4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/kprobes.h>
52 #include <linux/mutex.h>
53 #include <linux/init.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr
;
74 EXPORT_SYMBOL(max_mapnr
);
75 EXPORT_SYMBOL(mem_map
);
78 unsigned long num_physpages
;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
88 EXPORT_SYMBOL(num_physpages
);
89 EXPORT_SYMBOL(high_memory
);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly
=
98 #ifdef CONFIG_COMPAT_BRK
105 * mutex protecting text section modification (dynamic code patching).
106 * some users need to sleep (allocating memory...) while they hold this lock.
108 * NOT exported to modules - patching kernel text is a really delicate matter.
110 DEFINE_MUTEX(text_mutex
);
112 static int __init
disable_randmaps(char *s
)
114 randomize_va_space
= 0;
117 __setup("norandmaps", disable_randmaps
);
121 * If a p?d_bad entry is found while walking page tables, report
122 * the error, before resetting entry to p?d_none. Usually (but
123 * very seldom) called out from the p?d_none_or_clear_bad macros.
126 void pgd_clear_bad(pgd_t
*pgd
)
132 void pud_clear_bad(pud_t
*pud
)
138 void pmd_clear_bad(pmd_t
*pmd
)
145 * Note: this doesn't free the actual pages themselves. That
146 * has been handled earlier when unmapping all the memory regions.
148 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
150 pgtable_t token
= pmd_pgtable(*pmd
);
152 pte_free_tlb(tlb
, token
);
156 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
157 unsigned long addr
, unsigned long end
,
158 unsigned long floor
, unsigned long ceiling
)
165 pmd
= pmd_offset(pud
, addr
);
167 next
= pmd_addr_end(addr
, end
);
168 if (pmd_none_or_clear_bad(pmd
))
170 free_pte_range(tlb
, pmd
);
171 } while (pmd
++, addr
= next
, addr
!= end
);
181 if (end
- 1 > ceiling
- 1)
184 pmd
= pmd_offset(pud
, start
);
186 pmd_free_tlb(tlb
, pmd
);
189 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
190 unsigned long addr
, unsigned long end
,
191 unsigned long floor
, unsigned long ceiling
)
198 pud
= pud_offset(pgd
, addr
);
200 next
= pud_addr_end(addr
, end
);
201 if (pud_none_or_clear_bad(pud
))
203 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
204 } while (pud
++, addr
= next
, addr
!= end
);
210 ceiling
&= PGDIR_MASK
;
214 if (end
- 1 > ceiling
- 1)
217 pud
= pud_offset(pgd
, start
);
219 pud_free_tlb(tlb
, pud
);
223 * This function frees user-level page tables of a process.
225 * Must be called with pagetable lock held.
227 void free_pgd_range(struct mmu_gather
*tlb
,
228 unsigned long addr
, unsigned long end
,
229 unsigned long floor
, unsigned long ceiling
)
236 * The next few lines have given us lots of grief...
238 * Why are we testing PMD* at this top level? Because often
239 * there will be no work to do at all, and we'd prefer not to
240 * go all the way down to the bottom just to discover that.
242 * Why all these "- 1"s? Because 0 represents both the bottom
243 * of the address space and the top of it (using -1 for the
244 * top wouldn't help much: the masks would do the wrong thing).
245 * The rule is that addr 0 and floor 0 refer to the bottom of
246 * the address space, but end 0 and ceiling 0 refer to the top
247 * Comparisons need to use "end - 1" and "ceiling - 1" (though
248 * that end 0 case should be mythical).
250 * Wherever addr is brought up or ceiling brought down, we must
251 * be careful to reject "the opposite 0" before it confuses the
252 * subsequent tests. But what about where end is brought down
253 * by PMD_SIZE below? no, end can't go down to 0 there.
255 * Whereas we round start (addr) and ceiling down, by different
256 * masks at different levels, in order to test whether a table
257 * now has no other vmas using it, so can be freed, we don't
258 * bother to round floor or end up - the tests don't need that.
272 if (end
- 1 > ceiling
- 1)
278 pgd
= pgd_offset(tlb
->mm
, addr
);
280 next
= pgd_addr_end(addr
, end
);
281 if (pgd_none_or_clear_bad(pgd
))
283 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
284 } while (pgd
++, addr
= next
, addr
!= end
);
287 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
288 unsigned long floor
, unsigned long ceiling
)
291 struct vm_area_struct
*next
= vma
->vm_next
;
292 unsigned long addr
= vma
->vm_start
;
295 * Hide vma from rmap and vmtruncate before freeing pgtables
297 anon_vma_unlink(vma
);
298 unlink_file_vma(vma
);
300 if (is_vm_hugetlb_page(vma
)) {
301 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
302 floor
, next
? next
->vm_start
: ceiling
);
305 * Optimization: gather nearby vmas into one call down
307 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
308 && !is_vm_hugetlb_page(next
)) {
311 anon_vma_unlink(vma
);
312 unlink_file_vma(vma
);
314 free_pgd_range(tlb
, addr
, vma
->vm_end
,
315 floor
, next
? next
->vm_start
: ceiling
);
321 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
323 pgtable_t
new = pte_alloc_one(mm
, address
);
328 * Ensure all pte setup (eg. pte page lock and page clearing) are
329 * visible before the pte is made visible to other CPUs by being
330 * put into page tables.
332 * The other side of the story is the pointer chasing in the page
333 * table walking code (when walking the page table without locking;
334 * ie. most of the time). Fortunately, these data accesses consist
335 * of a chain of data-dependent loads, meaning most CPUs (alpha
336 * being the notable exception) will already guarantee loads are
337 * seen in-order. See the alpha page table accessors for the
338 * smp_read_barrier_depends() barriers in page table walking code.
340 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
342 spin_lock(&mm
->page_table_lock
);
343 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
345 pmd_populate(mm
, pmd
, new);
348 spin_unlock(&mm
->page_table_lock
);
354 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
356 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
360 smp_wmb(); /* See comment in __pte_alloc */
362 spin_lock(&init_mm
.page_table_lock
);
363 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
364 pmd_populate_kernel(&init_mm
, pmd
, new);
367 spin_unlock(&init_mm
.page_table_lock
);
369 pte_free_kernel(&init_mm
, new);
373 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
376 add_mm_counter(mm
, file_rss
, file_rss
);
378 add_mm_counter(mm
, anon_rss
, anon_rss
);
382 * This function is called to print an error when a bad pte
383 * is found. For example, we might have a PFN-mapped pte in
384 * a region that doesn't allow it.
386 * The calling function must still handle the error.
388 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
389 pte_t pte
, struct page
*page
)
391 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
392 pud_t
*pud
= pud_offset(pgd
, addr
);
393 pmd_t
*pmd
= pmd_offset(pud
, addr
);
394 struct address_space
*mapping
;
396 static unsigned long resume
;
397 static unsigned long nr_shown
;
398 static unsigned long nr_unshown
;
401 * Allow a burst of 60 reports, then keep quiet for that minute;
402 * or allow a steady drip of one report per second.
404 if (nr_shown
== 60) {
405 if (time_before(jiffies
, resume
)) {
411 "BUG: Bad page map: %lu messages suppressed\n",
418 resume
= jiffies
+ 60 * HZ
;
420 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
421 index
= linear_page_index(vma
, addr
);
424 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
426 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
429 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
430 page
, (void *)page
->flags
, page_count(page
),
431 page_mapcount(page
), page
->mapping
, page
->index
);
434 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
435 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
437 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
440 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
441 (unsigned long)vma
->vm_ops
->fault
);
442 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
443 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
444 (unsigned long)vma
->vm_file
->f_op
->mmap
);
446 add_taint(TAINT_BAD_PAGE
);
449 static inline int is_cow_mapping(unsigned int flags
)
451 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
455 * vm_normal_page -- This function gets the "struct page" associated with a pte.
457 * "Special" mappings do not wish to be associated with a "struct page" (either
458 * it doesn't exist, or it exists but they don't want to touch it). In this
459 * case, NULL is returned here. "Normal" mappings do have a struct page.
461 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
462 * pte bit, in which case this function is trivial. Secondly, an architecture
463 * may not have a spare pte bit, which requires a more complicated scheme,
466 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
467 * special mapping (even if there are underlying and valid "struct pages").
468 * COWed pages of a VM_PFNMAP are always normal.
470 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
471 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
472 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
473 * mapping will always honor the rule
475 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
477 * And for normal mappings this is false.
479 * This restricts such mappings to be a linear translation from virtual address
480 * to pfn. To get around this restriction, we allow arbitrary mappings so long
481 * as the vma is not a COW mapping; in that case, we know that all ptes are
482 * special (because none can have been COWed).
485 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
487 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
488 * page" backing, however the difference is that _all_ pages with a struct
489 * page (that is, those where pfn_valid is true) are refcounted and considered
490 * normal pages by the VM. The disadvantage is that pages are refcounted
491 * (which can be slower and simply not an option for some PFNMAP users). The
492 * advantage is that we don't have to follow the strict linearity rule of
493 * PFNMAP mappings in order to support COWable mappings.
