1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
42 #include <asm/uaccess.h>
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
49 int do_swap_account __read_mostly
;
50 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
52 #define do_swap_account (0)
55 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
58 * Statistics for memory cgroup.
60 enum mem_cgroup_stat_index
{
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
66 MEM_CGROUP_STAT_MAPPED_FILE
, /* # of pages charged as file rss */
67 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
68 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
70 MEM_CGROUP_STAT_NSTATS
,
73 struct mem_cgroup_stat_cpu
{
74 s64 count
[MEM_CGROUP_STAT_NSTATS
];
75 } ____cacheline_aligned_in_smp
;
77 struct mem_cgroup_stat
{
78 struct mem_cgroup_stat_cpu cpustat
[0];
82 * For accounting under irq disable, no need for increment preempt count.
84 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
85 enum mem_cgroup_stat_index idx
, int val
)
87 stat
->count
[idx
] += val
;
90 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
91 enum mem_cgroup_stat_index idx
)
95 for_each_possible_cpu(cpu
)
96 ret
+= stat
->cpustat
[cpu
].count
[idx
];
100 static s64
mem_cgroup_local_usage(struct mem_cgroup_stat
*stat
)
104 ret
= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_CACHE
);
105 ret
+= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_RSS
);
110 * per-zone information in memory controller.
112 struct mem_cgroup_per_zone
{
114 * spin_lock to protect the per cgroup LRU
116 struct list_head lists
[NR_LRU_LISTS
];
117 unsigned long count
[NR_LRU_LISTS
];
119 struct zone_reclaim_stat reclaim_stat
;
121 /* Macro for accessing counter */
122 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
124 struct mem_cgroup_per_node
{
125 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
128 struct mem_cgroup_lru_info
{
129 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
133 * The memory controller data structure. The memory controller controls both
134 * page cache and RSS per cgroup. We would eventually like to provide
135 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
136 * to help the administrator determine what knobs to tune.
138 * TODO: Add a water mark for the memory controller. Reclaim will begin when
139 * we hit the water mark. May be even add a low water mark, such that
140 * no reclaim occurs from a cgroup at it's low water mark, this is
141 * a feature that will be implemented much later in the future.
144 struct cgroup_subsys_state css
;
146 * the counter to account for memory usage
148 struct res_counter res
;
150 * the counter to account for mem+swap usage.
152 struct res_counter memsw
;
154 * Per cgroup active and inactive list, similar to the
155 * per zone LRU lists.
157 struct mem_cgroup_lru_info info
;
160 protect against reclaim related member.
162 spinlock_t reclaim_param_lock
;
164 int prev_priority
; /* for recording reclaim priority */
167 * While reclaiming in a hiearchy, we cache the last child we
170 int last_scanned_child
;
172 * Should the accounting and control be hierarchical, per subtree?
175 unsigned long last_oom_jiffies
;
178 unsigned int swappiness
;
180 /* set when res.limit == memsw.limit */
181 bool memsw_is_minimum
;
184 * statistics. This must be placed at the end of memcg.
186 struct mem_cgroup_stat stat
;
190 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
191 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
192 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
193 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
194 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
195 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
199 /* only for here (for easy reading.) */
200 #define PCGF_CACHE (1UL << PCG_CACHE)
201 #define PCGF_USED (1UL << PCG_USED)
202 #define PCGF_LOCK (1UL << PCG_LOCK)
203 static const unsigned long
204 pcg_default_flags
[NR_CHARGE_TYPE
] = {
205 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
206 PCGF_USED
| PCGF_LOCK
, /* Anon */
207 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
211 /* for encoding cft->private value on file */
214 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
215 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
216 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218 static void mem_cgroup_get(struct mem_cgroup
*mem
);
219 static void mem_cgroup_put(struct mem_cgroup
*mem
);
220 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
222 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
223 struct page_cgroup
*pc
,
226 int val
= (charge
)? 1 : -1;
227 struct mem_cgroup_stat
*stat
= &mem
->stat
;
228 struct mem_cgroup_stat_cpu
*cpustat
;
231 cpustat
= &stat
->cpustat
[cpu
];
232 if (PageCgroupCache(pc
))
233 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
235 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
238 __mem_cgroup_stat_add_safe(cpustat
,
239 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
241 __mem_cgroup_stat_add_safe(cpustat
,
242 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
246 static struct mem_cgroup_per_zone
*
247 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
249 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
252 static struct mem_cgroup_per_zone
*
253 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
255 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
256 int nid
= page_cgroup_nid(pc
);
257 int zid
= page_cgroup_zid(pc
);
262 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
265 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
269 struct mem_cgroup_per_zone
*mz
;
272 for_each_online_node(nid
)
273 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
274 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
275 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
280 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
282 return container_of(cgroup_subsys_state(cont
,
283 mem_cgroup_subsys_id
), struct mem_cgroup
,
287 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
290 * mm_update_next_owner() may clear mm->owner to NULL
291 * if it races with swapoff, page migration, etc.
292 * So this can be called with p == NULL.
297 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
298 struct mem_cgroup
, css
);
301 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
303 struct mem_cgroup
*mem
= NULL
;
308 * Because we have no locks, mm->owner's may be being moved to other
309 * cgroup. We use css_tryget() here even if this looks
310 * pessimistic (rather than adding locks here).
314 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
317 } while (!css_tryget(&mem
->css
));
323 * Call callback function against all cgroup under hierarchy tree.
325 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
326 int (*func
)(struct mem_cgroup
*, void *))
328 int found
, ret
, nextid
;
329 struct cgroup_subsys_state
*css
;
330 struct mem_cgroup
*mem
;
332 if (!root
->use_hierarchy
)
333 return (*func
)(root
, data
);
341 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
343 if (css
&& css_tryget(css
))
344 mem
= container_of(css
, struct mem_cgroup
, css
);
348 ret
= (*func
)(mem
, data
);
352 } while (!ret
&& css
);
358 * Following LRU functions are allowed to be used without PCG_LOCK.
359 * Operations are called by routine of global LRU independently from memcg.
360 * What we have to take care of here is validness of pc->mem_cgroup.
362 * Changes to pc->mem_cgroup happens when
365 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
366 * It is added to LRU before charge.
367 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
368 * When moving account, the page is not on LRU. It's isolated.
