
3040 caches++;
3043 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3044 create_kmalloc_cache(&kmalloc_caches[i],
3045 "kmalloc", 1 << i, GFP_KERNEL);
3046 caches++;
3051 * Patch up the size_index table if we have strange large alignment
3052 * requirements for the kmalloc array. This is only the case for
3053 * MIPS it seems. The standard arches will not generate any code here.
3055 * Largest permitted alignment is 256 bytes due to the way we
3056 * handle the index determination for the smaller caches.
3058 * Make sure that nothing crazy happens if someone starts tinkering
3059 * around with ARCH_KMALLOC_MINALIGN
3061 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3062 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3064 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3065 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3067 if (KMALLOC_MIN_SIZE == 128) {
3069 * The 192 byte sized cache is not used if the alignment
3070 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3071 * instead.
3073 for (i = 128 + 8; i <= 192; i += 8)
3074 size_index[(i - 1) / 8] = 8;
3077 slab_state = UP;
3079 /* Provide the correct kmalloc names now that the caches are up */
3080 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3081 kmalloc_caches[i]. name =
3082 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3084 #ifdef CONFIG_SMP
3085 register_cpu_notifier(&slab_notifier);
3086 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3087 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3088 #else
3089 kmem_size = sizeof(struct kmem_cache);
3090 #endif
3092 printk(KERN_INFO
3093 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3094 " CPUs=%d, Nodes=%d\n",
3095 caches, cache_line_size(),
3096 slub_min_order, slub_max_order, slub_min_objects,
3097 nr_cpu_ids, nr_node_ids);
3101 * Find a mergeable slab cache
3103 static int slab_unmergeable(struct kmem_cache *s)
3105 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3106 return 1;
3108 if (s->ctor)
3109 return 1;
3112 * We may have set a slab to be unmergeable during bootstrap.
3114 if (s->refcount < 0)
3115 return 1;
3117 return 0;
3120 static struct kmem_cache *find_mergeable(size_t size,
3121 size_t align, unsigned long flags, const char *name,
3122 void (*ctor)(void *))
3124 struct kmem_cache *s;
3126 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3127 return NULL;
3129 if (ctor)
3130 return NULL;
3132 size = ALIGN(size, sizeof(void *));
3133 align = calculate_alignment(flags, align, size);
3134 size = ALIGN(size, align);
3135 flags = kmem_cache_flags(size, flags, name, NULL);
3137 list_for_each_entry(s, &slab_caches, list) {
3138 if (slab_unmergeable(s))
3139 continue;
3141 if (size > s->size)
3142 continue;
3144 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3145 continue;
3147 * Check if alignment is compatible.
3148 * Courtesy of Adrian Drzewiecki
3150 if ((s->size & ~(align - 1)) != s->size)
3151 continue;
3153 if (s->size - size >= sizeof(void *))
3154 continue;
3156 return s;
3158 return NULL;
3161 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3162 size_t align, unsigned long flags, void (*ctor)(void *))
3164 struct kmem_cache *s;
3166 down_write(&slub_lock);
3167 s = find_mergeable(size, align, flags, name, ctor);
3168 if (s) {
3169 int cpu;
3171 s->refcount++;
3173 * Adjust the object sizes so that we clear
3174 * the complete object on kzalloc.
3176 s->objsize = max(s->objsize, (int)size);
3179 * And then we need to update the object size in the
3180 * per cpu structures
3182 for_each_online_cpu(cpu)
3183 get_cpu_slab(s, cpu)->objsize = s->objsize;
3185 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3186 up_write(&slub_lock);
3188 if (sysfs_slab_alias(s, name)) {
3189 down_write(&slub_lock);
3190 s->refcount--;
3191 up_write(&slub_lock);
3192 goto err;
3194 return s;
3197 s = kmalloc(kmem_size, GFP_KERNEL);
3198 if (s) {
3199 if (kmem_cache_open(s, GFP_KERNEL, name,
3200 size, align, flags, ctor)) {
3201 list_add(&s->list, &slab_caches);
3202 up_write(&slub_lock);
3203 if (sysfs_slab_add(s)) {
3204 down_write(&slub_lock);
3205 list_del(&s->list);
3206 up_write(&slub_lock);
3207 kfree(s);
3208 goto err;
3210 return s;
3212 kfree(s);
3214 up_write(&slub_lock);
3216 err:
3217 if (flags & SLAB_PANIC)
3218 panic("Cannot create slabcache %s\n", name);
3219 else
3220 s = NULL;
3221 return s;
3223 EXPORT_SYMBOL(kmem_cache_create);
3225 #ifdef CONFIG_SMP
3227 * Use the cpu notifier to insure that the cpu slabs are flushed when
3228 * necessary.