496 #ifdef __HAVE_ARCH_PTE_SPECIAL
497 # define HAVE_PTE_SPECIAL 1
499 # define HAVE_PTE_SPECIAL 0
501 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
504 unsigned long pfn
= pte_pfn(pte
);
506 if (HAVE_PTE_SPECIAL
) {
507 if (likely(!pte_special(pte
)))
509 if (!(vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
)))
510 print_bad_pte(vma
, addr
, pte
, NULL
);
514 /* !HAVE_PTE_SPECIAL case follows: */
516 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
517 if (vma
->vm_flags
& VM_MIXEDMAP
) {
523 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
524 if (pfn
== vma
->vm_pgoff
+ off
)
526 if (!is_cow_mapping(vma
->vm_flags
))
532 if (unlikely(pfn
> highest_memmap_pfn
)) {
533 print_bad_pte(vma
, addr
, pte
, NULL
);
538 * NOTE! We still have PageReserved() pages in the page tables.
539 * eg. VDSO mappings can cause them to exist.
542 return pfn_to_page(pfn
);
546 * copy one vm_area from one task to the other. Assumes the page tables
547 * already present in the new task to be cleared in the whole range
548 * covered by this vma.
552 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
553 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
554 unsigned long addr
, int *rss
)
556 unsigned long vm_flags
= vma
->vm_flags
;
557 pte_t pte
= *src_pte
;
560 /* pte contains position in swap or file, so copy. */
561 if (unlikely(!pte_present(pte
))) {
562 if (!pte_file(pte
)) {
563 swp_entry_t entry
= pte_to_swp_entry(pte
);
565 swap_duplicate(entry
);
566 /* make sure dst_mm is on swapoff's mmlist. */
567 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
568 spin_lock(&mmlist_lock
);
569 if (list_empty(&dst_mm
->mmlist
))
570 list_add(&dst_mm
->mmlist
,
572 spin_unlock(&mmlist_lock
);
574 if (is_write_migration_entry(entry
) &&
575 is_cow_mapping(vm_flags
)) {
577 * COW mappings require pages in both parent
578 * and child to be set to read.
580 make_migration_entry_read(&entry
);
581 pte
= swp_entry_to_pte(entry
);
582 set_pte_at(src_mm
, addr
, src_pte
, pte
);
589 * If it's a COW mapping, write protect it both
590 * in the parent and the child
592 if (is_cow_mapping(vm_flags
)) {
593 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
594 pte
= pte_wrprotect(pte
);
598 * If it's a shared mapping, mark it clean in
601 if (vm_flags
& VM_SHARED
)
602 pte
= pte_mkclean(pte
);
603 pte
= pte_mkold(pte
);
605 page
= vm_normal_page(vma
, addr
, pte
);
608 page_dup_rmap(page
, vma
, addr
);
609 rss
[!!PageAnon(page
)]++;
613 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
616 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
617 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
618 unsigned long addr
, unsigned long end
)
620 pte_t
*src_pte
, *dst_pte
;
621 spinlock_t
*src_ptl
, *dst_ptl
;
627 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
630 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
631 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
632 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
633 arch_enter_lazy_mmu_mode();
637 * We are holding two locks at this point - either of them
638 * could generate latencies in another task on another CPU.
640 if (progress
>= 32) {
642 if (need_resched() ||
643 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
646 if (pte_none(*src_pte
)) {
650 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
652 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
654 arch_leave_lazy_mmu_mode();
655 spin_unlock(src_ptl
);
656 pte_unmap_nested(src_pte
- 1);
657 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
658 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
665 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
666 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
667 unsigned long addr
, unsigned long end
)
669 pmd_t
*src_pmd
, *dst_pmd
;
672 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
675 src_pmd
= pmd_offset(src_pud
, addr
);
677 next
= pmd_addr_end(addr
, end
);
678 if (pmd_none_or_clear_bad(src_pmd
))
680 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
683 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
687 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
688 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
689 unsigned long addr
, unsigned long end
)
691 pud_t
*src_pud
, *dst_pud
;
694 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
697 src_pud
= pud_offset(src_pgd
, addr
);
699 next
= pud_addr_end(addr
, end
);
700 if (pud_none_or_clear_bad(src_pud
))
702 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
705 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
709 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
710 struct vm_area_struct
*vma
)
712 pgd_t
*src_pgd
, *dst_pgd
;
714 unsigned long addr
= vma
->vm_start
;
715 unsigned long end
= vma
->vm_end
;
719 * Don't copy ptes where a page fault will fill them correctly.
720 * Fork becomes much lighter when there are big shared or private
721 * readonly mappings. The tradeoff is that copy_page_range is more
722 * efficient than faulting.
724 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
729 if (is_vm_hugetlb_page(vma
))
730 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
732 if (unlikely(is_pfn_mapping(vma
))) {
734 * We do not free on error cases below as remove_vma
735 * gets called on error from higher level routine
737 ret
= track_pfn_vma_copy(vma
);
743 * We need to invalidate the secondary MMU mappings only when
744 * there could be a permission downgrade on the ptes of the
745 * parent mm. And a permission downgrade will only happen if
746 * is_cow_mapping() returns true.
748 if (is_cow_mapping(vma
->vm_flags
))
749 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
752 dst_pgd
= pgd_offset(dst_mm
, addr
);
753 src_pgd
= pgd_offset(src_mm
, addr
);
755 next
= pgd_addr_end(addr
, end
);
756 if (pgd_none_or_clear_bad(src_pgd
))
758 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
763 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
765 if (is_cow_mapping(vma
->vm_flags
))
766 mmu_notifier_invalidate_range_end(src_mm
,
771 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
772 struct vm_area_struct
*vma
, pmd_t
*pmd
,
773 unsigned long addr
, unsigned long end
,
774 long *zap_work
, struct zap_details
*details
)
776 struct mm_struct
*mm
= tlb
->mm
;
782 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
783 arch_enter_lazy_mmu_mode();
786 if (pte_none(ptent
)) {
791 (*zap_work
) -= PAGE_SIZE
;
793 if (pte_present(ptent
)) {
796 page
= vm_normal_page(vma
, addr
, ptent
);
797 if (unlikely(details
) && page
) {
799 * unmap_shared_mapping_pages() wants to
800 * invalidate cache without truncating:
801 * unmap shared but keep private pages.
803 if (details
->check_mapping
&&
804 details
->check_mapping
!= page
->mapping
)
807 * Each page->index must be checked when
808 * invalidating or truncating nonlinear.
810 if (details
->nonlinear_vma
&&
811 (page
->index
< details
->first_index
||
812 page
->index
> details
->last_index
))
815 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
817 tlb_remove_tlb_entry(tlb
, pte
, addr
);
820 if (unlikely(details
) && details
->nonlinear_vma
821 && linear_page_index(details
->nonlinear_vma
,
822 addr
) != page
->index
)
823 set_pte_at(mm
, addr
, pte
,
824 pgoff_to_pte(page
->index
));
828 if (pte_dirty(ptent
))
829 set_page_dirty(page
);
830 if (pte_young(ptent
) &&
831 likely(!VM_SequentialReadHint(vma
)))
832 mark_page_accessed(page
);
835 page_remove_rmap(page
);
836 if (unlikely(page_mapcount(page
) < 0))
837 print_bad_pte(vma
, addr
, ptent
, page
);
838 tlb_remove_page(tlb
, page
);
842 * If details->check_mapping, we leave swap entries;
843 * if details->nonlinear_vma, we leave file entries.
845 if (unlikely(details
))
847 if (pte_file(ptent
)) {
848 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
849 print_bad_pte(vma
, addr
, ptent
, NULL
);
851 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent
))))
852 print_bad_pte(vma
, addr
, ptent
, NULL
);
853 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
854 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
856 add_mm_rss(mm
, file_rss
, anon_rss
);
857 arch_leave_lazy_mmu_mode();
858 pte_unmap_unlock(pte
- 1, ptl
);
863 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
864 struct vm_area_struct
*vma
, pud_t
*pud
,
865 unsigned long addr
, unsigned long end
,
866 long *zap_work
, struct zap_details
*details
)
871 pmd
= pmd_offset(pud
, addr
);
873 next
= pmd_addr_end(addr
, end
);
874 if (pmd_none_or_clear_bad(pmd
)) {
878 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
880 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
885 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
886 struct vm_area_struct
*vma
, pgd_t
*pgd
,
887 unsigned long addr
, unsigned long end
,
888 long *zap_work
, struct zap_details
*details
)
893 pud
= pud_offset(pgd
, addr
);
895 next
= pud_addr_end(addr
, end
);
896 if (pud_none_or_clear_bad(pud
)) {
900 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
902 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
907 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
908 struct vm_area_struct
*vma
,
909 unsigned long addr
, unsigned long end
,
910 long *zap_work
, struct zap_details
*details
)
915 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
919 tlb_start_vma(tlb
, vma
);
920 pgd
= pgd_offset(vma
->vm_mm
, addr
);
922 next
= pgd_addr_end(addr
, end
);
923 if (pgd_none_or_clear_bad(pgd
)) {
927 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
929 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
930 tlb_end_vma(tlb
, vma
);
935 #ifdef CONFIG_PREEMPT
936 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
938 /* No preempt: go for improved straight-line efficiency */
939 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
943 * unmap_vmas - unmap a range of memory covered by a list of vma's
944 * @tlbp: address of the caller's struct mmu_gather
945 * @vma: the starting vma
946 * @start_addr: virtual address at which to start unmapping
947 * @end_addr: virtual address at which to end unmapping
948 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
949 * @details: details of nonlinear truncation or shared cache invalidation
951 * Returns the end address of the unmapping (restart addr if interrupted).