371 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
373 struct page_cgroup
*pc
;
374 struct mem_cgroup
*mem
;
375 struct mem_cgroup_per_zone
*mz
;
377 if (mem_cgroup_disabled())
379 pc
= lookup_page_cgroup(page
);
380 /* can happen while we handle swapcache. */
381 if (list_empty(&pc
->lru
) || !pc
->mem_cgroup
)
384 * We don't check PCG_USED bit. It's cleared when the "page" is finally
385 * removed from global LRU.
387 mz
= page_cgroup_zoneinfo(pc
);
388 mem
= pc
->mem_cgroup
;
389 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
390 list_del_init(&pc
->lru
);
394 void mem_cgroup_del_lru(struct page
*page
)
396 mem_cgroup_del_lru_list(page
, page_lru(page
));
399 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
401 struct mem_cgroup_per_zone
*mz
;
402 struct page_cgroup
*pc
;
404 if (mem_cgroup_disabled())
407 pc
= lookup_page_cgroup(page
);
409 * Used bit is set without atomic ops but after smp_wmb().
410 * For making pc->mem_cgroup visible, insert smp_rmb() here.
413 /* unused page is not rotated. */
414 if (!PageCgroupUsed(pc
))
416 mz
= page_cgroup_zoneinfo(pc
);
417 list_move(&pc
->lru
, &mz
->lists
[lru
]);
420 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
422 struct page_cgroup
*pc
;
423 struct mem_cgroup_per_zone
*mz
;
425 if (mem_cgroup_disabled())
427 pc
= lookup_page_cgroup(page
);
429 * Used bit is set without atomic ops but after smp_wmb().
430 * For making pc->mem_cgroup visible, insert smp_rmb() here.
433 if (!PageCgroupUsed(pc
))
436 mz
= page_cgroup_zoneinfo(pc
);
437 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
438 list_add(&pc
->lru
, &mz
->lists
[lru
]);
442 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
443 * lru because the page may.be reused after it's fully uncharged (because of
444 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
445 * it again. This function is only used to charge SwapCache. It's done under
446 * lock_page and expected that zone->lru_lock is never held.
448 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
451 struct zone
*zone
= page_zone(page
);
452 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
454 spin_lock_irqsave(&zone
->lru_lock
, flags
);
456 * Forget old LRU when this page_cgroup is *not* used. This Used bit
457 * is guarded by lock_page() because the page is SwapCache.
459 if (!PageCgroupUsed(pc
))
460 mem_cgroup_del_lru_list(page
, page_lru(page
));
461 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
464 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
467 struct zone
*zone
= page_zone(page
);
468 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
470 spin_lock_irqsave(&zone
->lru_lock
, flags
);
471 /* link when the page is linked to LRU but page_cgroup isn't */
472 if (PageLRU(page
) && list_empty(&pc
->lru
))
473 mem_cgroup_add_lru_list(page
, page_lru(page
));
474 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
478 void mem_cgroup_move_lists(struct page
*page
,
479 enum lru_list from
, enum lru_list to
)
481 if (mem_cgroup_disabled())
483 mem_cgroup_del_lru_list(page
, from
);
484 mem_cgroup_add_lru_list(page
, to
);
487 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
490 struct mem_cgroup
*curr
= NULL
;
494 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
499 if (curr
->use_hierarchy
)
500 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
508 * prev_priority control...this will be used in memory reclaim path.
510 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
514 spin_lock(&mem
->reclaim_param_lock
);
515 prev_priority
= mem
->prev_priority
;
516 spin_unlock(&mem
->reclaim_param_lock
);
518 return prev_priority
;
521 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
523 spin_lock(&mem
->reclaim_param_lock
);
524 if (priority
< mem
->prev_priority
)
525 mem
->prev_priority
= priority
;
526 spin_unlock(&mem
->reclaim_param_lock
);
529 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
531 spin_lock(&mem
->reclaim_param_lock
);
532 mem
->prev_priority
= priority
;
533 spin_unlock(&mem
->reclaim_param_lock
);
536 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
538 unsigned long active
;
539 unsigned long inactive
;
541 unsigned long inactive_ratio
;
543 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
544 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
546 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
548 inactive_ratio
= int_sqrt(10 * gb
);
553 present_pages
[0] = inactive
;
554 present_pages
[1] = active
;
557 return inactive_ratio
;
560 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
562 unsigned long active
;
563 unsigned long inactive
;
564 unsigned long present_pages
[2];
565 unsigned long inactive_ratio
;
567 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
569 inactive
= present_pages
[0];
570 active
= present_pages
[1];
572 if (inactive
* inactive_ratio
< active
)
578 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
580 unsigned long active
;
581 unsigned long inactive
;
583 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
584 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
586 return (active
> inactive
);
589 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
593 int nid
= zone
->zone_pgdat
->node_id
;
594 int zid
= zone_idx(zone
);
595 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
597 return MEM_CGROUP_ZSTAT(mz
, lru
);
600 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
603 int nid
= zone
->zone_pgdat
->node_id
;
604 int zid
= zone_idx(zone
);
605 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
607 return &mz
->reclaim_stat
;
610 struct zone_reclaim_stat
*
611 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
613 struct page_cgroup
*pc
;
614 struct mem_cgroup_per_zone
*mz
;
616 if (mem_cgroup_disabled())
619 pc
= lookup_page_cgroup(page
);
621 * Used bit is set without atomic ops but after smp_wmb().
622 * For making pc->mem_cgroup visible, insert smp_rmb() here.
625 if (!PageCgroupUsed(pc
))
628 mz
= page_cgroup_zoneinfo(pc
);
632 return &mz
->reclaim_stat
;
635 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
636 struct list_head
*dst
,
637 unsigned long *scanned
, int order
,
638 int mode
, struct zone
*z
,
639 struct mem_cgroup
*mem_cont
,
640 int active
, int file
)
642 unsigned long nr_taken
= 0;
646 struct list_head
*src
;
647 struct page_cgroup
*pc
, *tmp
;
648 int nid
= z
->zone_pgdat
->node_id
;
649 int zid
= zone_idx(z
);
650 struct mem_cgroup_per_zone
*mz
;
651 int lru
= LRU_FILE
* !!file
+ !!active
;
655 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
656 src
= &mz
->lists
[lru
];
659 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
660 if (scan
>= nr_to_scan
)
664 if (unlikely(!PageCgroupUsed(pc
)))
666 if (unlikely(!PageLRU(page
)))
670 ret
= __isolate_lru_page(page
, mode
, file
);
673 list_move(&page
->lru
, dst
);
674 mem_cgroup_del_lru(page
);
678 /* we don't affect global LRU but rotate in our LRU */
679 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
690 #define mem_cgroup_from_res_counter(counter, member) \
691 container_of(counter, struct mem_cgroup, member)
693 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
695 if (do_swap_account
) {
696 if (res_counter_check_under_limit(&mem
->res
) &&
697 res_counter_check_under_limit(&mem
->memsw
))
700 if (res_counter_check_under_limit(&mem
->res
))
705 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
707 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
708 unsigned int swappiness
;
711 if (cgrp
->parent
== NULL
)
712 return vm_swappiness
;
714 spin_lock(&memcg
->reclaim_param_lock
);
715 swappiness
= memcg
->swappiness
;
716 spin_unlock(&memcg
->reclaim_param_lock
);
721 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
729 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
730 * @memcg: The memory cgroup that went over limit
731 * @p: Task that is going to be killed
733 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
736 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
738 struct cgroup
*task_cgrp
;
739 struct cgroup
*mem_cgrp
;
741 * Need a buffer in BSS, can't rely on allocations. The code relies
742 * on the assumption that OOM is serialized for memory controller.
