percpu: improve first chunk initial area map handling
[linux-2.6/mini2440.git] / mm / percpu.c
blob503ccad091af386344a470b9f0ff6856a175633f
1 /*
2 * linux/mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
44 * To use this allocator, arch code should do the followings.
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back
51 * - use pcpu_setup_first_chunk() during percpu area initialization to
52 * setup the first chunk containing the kernel static percpu area
55 #include <linux/bitmap.h>
56 #include <linux/bootmem.h>
57 #include <linux/list.h>
58 #include <linux/mm.h>
59 #include <linux/module.h>
60 #include <linux/mutex.h>
61 #include <linux/percpu.h>
62 #include <linux/pfn.h>
63 #include <linux/rbtree.h>
64 #include <linux/slab.h>
65 #include <linux/vmalloc.h>
67 #include <asm/cacheflush.h>
68 #include <asm/tlbflush.h>
70 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
71 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
73 struct pcpu_chunk {
74 struct list_head list; /* linked to pcpu_slot lists */
75 struct rb_node rb_node; /* key is chunk->vm->addr */
76 int free_size; /* free bytes in the chunk */
77 int contig_hint; /* max contiguous size hint */
78 struct vm_struct *vm; /* mapped vmalloc region */
79 int map_used; /* # of map entries used */
80 int map_alloc; /* # of map entries allocated */
81 int *map; /* allocation map */
82 bool immutable; /* no [de]population allowed */
83 struct page *page[]; /* #cpus * UNIT_PAGES */
86 static int pcpu_unit_pages __read_mostly;
87 static int pcpu_unit_size __read_mostly;
88 static int pcpu_chunk_size __read_mostly;
89 static int pcpu_nr_slots __read_mostly;
90 static size_t pcpu_chunk_struct_size __read_mostly;
92 /* the address of the first chunk which starts with the kernel static area */
93 void *pcpu_base_addr __read_mostly;
94 EXPORT_SYMBOL_GPL(pcpu_base_addr);
97 * One mutex to rule them all.
99 * The following mutex is grabbed in the outermost public alloc/free
100 * interface functions and released only when the operation is
101 * complete. As such, every function in this file other than the
102 * outermost functions are called under pcpu_mutex.
104 * It can easily be switched to use spinlock such that only the area
105 * allocation and page population commit are protected with it doing
106 * actual [de]allocation without holding any lock. However, given
107 * what this allocator does, I think it's better to let them run
108 * sequentially.
110 static DEFINE_MUTEX(pcpu_mutex);
112 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
113 static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
115 static int __pcpu_size_to_slot(int size)
117 int highbit = fls(size); /* size is in bytes */
118 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
121 static int pcpu_size_to_slot(int size)
123 if (size == pcpu_unit_size)
124 return pcpu_nr_slots - 1;
125 return __pcpu_size_to_slot(size);
128 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
130 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
131 return 0;
133 return pcpu_size_to_slot(chunk->free_size);
136 static int pcpu_page_idx(unsigned int cpu, int page_idx)
138 return cpu * pcpu_unit_pages + page_idx;
141 static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
142 unsigned int cpu, int page_idx)
144 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
147 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
148 unsigned int cpu, int page_idx)
150 return (unsigned long)chunk->vm->addr +
151 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
154 static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
155 int page_idx)
157 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
161 * pcpu_realloc - versatile realloc
162 * @p: the current pointer (can be NULL for new allocations)
163 * @size: the current size in bytes (can be 0 for new allocations)
164 * @new_size: the wanted new size in bytes (can be 0 for free)
166 * More robust realloc which can be used to allocate, resize or free a
167 * memory area of arbitrary size. If the needed size goes over
168 * PAGE_SIZE, kernel VM is used.
170 * RETURNS:
171 * The new pointer on success, NULL on failure.
173 static void *pcpu_realloc(void *p, size_t size, size_t new_size)
175 void *new;
177 if (new_size <= PAGE_SIZE)
178 new = kmalloc(new_size, GFP_KERNEL);
179 else
180 new = vmalloc(new_size);
181 if (new_size && !new)
182 return NULL;
184 memcpy(new, p, min(size, new_size));
185 if (new_size > size)
186 memset(new + size, 0, new_size - size);
188 if (size <= PAGE_SIZE)
189 kfree(p);
190 else
191 vfree(p);
193 return new;
197 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
198 * @chunk: chunk of interest
199 * @oslot: the previous slot it was on
201 * This function is called after an allocation or free changed @chunk.