953 * Unmap all pages in the vma list.
955 * We aim to not hold locks for too long (for scheduling latency reasons).
956 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
957 * return the ending mmu_gather to the caller.
959 * Only addresses between `start' and `end' will be unmapped.
961 * The VMA list must be sorted in ascending virtual address order.
963 * unmap_vmas() assumes that the caller will flush the whole unmapped address
964 * range after unmap_vmas() returns. So the only responsibility here is to
965 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
966 * drops the lock and schedules.
968 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
969 struct vm_area_struct
*vma
, unsigned long start_addr
,
970 unsigned long end_addr
, unsigned long *nr_accounted
,
971 struct zap_details
*details
)
973 long zap_work
= ZAP_BLOCK_SIZE
;
974 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
975 int tlb_start_valid
= 0;
976 unsigned long start
= start_addr
;
977 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
978 int fullmm
= (*tlbp
)->fullmm
;
979 struct mm_struct
*mm
= vma
->vm_mm
;
981 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
982 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
985 start
= max(vma
->vm_start
, start_addr
);
986 if (start
>= vma
->vm_end
)
988 end
= min(vma
->vm_end
, end_addr
);
989 if (end
<= vma
->vm_start
)
992 if (vma
->vm_flags
& VM_ACCOUNT
)
993 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
995 if (unlikely(is_pfn_mapping(vma
)))
996 untrack_pfn_vma(vma
, 0, 0);
998 while (start
!= end
) {
999 if (!tlb_start_valid
) {
1001 tlb_start_valid
= 1;
1004 if (unlikely(is_vm_hugetlb_page(vma
))) {
1006 * It is undesirable to test vma->vm_file as it
1007 * should be non-null for valid hugetlb area.
1008 * However, vm_file will be NULL in the error
1009 * cleanup path of do_mmap_pgoff. When
1010 * hugetlbfs ->mmap method fails,
1011 * do_mmap_pgoff() nullifies vma->vm_file
1012 * before calling this function to clean up.
1013 * Since no pte has actually been setup, it is
1014 * safe to do nothing in this case.
1017 unmap_hugepage_range(vma
, start
, end
, NULL
);
1018 zap_work
-= (end
- start
) /
1019 pages_per_huge_page(hstate_vma(vma
));
1024 start
= unmap_page_range(*tlbp
, vma
,
1025 start
, end
, &zap_work
, details
);
1028 BUG_ON(start
!= end
);
1032 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1034 if (need_resched() ||
1035 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1043 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1044 tlb_start_valid
= 0;
1045 zap_work
= ZAP_BLOCK_SIZE
;
1049 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1050 return start
; /* which is now the end (or restart) address */
1054 * zap_page_range - remove user pages in a given range
1055 * @vma: vm_area_struct holding the applicable pages
1056 * @address: starting address of pages to zap
1057 * @size: number of bytes to zap
1058 * @details: details of nonlinear truncation or shared cache invalidation
1060 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1061 unsigned long size
, struct zap_details
*details
)
1063 struct mm_struct
*mm
= vma
->vm_mm
;
1064 struct mmu_gather
*tlb
;
1065 unsigned long end
= address
+ size
;
1066 unsigned long nr_accounted
= 0;
1069 tlb
= tlb_gather_mmu(mm
, 0);
1070 update_hiwater_rss(mm
);
1071 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1073 tlb_finish_mmu(tlb
, address
, end
);
1078 * zap_vma_ptes - remove ptes mapping the vma
1079 * @vma: vm_area_struct holding ptes to be zapped
1080 * @address: starting address of pages to zap
1081 * @size: number of bytes to zap
1083 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1085 * The entire address range must be fully contained within the vma.
1087 * Returns 0 if successful.
1089 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1092 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1093 !(vma
->vm_flags
& VM_PFNMAP
))
1095 zap_page_range(vma
, address
, size
, NULL
);
1098 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1101 * Do a quick page-table lookup for a single page.
1103 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1112 struct mm_struct
*mm
= vma
->vm_mm
;
1114 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1115 if (!IS_ERR(page
)) {
1116 BUG_ON(flags
& FOLL_GET
);
1121 pgd
= pgd_offset(mm
, address
);
1122 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1125 pud
= pud_offset(pgd
, address
);
1128 if (pud_huge(*pud
)) {
1129 BUG_ON(flags
& FOLL_GET
);
1130 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1133 if (unlikely(pud_bad(*pud
)))
1136 pmd
= pmd_offset(pud
, address
);
1139 if (pmd_huge(*pmd
)) {
1140 BUG_ON(flags
& FOLL_GET
);
1141 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1144 if (unlikely(pmd_bad(*pmd
)))
1147 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1150 if (!pte_present(pte
))
1152 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1154 page
= vm_normal_page(vma
, address
, pte
);
1155 if (unlikely(!page
))
1158 if (flags
& FOLL_GET
)
1160 if (flags
& FOLL_TOUCH
) {
1161 if ((flags
& FOLL_WRITE
) &&
1162 !pte_dirty(pte
) && !PageDirty(page
))
1163 set_page_dirty(page
);
1164 mark_page_accessed(page
);
1167 pte_unmap_unlock(ptep
, ptl
);
1172 pte_unmap_unlock(ptep
, ptl
);
1173 return ERR_PTR(-EFAULT
);
1176 pte_unmap_unlock(ptep
, ptl
);
1179 /* Fall through to ZERO_PAGE handling */
1182 * When core dumping an enormous anonymous area that nobody
1183 * has touched so far, we don't want to allocate page tables.
1185 if (flags
& FOLL_ANON
) {
1186 page
= ZERO_PAGE(0);
1187 if (flags
& FOLL_GET
)
1189 BUG_ON(flags
& FOLL_WRITE
);
1194 /* Can we do the FOLL_ANON optimization? */
1195 static inline int use_zero_page(struct vm_area_struct
*vma
)
1198 * We don't want to optimize FOLL_ANON for make_pages_present()
1199 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1200 * we want to get the page from the page tables to make sure
1201 * that we serialize and update with any other user of that
1204 if (vma
->vm_flags
& (VM_LOCKED
| VM_SHARED
))
1207 * And if we have a fault routine, it's not an anonymous region.
1209 return !vma
->vm_ops
|| !vma
->vm_ops
->fault
;
1214 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1215 unsigned long start
, int len
, int flags
,
1216 struct page
**pages
, struct vm_area_struct
**vmas
)
1219 unsigned int vm_flags
= 0;
1220 int write
= !!(flags
& GUP_FLAGS_WRITE
);
1221 int force
= !!(flags
& GUP_FLAGS_FORCE
);
1222 int ignore
= !!(flags
& GUP_FLAGS_IGNORE_VMA_PERMISSIONS
);
1223 int ignore_sigkill
= !!(flags
& GUP_FLAGS_IGNORE_SIGKILL
);
1228 * Require read or write permissions.
1229 * If 'force' is set, we only require the "MAY" flags.
1231 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1232 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1236 struct vm_area_struct
*vma
;
1237 unsigned int foll_flags
;
1239 vma
= find_extend_vma(mm
, start
);
1240 if (!vma
&& in_gate_area(tsk
, start
)) {
1241 unsigned long pg
= start
& PAGE_MASK
;
1242 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1248 /* user gate pages are read-only */
1249 if (!ignore
&& write
)
1250 return i
? : -EFAULT
;
1252 pgd
= pgd_offset_k(pg
);
1254 pgd
= pgd_offset_gate(mm
, pg
);
1255 BUG_ON(pgd_none(*pgd
));
1256 pud
= pud_offset(pgd
, pg
);
1257 BUG_ON(pud_none(*pud
));
1258 pmd
= pmd_offset(pud
, pg
);
1260 return i
? : -EFAULT
;
1261 pte
= pte_offset_map(pmd
, pg
);
1262 if (pte_none(*pte
)) {
1264 return i
? : -EFAULT
;
1267 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1282 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1283 (!ignore
&& !(vm_flags
& vma
->vm_flags
)))
1284 return i
? : -EFAULT
;
1286 if (is_vm_hugetlb_page(vma
)) {
1287 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1288 &start
, &len
, i
, write
);
1292 foll_flags
= FOLL_TOUCH
;
1294 foll_flags
|= FOLL_GET
;
1295 if (!write
&& use_zero_page(vma
))
1296 foll_flags
|= FOLL_ANON
;
1302 * If we have a pending SIGKILL, don't keep faulting
1303 * pages and potentially allocating memory, unless
1304 * current is handling munlock--e.g., on exit. In
1305 * that case, we are not allocating memory. Rather,
1306 * we're only unlocking already resident/mapped pages.
