[PATCH] rename struct pspace to struct pid_namespace
[linux-2.6/mini2440.git] / kernel / pid.c
blob25807e1b98ddd19c5bf4e7e0daba782417145fce
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/bootmem.h>
28 #include <linux/hash.h>
29 #include <linux/pid_namespace.h>
31 #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
32 static struct hlist_head *pid_hash;
33 static int pidhash_shift;
34 static struct kmem_cache *pid_cachep;
36 int pid_max = PID_MAX_DEFAULT;
38 #define RESERVED_PIDS 300
40 int pid_max_min = RESERVED_PIDS + 1;
41 int pid_max_max = PID_MAX_LIMIT;
43 #define BITS_PER_PAGE (PAGE_SIZE*8)
44 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
46 static inline int mk_pid(struct pid_namespace *pid_ns,
47 struct pidmap *map, int off)
49 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
52 #define find_next_offset(map, off) \
53 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
56 * PID-map pages start out as NULL, they get allocated upon
57 * first use and are never deallocated. This way a low pid_max
58 * value does not cause lots of bitmaps to be allocated, but
59 * the scheme scales to up to 4 million PIDs, runtime.
61 struct pid_namespace init_pid_ns = {
62 .pidmap = {
63 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
65 .last_pid = 0
69 * Note: disable interrupts while the pidmap_lock is held as an
70 * interrupt might come in and do read_lock(&tasklist_lock).
72 * If we don't disable interrupts there is a nasty deadlock between
73 * detach_pid()->free_pid() and another cpu that does
74 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
75 * read_lock(&tasklist_lock);
77 * After we clean up the tasklist_lock and know there are no
78 * irq handlers that take it we can leave the interrupts enabled.
79 * For now it is easier to be safe than to prove it can't happen.
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
84 static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
86 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
87 int offset = pid & BITS_PER_PAGE_MASK;
89 clear_bit(offset, map->page);
90 atomic_inc(&map->nr_free);
93 static int alloc_pidmap(struct pid_namespace *pid_ns)
95 int i, offset, max_scan, pid, last = pid_ns->last_pid;
96 struct pidmap *map;
98 pid = last + 1;
99 if (pid >= pid_max)
100 pid = RESERVED_PIDS;
101 offset = pid & BITS_PER_PAGE_MASK;
102 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
103 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
104 for (i = 0; i <= max_scan; ++i) {
105 if (unlikely(!map->page)) {
106 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
108 * Free the page if someone raced with us
109 * installing it:
111 spin_lock_irq(&pidmap_lock);
112 if (map->page)
113 kfree(page);
114 else
115 map->page = page;
116 spin_unlock_irq(&pidmap_lock);
117 if (unlikely(!map->page))
118 break;
120 if (likely(atomic_read(&map->nr_free))) {
121 do {
122 if (!test_and_set_bit(offset, map->page)) {
123 atomic_dec(&map->nr_free);
124 pid_ns->last_pid = pid;
125 return pid;
127 offset = find_next_offset(map, offset);
128 pid = mk_pid(pid_ns, map, offset);
130 * find_next_offset() found a bit, the pid from it
131 * is in-bounds, and if we fell back to the last
132 * bitmap block and the final block was the same
133 * as the starting point, pid is before last_pid.
135 } while (offset < BITS_PER_PAGE && pid < pid_max &&
136 (i != max_scan || pid < last ||
137 !((last+1) & BITS_PER_PAGE_MASK)));
139 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
140 ++map;
141 offset = 0;
142 } else {
143 map = &pid_ns->pidmap[0];
144 offset = RESERVED_PIDS;
145 if (unlikely(last == offset))
146 break;
148 pid = mk_pid(pid_ns, map, offset);
150 return -1;
153 static int next_pidmap(struct pid_namespace *pid_ns, int last)
155 int offset;
156 struct pidmap *map, *end;
158 offset = (last + 1) & BITS_PER_PAGE_MASK;
159 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
160 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
161 for (; map < end; map++, offset = 0) {
162 if (unlikely(!map->page))
163 continue;
164 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
165 if (offset < BITS_PER_PAGE)
166 return mk_pid(pid_ns, map, offset);
168 return -1;
171 fastcall void put_pid(struct pid *pid)
173 if (!pid)
174 return;
175 if ((atomic_read(&pid->count) == 1) ||
176 atomic_dec_and_test(&pid->count))
177 kmem_cache_free(pid_cachep, pid);
179 EXPORT_SYMBOL_GPL(put_pid);
181 static void delayed_put_pid(struct rcu_head *rhp)
183 struct pid *pid = container_of(rhp, struct pid, rcu);
184 put_pid(pid);
187 fastcall void free_pid(struct pid *pid)