3230 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3231 unsigned long action, void *hcpu)
3233 long cpu = (long)hcpu;
3234 struct kmem_cache *s;
3235 unsigned long flags;
3237 switch (action) {
3238 case CPU_UP_PREPARE:
3239 case CPU_UP_PREPARE_FROZEN:
3240 init_alloc_cpu_cpu(cpu);
3241 down_read(&slub_lock);
3242 list_for_each_entry(s, &slab_caches, list)
3243 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3244 GFP_KERNEL);
3245 up_read(&slub_lock);
3246 break;
3248 case CPU_UP_CANCELED:
3249 case CPU_UP_CANCELED_FROZEN:
3250 case CPU_DEAD:
3251 case CPU_DEAD_FROZEN:
3252 down_read(&slub_lock);
3253 list_for_each_entry(s, &slab_caches, list) {
3254 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3256 local_irq_save(flags);
3257 __flush_cpu_slab(s, cpu);
3258 local_irq_restore(flags);
3259 free_kmem_cache_cpu(c, cpu);
3260 s->cpu_slab[cpu] = NULL;
3262 up_read(&slub_lock);
3263 break;
3264 default:
3265 break;
3267 return NOTIFY_OK;
3270 static struct notifier_block __cpuinitdata slab_notifier = {
3271 .notifier_call = slab_cpuup_callback
3274 #endif
3276 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3278 struct kmem_cache *s;
3279 void *ret;
3281 if (unlikely(size > SLUB_MAX_SIZE))
3282 return kmalloc_large(size, gfpflags);
3284 s = get_slab(size, gfpflags);
3286 if (unlikely(ZERO_OR_NULL_PTR(s)))
3287 return s;
3289 ret = slab_alloc(s, gfpflags, -1, caller);
3291 /* Honor the call site pointer we recieved. */
3292 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, caller, ret, size,
3293 s->size, gfpflags);
3295 return ret;
3298 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3299 int node, unsigned long caller)
3301 struct kmem_cache *s;
3302 void *ret;
3304 if (unlikely(size > SLUB_MAX_SIZE))
3305 return kmalloc_large_node(size, gfpflags, node);
3307 s = get_slab(size, gfpflags);
3309 if (unlikely(ZERO_OR_NULL_PTR(s)))
3310 return s;
3312 ret = slab_alloc(s, gfpflags, node, caller);
3314 /* Honor the call site pointer we recieved. */
3315 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, caller, ret,
3316 size, s->size, gfpflags, node);
3318 return ret;
3321 #ifdef CONFIG_SLUB_DEBUG
3322 static unsigned long count_partial(struct kmem_cache_node *n,
3323 int (*get_count)(struct page *))
3325 unsigned long flags;
3326 unsigned long x = 0;
3327 struct page *page;
3329 spin_lock_irqsave(&n->list_lock, flags);
3330 list_for_each_entry(page, &n->partial, lru)
3331 x += get_count(page);
3332 spin_unlock_irqrestore(&n->list_lock, flags);
3333 return x;
3336 static int count_inuse(struct page *page)
3338 return page->inuse;
3341 static int count_total(struct page *page)
3343 return page->objects;
3346 static int count_free(struct page *page)
3348 return page->objects - page->inuse;
3351 static int validate_slab(struct kmem_cache *s, struct page *page,
3352 unsigned long *map)
3354 void *p;
3355 void *addr = page_address(page);
3357 if (!check_slab(s, page) ||
3358 !on_freelist(s, page, NULL))
3359 return 0;
3361 /* Now we know that a valid freelist exists */
3362 bitmap_zero(map, page->objects);
3364 for_each_free_object(p, s, page->freelist) {
3365 set_bit(slab_index(p, s, addr), map);
3366 if (!check_object(s, page, p, 0))
3367 return 0;
3370 for_each_object(p, s, addr, page->objects)
3371 if (!test_bit(slab_index(p, s, addr), map))
3372 if (!check_object(s, page, p, 1))
3373 return 0;
3374 return 1;
3377 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3378 unsigned long *map)
3380 if (slab_trylock(page)) {
3381 validate_slab(s, page, map);
3382 slab_unlock(page);
3383 } else
3384 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3385 s->name, page);
3387 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3388 if (!PageSlubDebug(page))
3389 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3390 "on slab 0x%p\n", s->name, page);
3391 } else {
3392 if (PageSlubDebug(page))
3393 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3394 "slab 0x%p\n", s->name, page);
3398 static int validate_slab_node(struct kmem_cache *s,
3399 struct kmem_cache_node *n, unsigned long *map)
3401 unsigned long count = 0;
3402 struct page *page;
3403 unsigned long flags;
3405 spin_lock_irqsave(&n->list_lock, flags);
3407 list_for_each_entry(page, &n->partial, lru) {
3408 validate_slab_slab(s, page, map);
3409 count++;
3411 if (count != n->nr_partial)
3412 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3413 "counter=%ld\n", s->name, count, n->nr_partial);
3415 if (!(s->flags & SLAB_STORE_USER))
3416 goto out;
3418 list_for_each_entry(page, &n->full, lru) {