1308 if (unlikely(!ignore_sigkill
&&
1309 fatal_signal_pending(current
)))
1310 return i
? i
: -ERESTARTSYS
;
1313 foll_flags
|= FOLL_WRITE
;
1316 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1318 ret
= handle_mm_fault(mm
, vma
, start
,
1319 foll_flags
& FOLL_WRITE
);
1320 if (ret
& VM_FAULT_ERROR
) {
1321 if (ret
& VM_FAULT_OOM
)
1322 return i
? i
: -ENOMEM
;
1323 else if (ret
& VM_FAULT_SIGBUS
)
1324 return i
? i
: -EFAULT
;
1327 if (ret
& VM_FAULT_MAJOR
)
1333 * The VM_FAULT_WRITE bit tells us that
1334 * do_wp_page has broken COW when necessary,
1335 * even if maybe_mkwrite decided not to set
1336 * pte_write. We can thus safely do subsequent
1337 * page lookups as if they were reads. But only
1338 * do so when looping for pte_write is futile:
1339 * in some cases userspace may also be wanting
1340 * to write to the gotten user page, which a
1341 * read fault here might prevent (a readonly
1342 * page might get reCOWed by userspace write).
1344 if ((ret
& VM_FAULT_WRITE
) &&
1345 !(vma
->vm_flags
& VM_WRITE
))
1346 foll_flags
&= ~FOLL_WRITE
;
1351 return i
? i
: PTR_ERR(page
);
1355 flush_anon_page(vma
, page
, start
);
1356 flush_dcache_page(page
);
1363 } while (len
&& start
< vma
->vm_end
);
1368 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1369 unsigned long start
, int len
, int write
, int force
,
1370 struct page
**pages
, struct vm_area_struct
**vmas
)
1375 flags
|= GUP_FLAGS_WRITE
;
1377 flags
|= GUP_FLAGS_FORCE
;
1379 return __get_user_pages(tsk
, mm
,
1384 EXPORT_SYMBOL(get_user_pages
);
1386 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1389 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1390 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1392 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1394 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1400 * This is the old fallback for page remapping.
1402 * For historical reasons, it only allows reserved pages. Only
1403 * old drivers should use this, and they needed to mark their
1404 * pages reserved for the old functions anyway.
1406 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1407 struct page
*page
, pgprot_t prot
)
1409 struct mm_struct
*mm
= vma
->vm_mm
;
1418 flush_dcache_page(page
);
1419 pte
= get_locked_pte(mm
, addr
, &ptl
);
1423 if (!pte_none(*pte
))
1426 /* Ok, finally just insert the thing.. */
1428 inc_mm_counter(mm
, file_rss
);
1429 page_add_file_rmap(page
);
1430 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1433 pte_unmap_unlock(pte
, ptl
);
1436 pte_unmap_unlock(pte
, ptl
);
1442 * vm_insert_page - insert single page into user vma
1443 * @vma: user vma to map to
1444 * @addr: target user address of this page
1445 * @page: source kernel page
1447 * This allows drivers to insert individual pages they've allocated
1450 * The page has to be a nice clean _individual_ kernel allocation.
1451 * If you allocate a compound page, you need to have marked it as
1452 * such (__GFP_COMP), or manually just split the page up yourself
1453 * (see split_page()).
1455 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1456 * took an arbitrary page protection parameter. This doesn't allow
1457 * that. Your vma protection will have to be set up correctly, which
1458 * means that if you want a shared writable mapping, you'd better
1459 * ask for a shared writable mapping!
1461 * The page does not need to be reserved.
1463 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1466 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1468 if (!page_count(page
))
1470 vma
->vm_flags
|= VM_INSERTPAGE
;
1471 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1473 EXPORT_SYMBOL(vm_insert_page
);
1475 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1476 unsigned long pfn
, pgprot_t prot
)
1478 struct mm_struct
*mm
= vma
->vm_mm
;
1484 pte
= get_locked_pte(mm
, addr
, &ptl
);
1488 if (!pte_none(*pte
))
1491 /* Ok, finally just insert the thing.. */
1492 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1493 set_pte_at(mm
, addr
, pte
, entry
);
1494 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1498 pte_unmap_unlock(pte
, ptl
);
1504 * vm_insert_pfn - insert single pfn into user vma
1505 * @vma: user vma to map to
1506 * @addr: target user address of this page
1507 * @pfn: source kernel pfn
1509 * Similar to vm_inert_page, this allows drivers to insert individual pages
1510 * they've allocated into a user vma. Same comments apply.
1512 * This function should only be called from a vm_ops->fault handler, and
1513 * in that case the handler should return NULL.
1515 * vma cannot be a COW mapping.
1517 * As this is called only for pages that do not currently exist, we
1518 * do not need to flush old virtual caches or the TLB.
1520 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1524 pgprot_t pgprot
= vma
->vm_page_prot
;
1526 * Technically, architectures with pte_special can avoid all these
1527 * restrictions (same for remap_pfn_range). However we would like
1528 * consistency in testing and feature parity among all, so we should
1529 * try to keep these invariants in place for everybody.
1531 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1532 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1533 (VM_PFNMAP
|VM_MIXEDMAP
));
1534 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1535 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1537 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1539 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1542 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1545 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1549 EXPORT_SYMBOL(vm_insert_pfn
);
1551 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1554 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1556 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1560 * If we don't have pte special, then we have to use the pfn_valid()
1561 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1562 * refcount the page if pfn_valid is true (hence insert_page rather
1565 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1568 page
= pfn_to_page(pfn
);
1569 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1571 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1573 EXPORT_SYMBOL(vm_insert_mixed
);
1576 * maps a range of physical memory into the requested pages. the old
1577 * mappings are removed. any references to nonexistent pages results
1578 * in null mappings (currently treated as "copy-on-access")
1580 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1581 unsigned long addr
, unsigned long end
,
1582 unsigned long pfn
, pgprot_t prot
)
1587 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1590 arch_enter_lazy_mmu_mode();
1592 BUG_ON(!pte_none(*pte
));
1593 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1595 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1596 arch_leave_lazy_mmu_mode();
1597 pte_unmap_unlock(pte
- 1, ptl
);
1601 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1602 unsigned long addr
, unsigned long end
,
1603 unsigned long pfn
, pgprot_t prot
)
1608 pfn
-= addr
>> PAGE_SHIFT
;
1609 pmd
= pmd_alloc(mm
, pud
, addr
);
1613 next
= pmd_addr_end(addr
, end
);
1614 if (remap_pte_range(mm
, pmd
, addr
, next
,
1615 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1617 } while (pmd
++, addr
= next
, addr
!= end
);
1621 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1622 unsigned long addr
, unsigned long end
,
1623 unsigned long pfn
, pgprot_t prot
)
1628 pfn
-= addr
>> PAGE_SHIFT
;
1629 pud
= pud_alloc(mm
, pgd
, addr
);
1633 next
= pud_addr_end(addr
, end
);
1634 if (remap_pmd_range(mm
, pud
, addr
, next
,
1635 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1637 } while (pud
++, addr
= next
, addr
!= end
);
1642 * remap_pfn_range - remap kernel memory to userspace
1643 * @vma: user vma to map to
1644 * @addr: target user address to start at
1645 * @pfn: physical address of kernel memory
1646 * @size: size of map area
1647 * @prot: page protection flags for this mapping
1649 * Note: this is only safe if the mm semaphore is held when called.
1651 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1652 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1656 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1657 struct mm_struct
*mm
= vma
->vm_mm
;
1661 * Physically remapped pages are special. Tell the
1662 * rest of the world about it:
1663 * VM_IO tells people not to look at these pages
1664 * (accesses can have side effects).
1665 * VM_RESERVED is specified all over the place, because
1666 * in 2.4 it kept swapout's vma scan off this vma; but
1667 * in 2.6 the LRU scan won't even find its pages, so this
1668 * flag means no more than count its pages in reserved_vm,
1669 * and omit it from core dump, even when VM_IO turned off.
1670 * VM_PFNMAP tells the core MM that the base pages are just
1671 * raw PFN mappings, and do not have a "struct page" associated
1674 * There's a horrible special case to handle copy-on-write
1675 * behaviour that some programs depend on. We mark the "original"
1676 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1678 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
)
1679 vma
->vm_pgoff
= pfn
;
1680 else if (is_cow_mapping(vma
->vm_flags
))
1683 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1685 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1688 * To indicate that track_pfn related cleanup is not
1689 * needed from higher level routine calling unmap_vmas
1691 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1695 BUG_ON(addr
>= end
);
1696 pfn
-= addr
>> PAGE_SHIFT
;
1697 pgd
= pgd_offset(mm
, addr
);
1698 flush_cache_range(vma
, addr
, end
);
1700 next
= pgd_addr_end(addr
, end
);
1701 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1702 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1705 } while (pgd
++, addr
= next
, addr
!= end
);
1708 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1712 EXPORT_SYMBOL(remap_pfn_range
);
1714 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1715 unsigned long addr
, unsigned long end
,
1716 pte_fn_t fn
, void *data
)
1721 spinlock_t
*uninitialized_var(ptl
);
1723 pte
= (mm
== &init_mm
) ?