743 * If this assumption is broken, revisit this code.
745 static char memcg_name
[PATH_MAX
];
754 mem_cgrp
= memcg
->css
.cgroup
;
755 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
757 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
760 * Unfortunately, we are unable to convert to a useful name
761 * But we'll still print out the usage information
768 printk(KERN_INFO
"Task in %s killed", memcg_name
);
771 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
779 * Continues from above, so we don't need an KERN_ level
781 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
784 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
785 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
786 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
787 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
788 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
790 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
791 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
792 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
796 * This function returns the number of memcg under hierarchy tree. Returns
797 * 1(self count) if no children.
799 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
802 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
807 * Visit the first child (need not be the first child as per the ordering
808 * of the cgroup list, since we track last_scanned_child) of @mem and use
809 * that to reclaim free pages from.
811 static struct mem_cgroup
*
812 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
814 struct mem_cgroup
*ret
= NULL
;
815 struct cgroup_subsys_state
*css
;
818 if (!root_mem
->use_hierarchy
) {
819 css_get(&root_mem
->css
);
825 nextid
= root_mem
->last_scanned_child
+ 1;
826 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
828 if (css
&& css_tryget(css
))
829 ret
= container_of(css
, struct mem_cgroup
, css
);
832 /* Updates scanning parameter */
833 spin_lock(&root_mem
->reclaim_param_lock
);
835 /* this means start scan from ID:1 */
836 root_mem
->last_scanned_child
= 0;
838 root_mem
->last_scanned_child
= found
;
839 spin_unlock(&root_mem
->reclaim_param_lock
);
846 * Scan the hierarchy if needed to reclaim memory. We remember the last child
847 * we reclaimed from, so that we don't end up penalizing one child extensively
848 * based on its position in the children list.
850 * root_mem is the original ancestor that we've been reclaim from.
852 * We give up and return to the caller when we visit root_mem twice.
853 * (other groups can be removed while we're walking....)
855 * If shrink==true, for avoiding to free too much, this returns immedieately.
857 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
858 gfp_t gfp_mask
, bool noswap
, bool shrink
)
860 struct mem_cgroup
*victim
;
864 /* If memsw_is_minimum==1, swap-out is of-no-use. */
865 if (root_mem
->memsw_is_minimum
)
869 victim
= mem_cgroup_select_victim(root_mem
);
870 if (victim
== root_mem
)
872 if (!mem_cgroup_local_usage(&victim
->stat
)) {
873 /* this cgroup's local usage == 0 */
874 css_put(&victim
->css
);
877 /* we use swappiness of local cgroup */
878 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
, noswap
,
879 get_swappiness(victim
));
880 css_put(&victim
->css
);
882 * At shrinking usage, we can't check we should stop here or
883 * reclaim more. It's depends on callers. last_scanned_child
884 * will work enough for keeping fairness under tree.
889 if (mem_cgroup_check_under_limit(root_mem
))
895 bool mem_cgroup_oom_called(struct task_struct
*task
)
898 struct mem_cgroup
*mem
;
899 struct mm_struct
*mm
;
905 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
906 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
912 static int record_last_oom_cb(struct mem_cgroup
*mem
, void *data
)
914 mem
->last_oom_jiffies
= jiffies
;
918 static void record_last_oom(struct mem_cgroup
*mem
)
920 mem_cgroup_walk_tree(mem
, NULL
, record_last_oom_cb
);
924 * Currently used to update mapped file statistics, but the routine can be
925 * generalized to update other statistics as well.
927 void mem_cgroup_update_mapped_file_stat(struct page
*page
, int val
)
929 struct mem_cgroup
*mem
;
930 struct mem_cgroup_stat
*stat
;
931 struct mem_cgroup_stat_cpu
*cpustat
;
933 struct page_cgroup
*pc
;
935 if (!page_is_file_cache(page
))
938 pc
= lookup_page_cgroup(page
);
942 lock_page_cgroup(pc
);
943 mem
= pc
->mem_cgroup
;
947 if (!PageCgroupUsed(pc
))
951 * Preemption is already disabled, we don't need get_cpu()
953 cpu
= smp_processor_id();
955 cpustat
= &stat
->cpustat
[cpu
];
957 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_MAPPED_FILE
, val
);
959 unlock_page_cgroup(pc
);
963 * Unlike exported interface, "oom" parameter is added. if oom==true,
964 * oom-killer can be invoked.
966 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
967 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
970 struct mem_cgroup
*mem
, *mem_over_limit
;
971 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
972 struct res_counter
*fail_res
;
974 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
975 /* Don't account this! */
981 * We always charge the cgroup the mm_struct belongs to.
982 * The mm_struct's mem_cgroup changes on task migration if the
983 * thread group leader migrates. It's possible that mm is not
984 * set, if so charge the init_mm (happens for pagecache usage).
988 mem
= try_get_mem_cgroup_from_mm(mm
);
996 VM_BUG_ON(css_is_removed(&mem
->css
));
1000 bool noswap
= false;
1002 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
1004 if (!do_swap_account
)
1006 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
1010 /* mem+swap counter fails */
1011 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1013 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1016 /* mem counter fails */
1017 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1020 if (!(gfp_mask
& __GFP_WAIT
))
1023 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
1029 * try_to_free_mem_cgroup_pages() might not give us a full
1030 * picture of reclaim. Some pages are reclaimed and might be
1031 * moved to swap cache or just unmapped from the cgroup.