202 * New slot according to the changed state is determined and @chunk is
203 * moved to the slot.
205 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
207 int nslot = pcpu_chunk_slot(chunk);
209 if (oslot != nslot) {
210 if (oslot < nslot)
211 list_move(&chunk->list, &pcpu_slot[nslot]);
212 else
213 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
217 static struct rb_node **pcpu_chunk_rb_search(void *addr,
218 struct rb_node **parentp)
220 struct rb_node **p = &pcpu_addr_root.rb_node;
221 struct rb_node *parent = NULL;
222 struct pcpu_chunk *chunk;
224 while (*p) {
225 parent = *p;
226 chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
228 if (addr < chunk->vm->addr)
229 p = &(*p)->rb_left;
230 else if (addr > chunk->vm->addr)
231 p = &(*p)->rb_right;
232 else
233 break;
236 if (parentp)
237 *parentp = parent;
238 return p;
242 * pcpu_chunk_addr_search - search for chunk containing specified address
243 * @addr: address to search for
245 * Look for chunk which might contain @addr. More specifically, it
246 * searchs for the chunk with the highest start address which isn't
247 * beyond @addr.
249 * RETURNS:
250 * The address of the found chunk.
252 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
254 struct rb_node *n, *parent;
255 struct pcpu_chunk *chunk;
257 n = *pcpu_chunk_rb_search(addr, &parent);
258 if (!n) {
259 /* no exactly matching chunk, the parent is the closest */
260 n = parent;
261 BUG_ON(!n);
263 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
265 if (addr < chunk->vm->addr) {
266 /* the parent was the next one, look for the previous one */
267 n = rb_prev(n);
268 BUG_ON(!n);
269 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
272 return chunk;
276 * pcpu_chunk_addr_insert - insert chunk into address rb tree
277 * @new: chunk to insert
279 * Insert @new into address rb tree.
281 static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
283 struct rb_node **p, *parent;
285 p = pcpu_chunk_rb_search(new->vm->addr, &parent);
286 BUG_ON(*p);
287 rb_link_node(&new->rb_node, parent, p);
288 rb_insert_color(&new->rb_node, &pcpu_addr_root);
292 * pcpu_split_block - split a map block
293 * @chunk: chunk of interest
294 * @i: index of map block to split
295 * @head: head size in bytes (can be 0)
296 * @tail: tail size in bytes (can be 0)
298 * Split the @i'th map block into two or three blocks. If @head is
299 * non-zero, @head bytes block is inserted before block @i moving it
300 * to @i+1 and reducing its size by @head bytes.
302 * If @tail is non-zero, the target block, which can be @i or @i+1
303 * depending on @head, is reduced by @tail bytes and @tail byte block
304 * is inserted after the target block.
306 * RETURNS:
307 * 0 on success, -errno on failure.
309 static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
311 int nr_extra = !!head + !!tail;
312 int target = chunk->map_used + nr_extra;
314 /* reallocation required? */
315 if (chunk->map_alloc < target) {
316 int new_alloc;
317 int *new;
319 new_alloc = PCPU_DFL_MAP_ALLOC;
320 while (new_alloc < target)
321 new_alloc *= 2;
323 if (chunk->map_alloc < PCPU_DFL_MAP_ALLOC) {
325 * map_alloc smaller than the default size
326 * indicates that the chunk is one of the
327 * first chunks and still using static map.
328 * Allocate a dynamic one and copy.
330 new = pcpu_realloc(NULL, 0, new_alloc * sizeof(new[0]));
331 if (new)
332 memcpy(new, chunk->map,
333 chunk->map_alloc * sizeof(new[0]));
334 } else
335 new = pcpu_realloc(chunk->map,
336 chunk->map_alloc * sizeof(new[0]),
337 new_alloc * sizeof(new[0]));
338 if (!new)
339 return -ENOMEM;
341 chunk->map_alloc = new_alloc;
342 chunk->map = new;
345 /* insert a new subblock */
346 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
347 sizeof(chunk->map[0]) * (chunk->map_used - i));
348 chunk->map_used += nr_extra;
350 if (head) {
351 chunk->map[i + 1] = chunk->map[i] - head;
352 chunk->map[i++] = head;
354 if (tail) {
355 chunk->map[i++] -= tail;
356 chunk->map[i] = tail;
358 return 0;
362 * pcpu_alloc_area - allocate area from a pcpu_chunk
363 * @chunk: chunk of interest
364 * @size: wanted size in bytes
365 * @align: wanted align
367 * Try to allocate @size bytes area aligned at @align from @chunk.