1724 pte_alloc_kernel(pmd
, addr
) :
1725 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1729 BUG_ON(pmd_huge(*pmd
));
1731 arch_enter_lazy_mmu_mode();
1733 token
= pmd_pgtable(*pmd
);
1736 err
= fn(pte
, token
, addr
, data
);
1739 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1741 arch_leave_lazy_mmu_mode();
1744 pte_unmap_unlock(pte
-1, ptl
);
1748 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1749 unsigned long addr
, unsigned long end
,
1750 pte_fn_t fn
, void *data
)
1756 BUG_ON(pud_huge(*pud
));
1758 pmd
= pmd_alloc(mm
, pud
, addr
);
1762 next
= pmd_addr_end(addr
, end
);
1763 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1766 } while (pmd
++, addr
= next
, addr
!= end
);
1770 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1771 unsigned long addr
, unsigned long end
,
1772 pte_fn_t fn
, void *data
)
1778 pud
= pud_alloc(mm
, pgd
, addr
);
1782 next
= pud_addr_end(addr
, end
);
1783 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1786 } while (pud
++, addr
= next
, addr
!= end
);
1791 * Scan a region of virtual memory, filling in page tables as necessary
1792 * and calling a provided function on each leaf page table.
1794 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1795 unsigned long size
, pte_fn_t fn
, void *data
)
1799 unsigned long start
= addr
, end
= addr
+ size
;
1802 BUG_ON(addr
>= end
);
1803 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1804 pgd
= pgd_offset(mm
, addr
);
1806 next
= pgd_addr_end(addr
, end
);
1807 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1810 } while (pgd
++, addr
= next
, addr
!= end
);
1811 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1814 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1817 * handle_pte_fault chooses page fault handler according to an entry
1818 * which was read non-atomically. Before making any commitment, on
1819 * those architectures or configurations (e.g. i386 with PAE) which
1820 * might give a mix of unmatched parts, do_swap_page and do_file_page
1821 * must check under lock before unmapping the pte and proceeding
1822 * (but do_wp_page is only called after already making such a check;
1823 * and do_anonymous_page and do_no_page can safely check later on).
1825 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1826 pte_t
*page_table
, pte_t orig_pte
)
1829 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1830 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1831 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1833 same
= pte_same(*page_table
, orig_pte
);
1837 pte_unmap(page_table
);
1842 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1843 * servicing faults for write access. In the normal case, do always want
1844 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1845 * that do not have writing enabled, when used by access_process_vm.
1847 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1849 if (likely(vma
->vm_flags
& VM_WRITE
))
1850 pte
= pte_mkwrite(pte
);
1854 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1857 * If the source page was a PFN mapping, we don't have
1858 * a "struct page" for it. We do a best-effort copy by
1859 * just copying from the original user address. If that
1860 * fails, we just zero-fill it. Live with it.
1862 if (unlikely(!src
)) {
1863 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1864 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1867 * This really shouldn't fail, because the page is there
1868 * in the page tables. But it might just be unreadable,
1869 * in which case we just give up and fill the result with
1872 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1873 memset(kaddr
, 0, PAGE_SIZE
);
1874 kunmap_atomic(kaddr
, KM_USER0
);
1875 flush_dcache_page(dst
);
1877 copy_user_highpage(dst
, src
, va
, vma
);
1881 * This routine handles present pages, when users try to write
1882 * to a shared page. It is done by copying the page to a new address
1883 * and decrementing the shared-page counter for the old page.
1885 * Note that this routine assumes that the protection checks have been
1886 * done by the caller (the low-level page fault routine in most cases).
1887 * Thus we can safely just mark it writable once we've done any necessary
1890 * We also mark the page dirty at this point even though the page will
1891 * change only once the write actually happens. This avoids a few races,
1892 * and potentially makes it more efficient.
1894 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1895 * but allow concurrent faults), with pte both mapped and locked.
1896 * We return with mmap_sem still held, but pte unmapped and unlocked.
1898 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1899 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1900 spinlock_t
*ptl
, pte_t orig_pte
)
1902 struct page
*old_page
, *new_page
;
1904 int reuse
= 0, ret
= 0;
1905 int page_mkwrite
= 0;
1906 struct page
*dirty_page
= NULL
;
1908 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1911 * VM_MIXEDMAP !pfn_valid() case
1913 * We should not cow pages in a shared writeable mapping.
1914 * Just mark the pages writable as we can't do any dirty
1915 * accounting on raw pfn maps.
1917 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1918 (VM_WRITE
|VM_SHARED
))
1924 * Take out anonymous pages first, anonymous shared vmas are
1925 * not dirty accountable.
1927 if (PageAnon(old_page
)) {
1928 if (!trylock_page(old_page
)) {
1929 page_cache_get(old_page
);
1930 pte_unmap_unlock(page_table
, ptl
);
1931 lock_page(old_page
);
1932 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1934 if (!pte_same(*page_table
, orig_pte
)) {
1935 unlock_page(old_page
);
1936 page_cache_release(old_page
);
1939 page_cache_release(old_page
);
1941 reuse
= reuse_swap_page(old_page
);
1942 unlock_page(old_page
);
1943 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1944 (VM_WRITE
|VM_SHARED
))) {
1946 * Only catch write-faults on shared writable pages,
1947 * read-only shared pages can get COWed by
1948 * get_user_pages(.write=1, .force=1).
1950 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1952 * Notify the address space that the page is about to
1953 * become writable so that it can prohibit this or wait
1954 * for the page to get into an appropriate state.
1956 * We do this without the lock held, so that it can
1957 * sleep if it needs to.
1959 page_cache_get(old_page
);
1960 pte_unmap_unlock(page_table
, ptl
);
1962 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1963 goto unwritable_page
;
1966 * Since we dropped the lock we need to revalidate
1967 * the PTE as someone else may have changed it. If
1968 * they did, we just return, as we can count on the
1969 * MMU to tell us if they didn't also make it writable.
1971 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1973 page_cache_release(old_page
);
1974 if (!pte_same(*page_table
, orig_pte
))
1979 dirty_page
= old_page
;
1980 get_page(dirty_page
);
1986 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1987 entry
= pte_mkyoung(orig_pte
);
1988 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1989 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1990 update_mmu_cache(vma
, address
, entry
);
1991 ret
|= VM_FAULT_WRITE
;
1996 * Ok, we need to copy. Oh, well..
1998 page_cache_get(old_page
);
2000 pte_unmap_unlock(page_table
, ptl
);
2002 if (unlikely(anon_vma_prepare(vma
)))
2004 VM_BUG_ON(old_page
== ZERO_PAGE(0));
2005 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2009 * Don't let another task, with possibly unlocked vma,
2010 * keep the mlocked page.
2012 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2013 lock_page(old_page
); /* for LRU manipulation */
2014 clear_page_mlock(old_page
);
2015 unlock_page(old_page
);
2017 cow_user_page(new_page
, old_page
, address
, vma
);
2018 __SetPageUptodate(new_page
);
2020 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2024 * Re-check the pte - we dropped the lock
2026 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2027 if (likely(pte_same(*page_table
, orig_pte
))) {
2029 if (!PageAnon(old_page
)) {
2030 dec_mm_counter(mm
, file_rss
);
2031 inc_mm_counter(mm
, anon_rss
);
2034 inc_mm_counter(mm
, anon_rss
);
2035 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2036 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2037 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2039 * Clear the pte entry and flush it first, before updating the
2040 * pte with the new entry. This will avoid a race condition
2041 * seen in the presence of one thread doing SMC and another
2044 ptep_clear_flush_notify(vma
, address
, page_table
);
2045 page_add_new_anon_rmap(new_page
, vma
, address
);
2046 set_pte_at(mm
, address
, page_table
, entry
);
2047 update_mmu_cache(vma
, address
, entry
);
2050 * Only after switching the pte to the new page may
2051 * we remove the mapcount here. Otherwise another
2052 * process may come and find the rmap count decremented
2053 * before the pte is switched to the new page, and
2054 * "reuse" the old page writing into it while our pte
2055 * here still points into it and can be read by other
2058 * The critical issue is to order this
2059 * page_remove_rmap with the ptp_clear_flush above.
2060 * Those stores are ordered by (if nothing else,)
2061 * the barrier present in the atomic_add_negative
2062 * in page_remove_rmap.
2064 * Then the TLB flush in ptep_clear_flush ensures that
2065 * no process can access the old page before the
2066 * decremented mapcount is visible. And the old page
2067 * cannot be reused until after the decremented
2068 * mapcount is visible. So transitively, TLBs to
2069 * old page will be flushed before it can be reused.