1032 * Check the limit again to see if the reclaim reduced the
1033 * current usage of the cgroup before giving up
1036 if (mem_cgroup_check_under_limit(mem_over_limit
))
1039 if (!nr_retries
--) {
1041 mutex_lock(&memcg_tasklist
);
1042 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
1043 mutex_unlock(&memcg_tasklist
);
1044 record_last_oom(mem_over_limit
);
1057 * A helper function to get mem_cgroup from ID. must be called under
1058 * rcu_read_lock(). The caller must check css_is_removed() or some if
1059 * it's concern. (dropping refcnt from swap can be called against removed
1062 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1064 struct cgroup_subsys_state
*css
;
1066 /* ID 0 is unused ID */
1069 css
= css_lookup(&mem_cgroup_subsys
, id
);
1072 return container_of(css
, struct mem_cgroup
, css
);
1075 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
1077 struct mem_cgroup
*mem
;
1078 struct page_cgroup
*pc
;
1082 VM_BUG_ON(!PageLocked(page
));
1084 if (!PageSwapCache(page
))
1087 pc
= lookup_page_cgroup(page
);
1088 lock_page_cgroup(pc
);
1089 if (PageCgroupUsed(pc
)) {
1090 mem
= pc
->mem_cgroup
;
1091 if (mem
&& !css_tryget(&mem
->css
))
1094 ent
.val
= page_private(page
);
1095 id
= lookup_swap_cgroup(ent
);
1097 mem
= mem_cgroup_lookup(id
);
1098 if (mem
&& !css_tryget(&mem
->css
))
1102 unlock_page_cgroup(pc
);
1107 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1108 * USED state. If already USED, uncharge and return.
1111 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1112 struct page_cgroup
*pc
,
1113 enum charge_type ctype
)
1115 /* try_charge() can return NULL to *memcg, taking care of it. */
1119 lock_page_cgroup(pc
);
1120 if (unlikely(PageCgroupUsed(pc
))) {
1121 unlock_page_cgroup(pc
);
1122 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1123 if (do_swap_account
)
1124 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1128 pc
->mem_cgroup
= mem
;
1130 pc
->flags
= pcg_default_flags
[ctype
];
1132 mem_cgroup_charge_statistics(mem
, pc
, true);
1134 unlock_page_cgroup(pc
);
1138 * mem_cgroup_move_account - move account of the page
1139 * @pc: page_cgroup of the page.
1140 * @from: mem_cgroup which the page is moved from.
1141 * @to: mem_cgroup which the page is moved to. @from != @to.
1143 * The caller must confirm following.
1144 * - page is not on LRU (isolate_page() is useful.)
1146 * returns 0 at success,
1147 * returns -EBUSY when lock is busy or "pc" is unstable.
1149 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1150 * new cgroup. It should be done by a caller.
1153 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1154 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
1156 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
1161 struct mem_cgroup_stat
*stat
;
1162 struct mem_cgroup_stat_cpu
*cpustat
;
1164 VM_BUG_ON(from
== to
);
1165 VM_BUG_ON(PageLRU(pc
->page
));
1167 nid
= page_cgroup_nid(pc
);
1168 zid
= page_cgroup_zid(pc
);
1169 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
1170 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
1172 if (!trylock_page_cgroup(pc
))
1175 if (!PageCgroupUsed(pc
))
1178 if (pc
->mem_cgroup
!= from
)
1181 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
1182 mem_cgroup_charge_statistics(from
, pc
, false);
1185 if (page_is_file_cache(page
) && page_mapped(page
)) {
1186 cpu
= smp_processor_id();
1187 /* Update mapped_file data for mem_cgroup "from" */
1189 cpustat
= &stat
->cpustat
[cpu
];
1190 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_MAPPED_FILE
,
1193 /* Update mapped_file data for mem_cgroup "to" */
1195 cpustat
= &stat
->cpustat
[cpu
];
1196 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_MAPPED_FILE
,
1200 if (do_swap_account
)
1201 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1202 css_put(&from
->css
);
1205 pc
->mem_cgroup
= to
;
1206 mem_cgroup_charge_statistics(to
, pc
, true);
1209 unlock_page_cgroup(pc
);
1211 * We charges against "to" which may not have any tasks. Then, "to"
1212 * can be under rmdir(). But in current implementation, caller of
1213 * this function is just force_empty() and it's garanteed that
1214 * "to" is never removed. So, we don't check rmdir status here.
1220 * move charges to its parent.
1223 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1224 struct mem_cgroup
*child
,
1227 struct page
*page
= pc
->page
;
1228 struct cgroup
*cg
= child
->css
.cgroup
;
1229 struct cgroup
*pcg
= cg
->parent
;
1230 struct mem_cgroup
*parent
;
1238 parent
= mem_cgroup_from_cont(pcg
);
1241 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1245 if (!get_page_unless_zero(page
)) {
1250 ret
= isolate_lru_page(page
);
1255 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1257 putback_lru_page(page
);
1260 /* drop extra refcnt by try_charge() */
1261 css_put(&parent
->css
);
1268 /* drop extra refcnt by try_charge() */
1269 css_put(&parent
->css
);
1270 /* uncharge if move fails */
1271 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1272 if (do_swap_account
)
1273 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1278 * Charge the memory controller for page usage.
1280 * 0 if the charge was successful
1281 * < 0 if the cgroup is over its limit
1283 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1284 gfp_t gfp_mask
, enum charge_type ctype
,
1285 struct mem_cgroup
*memcg
)
1287 struct mem_cgroup
*mem
;
1288 struct page_cgroup
*pc
;
1291 pc
= lookup_page_cgroup(page
);
1292 /* can happen at boot */
1298 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1302 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1306 int mem_cgroup_newpage_charge(struct page
*page
,
1307 struct mm_struct
*mm
, gfp_t gfp_mask
)
1309 if (mem_cgroup_disabled())
1311 if (PageCompound(page
))
1314 * If already mapped, we don't have to account.
1315 * If page cache, page->mapping has address_space.
1316 * But page->mapping may have out-of-use anon_vma pointer,
1317 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1320 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1324 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1325 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1329 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1330 enum charge_type ctype
);
1332 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1335 struct mem_cgroup
*mem
= NULL
;
1338 if (mem_cgroup_disabled())
1340 if (PageCompound(page
))
1343 * Corner case handling. This is called from add_to_page_cache()
1344 * in usual. But some FS (shmem) precharges this page before calling it
1345 * and call add_to_page_cache() with GFP_NOWAIT.