368 * Note that this function only allocates the offset. It doesn't
369 * populate or map the area.
371 * RETURNS:
372 * Allocated offset in @chunk on success, -errno on failure.
374 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
376 int oslot = pcpu_chunk_slot(chunk);
377 int max_contig = 0;
378 int i, off;
380 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
381 bool is_last = i + 1 == chunk->map_used;
382 int head, tail;
384 /* extra for alignment requirement */
385 head = ALIGN(off, align) - off;
386 BUG_ON(i == 0 && head != 0);
388 if (chunk->map[i] < 0)
389 continue;
390 if (chunk->map[i] < head + size) {
391 max_contig = max(chunk->map[i], max_contig);
392 continue;
396 * If head is small or the previous block is free,
397 * merge'em. Note that 'small' is defined as smaller
398 * than sizeof(int), which is very small but isn't too
399 * uncommon for percpu allocations.
401 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
402 if (chunk->map[i - 1] > 0)
403 chunk->map[i - 1] += head;
404 else {
405 chunk->map[i - 1] -= head;
406 chunk->free_size -= head;
408 chunk->map[i] -= head;
409 off += head;
410 head = 0;
413 /* if tail is small, just keep it around */
414 tail = chunk->map[i] - head - size;
415 if (tail < sizeof(int))
416 tail = 0;
418 /* split if warranted */
419 if (head || tail) {
420 if (pcpu_split_block(chunk, i, head, tail))
421 return -ENOMEM;
422 if (head) {
423 i++;
424 off += head;
425 max_contig = max(chunk->map[i - 1], max_contig);
427 if (tail)
428 max_contig = max(chunk->map[i + 1], max_contig);
431 /* update hint and mark allocated */
432 if (is_last)
433 chunk->contig_hint = max_contig; /* fully scanned */
434 else
435 chunk->contig_hint = max(chunk->contig_hint,
436 max_contig);
438 chunk->free_size -= chunk->map[i];
439 chunk->map[i] = -chunk->map[i];
441 pcpu_chunk_relocate(chunk, oslot);
442 return off;
445 chunk->contig_hint = max_contig; /* fully scanned */
446 pcpu_chunk_relocate(chunk, oslot);
449 * Tell the upper layer that this chunk has no area left.
450 * Note that this is not an error condition but a notification
451 * to upper layer that it needs to look at other chunks.
452 * -ENOSPC is chosen as it isn't used in memory subsystem and
453 * matches the meaning in a way.
455 return -ENOSPC;
459 * pcpu_free_area - free area to a pcpu_chunk
460 * @chunk: chunk of interest
461 * @freeme: offset of area to free
463 * Free area starting from @freeme to @chunk. Note that this function
464 * only modifies the allocation map. It doesn't depopulate or unmap
465 * the area.
467 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
469 int oslot = pcpu_chunk_slot(chunk);
470 int i, off;
472 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
473 if (off == freeme)
474 break;
475 BUG_ON(off != freeme);
476 BUG_ON(chunk->map[i] > 0);
478 chunk->map[i] = -chunk->map[i];
479 chunk->free_size += chunk->map[i];
481 /* merge with previous? */
482 if (i > 0 && chunk->map[i - 1] >= 0) {
483 chunk->map[i - 1] += chunk->map[i];
484 chunk->map_used--;
485 memmove(&chunk->map[i], &chunk->map[i + 1],
486 (chunk->map_used - i) * sizeof(chunk->map[0]));
487 i--;
489 /* merge with next? */
490 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
491 chunk->map[i] += chunk->map[i + 1];
492 chunk->map_used--;
493 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
494 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
497 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
498 pcpu_chunk_relocate(chunk, oslot);
502 * pcpu_unmap - unmap pages out of a pcpu_chunk
503 * @chunk: chunk of interest
504 * @page_start: page index of the first page to unmap
505 * @page_end: page index of the last page to unmap + 1
506 * @flush: whether to flush cache and tlb or not
508 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
509 * If @flush is true, vcache is flushed before unmapping and tlb
510 * after.