189 /* We can be called with write_lock_irq(&tasklist_lock) held */
190 unsigned long flags;
192 spin_lock_irqsave(&pidmap_lock, flags);
193 hlist_del_rcu(&pid->pid_chain);
194 spin_unlock_irqrestore(&pidmap_lock, flags);
196 free_pidmap(&init_pid_ns, pid->nr);
197 call_rcu(&pid->rcu, delayed_put_pid);
200 struct pid *alloc_pid(void)
202 struct pid *pid;
203 enum pid_type type;
204 int nr = -1;
206 pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL);
207 if (!pid)
208 goto out;
210 nr = alloc_pidmap(&init_pid_ns);
211 if (nr < 0)
212 goto out_free;
214 atomic_set(&pid->count, 1);
215 pid->nr = nr;
216 for (type = 0; type < PIDTYPE_MAX; ++type)
217 INIT_HLIST_HEAD(&pid->tasks[type]);
219 spin_lock_irq(&pidmap_lock);
220 hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]);
221 spin_unlock_irq(&pidmap_lock);
223 out:
224 return pid;
226 out_free:
227 kmem_cache_free(pid_cachep, pid);
228 pid = NULL;
229 goto out;
232 struct pid * fastcall find_pid(int nr)
234 struct hlist_node *elem;
235 struct pid *pid;
237 hlist_for_each_entry_rcu(pid, elem,
238 &pid_hash[pid_hashfn(nr)], pid_chain) {
239 if (pid->nr == nr)
240 return pid;
242 return NULL;
244 EXPORT_SYMBOL_GPL(find_pid);
246 int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr)
248 struct pid_link *link;
249 struct pid *pid;
251 link = &task->pids[type];
252 link->pid = pid = find_pid(nr);
253 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
255 return 0;
258 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
260 struct pid_link *link;
261 struct pid *pid;
262 int tmp;
264 link = &task->pids[type];
265 pid = link->pid;
267 hlist_del_rcu(&link->node);
268 link->pid = NULL;
270 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
271 if (!hlist_empty(&pid->tasks[tmp]))
272 return;
274 free_pid(pid);
277 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
278 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
279 enum pid_type type)
281 new->pids[type].pid = old->pids[type].pid;
282 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
283 old->pids[type].pid = NULL;
286 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
288 struct task_struct *result = NULL;
289 if (pid) {
290 struct hlist_node *first;
291 first = rcu_dereference(pid->tasks[type].first);
292 if (first)
293 result = hlist_entry(first, struct task_struct, pids[(type)].node);
295 return result;
299 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
301 struct task_struct *find_task_by_pid_type(int type, int nr)
303 return pid_task(find_pid(nr), type);
306 EXPORT_SYMBOL(find_task_by_pid_type);
308 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
310 struct pid *pid;
311 rcu_read_lock();
312 pid = get_pid(task->pids[type].pid);
313 rcu_read_unlock();
314 return pid;
317 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
319 struct task_struct *result;
320 rcu_read_lock();
321 result = pid_task(pid, type);
322 if (result)
323 get_task_struct(result);
324 rcu_read_unlock();
325 return result;
328 struct pid *find_get_pid(pid_t nr)
330 struct pid *pid;
332 rcu_read_lock();
333 pid = get_pid(find_pid(nr));
334 rcu_read_unlock();
336 return pid;
340 * Used by proc to find the first pid that is greater then or equal to nr.
342 * If there is a pid at nr this function is exactly the same as find_pid.
344 struct pid *find_ge_pid(int nr)
346 struct pid *pid;
348 do {
349 pid = find_pid(nr);
350 if (pid)
351 break;
352 nr = next_pidmap(&init_pid_ns, nr);
353 } while (nr > 0);
355 return pid;
357 EXPORT_SYMBOL_GPL(find_get_pid);
360 * The pid hash table is scaled according to the amount of memory in the
361 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
362 * more.
364 void __init pidhash_init(void)
366 int i, pidhash_size;
367 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
369 pidhash_shift = max(4, fls(megabytes * 4));
370 pidhash_shift = min(12, pidhash_shift);
371 pidhash_size = 1 << pidhash_shift;
373 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
374 pidhash_size, pidhash_shift,
375 pidhash_size * sizeof(struct hlist_head));
377 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
378 if (!pid_hash)
379 panic("Could not alloc pidhash!\n");
380 for (i = 0; i < pidhash_size; i++)
381 INIT_HLIST_HEAD(&pid_hash[i]);
384 void __init pidmap_init(void)
386 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
387 /* Reserve PID 0. We never call free_pidmap(0) */
388 set_bit(0, init_pid_ns.pidmap[0].page);
389 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
391 pid_cachep = kmem_cache_create("pid", sizeof(struct pid),
392 __alignof__(struct pid),
393 SLAB_PANIC, NULL, NULL);