3419 validate_slab_slab(s, page, map);
3420 count++;
3422 if (count != atomic_long_read(&n->nr_slabs))
3423 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3424 "counter=%ld\n", s->name, count,
3425 atomic_long_read(&n->nr_slabs));
3427 out:
3428 spin_unlock_irqrestore(&n->list_lock, flags);
3429 return count;
3432 static long validate_slab_cache(struct kmem_cache *s)
3434 int node;
3435 unsigned long count = 0;
3436 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3437 sizeof(unsigned long), GFP_KERNEL);
3439 if (!map)
3440 return -ENOMEM;
3442 flush_all(s);
3443 for_each_node_state(node, N_NORMAL_MEMORY) {
3444 struct kmem_cache_node *n = get_node(s, node);
3446 count += validate_slab_node(s, n, map);
3448 kfree(map);
3449 return count;
3452 #ifdef SLUB_RESILIENCY_TEST
3453 static void resiliency_test(void)
3455 u8 *p;
3457 printk(KERN_ERR "SLUB resiliency testing\n");
3458 printk(KERN_ERR "-----------------------\n");
3459 printk(KERN_ERR "A. Corruption after allocation\n");
3461 p = kzalloc(16, GFP_KERNEL);
3462 p[16] = 0x12;
3463 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3464 " 0x12->0x%p\n\n", p + 16);
3466 validate_slab_cache(kmalloc_caches + 4);
3468 /* Hmmm... The next two are dangerous */
3469 p = kzalloc(32, GFP_KERNEL);
3470 p[32 + sizeof(void *)] = 0x34;
3471 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3472 " 0x34 -> -0x%p\n", p);
3473 printk(KERN_ERR
3474 "If allocated object is overwritten then not detectable\n\n");
3476 validate_slab_cache(kmalloc_caches + 5);
3477 p = kzalloc(64, GFP_KERNEL);
3478 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3479 *p = 0x56;
3480 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3482 printk(KERN_ERR
3483 "If allocated object is overwritten then not detectable\n\n");
3484 validate_slab_cache(kmalloc_caches + 6);
3486 printk(KERN_ERR "\nB. Corruption after free\n");
3487 p = kzalloc(128, GFP_KERNEL);
3488 kfree(p);
3489 *p = 0x78;
3490 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3491 validate_slab_cache(kmalloc_caches + 7);
3493 p = kzalloc(256, GFP_KERNEL);
3494 kfree(p);
3495 p[50] = 0x9a;
3496 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3498 validate_slab_cache(kmalloc_caches + 8);
3500 p = kzalloc(512, GFP_KERNEL);
3501 kfree(p);
3502 p[512] = 0xab;
3503 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3504 validate_slab_cache(kmalloc_caches + 9);
3506 #else
3507 static void resiliency_test(void) {};
3508 #endif
3511 * Generate lists of code addresses where slabcache objects are allocated
3512 * and freed.
3515 struct location {
3516 unsigned long count;
3517 unsigned long addr;
3518 long long sum_time;
3519 long min_time;
3520 long max_time;
3521 long min_pid;
3522 long max_pid;
3523 DECLARE_BITMAP(cpus, NR_CPUS);
3524 nodemask_t nodes;
3527 struct loc_track {
3528 unsigned long max;
3529 unsigned long count;
3530 struct location *loc;
3533 static void free_loc_track(struct loc_track *t)
3535 if (t->max)
3536 free_pages((unsigned long)t->loc,
3537 get_order(sizeof(struct location) * t->max));
3540 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3542 struct location *l;
3543 int order;
3545 order = get_order(sizeof(struct location) * max);
3547 l = (void *)__get_free_pages(flags, order);
3548 if (!l)
3549 return 0;
3551 if (t->count) {
3552 memcpy(l, t->loc, sizeof(struct location) * t->count);
3553 free_loc_track(t);
3555 t->max = max;
3556 t->loc = l;
3557 return 1;
3560 static int add_location(struct loc_track *t, struct kmem_cache *s,
3561 const struct track *track)
3563 long start, end, pos;
3564 struct location *l;
3565 unsigned long caddr;
3566 unsigned long age = jiffies - track->when;
3568 start = -1;
3569 end = t->count;
3571 for ( ; ; ) {
3572 pos = start + (end - start + 1) / 2;
3575 * There is nothing at "end". If we end up there
3576 * we need to add something to before end.
3578 if (pos == end)
3579 break;
3581 caddr = t->loc[pos].addr;
3582 if (track->addr == caddr) {
3584 l = &t->loc[pos];
3585 l->count++;
3586 if (track->when) {
3587 l->sum_time += age;
3588 if (age < l->min_time)
3589 l->min_time = age;
3590 if (age > l->max_time)
3591 l->max_time = age;
3593 if (track->pid < l->min_pid)
3594 l->min_pid = track->pid;
3595 if (track->pid > l->max_pid)
3596 l->max_pid = track->pid;
3598 cpumask_set_cpu(track->cpu,
3599 to_cpumask(l->cpus));
3601 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3602 return 1;
3605 if (track->addr < caddr)
3606 end = pos;
3607 else
3608 start = pos;
3612 * Not found. Insert new tracking element.