1347 * For GFP_NOWAIT case, the page may be pre-charged before calling
1348 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1349 * charge twice. (It works but has to pay a bit larger cost.)
1350 * And when the page is SwapCache, it should take swap information
1351 * into account. This is under lock_page() now.
1353 if (!(gfp_mask
& __GFP_WAIT
)) {
1354 struct page_cgroup
*pc
;
1357 pc
= lookup_page_cgroup(page
);
1360 lock_page_cgroup(pc
);
1361 if (PageCgroupUsed(pc
)) {
1362 unlock_page_cgroup(pc
);
1365 unlock_page_cgroup(pc
);
1368 if (unlikely(!mm
&& !mem
))
1371 if (page_is_file_cache(page
))
1372 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1373 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1376 if (PageSwapCache(page
)) {
1377 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1379 __mem_cgroup_commit_charge_swapin(page
, mem
,
1380 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
1382 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1383 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1389 * While swap-in, try_charge -> commit or cancel, the page is locked.
1390 * And when try_charge() successfully returns, one refcnt to memcg without
1391 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1392 * "commit()" or removed by "cancel()"
1394 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1396 gfp_t mask
, struct mem_cgroup
**ptr
)
1398 struct mem_cgroup
*mem
;
1401 if (mem_cgroup_disabled())
1404 if (!do_swap_account
)
1407 * A racing thread's fault, or swapoff, may have already updated
1408 * the pte, and even removed page from swap cache: return success
1409 * to go on to do_swap_page()'s pte_same() test, which should fail.
1411 if (!PageSwapCache(page
))
1413 mem
= try_get_mem_cgroup_from_swapcache(page
);
1417 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1418 /* drop extra refcnt from tryget */
1424 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1428 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1429 enum charge_type ctype
)
1431 struct page_cgroup
*pc
;
1433 if (mem_cgroup_disabled())
1437 cgroup_exclude_rmdir(&ptr
->css
);
1438 pc
= lookup_page_cgroup(page
);
1439 mem_cgroup_lru_del_before_commit_swapcache(page
);
1440 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
1441 mem_cgroup_lru_add_after_commit_swapcache(page
);
1443 * Now swap is on-memory. This means this page may be
1444 * counted both as mem and swap....double count.
1445 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1446 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1447 * may call delete_from_swap_cache() before reach here.
1449 if (do_swap_account
&& PageSwapCache(page
)) {
1450 swp_entry_t ent
= {.val
= page_private(page
)};
1452 struct mem_cgroup
*memcg
;
1454 id
= swap_cgroup_record(ent
, 0);
1456 memcg
= mem_cgroup_lookup(id
);
1459 * This recorded memcg can be obsolete one. So, avoid
1460 * calling css_tryget
1462 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1463 mem_cgroup_put(memcg
);
1468 * At swapin, we may charge account against cgroup which has no tasks.
1469 * So, rmdir()->pre_destroy() can be called while we do this charge.
1470 * In that case, we need to call pre_destroy() again. check it here.
1472 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
1475 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1477 __mem_cgroup_commit_charge_swapin(page
, ptr
,
1478 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1481 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1483 if (mem_cgroup_disabled())
1487 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1488 if (do_swap_account
)
1489 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1495 * uncharge if !page_mapped(page)
1497 static struct mem_cgroup
*
1498 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1500 struct page_cgroup
*pc
;
1501 struct mem_cgroup
*mem
= NULL
;
1502 struct mem_cgroup_per_zone
*mz
;
1504 if (mem_cgroup_disabled())
1507 if (PageSwapCache(page
))
1511 * Check if our page_cgroup is valid
1513 pc
= lookup_page_cgroup(page
);
1514 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1517 lock_page_cgroup(pc
);
1519 mem
= pc
->mem_cgroup
;
1521 if (!PageCgroupUsed(pc
))
1525 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1526 case MEM_CGROUP_CHARGE_TYPE_DROP
:
1527 if (page_mapped(page
))
1530 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1531 if (!PageAnon(page
)) { /* Shared memory */
1532 if (page
->mapping
&& !page_is_file_cache(page
))
1534 } else if (page_mapped(page
)) /* Anon */
1541 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1542 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1543 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1544 mem_cgroup_charge_statistics(mem
, pc
, false);
1546 ClearPageCgroupUsed(pc
);
1548 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1549 * freed from LRU. This is safe because uncharged page is expected not
1550 * to be reused (freed soon). Exception is SwapCache, it's handled by
1551 * special functions.
1554 mz
= page_cgroup_zoneinfo(pc
);
1555 unlock_page_cgroup(pc
);
1557 /* at swapout, this memcg will be accessed to record to swap */
1558 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1564 unlock_page_cgroup(pc
);
1568 void mem_cgroup_uncharge_page(struct page
*page
)
1571 if (page_mapped(page
))
1573 if (page
->mapping
&& !PageAnon(page
))
1575 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1578 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1580 VM_BUG_ON(page_mapped(page
));
1581 VM_BUG_ON(page
->mapping
);
1582 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1587 * called after __delete_from_swap_cache() and drop "page" account.
1588 * memcg information is recorded to swap_cgroup of "ent"
1591 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
1593 struct mem_cgroup
*memcg
;
1594 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
1596 if (!swapout
) /* this was a swap cache but the swap is unused ! */
1597 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
1599 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
1601 /* record memcg information */
1602 if (do_swap_account
&& swapout
&& memcg
) {
1603 swap_cgroup_record(ent
, css_id(&memcg
->css
));
1604 mem_cgroup_get(memcg
);
1606 if (swapout
&& memcg
)
1607 css_put(&memcg
->css
);
1611 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1613 * called from swap_entry_free(). remove record in swap_cgroup and
1614 * uncharge "memsw" account.
1616 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1618 struct mem_cgroup
*memcg
;
1621 if (!do_swap_account
)
1624 id
= swap_cgroup_record(ent
, 0);
1626 memcg
= mem_cgroup_lookup(id
);
1629 * We uncharge this because swap is freed.