2071 page_remove_rmap(old_page
);
2074 /* Free the old page.. */
2075 new_page
= old_page
;
2076 ret
|= VM_FAULT_WRITE
;
2078 mem_cgroup_uncharge_page(new_page
);
2081 page_cache_release(new_page
);
2083 page_cache_release(old_page
);
2085 pte_unmap_unlock(page_table
, ptl
);
2088 file_update_time(vma
->vm_file
);
2091 * Yes, Virginia, this is actually required to prevent a race
2092 * with clear_page_dirty_for_io() from clearing the page dirty
2093 * bit after it clear all dirty ptes, but before a racing
2094 * do_wp_page installs a dirty pte.
2096 * do_no_page is protected similarly.
2098 wait_on_page_locked(dirty_page
);
2099 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2100 put_page(dirty_page
);
2104 page_cache_release(new_page
);
2107 page_cache_release(old_page
);
2108 return VM_FAULT_OOM
;
2111 page_cache_release(old_page
);
2112 return VM_FAULT_SIGBUS
;
2116 * Helper functions for unmap_mapping_range().
2118 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2120 * We have to restart searching the prio_tree whenever we drop the lock,
2121 * since the iterator is only valid while the lock is held, and anyway
2122 * a later vma might be split and reinserted earlier while lock dropped.
2124 * The list of nonlinear vmas could be handled more efficiently, using
2125 * a placeholder, but handle it in the same way until a need is shown.
2126 * It is important to search the prio_tree before nonlinear list: a vma
2127 * may become nonlinear and be shifted from prio_tree to nonlinear list
2128 * while the lock is dropped; but never shifted from list to prio_tree.
2130 * In order to make forward progress despite restarting the search,
2131 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2132 * quickly skip it next time around. Since the prio_tree search only
2133 * shows us those vmas affected by unmapping the range in question, we
2134 * can't efficiently keep all vmas in step with mapping->truncate_count:
2135 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2136 * mapping->truncate_count and vma->vm_truncate_count are protected by
2139 * In order to make forward progress despite repeatedly restarting some
2140 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2141 * and restart from that address when we reach that vma again. It might
2142 * have been split or merged, shrunk or extended, but never shifted: so
2143 * restart_addr remains valid so long as it remains in the vma's range.
2144 * unmap_mapping_range forces truncate_count to leap over page-aligned
2145 * values so we can save vma's restart_addr in its truncate_count field.
2147 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2149 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2151 struct vm_area_struct
*vma
;
2152 struct prio_tree_iter iter
;
2154 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2155 vma
->vm_truncate_count
= 0;
2156 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2157 vma
->vm_truncate_count
= 0;
2160 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2161 unsigned long start_addr
, unsigned long end_addr
,
2162 struct zap_details
*details
)
2164 unsigned long restart_addr
;
2168 * files that support invalidating or truncating portions of the
2169 * file from under mmaped areas must have their ->fault function
2170 * return a locked page (and set VM_FAULT_LOCKED in the return).
2171 * This provides synchronisation against concurrent unmapping here.
2175 restart_addr
= vma
->vm_truncate_count
;
2176 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2177 start_addr
= restart_addr
;
2178 if (start_addr
>= end_addr
) {
2179 /* Top of vma has been split off since last time */
2180 vma
->vm_truncate_count
= details
->truncate_count
;
2185 restart_addr
= zap_page_range(vma
, start_addr
,
2186 end_addr
- start_addr
, details
);
2187 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2189 if (restart_addr
>= end_addr
) {
2190 /* We have now completed this vma: mark it so */
2191 vma
->vm_truncate_count
= details
->truncate_count
;
2195 /* Note restart_addr in vma's truncate_count field */
2196 vma
->vm_truncate_count
= restart_addr
;
2201 spin_unlock(details
->i_mmap_lock
);
2203 spin_lock(details
->i_mmap_lock
);
2207 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2208 struct zap_details
*details
)
2210 struct vm_area_struct
*vma
;
2211 struct prio_tree_iter iter
;
2212 pgoff_t vba
, vea
, zba
, zea
;
2215 vma_prio_tree_foreach(vma
, &iter
, root
,
2216 details
->first_index
, details
->last_index
) {
2217 /* Skip quickly over those we have already dealt with */
2218 if (vma
->vm_truncate_count
== details
->truncate_count
)
2221 vba
= vma
->vm_pgoff
;
2222 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2223 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2224 zba
= details
->first_index
;
2227 zea
= details
->last_index
;
2231 if (unmap_mapping_range_vma(vma
,
2232 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2233 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2239 static inline void unmap_mapping_range_list(struct list_head
*head
,
2240 struct zap_details
*details
)
2242 struct vm_area_struct
*vma
;
2245 * In nonlinear VMAs there is no correspondence between virtual address
2246 * offset and file offset. So we must perform an exhaustive search
2247 * across *all* the pages in each nonlinear VMA, not just the pages
2248 * whose virtual address lies outside the file truncation point.
2251 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2252 /* Skip quickly over those we have already dealt with */
2253 if (vma
->vm_truncate_count
== details
->truncate_count
)
2255 details
->nonlinear_vma
= vma
;
2256 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2257 vma
->vm_end
, details
) < 0)
2263 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2264 * @mapping: the address space containing mmaps to be unmapped.
2265 * @holebegin: byte in first page to unmap, relative to the start of
2266 * the underlying file. This will be rounded down to a PAGE_SIZE
2267 * boundary. Note that this is different from vmtruncate(), which
2268 * must keep the partial page. In contrast, we must get rid of
2270 * @holelen: size of prospective hole in bytes. This will be rounded
2271 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2273 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2274 * but 0 when invalidating pagecache, don't throw away private data.
2276 void unmap_mapping_range(struct address_space
*mapping
,
2277 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2279 struct zap_details details
;
2280 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2281 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2283 /* Check for overflow. */
2284 if (sizeof(holelen
) > sizeof(hlen
)) {
2286 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2287 if (holeend
& ~(long long)ULONG_MAX
)
2288 hlen
= ULONG_MAX
- hba
+ 1;
2291 details
.check_mapping
= even_cows
? NULL
: mapping
;
2292 details
.nonlinear_vma
= NULL
;
2293 details
.first_index
= hba
;
2294 details
.last_index
= hba
+ hlen
- 1;
2295 if (details
.last_index
< details
.first_index
)
2296 details
.last_index
= ULONG_MAX
;
2297 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2299 spin_lock(&mapping
->i_mmap_lock
);
2301 /* Protect against endless unmapping loops */
2302 mapping
->truncate_count
++;
2303 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2304 if (mapping
->truncate_count
== 0)
2305 reset_vma_truncate_counts(mapping
);
2306 mapping
->truncate_count
++;
2308 details
.truncate_count
= mapping
->truncate_count
;
2310 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2311 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2312 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2313 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2314 spin_unlock(&mapping
->i_mmap_lock
);
2316 EXPORT_SYMBOL(unmap_mapping_range
);
2319 * vmtruncate - unmap mappings "freed" by truncate() syscall
2320 * @inode: inode of the file used
2321 * @offset: file offset to start truncating
2323 * NOTE! We have to be ready to update the memory sharing
2324 * between the file and the memory map for a potential last
2325 * incomplete page. Ugly, but necessary.
2327 int vmtruncate(struct inode
* inode
, loff_t offset
)
2329 if (inode
->i_size
< offset
) {
2330 unsigned long limit
;
2332 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2333 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2335 if (offset
> inode
->i_sb
->s_maxbytes
)
2337 i_size_write(inode
, offset
);
2339 struct address_space
*mapping
= inode
->i_mapping
;
2342 * truncation of in-use swapfiles is disallowed - it would
2343 * cause subsequent swapout to scribble on the now-freed
2346 if (IS_SWAPFILE(inode
))
2348 i_size_write(inode
, offset
);
2351 * unmap_mapping_range is called twice, first simply for
2352 * efficiency so that truncate_inode_pages does fewer
2353 * single-page unmaps. However after this first call, and
2354 * before truncate_inode_pages finishes, it is possible for
2355 * private pages to be COWed, which remain after
2356 * truncate_inode_pages finishes, hence the second
2357 * unmap_mapping_range call must be made for correctness.
2359 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2360 truncate_inode_pages(mapping
, offset
);
2361 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2364 if (inode
->i_op
->truncate
)
2365 inode
->i_op
->truncate(inode
);
2369 send_sig(SIGXFSZ
, current
, 0);
2373 EXPORT_SYMBOL(vmtruncate
);
2375 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2377 struct address_space
*mapping
= inode
->i_mapping
;
2380 * If the underlying filesystem is not going to provide
2381 * a way to truncate a range of blocks (punch a hole) -
2382 * we should return failure right now.
2384 if (!inode
->i_op
->truncate_range
)
2387 mutex_lock(&inode
->i_mutex
);
2388 down_write(&inode
->i_alloc_sem
);
2389 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2390 truncate_inode_pages_range(mapping
, offset
, end
);
2391 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2392 inode
->i_op
->truncate_range(inode
, offset
, end
);
2393 up_write(&inode
->i_alloc_sem
);
2394 mutex_unlock(&inode
->i_mutex
);
2400 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401 * but allow concurrent faults), and pte mapped but not yet locked.
2402 * We return with mmap_sem still held, but pte unmapped and unlocked.