3614 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3615 return 0;
3617 l = t->loc + pos;
3618 if (pos < t->count)
3619 memmove(l + 1, l,
3620 (t->count - pos) * sizeof(struct location));
3621 t->count++;
3622 l->count = 1;
3623 l->addr = track->addr;
3624 l->sum_time = age;
3625 l->min_time = age;
3626 l->max_time = age;
3627 l->min_pid = track->pid;
3628 l->max_pid = track->pid;
3629 cpumask_clear(to_cpumask(l->cpus));
3630 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3631 nodes_clear(l->nodes);
3632 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3633 return 1;
3636 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3637 struct page *page, enum track_item alloc)
3639 void *addr = page_address(page);
3640 DECLARE_BITMAP(map, page->objects);
3641 void *p;
3643 bitmap_zero(map, page->objects);
3644 for_each_free_object(p, s, page->freelist)
3645 set_bit(slab_index(p, s, addr), map);
3647 for_each_object(p, s, addr, page->objects)
3648 if (!test_bit(slab_index(p, s, addr), map))
3649 add_location(t, s, get_track(s, p, alloc));
3652 static int list_locations(struct kmem_cache *s, char *buf,
3653 enum track_item alloc)
3655 int len = 0;
3656 unsigned long i;
3657 struct loc_track t = { 0, 0, NULL };
3658 int node;
3660 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3661 GFP_TEMPORARY))
3662 return sprintf(buf, "Out of memory\n");
3664 /* Push back cpu slabs */
3665 flush_all(s);
3667 for_each_node_state(node, N_NORMAL_MEMORY) {
3668 struct kmem_cache_node *n = get_node(s, node);
3669 unsigned long flags;
3670 struct page *page;
3672 if (!atomic_long_read(&n->nr_slabs))
3673 continue;
3675 spin_lock_irqsave(&n->list_lock, flags);
3676 list_for_each_entry(page, &n->partial, lru)
3677 process_slab(&t, s, page, alloc);
3678 list_for_each_entry(page, &n->full, lru)
3679 process_slab(&t, s, page, alloc);
3680 spin_unlock_irqrestore(&n->list_lock, flags);
3683 for (i = 0; i < t.count; i++) {
3684 struct location *l = &t.loc[i];
3686 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3687 break;
3688 len += sprintf(buf + len, "%7ld ", l->count);
3690 if (l->addr)
3691 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3692 else
3693 len += sprintf(buf + len, "<not-available>");
3695 if (l->sum_time != l->min_time) {
3696 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3697 l->min_time,
3698 (long)div_u64(l->sum_time, l->count),
3699 l->max_time);
3700 } else
3701 len += sprintf(buf + len, " age=%ld",
3702 l->min_time);
3704 if (l->min_pid != l->max_pid)
3705 len += sprintf(buf + len, " pid=%ld-%ld",
3706 l->min_pid, l->max_pid);
3707 else
3708 len += sprintf(buf + len, " pid=%ld",
3709 l->min_pid);
3711 if (num_online_cpus() > 1 &&
3712 !cpumask_empty(to_cpumask(l->cpus)) &&
3713 len < PAGE_SIZE - 60) {
3714 len += sprintf(buf + len, " cpus=");
3715 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3716 to_cpumask(l->cpus));
3719 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3720 len < PAGE_SIZE - 60) {
3721 len += sprintf(buf + len, " nodes=");
3722 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3723 l->nodes);
3726 len += sprintf(buf + len, "\n");
3729 free_loc_track(&t);
3730 if (!t.count)
3731 len += sprintf(buf, "No data\n");
3732 return len;
3735 enum slab_stat_type {
3736 SL_ALL, /* All slabs */
3737 SL_PARTIAL, /* Only partially allocated slabs */
3738 SL_CPU, /* Only slabs used for cpu caches */
3739 SL_OBJECTS, /* Determine allocated objects not slabs */
3740 SL_TOTAL /* Determine object capacity not slabs */
3743 #define SO_ALL (1 << SL_ALL)
3744 #define SO_PARTIAL (1 << SL_PARTIAL)
3745 #define SO_CPU (1 << SL_CPU)
3746 #define SO_OBJECTS (1 << SL_OBJECTS)
3747 #define SO_TOTAL (1 << SL_TOTAL)
3749 static ssize_t show_slab_objects(struct kmem_cache *s,
3750 char *buf, unsigned long flags)
3752 unsigned long total = 0;
3753 int node;
3754 int x;
3755 unsigned long *nodes;
3756 unsigned long *per_cpu;
3758 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3759 if (!nodes)
3760 return -ENOMEM;
3761 per_cpu = nodes + nr_node_ids;
3763 if (flags & SO_CPU) {
3764 int cpu;
3766 for_each_possible_cpu(cpu) {
3767 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3769 if (!c || c->node < 0)
3770 continue;
3772 if (c->page) {
3773 if (flags & SO_TOTAL)
3774 x = c->page->objects;
3775 else if (flags & SO_OBJECTS)
3776 x = c->page->inuse;
3777 else
3778 x = 1;
3780 total += x;
3781 nodes[c->node] += x;
3783 per_cpu[c->node]++;
3787 if (flags & SO_ALL) {
3788 for_each_node_state(node, N_NORMAL_MEMORY) {
3789 struct kmem_cache_node *n = get_node(s, node);
3791 if (flags & SO_TOTAL)
3792 x = atomic_long_read(&n->total_objects);
3793 else if (flags & SO_OBJECTS)
