4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 static inline int rt_policy(int policy
)
138 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
143 static inline int task_has_rt_policy(struct task_struct
*p
)
145 return rt_policy(p
->policy
);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array
{
152 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
153 struct list_head queue
[MAX_RT_PRIO
];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
162 /* task group related information */
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css
;
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity
**se
;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq
**cfs_rq
;
171 unsigned long shares
;
172 /* spinlock to serialize modification to shares */
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
182 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
183 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
188 struct task_group init_task_group
= {
189 .se
= init_sched_entity_p
,
190 .cfs_rq
= init_cfs_rq_p
,
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
199 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
201 /* return group to which a task belongs */
202 static inline struct task_group
*task_group(struct task_struct
*p
)
204 struct task_group
*tg
;
206 #ifdef CONFIG_FAIR_USER_SCHED
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
210 struct task_group
, css
);
212 tg
= &init_task_group
;
218 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
)
221 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
222 p
->se
.parent
= task_group(p
)->se
[cpu
];
227 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
) { }
229 #endif /* CONFIG_FAIR_GROUP_SCHED */
231 /* CFS-related fields in a runqueue */
233 struct load_weight load
;
234 unsigned long nr_running
;
239 struct rb_root tasks_timeline
;
240 struct rb_node
*rb_leftmost
;
241 struct rb_node
*rb_load_balance_curr
;
242 /* 'curr' points to currently running entity on this cfs_rq.
243 * It is set to NULL otherwise (i.e when none are currently running).
245 struct sched_entity
*curr
;
247 unsigned long nr_spread_over
;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
252 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
259 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
260 struct task_group
*tg
; /* group that "owns" this runqueue */
264 /* Real-Time classes' related field in a runqueue: */
266 struct rt_prio_array active
;
267 int rt_load_balance_idx
;
268 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
272 * This is the main, per-CPU runqueue data structure.
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
286 unsigned long nr_running
;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
289 unsigned char idle_at_tick
;
291 unsigned char in_nohz_recently
;
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load
;
295 unsigned long nr_load_updates
;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list
;
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
311 unsigned long nr_uninterruptible
;
313 struct task_struct
*curr
, *idle
;
314 unsigned long next_balance
;
315 struct mm_struct
*prev_mm
;
317 u64 clock
, prev_clock_raw
;
320 unsigned int clock_warps
, clock_overflows
;
322 unsigned int clock_deep_idle_events
;
328 struct sched_domain
*sd
;
330 /* For active balancing */
333 /* cpu of this runqueue: */
336 struct task_struct
*migration_thread
;
337 struct list_head migration_queue
;
340 #ifdef CONFIG_SCHEDSTATS
342 struct sched_info rq_sched_info
;
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty
;
346 unsigned int yld_act_empty
;
347 unsigned int yld_both_empty
;
348 unsigned int yld_count
;
350 /* schedule() stats */
351 unsigned int sched_switch
;
352 unsigned int sched_count
;
353 unsigned int sched_goidle
;
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count
;
357 unsigned int ttwu_local
;
360 unsigned int bkl_count
;
362 struct lock_class_key rq_lock_key
;
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
366 static DEFINE_MUTEX(sched_hotcpu_mutex
);
368 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
370 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
373 static inline int cpu_of(struct rq
*rq
)
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
386 static void __update_rq_clock(struct rq
*rq
)
388 u64 prev_raw
= rq
->prev_clock_raw
;
389 u64 now
= sched_clock();
390 s64 delta
= now
- prev_raw
;
391 u64 clock
= rq
->clock
;
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
397 * Protect against sched_clock() occasionally going backwards:
399 if (unlikely(delta
< 0)) {
404 * Catch too large forward jumps too:
406 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