2404 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2405 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2406 int write_access
, pte_t orig_pte
)
2412 struct mem_cgroup
*ptr
= NULL
;
2415 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2418 entry
= pte_to_swp_entry(orig_pte
);
2419 if (is_migration_entry(entry
)) {
2420 migration_entry_wait(mm
, pmd
, address
);
2423 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2424 page
= lookup_swap_cache(entry
);
2426 grab_swap_token(); /* Contend for token _before_ read-in */
2427 page
= swapin_readahead(entry
,
2428 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2431 * Back out if somebody else faulted in this pte
2432 * while we released the pte lock.
2434 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2435 if (likely(pte_same(*page_table
, orig_pte
)))
2437 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2441 /* Had to read the page from swap area: Major fault */
2442 ret
= VM_FAULT_MAJOR
;
2443 count_vm_event(PGMAJFAULT
);
2446 mark_page_accessed(page
);
2449 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2451 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2458 * Back out if somebody else already faulted in this pte.
2460 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2461 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2464 if (unlikely(!PageUptodate(page
))) {
2465 ret
= VM_FAULT_SIGBUS
;
2470 * The page isn't present yet, go ahead with the fault.
2472 * Be careful about the sequence of operations here.
2473 * To get its accounting right, reuse_swap_page() must be called
2474 * while the page is counted on swap but not yet in mapcount i.e.
2475 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2476 * must be called after the swap_free(), or it will never succeed.
2477 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2478 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2479 * in page->private. In this case, a record in swap_cgroup is silently
2480 * discarded at swap_free().
2483 inc_mm_counter(mm
, anon_rss
);
2484 pte
= mk_pte(page
, vma
->vm_page_prot
);
2485 if (write_access
&& reuse_swap_page(page
)) {
2486 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2489 flush_icache_page(vma
, page
);
2490 set_pte_at(mm
, address
, page_table
, pte
);
2491 page_add_anon_rmap(page
, vma
, address
);
2492 /* It's better to call commit-charge after rmap is established */
2493 mem_cgroup_commit_charge_swapin(page
, ptr
);
2496 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2497 try_to_free_swap(page
);
2501 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2502 if (ret
& VM_FAULT_ERROR
)
2503 ret
&= VM_FAULT_ERROR
;
2507 /* No need to invalidate - it was non-present before */
2508 update_mmu_cache(vma
, address
, pte
);
2510 pte_unmap_unlock(page_table
, ptl
);
2514 mem_cgroup_cancel_charge_swapin(ptr
);
2515 pte_unmap_unlock(page_table
, ptl
);
2517 page_cache_release(page
);
2522 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2523 * but allow concurrent faults), and pte mapped but not yet locked.
2524 * We return with mmap_sem still held, but pte unmapped and unlocked.
2526 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2527 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2534 /* Allocate our own private page. */
2535 pte_unmap(page_table
);
2537 if (unlikely(anon_vma_prepare(vma
)))
2539 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2542 __SetPageUptodate(page
);
2544 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2547 entry
= mk_pte(page
, vma
->vm_page_prot
);
2548 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2550 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2551 if (!pte_none(*page_table
))
2553 inc_mm_counter(mm
, anon_rss
);
2554 page_add_new_anon_rmap(page
, vma
, address
);
2555 set_pte_at(mm
, address
, page_table
, entry
);
2557 /* No need to invalidate - it was non-present before */
2558 update_mmu_cache(vma
, address
, entry
);
2560 pte_unmap_unlock(page_table
, ptl
);
2563 mem_cgroup_uncharge_page(page
);
2564 page_cache_release(page
);
2567 page_cache_release(page
);
2569 return VM_FAULT_OOM
;
2573 * __do_fault() tries to create a new page mapping. It aggressively
2574 * tries to share with existing pages, but makes a separate copy if
2575 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2576 * the next page fault.
2578 * As this is called only for pages that do not currently exist, we
2579 * do not need to flush old virtual caches or the TLB.
2581 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2582 * but allow concurrent faults), and pte neither mapped nor locked.
2583 * We return with mmap_sem still held, but pte unmapped and unlocked.
2585 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2586 unsigned long address
, pmd_t
*pmd
,
2587 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2595 struct page
*dirty_page
= NULL
;
2596 struct vm_fault vmf
;
2598 int page_mkwrite
= 0;
2600 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2605 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2606 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2610 * For consistency in subsequent calls, make the faulted page always
2613 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2614 lock_page(vmf
.page
);
2616 VM_BUG_ON(!PageLocked(vmf
.page
));
2619 * Should we do an early C-O-W break?
2622 if (flags
& FAULT_FLAG_WRITE
) {
2623 if (!(vma
->vm_flags
& VM_SHARED
)) {
2625 if (unlikely(anon_vma_prepare(vma
))) {
2629 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2635 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2637 page_cache_release(page
);
2642 * Don't let another task, with possibly unlocked vma,
2643 * keep the mlocked page.
2645 if (vma
->vm_flags
& VM_LOCKED
)
2646 clear_page_mlock(vmf
.page
);
2647 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2648 __SetPageUptodate(page
);
2651 * If the page will be shareable, see if the backing
2652 * address space wants to know that the page is about
2653 * to become writable
2655 if (vma
->vm_ops
->page_mkwrite
) {
2657 if (vma
->vm_ops
->page_mkwrite(vma
, page
) < 0) {
2658 ret
= VM_FAULT_SIGBUS
;
2659 anon
= 1; /* no anon but release vmf.page */
2664 * XXX: this is not quite right (racy vs
2665 * invalidate) to unlock and relock the page
2666 * like this, however a better fix requires
2667 * reworking page_mkwrite locking API, which
2668 * is better done later.
2670 if (!page
->mapping
) {
2672 anon
= 1; /* no anon but release vmf.page */
2681 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2684 * This silly early PAGE_DIRTY setting removes a race
2685 * due to the bad i386 page protection. But it's valid
2686 * for other architectures too.
2688 * Note that if write_access is true, we either now have
2689 * an exclusive copy of the page, or this is a shared mapping,
2690 * so we can make it writable and dirty to avoid having to
2691 * handle that later.
2693 /* Only go through if we didn't race with anybody else... */
2694 if (likely(pte_same(*page_table
, orig_pte
))) {
2695 flush_icache_page(vma
, page
);
2696 entry
= mk_pte(page
, vma
->vm_page_prot
);
2697 if (flags
& FAULT_FLAG_WRITE
)
2698 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2700 inc_mm_counter(mm
, anon_rss
);
2701 page_add_new_anon_rmap(page
, vma
, address
);
2703 inc_mm_counter(mm
, file_rss
);
2704 page_add_file_rmap(page
);
2705 if (flags
& FAULT_FLAG_WRITE
) {
2707 get_page(dirty_page
);
2710 set_pte_at(mm
, address
, page_table
, entry
);
2712 /* no need to invalidate: a not-present page won't be cached */
2713 update_mmu_cache(vma
, address
, entry
);
2716 mem_cgroup_uncharge_page(page
);
2718 page_cache_release(page
);
2720 anon
= 1; /* no anon but release faulted_page */
2723 pte_unmap_unlock(page_table
, ptl
);
2726 unlock_page(vmf
.page
);
2729 page_cache_release(vmf
.page
);
2730 else if (dirty_page
) {
2732 file_update_time(vma
->vm_file
);
2734 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2735 put_page(dirty_page
);
2741 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2742 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2743 int write_access
, pte_t orig_pte
)
2745 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2746 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2747 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2749 pte_unmap(page_table
);
2750 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2754 * Fault of a previously existing named mapping. Repopulate the pte
2755 * from the encoded file_pte if possible. This enables swappable
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), and pte mapped but not yet locked.
2760 * We return with mmap_sem still held, but pte unmapped and unlocked.
2762 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2763 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2764 int write_access
, pte_t orig_pte
)
2766 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2767 (write_access
? FAULT_FLAG_WRITE
: 0);
2770 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2773 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2775 * Page table corrupted: show pte and kill process.
2777 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2778 return VM_FAULT_OOM
;
2781 pgoff
= pte_to_pgoff(orig_pte
);
2782 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2786 * These routines also need to handle stuff like marking pages dirty
2787 * and/or accessed for architectures that don't do it in hardware (most
2788 * RISC architectures). The early dirtying is also good on the i386.
2790 * There is also a hook called "update_mmu_cache()" that architectures
2791 * with external mmu caches can use to update those (ie the Sparc or
2792 * PowerPC hashed page tables that act as extended TLBs).
2794 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2795 * but allow concurrent faults), and pte mapped but not yet locked.
2796 * We return with mmap_sem still held, but pte unmapped and unlocked.