3794 x = atomic_long_read(&n->total_objects) -
3795 count_partial(n, count_free);
3797 else
3798 x = atomic_long_read(&n->nr_slabs);
3799 total += x;
3800 nodes[node] += x;
3803 } else if (flags & SO_PARTIAL) {
3804 for_each_node_state(node, N_NORMAL_MEMORY) {
3805 struct kmem_cache_node *n = get_node(s, node);
3807 if (flags & SO_TOTAL)
3808 x = count_partial(n, count_total);
3809 else if (flags & SO_OBJECTS)
3810 x = count_partial(n, count_inuse);
3811 else
3812 x = n->nr_partial;
3813 total += x;
3814 nodes[node] += x;
3817 x = sprintf(buf, "%lu", total);
3818 #ifdef CONFIG_NUMA
3819 for_each_node_state(node, N_NORMAL_MEMORY)
3820 if (nodes[node])
3821 x += sprintf(buf + x, " N%d=%lu",
3822 node, nodes[node]);
3823 #endif
3824 kfree(nodes);
3825 return x + sprintf(buf + x, "\n");
3828 static int any_slab_objects(struct kmem_cache *s)
3830 int node;
3832 for_each_online_node(node) {
3833 struct kmem_cache_node *n = get_node(s, node);
3835 if (!n)
3836 continue;
3838 if (atomic_long_read(&n->total_objects))
3839 return 1;
3841 return 0;
3844 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3845 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3847 struct slab_attribute {
3848 struct attribute attr;
3849 ssize_t (*show)(struct kmem_cache *s, char *buf);
3850 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3853 #define SLAB_ATTR_RO(_name) \
3854 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3856 #define SLAB_ATTR(_name) \
3857 static struct slab_attribute _name##_attr = \
3858 __ATTR(_name, 0644, _name##_show, _name##_store)
3860 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3862 return sprintf(buf, "%d\n", s->size);
3864 SLAB_ATTR_RO(slab_size);
3866 static ssize_t align_show(struct kmem_cache *s, char *buf)
3868 return sprintf(buf, "%d\n", s->align);
3870 SLAB_ATTR_RO(align);
3872 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3874 return sprintf(buf, "%d\n", s->objsize);
3876 SLAB_ATTR_RO(object_size);
3878 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3880 return sprintf(buf, "%d\n", oo_objects(s->oo));
3882 SLAB_ATTR_RO(objs_per_slab);
3884 static ssize_t order_store(struct kmem_cache *s,
3885 const char *buf, size_t length)
3887 unsigned long order;
3888 int err;
3890 err = strict_strtoul(buf, 10, &order);
3891 if (err)
3892 return err;
3894 if (order > slub_max_order || order < slub_min_order)
3895 return -EINVAL;
3897 calculate_sizes(s, order);
3898 return length;
3901 static ssize_t order_show(struct kmem_cache *s, char *buf)
3903 return sprintf(buf, "%d\n", oo_order(s->oo));
3905 SLAB_ATTR(order);
3907 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3909 if (s->ctor) {
3910 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3912 return n + sprintf(buf + n, "\n");
3914 return 0;
3916 SLAB_ATTR_RO(ctor);
3918 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3920 return sprintf(buf, "%d\n", s->refcount - 1);
3922 SLAB_ATTR_RO(aliases);
3924 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3926 return show_slab_objects(s, buf, SO_ALL);
3928 SLAB_ATTR_RO(slabs);
3930 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3932 return show_slab_objects(s, buf, SO_PARTIAL);
3934 SLAB_ATTR_RO(partial);
3936 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3938 return show_slab_objects(s, buf, SO_CPU);
3940 SLAB_ATTR_RO(cpu_slabs);
3942 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3944 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3946 SLAB_ATTR_RO(objects);
3948 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3950 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3952 SLAB_ATTR_RO(objects_partial);
3954 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3956 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3958 SLAB_ATTR_RO(total_objects);
3960 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3962 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3965 static ssize_t sanity_checks_store(struct kmem_cache *s,
3966 const char *buf, size_t length)
3968 s->flags &= ~SLAB_DEBUG_FREE;
3969 if (buf[0] == '1')
3970 s->flags |= SLAB_DEBUG_FREE;
3971 return length;
3973 SLAB_ATTR(sanity_checks);
3975 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3977 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3980 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3981 size_t length)
3983 s->flags &= ~SLAB_TRACE;
3984 if (buf[0] == '1')
3985 s->flags |= SLAB_TRACE;
3986 return length;
3988 SLAB_ATTR(trace);
3990 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3992 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3995 static ssize_t reclaim_account_store(struct kmem_cache *s,
3996 const char *buf, size_t length)