1630 * This memcg can be obsolete one. We avoid calling css_tryget
1632 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1633 mem_cgroup_put(memcg
);
1640 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1643 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1645 struct page_cgroup
*pc
;
1646 struct mem_cgroup
*mem
= NULL
;
1649 if (mem_cgroup_disabled())
1652 pc
= lookup_page_cgroup(page
);
1653 lock_page_cgroup(pc
);
1654 if (PageCgroupUsed(pc
)) {
1655 mem
= pc
->mem_cgroup
;
1658 unlock_page_cgroup(pc
);
1661 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
1668 /* remove redundant charge if migration failed*/
1669 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1670 struct page
*oldpage
, struct page
*newpage
)
1672 struct page
*target
, *unused
;
1673 struct page_cgroup
*pc
;
1674 enum charge_type ctype
;
1678 cgroup_exclude_rmdir(&mem
->css
);
1679 /* at migration success, oldpage->mapping is NULL. */
1680 if (oldpage
->mapping
) {
1688 if (PageAnon(target
))
1689 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1690 else if (page_is_file_cache(target
))
1691 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1693 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1695 /* unused page is not on radix-tree now. */
1697 __mem_cgroup_uncharge_common(unused
, ctype
);
1699 pc
= lookup_page_cgroup(target
);
1701 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1702 * So, double-counting is effectively avoided.
1704 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1707 * Both of oldpage and newpage are still under lock_page().
1708 * Then, we don't have to care about race in radix-tree.
1709 * But we have to be careful that this page is unmapped or not.
1711 * There is a case for !page_mapped(). At the start of
1712 * migration, oldpage was mapped. But now, it's zapped.
1713 * But we know *target* page is not freed/reused under us.
1714 * mem_cgroup_uncharge_page() does all necessary checks.
1716 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1717 mem_cgroup_uncharge_page(target
);
1719 * At migration, we may charge account against cgroup which has no tasks
1720 * So, rmdir()->pre_destroy() can be called while we do this charge.
1721 * In that case, we need to call pre_destroy() again. check it here.
1723 cgroup_release_and_wakeup_rmdir(&mem
->css
);
1727 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1728 * Calling hierarchical_reclaim is not enough because we should update
1729 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1730 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1731 * not from the memcg which this page would be charged to.
1732 * try_charge_swapin does all of these works properly.
1734 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
1735 struct mm_struct
*mm
,
1738 struct mem_cgroup
*mem
= NULL
;
1741 if (mem_cgroup_disabled())
1744 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1746 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
1751 static DEFINE_MUTEX(set_limit_mutex
);
1753 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1754 unsigned long long val
)
1760 int children
= mem_cgroup_count_children(memcg
);
1761 u64 curusage
, oldusage
;
1764 * For keeping hierarchical_reclaim simple, how long we should retry
1765 * is depends on callers. We set our retry-count to be function
1766 * of # of children which we should visit in this loop.
1768 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
1770 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1772 while (retry_count
) {
1773 if (signal_pending(current
)) {
1778 * Rather than hide all in some function, I do this in
1779 * open coded manner. You see what this really does.
1780 * We have to guarantee mem->res.limit < mem->memsw.limit.
1782 mutex_lock(&set_limit_mutex
);
1783 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1784 if (memswlimit
< val
) {
1786 mutex_unlock(&set_limit_mutex
);
1789 ret
= res_counter_set_limit(&memcg
->res
, val
);
1791 if (memswlimit
== val
)
1792 memcg
->memsw_is_minimum
= true;
1794 memcg
->memsw_is_minimum
= false;
1796 mutex_unlock(&set_limit_mutex
);
1801 progress
= mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
,
1803 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1804 /* Usage is reduced ? */
1805 if (curusage
>= oldusage
)
1808 oldusage
= curusage
;
1814 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1815 unsigned long long val
)
1818 u64 memlimit
, oldusage
, curusage
;
1819 int children
= mem_cgroup_count_children(memcg
);
1822 /* see mem_cgroup_resize_res_limit */
1823 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
1824 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1825 while (retry_count
) {
1826 if (signal_pending(current
)) {
1831 * Rather than hide all in some function, I do this in
1832 * open coded manner. You see what this really does.
1833 * We have to guarantee mem->res.limit < mem->memsw.limit.
1835 mutex_lock(&set_limit_mutex
);
1836 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1837 if (memlimit
> val
) {
1839 mutex_unlock(&set_limit_mutex
);
1842 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1844 if (memlimit
== val
)
1845 memcg
->memsw_is_minimum
= true;
1847 memcg
->memsw_is_minimum
= false;
1849 mutex_unlock(&set_limit_mutex
);
1854 mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
, true, true);
1855 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1856 /* Usage is reduced ? */
1857 if (curusage
>= oldusage
)
1860 oldusage
= curusage
;
1866 * This routine traverse page_cgroup in given list and drop them all.
1867 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1869 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1870 int node
, int zid
, enum lru_list lru
)
1873 struct mem_cgroup_per_zone
*mz
;
1874 struct page_cgroup
*pc
, *busy
;
1875 unsigned long flags
, loop
;
1876 struct list_head
*list
;
1879 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1880 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1881 list
= &mz
->lists
[lru
];
1883 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1884 /* give some margin against EBUSY etc...*/
1889 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1890 if (list_empty(list
)) {
1891 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1894 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1896 list_move(&pc
->lru
, list
);
1898 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1901 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1903 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1907 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1908 /* found lock contention or "pc" is obsolete. */
1915 if (!ret
&& !list_empty(list
))
1921 * make mem_cgroup's charge to be 0 if there is no task.
1922 * This enables deleting this mem_cgroup.
1924 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1927 int node
, zid
, shrink
;
1928 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1929 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1934 /* should free all ? */
1938 while (mem
->res
.usage
> 0) {
1940 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1943 if (signal_pending(current
))
1945 /* This is for making all *used* pages to be on LRU. */
1946 lru_add_drain_all();
1948 for_each_node_state(node
, N_HIGH_MEMORY
) {
1949 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1952 ret
= mem_cgroup_force_empty_list(mem
,
1961 /* it seems parent cgroup doesn't have enough mem */
1972 /* returns EBUSY if there is a task or if we come here twice. */
1973 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1977 /* we call try-to-free pages for make this cgroup empty */
1978 lru_add_drain_all();
1979 /* try to free all pages in this cgroup */
1981 while (nr_retries
&& mem
->res
.usage
> 0) {
1984 if (signal_pending(current
)) {
1988 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1989 false, get_swappiness(mem
));
1992 /* maybe some writeback is necessary */
1993 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1998 /* try move_account...there may be some *locked* pages. */
2005 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
2007 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
2011 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
2013 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
2016 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
2020 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2021 struct cgroup
*parent
= cont
->parent
;
2022 struct mem_cgroup
*parent_mem
= NULL
;
2025 parent_mem
= mem_cgroup_from_cont(parent
);
2029 * If parent's use_hiearchy is set, we can't make any modifications
2030 * in the child subtrees. If it is unset, then the change can
2031 * occur, provided the current cgroup has no children.