2798 static inline int handle_pte_fault(struct mm_struct
*mm
,
2799 struct vm_area_struct
*vma
, unsigned long address
,
2800 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2806 if (!pte_present(entry
)) {
2807 if (pte_none(entry
)) {
2809 if (likely(vma
->vm_ops
->fault
))
2810 return do_linear_fault(mm
, vma
, address
,
2811 pte
, pmd
, write_access
, entry
);
2813 return do_anonymous_page(mm
, vma
, address
,
2814 pte
, pmd
, write_access
);
2816 if (pte_file(entry
))
2817 return do_nonlinear_fault(mm
, vma
, address
,
2818 pte
, pmd
, write_access
, entry
);
2819 return do_swap_page(mm
, vma
, address
,
2820 pte
, pmd
, write_access
, entry
);
2823 ptl
= pte_lockptr(mm
, pmd
);
2825 if (unlikely(!pte_same(*pte
, entry
)))
2828 if (!pte_write(entry
))
2829 return do_wp_page(mm
, vma
, address
,
2830 pte
, pmd
, ptl
, entry
);
2831 entry
= pte_mkdirty(entry
);
2833 entry
= pte_mkyoung(entry
);
2834 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2835 update_mmu_cache(vma
, address
, entry
);
2838 * This is needed only for protection faults but the arch code
2839 * is not yet telling us if this is a protection fault or not.
2840 * This still avoids useless tlb flushes for .text page faults
2844 flush_tlb_page(vma
, address
);
2847 pte_unmap_unlock(pte
, ptl
);
2852 * By the time we get here, we already hold the mm semaphore
2854 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2855 unsigned long address
, int write_access
)
2862 __set_current_state(TASK_RUNNING
);
2864 count_vm_event(PGFAULT
);
2866 if (unlikely(is_vm_hugetlb_page(vma
)))
2867 return hugetlb_fault(mm
, vma
, address
, write_access
);
2869 pgd
= pgd_offset(mm
, address
);
2870 pud
= pud_alloc(mm
, pgd
, address
);
2872 return VM_FAULT_OOM
;
2873 pmd
= pmd_alloc(mm
, pud
, address
);
2875 return VM_FAULT_OOM
;
2876 pte
= pte_alloc_map(mm
, pmd
, address
);
2878 return VM_FAULT_OOM
;
2880 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2883 #ifndef __PAGETABLE_PUD_FOLDED
2885 * Allocate page upper directory.
2886 * We've already handled the fast-path in-line.
2888 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2890 pud_t
*new = pud_alloc_one(mm
, address
);
2894 smp_wmb(); /* See comment in __pte_alloc */
2896 spin_lock(&mm
->page_table_lock
);
2897 if (pgd_present(*pgd
)) /* Another has populated it */
2900 pgd_populate(mm
, pgd
, new);
2901 spin_unlock(&mm
->page_table_lock
);
2904 #endif /* __PAGETABLE_PUD_FOLDED */
2906 #ifndef __PAGETABLE_PMD_FOLDED
2908 * Allocate page middle directory.
2909 * We've already handled the fast-path in-line.
2911 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2913 pmd_t
*new = pmd_alloc_one(mm
, address
);
2917 smp_wmb(); /* See comment in __pte_alloc */
2919 spin_lock(&mm
->page_table_lock
);
2920 #ifndef __ARCH_HAS_4LEVEL_HACK
2921 if (pud_present(*pud
)) /* Another has populated it */
2924 pud_populate(mm
, pud
, new);
2926 if (pgd_present(*pud
)) /* Another has populated it */
2929 pgd_populate(mm
, pud
, new);
2930 #endif /* __ARCH_HAS_4LEVEL_HACK */
2931 spin_unlock(&mm
->page_table_lock
);
2934 #endif /* __PAGETABLE_PMD_FOLDED */
2936 int make_pages_present(unsigned long addr
, unsigned long end
)
2938 int ret
, len
, write
;
2939 struct vm_area_struct
* vma
;
2941 vma
= find_vma(current
->mm
, addr
);
2944 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2945 BUG_ON(addr
>= end
);
2946 BUG_ON(end
> vma
->vm_end
);
2947 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2948 ret
= get_user_pages(current
, current
->mm
, addr
,
2949 len
, write
, 0, NULL
, NULL
);
2952 return ret
== len
? 0 : -EFAULT
;
2955 #if !defined(__HAVE_ARCH_GATE_AREA)
2957 #if defined(AT_SYSINFO_EHDR)
2958 static struct vm_area_struct gate_vma
;
2960 static int __init
gate_vma_init(void)
2962 gate_vma
.vm_mm
= NULL
;
2963 gate_vma
.vm_start
= FIXADDR_USER_START
;
2964 gate_vma
.vm_end
= FIXADDR_USER_END
;
2965 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2966 gate_vma
.vm_page_prot
= __P101
;
2968 * Make sure the vDSO gets into every core dump.
2969 * Dumping its contents makes post-mortem fully interpretable later
2970 * without matching up the same kernel and hardware config to see
2971 * what PC values meant.
2973 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2976 __initcall(gate_vma_init
);
2979 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2981 #ifdef AT_SYSINFO_EHDR
2988 int in_gate_area_no_task(unsigned long addr
)
2990 #ifdef AT_SYSINFO_EHDR
2991 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2997 #endif /* __HAVE_ARCH_GATE_AREA */
2999 #ifdef CONFIG_HAVE_IOREMAP_PROT
3000 int follow_phys(struct vm_area_struct
*vma
,
3001 unsigned long address
, unsigned int flags
,
3002 unsigned long *prot
, resource_size_t
*phys
)
3009 resource_size_t phys_addr
= 0;
3010 struct mm_struct
*mm
= vma
->vm_mm
;
3013 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3016 pgd
= pgd_offset(mm
, address
);
3017 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3020 pud
= pud_offset(pgd
, address
);
3021 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3024 pmd
= pmd_offset(pud
, address
);
3025 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3028 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3032 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3037 if (!pte_present(pte
))
3039 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3041 phys_addr
= pte_pfn(pte
);
3042 phys_addr
<<= PAGE_SHIFT
; /* Shift here to avoid overflow on PAE */
3044 *prot
= pgprot_val(pte_pgprot(pte
));
3049 pte_unmap_unlock(ptep
, ptl
);
3054 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3055 void *buf
, int len
, int write
)
3057 resource_size_t phys_addr
;
3058 unsigned long prot
= 0;
3059 void __iomem
*maddr
;
3060 int offset
= addr
& (PAGE_SIZE
-1);
3062 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3065 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3067 memcpy_toio(maddr
+ offset
, buf
, len
);
3069 memcpy_fromio(buf
, maddr
+ offset
, len
);
3077 * Access another process' address space.
3078 * Source/target buffer must be kernel space,
3079 * Do not walk the page table directly, use get_user_pages
3081 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3083 struct mm_struct
*mm
;
3084 struct vm_area_struct
*vma
;
3085 void *old_buf
= buf
;
3087 mm
= get_task_mm(tsk
);
3091 down_read(&mm
->mmap_sem
);
3092 /* ignore errors, just check how much was successfully transferred */
3094 int bytes
, ret
, offset
;
3096 struct page
*page
= NULL
;
3098 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3099 write
, 1, &page
, &vma
);
3102 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3103 * we can access using slightly different code.
3105 #ifdef CONFIG_HAVE_IOREMAP_PROT
3106 vma
= find_vma(mm
, addr
);
3109 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3110 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3118 offset
= addr
& (PAGE_SIZE
-1);
3119 if (bytes
> PAGE_SIZE
-offset
)
3120 bytes
= PAGE_SIZE
-offset
;
3124 copy_to_user_page(vma
, page
, addr
,
3125 maddr
+ offset
, buf
, bytes
);
3126 set_page_dirty_lock(page
);
3128 copy_from_user_page(vma
, page
, addr
,
3129 buf
, maddr
+ offset
, bytes
);
3132 page_cache_release(page
);
3138 up_read(&mm
->mmap_sem
);
3141 return buf
- old_buf
;
3145 * Print the name of a VMA.
3147 void print_vma_addr(char *prefix
, unsigned long ip
)
3149 struct mm_struct
*mm
= current
->mm
;
3150 struct vm_area_struct
*vma
;
3153 * Do not print if we are in atomic
3154 * contexts (in exception stacks, etc.):
3156 if (preempt_count())
3159 down_read(&mm
->mmap_sem
);
3160 vma
= find_vma(mm
, ip
);
3161 if (vma
&& vma
->vm_file
) {
3162 struct file
*f
= vma
->vm_file
;
3163 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3167 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3170 s
= strrchr(p
, '/');
3173 printk("%s%s[%lx+%lx]", prefix
, p
,
3175 vma
->vm_end
- vma
->vm_start
);
3176 free_page((unsigned long)buf
);
3179 up_read(¤t
->mm
->mmap_sem
);
3182 #ifdef CONFIG_PROVE_LOCKING
3183 void might_fault(void)
3186 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3187 * holding the mmap_sem, this is safe because kernel memory doesn't
3188 * get paged out, therefore we'll never actually fault, and the
3189 * below annotations will generate false positives.
3191 if (segment_eq(get_fs(), KERNEL_DS
))
3196 * it would be nicer only to annotate paths which are not under
3197 * pagefault_disable, however that requires a larger audit and
3198 * providing helpers like get_user_atomic.
3200 if (!in_atomic() && current
->mm
)
3201 might_lock_read(¤t
->mm
->mmap_sem
);
3203 EXPORT_SYMBOL(might_fault
);