3998 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3999 if (buf[0] == '1')
4000 s->flags |= SLAB_RECLAIM_ACCOUNT;
4001 return length;
4003 SLAB_ATTR(reclaim_account);
4005 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4007 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4009 SLAB_ATTR_RO(hwcache_align);
4011 #ifdef CONFIG_ZONE_DMA
4012 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4014 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4016 SLAB_ATTR_RO(cache_dma);
4017 #endif
4019 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4021 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4023 SLAB_ATTR_RO(destroy_by_rcu);
4025 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4027 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4030 static ssize_t red_zone_store(struct kmem_cache *s,
4031 const char *buf, size_t length)
4033 if (any_slab_objects(s))
4034 return -EBUSY;
4036 s->flags &= ~SLAB_RED_ZONE;
4037 if (buf[0] == '1')
4038 s->flags |= SLAB_RED_ZONE;
4039 calculate_sizes(s, -1);
4040 return length;
4042 SLAB_ATTR(red_zone);
4044 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4049 static ssize_t poison_store(struct kmem_cache *s,
4050 const char *buf, size_t length)
4052 if (any_slab_objects(s))
4053 return -EBUSY;
4055 s->flags &= ~SLAB_POISON;
4056 if (buf[0] == '1')
4057 s->flags |= SLAB_POISON;
4058 calculate_sizes(s, -1);
4059 return length;
4061 SLAB_ATTR(poison);
4063 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4065 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4068 static ssize_t store_user_store(struct kmem_cache *s,
4069 const char *buf, size_t length)
4071 if (any_slab_objects(s))
4072 return -EBUSY;
4074 s->flags &= ~SLAB_STORE_USER;
4075 if (buf[0] == '1')
4076 s->flags |= SLAB_STORE_USER;
4077 calculate_sizes(s, -1);
4078 return length;
4080 SLAB_ATTR(store_user);
4082 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4084 return 0;
4087 static ssize_t validate_store(struct kmem_cache *s,
4088 const char *buf, size_t length)
4090 int ret = -EINVAL;
4092 if (buf[0] == '1') {
4093 ret = validate_slab_cache(s);
4094 if (ret >= 0)
4095 ret = length;
4097 return ret;
4099 SLAB_ATTR(validate);
4101 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4103 return 0;
4106 static ssize_t shrink_store(struct kmem_cache *s,
4107 const char *buf, size_t length)
4109 if (buf[0] == '1') {
4110 int rc = kmem_cache_shrink(s);
4112 if (rc)
4113 return rc;
4114 } else
4115 return -EINVAL;
4116 return length;
4118 SLAB_ATTR(shrink);
4120 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4122 if (!(s->flags & SLAB_STORE_USER))
4123 return -ENOSYS;
4124 return list_locations(s, buf, TRACK_ALLOC);
4126 SLAB_ATTR_RO(alloc_calls);
4128 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4130 if (!(s->flags & SLAB_STORE_USER))
4131 return -ENOSYS;
4132 return list_locations(s, buf, TRACK_FREE);
4134 SLAB_ATTR_RO(free_calls);
4136 #ifdef CONFIG_NUMA
4137 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4139 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4142 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4143 const char *buf, size_t length)
4145 unsigned long ratio;
4146 int err;
4148 err = strict_strtoul(buf, 10, &ratio);
4149 if (err)
4150 return err;
4152 if (ratio <= 100)
4153 s->remote_node_defrag_ratio = ratio * 10;
4155 return length;
4157 SLAB_ATTR(remote_node_defrag_ratio);
4158 #endif
4160 #ifdef CONFIG_SLUB_STATS
4161 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4163 unsigned long sum = 0;
4164 int cpu;
4165 int len;
4166 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4168 if (!data)
4169 return -ENOMEM;
4171 for_each_online_cpu(cpu) {
4172 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4174 data[cpu] = x;
4175 sum += x;
4178 len = sprintf(buf, "%lu", sum);
4180 #ifdef CONFIG_SMP
4181 for_each_online_cpu(cpu) {
4182 if (data[cpu] && len < PAGE_SIZE - 20)
4183 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4185 #endif
4186 kfree(data);
4187 return len + sprintf(buf + len, "\n");
4190 #define STAT_ATTR(si, text) \
4191 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4193 return show_stat(s, buf, si); \
4195 SLAB_ATTR_RO(text); \
4197 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4198 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4199 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4200 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4201 STAT_ATTR(FREE_FROZEN, free_frozen);
4202 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4203 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4204 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4205 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4206 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4207 STAT_ATTR(FREE_SLAB, free_slab);