512 static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
513 bool flush)
515 unsigned int last = num_possible_cpus() - 1;
516 unsigned int cpu;
518 /* unmap must not be done on immutable chunk */
519 WARN_ON(chunk->immutable);
522 * Each flushing trial can be very expensive, issue flush on
523 * the whole region at once rather than doing it for each cpu.
524 * This could be an overkill but is more scalable.
526 if (flush)
527 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
528 pcpu_chunk_addr(chunk, last, page_end));
530 for_each_possible_cpu(cpu)
531 unmap_kernel_range_noflush(
532 pcpu_chunk_addr(chunk, cpu, page_start),
533 (page_end - page_start) << PAGE_SHIFT);
535 /* ditto as flush_cache_vunmap() */
536 if (flush)
537 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
538 pcpu_chunk_addr(chunk, last, page_end));
542 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
543 * @chunk: chunk to depopulate
544 * @off: offset to the area to depopulate
545 * @size: size of the area to depopulate in bytes
546 * @flush: whether to flush cache and tlb or not
548 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
549 * from @chunk. If @flush is true, vcache is flushed before unmapping
550 * and tlb after.
552 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
553 bool flush)
555 int page_start = PFN_DOWN(off);
556 int page_end = PFN_UP(off + size);
557 int unmap_start = -1;
558 int uninitialized_var(unmap_end);
559 unsigned int cpu;
560 int i;
562 for (i = page_start; i < page_end; i++) {
563 for_each_possible_cpu(cpu) {
564 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
566 if (!*pagep)
567 continue;
569 __free_page(*pagep);
572 * If it's partial depopulation, it might get
573 * populated or depopulated again. Mark the
574 * page gone.
576 *pagep = NULL;
578 unmap_start = unmap_start < 0 ? i : unmap_start;
579 unmap_end = i + 1;
583 if (unmap_start >= 0)
584 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
588 * pcpu_map - map pages into a pcpu_chunk
589 * @chunk: chunk of interest
590 * @page_start: page index of the first page to map
591 * @page_end: page index of the last page to map + 1
593 * For each cpu, map pages [@page_start,@page_end) into @chunk.
594 * vcache is flushed afterwards.
596 static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
598 unsigned int last = num_possible_cpus() - 1;
599 unsigned int cpu;
600 int err;
602 /* map must not be done on immutable chunk */
603 WARN_ON(chunk->immutable);
605 for_each_possible_cpu(cpu) {
606 err = map_kernel_range_noflush(
607 pcpu_chunk_addr(chunk, cpu, page_start),
608 (page_end - page_start) << PAGE_SHIFT,
609 PAGE_KERNEL,
610 pcpu_chunk_pagep(chunk, cpu, page_start));
611 if (err < 0)
612 return err;
615 /* flush at once, please read comments in pcpu_unmap() */
616 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
617 pcpu_chunk_addr(chunk, last, page_end));
618 return 0;
622 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
623 * @chunk: chunk of interest
624 * @off: offset to the area to populate
625 * @size: size of the area to populate in bytes
627 * For each cpu, populate and map pages [@page_start,@page_end) into
628 * @chunk. The area is cleared on return.
630 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
632 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
633 int page_start = PFN_DOWN(off);
634 int page_end = PFN_UP(off + size);
635 int map_start = -1;
636 int uninitialized_var(map_end);
637 unsigned int cpu;
638 int i;
640 for (i = page_start; i < page_end; i++) {
641 if (pcpu_chunk_page_occupied(chunk, i)) {
642 if (map_start >= 0) {
643 if (pcpu_map(chunk, map_start, map_end))
644 goto err;
645 map_start = -1;
647 continue;
650 map_start = map_start < 0 ? i : map_start;
651 map_end = i + 1;
653 for_each_possible_cpu(cpu) {
654 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
656 *pagep = alloc_pages_node(cpu_to_node(cpu),
657 alloc_mask, 0);
658 if (!*pagep)
659 goto err;
663 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
664 goto err;
666 for_each_possible_cpu(cpu)
667 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
668 size);
670 return 0;
671 err:
672 /* likely under heavy memory pressure, give memory back */
673 pcpu_depopulate_chunk(chunk, off, size, true);
674 return -ENOMEM;
677 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
679 if (!chunk)
680 return;
681 if (chunk->vm)
682 free_vm_area(chunk->vm);
683 pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0);
684 kfree(chunk);
687 static struct pcpu_chunk *alloc_pcpu_chunk(void)
689 struct pcpu_chunk *chunk;
691 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
692 if (!chunk)
693 return NULL;
695 chunk->map = pcpu_realloc(NULL, 0,
696 PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
697 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
698 chunk->map[chunk->map_used++] = pcpu_unit_size;
700 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
701 if (!chunk->vm) {
702 free_pcpu_chunk(chunk);
703 return NULL;
706 INIT_LIST_HEAD(&chunk->list);
707 chunk->free_size = pcpu_unit_size;
708 chunk->contig_hint = pcpu_unit_size;
710 return chunk;
714 * __alloc_percpu - allocate percpu area
715 * @size: size of area to allocate in bytes
716 * @align: alignment of area (max PAGE_SIZE)
718 * Allocate percpu area of @size bytes aligned at @align. Might
719 * sleep. Might trigger writeouts.