407 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
408 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
411 rq
->clock_overflows
++;
413 if (unlikely(delta
> rq
->clock_max_delta
))
414 rq
->clock_max_delta
= delta
;
419 rq
->prev_clock_raw
= now
;
423 static void update_rq_clock(struct rq
*rq
)
425 if (likely(smp_processor_id() == cpu_of(rq
)))
426 __update_rq_clock(rq
);
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
450 # define const_debug static const
454 * Debugging: various feature bits
457 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
458 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
459 SCHED_FEAT_START_DEBIT
= 4,
460 SCHED_FEAT_TREE_AVG
= 8,
461 SCHED_FEAT_APPROX_AVG
= 16,
464 const_debug
unsigned int sysctl_sched_features
=
465 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
467 SCHED_FEAT_START_DEBIT
* 1 |
468 SCHED_FEAT_TREE_AVG
* 0 |
469 SCHED_FEAT_APPROX_AVG
* 0;
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
477 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
483 unsigned long long cpu_clock(int cpu
)
485 unsigned long long now
;
489 local_irq_save(flags
);
493 local_irq_restore(flags
);
497 EXPORT_SYMBOL_GPL(cpu_clock
);
499 #ifndef prepare_arch_switch
500 # define prepare_arch_switch(next) do { } while (0)
502 #ifndef finish_arch_switch
503 # define finish_arch_switch(prev) do { } while (0)
506 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
507 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
509 return rq
->curr
== p
;
512 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
516 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
518 #ifdef CONFIG_DEBUG_SPINLOCK
519 /* this is a valid case when another task releases the spinlock */
520 rq
->lock
.owner
= current
;
523 * If we are tracking spinlock dependencies then we have to
524 * fix up the runqueue lock - which gets 'carried over' from
527 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
529 spin_unlock_irq(&rq
->lock
);
532 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
533 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
538 return rq
->curr
== p
;
542 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
546 * We can optimise this out completely for !SMP, because the
547 * SMP rebalancing from interrupt is the only thing that cares
552 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 spin_unlock_irq(&rq
->lock
);
555 spin_unlock(&rq
->lock
);
559 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
563 * After ->oncpu is cleared, the task can be moved to a different CPU.
564 * We must ensure this doesn't happen until the switch is completely
570 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
574 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
577 * __task_rq_lock - lock the runqueue a given task resides on.
578 * Must be called interrupts disabled.
580 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
584 struct rq
*rq
= task_rq(p
);
585 spin_lock(&rq
->lock
);
586 if (likely(rq
== task_rq(p
)))
588 spin_unlock(&rq
->lock
);
593 * task_rq_lock - lock the runqueue a given task resides on and disable
594 * interrupts. Note the ordering: we can safely lookup the task_rq without
595 * explicitly disabling preemption.
597 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
603 local_irq_save(*flags
);
605 spin_lock(&rq
->lock
);
606 if (likely(rq
== task_rq(p
)))
608 spin_unlock_irqrestore(&rq
->lock
, *flags
);
612 static void __task_rq_unlock(struct rq
*rq
)
615 spin_unlock(&rq
->lock
);
618 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
621 spin_unlock_irqrestore(&rq
->lock
, *flags
);
625 * this_rq_lock - lock this runqueue and disable interrupts.
627 static struct rq
*this_rq_lock(void)
634 spin_lock(&rq
->lock
);
640 * We are going deep-idle (irqs are disabled):
642 void sched_clock_idle_sleep_event(void)
644 struct rq
*rq
= cpu_rq(smp_processor_id());
646 spin_lock(&rq
->lock
);
647 __update_rq_clock(rq
);
648 spin_unlock(&rq
->lock
);
649 rq
->clock_deep_idle_events
++;
651 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
654 * We just idled delta nanoseconds (called with irqs disabled):
656 void sched_clock_idle_wakeup_event(u64 delta_ns
)
658 struct rq
*rq
= cpu_rq(smp_processor_id());
659 u64 now
= sched_clock();
661 rq
->idle_clock
+= delta_ns
;
663 * Override the previous timestamp and ignore all
664 * sched_clock() deltas that occured while we idled,
665 * and use the PM-provided delta_ns to advance the
668 spin_lock(&rq
->lock
);
669 rq
->prev_clock_raw
= now
;
670 rq
->clock
+= delta_ns
;
671 spin_unlock(&rq
->lock
);
673 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
676 * resched_task - mark a task 'to be rescheduled now'.