2033 * For the root cgroup, parent_mem is NULL, we allow value to be
2034 * set if there are no children.
2036 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
2037 (val
== 1 || val
== 0)) {
2038 if (list_empty(&cont
->children
))
2039 mem
->use_hierarchy
= val
;
2049 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
2051 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2055 type
= MEMFILE_TYPE(cft
->private);
2056 name
= MEMFILE_ATTR(cft
->private);
2059 val
= res_counter_read_u64(&mem
->res
, name
);
2062 val
= res_counter_read_u64(&mem
->memsw
, name
);
2071 * The user of this function is...
2074 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
2077 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
2079 unsigned long long val
;
2082 type
= MEMFILE_TYPE(cft
->private);
2083 name
= MEMFILE_ATTR(cft
->private);
2086 /* This function does all necessary parse...reuse it */
2087 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
2091 ret
= mem_cgroup_resize_limit(memcg
, val
);
2093 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
2096 ret
= -EINVAL
; /* should be BUG() ? */
2102 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
2103 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
2105 struct cgroup
*cgroup
;
2106 unsigned long long min_limit
, min_memsw_limit
, tmp
;
2108 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2109 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2110 cgroup
= memcg
->css
.cgroup
;
2111 if (!memcg
->use_hierarchy
)
2114 while (cgroup
->parent
) {
2115 cgroup
= cgroup
->parent
;
2116 memcg
= mem_cgroup_from_cont(cgroup
);
2117 if (!memcg
->use_hierarchy
)
2119 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2120 min_limit
= min(min_limit
, tmp
);
2121 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2122 min_memsw_limit
= min(min_memsw_limit
, tmp
);
2125 *mem_limit
= min_limit
;
2126 *memsw_limit
= min_memsw_limit
;
2130 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
2132 struct mem_cgroup
*mem
;
2135 mem
= mem_cgroup_from_cont(cont
);
2136 type
= MEMFILE_TYPE(event
);
2137 name
= MEMFILE_ATTR(event
);
2141 res_counter_reset_max(&mem
->res
);
2143 res_counter_reset_max(&mem
->memsw
);
2147 res_counter_reset_failcnt(&mem
->res
);
2149 res_counter_reset_failcnt(&mem
->memsw
);
2156 /* For read statistics */
2171 struct mcs_total_stat
{
2172 s64 stat
[NR_MCS_STAT
];
2178 } memcg_stat_strings
[NR_MCS_STAT
] = {
2179 {"cache", "total_cache"},
2180 {"rss", "total_rss"},
2181 {"mapped_file", "total_mapped_file"},
2182 {"pgpgin", "total_pgpgin"},
2183 {"pgpgout", "total_pgpgout"},
2184 {"inactive_anon", "total_inactive_anon"},
2185 {"active_anon", "total_active_anon"},
2186 {"inactive_file", "total_inactive_file"},
2187 {"active_file", "total_active_file"},
2188 {"unevictable", "total_unevictable"}
2192 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
2194 struct mcs_total_stat
*s
= data
;
2198 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_CACHE
);
2199 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
2200 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
2201 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
2202 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_MAPPED_FILE
);
2203 s
->stat
[MCS_MAPPED_FILE
] += val
* PAGE_SIZE
;
2204 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
2205 s
->stat
[MCS_PGPGIN
] += val
;
2206 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
2207 s
->stat
[MCS_PGPGOUT
] += val
;
2210 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
2211 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
2212 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
2213 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
2214 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
2215 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
2216 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
2217 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
2218 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
2219 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
2224 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
2226 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
2229 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
2230 struct cgroup_map_cb
*cb
)
2232 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
2233 struct mcs_total_stat mystat
;
2236 memset(&mystat
, 0, sizeof(mystat
));
2237 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
2239 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2240 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
2242 /* Hierarchical information */
2244 unsigned long long limit
, memsw_limit
;
2245 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
2246 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
2247 if (do_swap_account
)
2248 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
2251 memset(&mystat
, 0, sizeof(mystat
));
2252 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
2253 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2254 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
2257 #ifdef CONFIG_DEBUG_VM
2258 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
2262 struct mem_cgroup_per_zone
*mz
;
2263 unsigned long recent_rotated
[2] = {0, 0};
2264 unsigned long recent_scanned
[2] = {0, 0};
2266 for_each_online_node(nid
)
2267 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
2268 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
2270 recent_rotated
[0] +=
2271 mz
->reclaim_stat
.recent_rotated
[0];
2272 recent_rotated
[1] +=
2273 mz
->reclaim_stat
.recent_rotated
[1];
2274 recent_scanned
[0] +=
2275 mz
->reclaim_stat
.recent_scanned
[0];
2276 recent_scanned
[1] +=
2277 mz
->reclaim_stat
.recent_scanned
[1];
2279 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
2280 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
2281 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
2282 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
2289 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
2291 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2293 return get_swappiness(memcg
);
2296 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2299 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2300 struct mem_cgroup
*parent
;
2305 if (cgrp
->parent
== NULL
)
2308 parent
= mem_cgroup_from_cont(cgrp
->parent
);
2312 /* If under hierarchy, only empty-root can set this value */
2313 if ((parent
->use_hierarchy
) ||
2314 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
2319 spin_lock(&memcg
->reclaim_param_lock
);
2320 memcg
->swappiness
= val
;
2321 spin_unlock(&memcg
->reclaim_param_lock
);
2329 static struct cftype mem_cgroup_files
[] = {
2331 .name
= "usage_in_bytes",
2332 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
2333 .read_u64
= mem_cgroup_read
,
2336 .name
= "max_usage_in_bytes",
2337 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
2338 .trigger
= mem_cgroup_reset
,
2339 .read_u64
= mem_cgroup_read
,
2342 .name
= "limit_in_bytes",
2343 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
2344 .write_string
= mem_cgroup_write
,
2345 .read_u64
= mem_cgroup_read
,
2349 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
2350 .trigger
= mem_cgroup_reset
,
2351 .read_u64
= mem_cgroup_read
,
2355 .read_map
= mem_control_stat_show
,
2358 .name
= "force_empty",
2359 .trigger
= mem_cgroup_force_empty_write
,
2362 .name
= "use_hierarchy",
2363 .write_u64
= mem_cgroup_hierarchy_write
,
2364 .read_u64
= mem_cgroup_hierarchy_read
,
2367 .name
= "swappiness",
2368 .read_u64
= mem_cgroup_swappiness_read
,
2369 .write_u64
= mem_cgroup_swappiness_write
,
2373 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2374 static struct cftype memsw_cgroup_files
[] = {
2376 .name
= "memsw.usage_in_bytes",
2377 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2378 .read_u64
= mem_cgroup_read
,
2381 .name
= "memsw.max_usage_in_bytes",
2382 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2383 .trigger
= mem_cgroup_reset
,
2384 .read_u64
= mem_cgroup_read
,
2387 .name
= "memsw.limit_in_bytes",
2388 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2389 .write_string
= mem_cgroup_write
,
2390 .read_u64
= mem_cgroup_read
,
2393 .name
= "memsw.failcnt",
2394 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2395 .trigger
= mem_cgroup_reset
,
2396 .read_u64
= mem_cgroup_read
,
2400 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2402 if (!do_swap_account
)
2404 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2405 ARRAY_SIZE(memsw_cgroup_files
));
2408 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2414 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2416 struct mem_cgroup_per_node
*pn
;
2417 struct mem_cgroup_per_zone
*mz
;
2419 int zone
, tmp
= node
;
2421 * This routine is called against possible nodes.