721 * RETURNS:
722 * Percpu pointer to the allocated area on success, NULL on failure.
724 void *__alloc_percpu(size_t size, size_t align)
726 void *ptr = NULL;
727 struct pcpu_chunk *chunk;
728 int slot, off;
730 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
731 WARN(true, "illegal size (%zu) or align (%zu) for "
732 "percpu allocation\n", size, align);
733 return NULL;
736 mutex_lock(&pcpu_mutex);
738 /* allocate area */
739 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
740 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
741 if (size > chunk->contig_hint)
742 continue;
743 off = pcpu_alloc_area(chunk, size, align);
744 if (off >= 0)
745 goto area_found;
746 if (off != -ENOSPC)
747 goto out_unlock;
751 /* hmmm... no space left, create a new chunk */
752 chunk = alloc_pcpu_chunk();
753 if (!chunk)
754 goto out_unlock;
755 pcpu_chunk_relocate(chunk, -1);
756 pcpu_chunk_addr_insert(chunk);
758 off = pcpu_alloc_area(chunk, size, align);
759 if (off < 0)
760 goto out_unlock;
762 area_found:
763 /* populate, map and clear the area */
764 if (pcpu_populate_chunk(chunk, off, size)) {
765 pcpu_free_area(chunk, off);
766 goto out_unlock;
769 ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
770 out_unlock:
771 mutex_unlock(&pcpu_mutex);
772 return ptr;
774 EXPORT_SYMBOL_GPL(__alloc_percpu);
776 static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
778 WARN_ON(chunk->immutable);
779 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
780 list_del(&chunk->list);
781 rb_erase(&chunk->rb_node, &pcpu_addr_root);
782 free_pcpu_chunk(chunk);
786 * free_percpu - free percpu area
787 * @ptr: pointer to area to free
789 * Free percpu area @ptr. Might sleep.
791 void free_percpu(void *ptr)
793 void *addr = __pcpu_ptr_to_addr(ptr);
794 struct pcpu_chunk *chunk;
795 int off;
797 if (!ptr)
798 return;
800 mutex_lock(&pcpu_mutex);
802 chunk = pcpu_chunk_addr_search(addr);
803 off = addr - chunk->vm->addr;
805 pcpu_free_area(chunk, off);
807 /* the chunk became fully free, kill one if there are other free ones */
808 if (chunk->free_size == pcpu_unit_size) {
809 struct pcpu_chunk *pos;
811 list_for_each_entry(pos,
812 &pcpu_slot[pcpu_chunk_slot(chunk)], list)
813 if (pos != chunk) {
814 pcpu_kill_chunk(pos);
815 break;
819 mutex_unlock(&pcpu_mutex);
821 EXPORT_SYMBOL_GPL(free_percpu);
824 * pcpu_setup_first_chunk - initialize the first percpu chunk
825 * @get_page_fn: callback to fetch page pointer
826 * @static_size: the size of static percpu area in bytes
827 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, 0 for auto
828 * @dyn_size: free size for dynamic allocation in bytes, 0 for auto
829 * @base_addr: mapped address, NULL for auto
830 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
832 * Initialize the first percpu chunk which contains the kernel static
833 * perpcu area. This function is to be called from arch percpu area
834 * setup path. The first two parameters are mandatory. The rest are
835 * optional.