4208 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4209 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4210 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4211 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4212 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4213 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4214 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4215 #endif
4217 static struct attribute *slab_attrs[] = {
4218 &slab_size_attr.attr,
4219 &object_size_attr.attr,
4220 &objs_per_slab_attr.attr,
4221 &order_attr.attr,
4222 &objects_attr.attr,
4223 &objects_partial_attr.attr,
4224 &total_objects_attr.attr,
4225 &slabs_attr.attr,
4226 &partial_attr.attr,
4227 &cpu_slabs_attr.attr,
4228 &ctor_attr.attr,
4229 &aliases_attr.attr,
4230 &align_attr.attr,
4231 &sanity_checks_attr.attr,
4232 &trace_attr.attr,
4233 &hwcache_align_attr.attr,
4234 &reclaim_account_attr.attr,
4235 &destroy_by_rcu_attr.attr,
4236 &red_zone_attr.attr,
4237 &poison_attr.attr,
4238 &store_user_attr.attr,
4239 &validate_attr.attr,
4240 &shrink_attr.attr,
4241 &alloc_calls_attr.attr,
4242 &free_calls_attr.attr,
4243 #ifdef CONFIG_ZONE_DMA
4244 &cache_dma_attr.attr,
4245 #endif
4246 #ifdef CONFIG_NUMA
4247 &remote_node_defrag_ratio_attr.attr,
4248 #endif
4249 #ifdef CONFIG_SLUB_STATS
4250 &alloc_fastpath_attr.attr,
4251 &alloc_slowpath_attr.attr,
4252 &free_fastpath_attr.attr,
4253 &free_slowpath_attr.attr,
4254 &free_frozen_attr.attr,
4255 &free_add_partial_attr.attr,
4256 &free_remove_partial_attr.attr,
4257 &alloc_from_partial_attr.attr,
4258 &alloc_slab_attr.attr,
4259 &alloc_refill_attr.attr,
4260 &free_slab_attr.attr,
4261 &cpuslab_flush_attr.attr,
4262 &deactivate_full_attr.attr,
4263 &deactivate_empty_attr.attr,
4264 &deactivate_to_head_attr.attr,
4265 &deactivate_to_tail_attr.attr,
4266 &deactivate_remote_frees_attr.attr,
4267 &order_fallback_attr.attr,
4268 #endif
4269 NULL
4272 static struct attribute_group slab_attr_group = {
4273 .attrs = slab_attrs,
4276 static ssize_t slab_attr_show(struct kobject *kobj,
4277 struct attribute *attr,
4278 char *buf)
4280 struct slab_attribute *attribute;
4281 struct kmem_cache *s;
4282 int err;
4284 attribute = to_slab_attr(attr);
4285 s = to_slab(kobj);
4287 if (!attribute->show)
4288 return -EIO;
4290 err = attribute->show(s, buf);
4292 return err;
4295 static ssize_t slab_attr_store(struct kobject *kobj,
4296 struct attribute *attr,
4297 const char *buf, size_t len)
4299 struct slab_attribute *attribute;
4300 struct kmem_cache *s;
4301 int err;
4303 attribute = to_slab_attr(attr);
4304 s = to_slab(kobj);
4306 if (!attribute->store)
4307 return -EIO;
4309 err = attribute->store(s, buf, len);
4311 return err;
4314 static void kmem_cache_release(struct kobject *kobj)
4316 struct kmem_cache *s = to_slab(kobj);
4318 kfree(s);
4321 static struct sysfs_ops slab_sysfs_ops = {
4322 .show = slab_attr_show,
4323 .store = slab_attr_store,
4326 static struct kobj_type slab_ktype = {
4327 .sysfs_ops = &slab_sysfs_ops,
4328 .release = kmem_cache_release
4331 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4333 struct kobj_type *ktype = get_ktype(kobj);
4335 if (ktype == &slab_ktype)
4336 return 1;
4337 return 0;
4340 static struct kset_uevent_ops slab_uevent_ops = {
4341 .filter = uevent_filter,
4344 static struct kset *slab_kset;
4346 #define ID_STR_LENGTH 64
4348 /* Create a unique string id for a slab cache:
4350 * Format :[flags-]size
4352 static char *create_unique_id(struct kmem_cache *s)
4354 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4355 char *p = name;
4357 BUG_ON(!name);
4359 *p++ = ':';
4361 * First flags affecting slabcache operations. We will only
4362 * get here for aliasable slabs so we do not need to support
4363 * too many flags. The flags here must cover all flags that
4364 * are matched during merging to guarantee that the id is
4365 * unique.
4367 if (s->flags & SLAB_CACHE_DMA)
4368 *p++ = 'd';
4369 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4370 *p++ = 'a';
4371 if (s->flags & SLAB_DEBUG_FREE)
4372 *p++ = 'F';
4373 if (p != name + 1)
4374 *p++ = '-';
4375 p += sprintf(p, "%07d", s->size);
4376 BUG_ON(p > name + ID_STR_LENGTH - 1);
4377 return name;
4380 static int sysfs_slab_add(struct kmem_cache *s)
4382 int err;
4383 const char *name;
4384 int unmergeable;
4386 if (slab_state < SYSFS)
4387 /* Defer until later */
4388 return 0;
4390 unmergeable = slab_unmergeable(s);
4391 if (unmergeable) {
4393 * Slabcache can never be merged so we can use the name proper.