2422 * But it's BUG to call kmalloc() against offline node.
2424 * TODO: this routine can waste much memory for nodes which will
2425 * never be onlined. It's better to use memory hotplug callback
2428 if (!node_state(node
, N_NORMAL_MEMORY
))
2430 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2434 mem
->info
.nodeinfo
[node
] = pn
;
2435 memset(pn
, 0, sizeof(*pn
));
2437 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2438 mz
= &pn
->zoneinfo
[zone
];
2440 INIT_LIST_HEAD(&mz
->lists
[l
]);
2445 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2447 kfree(mem
->info
.nodeinfo
[node
]);
2450 static int mem_cgroup_size(void)
2452 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2453 return sizeof(struct mem_cgroup
) + cpustat_size
;
2456 static struct mem_cgroup
*mem_cgroup_alloc(void)
2458 struct mem_cgroup
*mem
;
2459 int size
= mem_cgroup_size();
2461 if (size
< PAGE_SIZE
)
2462 mem
= kmalloc(size
, GFP_KERNEL
);
2464 mem
= vmalloc(size
);
2467 memset(mem
, 0, size
);
2472 * At destroying mem_cgroup, references from swap_cgroup can remain.
2473 * (scanning all at force_empty is too costly...)
2475 * Instead of clearing all references at force_empty, we remember
2476 * the number of reference from swap_cgroup and free mem_cgroup when
2477 * it goes down to 0.
2479 * Removal of cgroup itself succeeds regardless of refs from swap.
2482 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
2486 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
2488 for_each_node_state(node
, N_POSSIBLE
)
2489 free_mem_cgroup_per_zone_info(mem
, node
);
2491 if (mem_cgroup_size() < PAGE_SIZE
)
2497 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2499 atomic_inc(&mem
->refcnt
);
2502 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2504 if (atomic_dec_and_test(&mem
->refcnt
)) {
2505 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
2506 __mem_cgroup_free(mem
);
2508 mem_cgroup_put(parent
);
2513 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2515 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
2517 if (!mem
->res
.parent
)
2519 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
2522 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2523 static void __init
enable_swap_cgroup(void)
2525 if (!mem_cgroup_disabled() && really_do_swap_account
)
2526 do_swap_account
= 1;
2529 static void __init
enable_swap_cgroup(void)
2534 static struct cgroup_subsys_state
* __ref
2535 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2537 struct mem_cgroup
*mem
, *parent
;
2538 long error
= -ENOMEM
;
2541 mem
= mem_cgroup_alloc();
2543 return ERR_PTR(error
);
2545 for_each_node_state(node
, N_POSSIBLE
)
2546 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2549 if (cont
->parent
== NULL
) {
2550 enable_swap_cgroup();
2553 parent
= mem_cgroup_from_cont(cont
->parent
);
2554 mem
->use_hierarchy
= parent
->use_hierarchy
;
2557 if (parent
&& parent
->use_hierarchy
) {
2558 res_counter_init(&mem
->res
, &parent
->res
);
2559 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2561 * We increment refcnt of the parent to ensure that we can
2562 * safely access it on res_counter_charge/uncharge.
2563 * This refcnt will be decremented when freeing this
2564 * mem_cgroup(see mem_cgroup_put).
2566 mem_cgroup_get(parent
);
2568 res_counter_init(&mem
->res
, NULL
);
2569 res_counter_init(&mem
->memsw
, NULL
);
2571 mem
->last_scanned_child
= 0;
2572 spin_lock_init(&mem
->reclaim_param_lock
);
2575 mem
->swappiness
= get_swappiness(parent
);
2576 atomic_set(&mem
->refcnt
, 1);
2579 __mem_cgroup_free(mem
);
2580 return ERR_PTR(error
);
2583 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2584 struct cgroup
*cont
)
2586 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2588 return mem_cgroup_force_empty(mem
, false);
2591 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2592 struct cgroup
*cont
)
2594 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2596 mem_cgroup_put(mem
);
2599 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2600 struct cgroup
*cont
)
2604 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2605 ARRAY_SIZE(mem_cgroup_files
));
2608 ret
= register_memsw_files(cont
, ss
);
2612 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2613 struct cgroup
*cont
,
2614 struct cgroup
*old_cont
,
2615 struct task_struct
*p
)
2617 mutex_lock(&memcg_tasklist
);
2619 * FIXME: It's better to move charges of this process from old
2620 * memcg to new memcg. But it's just on TODO-List now.
2622 mutex_unlock(&memcg_tasklist
);
2625 struct cgroup_subsys mem_cgroup_subsys
= {
2627 .subsys_id
= mem_cgroup_subsys_id
,
2628 .create
= mem_cgroup_create
,
2629 .pre_destroy
= mem_cgroup_pre_destroy
,
2630 .destroy
= mem_cgroup_destroy
,
2631 .populate
= mem_cgroup_populate
,
2632 .attach
= mem_cgroup_move_task
,
2637 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2639 static int __init
disable_swap_account(char *s
)
2641 really_do_swap_account
= 0;
2644 __setup("noswapaccount", disable_swap_account
);