837 * @get_page_fn() should return pointer to percpu page given cpu
838 * number and page number. It should at least return enough pages to
839 * cover the static area. The returned pages for static area should
840 * have been initialized with valid data. If @unit_size is specified,
841 * it can also return pages after the static area. NULL return
842 * indicates end of pages for the cpu. Note that @get_page_fn() must
843 * return the same number of pages for all cpus.
845 * @unit_size, if non-zero, determines unit size and must be aligned
846 * to PAGE_SIZE and equal to or larger than @static_size + @dyn_size.
848 * @dyn_size determines the number of free bytes after the static
849 * area in the first chunk. If zero, whatever left is available.
850 * Specifying non-zero value make percpu leave the area after
851 * @static_size + @dyn_size alone.
853 * Non-null @base_addr means that the caller already allocated virtual
854 * region for the first chunk and mapped it. percpu must not mess
855 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
856 * @populate_pte_fn doesn't make any sense.
858 * @populate_pte_fn is used to populate the pagetable. NULL means the
859 * caller already populated the pagetable.
861 * RETURNS:
862 * The determined pcpu_unit_size which can be used to initialize
863 * percpu access.
865 size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
866 size_t static_size, size_t unit_size,
867 size_t dyn_size, void *base_addr,
868 pcpu_populate_pte_fn_t populate_pte_fn)
870 static struct vm_struct first_vm;
871 static int smap[2];
872 struct pcpu_chunk *schunk;
873 unsigned int cpu;
874 int nr_pages;
875 int err, i;
877 /* santiy checks */
878 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC);
879 BUG_ON(!static_size);
880 BUG_ON(!unit_size && dyn_size);
881 BUG_ON(unit_size && unit_size < static_size + dyn_size);
882 BUG_ON(unit_size & ~PAGE_MASK);
883 BUG_ON(base_addr && !unit_size);
884 BUG_ON(base_addr && populate_pte_fn);
886 if (unit_size)
887 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
888 else
889 pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
890 PFN_UP(static_size));
892 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
893 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
894 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
895 + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
898 * Allocate chunk slots. The additional last slot is for
899 * empty chunks.
901 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
902 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
903 for (i = 0; i < pcpu_nr_slots; i++)
904 INIT_LIST_HEAD(&pcpu_slot[i]);
906 /* init static chunk */
907 schunk = alloc_bootmem(pcpu_chunk_struct_size);
908 INIT_LIST_HEAD(&schunk->list);
909 schunk->vm = &first_vm;
910 schunk->map = smap;
911 schunk->map_alloc = ARRAY_SIZE(smap);
913 if (dyn_size)
914 schunk->free_size = dyn_size;
915 else
916 schunk->free_size = pcpu_unit_size - static_size;
918 schunk->contig_hint = schunk->free_size;
920 schunk->map[schunk->map_used++] = -static_size;
921 if (schunk->free_size)
922 schunk->map[schunk->map_used++] = schunk->free_size;
924 /* allocate vm address */
925 first_vm.flags = VM_ALLOC;
926 first_vm.size = pcpu_chunk_size;
928 if (!base_addr)
929 vm_area_register_early(&first_vm, PAGE_SIZE);
930 else {
932 * Pages already mapped. No need to remap into
933 * vmalloc area. In this case the static chunk can't
934 * be mapped or unmapped by percpu and is marked
935 * immutable.
937 first_vm.addr = base_addr;
938 schunk->immutable = true;
941 /* assign pages */
942 nr_pages = -1;
943 for_each_possible_cpu(cpu) {
944 for (i = 0; i < pcpu_unit_pages; i++) {
945 struct page *page = get_page_fn(cpu, i);
947 if (!page)
948 break;
949 *pcpu_chunk_pagep(schunk, cpu, i) = page;
952 BUG_ON(i < PFN_UP(static_size));
954 if (nr_pages < 0)
955 nr_pages = i;
956 else
957 BUG_ON(nr_pages != i);
960 /* map them */
961 if (populate_pte_fn) {
962 for_each_possible_cpu(cpu)
963 for (i = 0; i < nr_pages; i++)
964 populate_pte_fn(pcpu_chunk_addr(schunk,
965 cpu, i));
967 err = pcpu_map(schunk, 0, nr_pages);
968 if (err)
969 panic("failed to setup static percpu area, err=%d\n",
970 err);
973 /* link the first chunk in */
974 pcpu_chunk_relocate(schunk, -1);
975 pcpu_chunk_addr_insert(schunk);
977 /* we're done */
978 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
979 return pcpu_unit_size;