4394 * This is typically the case for debug situations. In that
4395 * case we can catch duplicate names easily.
4397 sysfs_remove_link(&slab_kset->kobj, s->name);
4398 name = s->name;
4399 } else {
4401 * Create a unique name for the slab as a target
4402 * for the symlinks.
4404 name = create_unique_id(s);
4407 s->kobj.kset = slab_kset;
4408 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4409 if (err) {
4410 kobject_put(&s->kobj);
4411 return err;
4414 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4415 if (err)
4416 return err;
4417 kobject_uevent(&s->kobj, KOBJ_ADD);
4418 if (!unmergeable) {
4419 /* Setup first alias */
4420 sysfs_slab_alias(s, s->name);
4421 kfree(name);
4423 return 0;
4426 static void sysfs_slab_remove(struct kmem_cache *s)
4428 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4429 kobject_del(&s->kobj);
4430 kobject_put(&s->kobj);
4434 * Need to buffer aliases during bootup until sysfs becomes
4435 * available lest we lose that information.
4437 struct saved_alias {
4438 struct kmem_cache *s;
4439 const char *name;
4440 struct saved_alias *next;
4443 static struct saved_alias *alias_list;
4445 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4447 struct saved_alias *al;
4449 if (slab_state == SYSFS) {
4451 * If we have a leftover link then remove it.
4453 sysfs_remove_link(&slab_kset->kobj, name);
4454 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4457 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4458 if (!al)
4459 return -ENOMEM;
4461 al->s = s;
4462 al->name = name;
4463 al->next = alias_list;
4464 alias_list = al;
4465 return 0;
4468 static int __init slab_sysfs_init(void)
4470 struct kmem_cache *s;
4471 int err;
4473 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4474 if (!slab_kset) {
4475 printk(KERN_ERR "Cannot register slab subsystem.\n");
4476 return -ENOSYS;
4479 slab_state = SYSFS;
4481 list_for_each_entry(s, &slab_caches, list) {
4482 err = sysfs_slab_add(s);
4483 if (err)
4484 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4485 " to sysfs\n", s->name);
4488 while (alias_list) {
4489 struct saved_alias *al = alias_list;
4491 alias_list = alias_list->next;
4492 err = sysfs_slab_alias(al->s, al->name);
4493 if (err)
4494 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4495 " %s to sysfs\n", s->name);
4496 kfree(al);
4499 resiliency_test();
4500 return 0;
4503 __initcall(slab_sysfs_init);
4504 #endif
4507 * The /proc/slabinfo ABI
4509 #ifdef CONFIG_SLABINFO
4510 static void print_slabinfo_header(struct seq_file *m)
4512 seq_puts(m, "slabinfo - version: 2.1\n");
4513 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4514 "<objperslab> <pagesperslab>");
4515 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4516 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4517 seq_putc(m, '\n');
4520 static void *s_start(struct seq_file *m, loff_t *pos)
4522 loff_t n = *pos;
4524 down_read(&slub_lock);
4525 if (!n)
4526 print_slabinfo_header(m);
4528 return seq_list_start(&slab_caches, *pos);
4531 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4533 return seq_list_next(p, &slab_caches, pos);
4536 static void s_stop(struct seq_file *m, void *p)
4538 up_read(&slub_lock);
4541 static int s_show(struct seq_file *m, void *p)
4543 unsigned long nr_partials = 0;
4544 unsigned long nr_slabs = 0;
4545 unsigned long nr_inuse = 0;
4546 unsigned long nr_objs = 0;
4547 unsigned long nr_free = 0;
4548 struct kmem_cache *s;
4549 int node;
4551 s = list_entry(p, struct kmem_cache, list);
4553 for_each_online_node(node) {
4554 struct kmem_cache_node *n = get_node(s, node);
4556 if (!n)
4557 continue;
4559 nr_partials += n->nr_partial;
4560 nr_slabs += atomic_long_read(&n->nr_slabs);
4561 nr_objs += atomic_long_read(&n->total_objects);
4562 nr_free += count_partial(n, count_free);
4565 nr_inuse = nr_objs - nr_free;
4567 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4568 nr_objs, s->size, oo_objects(s->oo),
4569 (1 << oo_order(s->oo)));
4570 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4571 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4572 0UL);
4573 seq_putc(m, '\n');
4574 return 0;
4577 static const struct seq_operations slabinfo_op = {
4578 .start = s_start,
4579 .next = s_next,
4580 .stop = s_stop,
4581 .show = s_show,
4584 static int slabinfo_open(struct inode *inode, struct file *file)
4586 return seq_open(file, &slabinfo_op);
4589 static const struct file_operations proc_slabinfo_operations = {
4590 .open = slabinfo_open,
4591 .read = seq_read,
4592 .llseek = seq_lseek,
4593 .release = seq_release,
4596 static int __init slab_proc_init(void)
4598 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4599 return 0;
4601 module_init(slab_proc_init);
4602 #endif /* CONFIG_SLABINFO */