678 * On UP this means the setting of the need_resched flag, on SMP it
679 * might also involve a cross-CPU call to trigger the scheduler on
684 #ifndef tsk_is_polling
685 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
688 static void resched_task(struct task_struct
*p
)
692 assert_spin_locked(&task_rq(p
)->lock
);
694 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
697 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
700 if (cpu
== smp_processor_id())
703 /* NEED_RESCHED must be visible before we test polling */
705 if (!tsk_is_polling(p
))
706 smp_send_reschedule(cpu
);
709 static void resched_cpu(int cpu
)
711 struct rq
*rq
= cpu_rq(cpu
);
714 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
716 resched_task(cpu_curr(cpu
));
717 spin_unlock_irqrestore(&rq
->lock
, flags
);
720 static inline void resched_task(struct task_struct
*p
)
722 assert_spin_locked(&task_rq(p
)->lock
);
723 set_tsk_need_resched(p
);
727 #if BITS_PER_LONG == 32
728 # define WMULT_CONST (~0UL)
730 # define WMULT_CONST (1UL << 32)
733 #define WMULT_SHIFT 32
736 * Shift right and round:
738 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
741 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
742 struct load_weight
*lw
)
746 if (unlikely(!lw
->inv_weight
))
747 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
749 tmp
= (u64
)delta_exec
* weight
;
751 * Check whether we'd overflow the 64-bit multiplication:
753 if (unlikely(tmp
> WMULT_CONST
))
754 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
757 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
759 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
762 static inline unsigned long
763 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
765 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
768 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
773 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
787 #define WEIGHT_IDLEPRIO 2
788 #define WMULT_IDLEPRIO (1 << 31)
791 * Nice levels are multiplicative, with a gentle 10% change for every
792 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
793 * nice 1, it will get ~10% less CPU time than another CPU-bound task
794 * that remained on nice 0.
796 * The "10% effect" is relative and cumulative: from _any_ nice level,
797 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
799 * If a task goes up by ~10% and another task goes down by ~10% then
800 * the relative distance between them is ~25%.)
802 static const int prio_to_weight
[40] = {
803 /* -20 */ 88761, 71755, 56483, 46273, 36291,
804 /* -15 */ 29154, 23254, 18705, 14949, 11916,
805 /* -10 */ 9548, 7620, 6100, 4904, 3906,
806 /* -5 */ 3121, 2501, 1991, 1586, 1277,
807 /* 0 */ 1024, 820, 655, 526, 423,
808 /* 5 */ 335, 272, 215, 172, 137,
809 /* 10 */ 110, 87, 70, 56, 45,
810 /* 15 */ 36, 29, 23, 18, 15,
814 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
816 * In cases where the weight does not change often, we can use the
817 * precalculated inverse to speed up arithmetics by turning divisions
818 * into multiplications:
820 static const u32 prio_to_wmult
[40] = {
821 /* -20 */ 48388, 59856, 76040, 92818, 118348,
822 /* -15 */ 147320, 184698, 229616, 287308, 360437,
823 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
824 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
825 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
826 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
827 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
828 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
831 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
834 * runqueue iterator, to support SMP load-balancing between different
835 * scheduling classes, without having to expose their internal data
836 * structures to the load-balancing proper:
840 struct task_struct
*(*start
)(void *);
841 struct task_struct
*(*next
)(void *);
846 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
847 unsigned long max_load_move
, struct sched_domain
*sd
,
848 enum cpu_idle_type idle
, int *all_pinned
,
849 int *this_best_prio
, struct rq_iterator
*iterator
);
852 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
853 struct sched_domain
*sd
, enum cpu_idle_type idle
,
854 struct rq_iterator
*iterator
);
857 #ifdef CONFIG_CGROUP_CPUACCT
858 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
860 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
863 #include "sched_stats.h"
864 #include "sched_idletask.c"
865 #include "sched_fair.c"
866 #include "sched_rt.c"
867 #ifdef CONFIG_SCHED_DEBUG
868 # include "sched_debug.c"
871 #define sched_class_highest (&rt_sched_class)
874 * Update delta_exec, delta_fair fields for rq.
876 * delta_fair clock advances at a rate inversely proportional to
877 * total load (rq->load.weight) on the runqueue, while
878 * delta_exec advances at the same rate as wall-clock (provided
881 * delta_exec / delta_fair is a measure of the (smoothened) load on this
882 * runqueue over any given interval. This (smoothened) load is used
883 * during load balance.
885 * This function is called /before/ updating rq->load
886 * and when switching tasks.
888 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
890 update_load_add(&rq
->load
, p
->se
.load
.weight
);
893 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
895 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
898 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
904 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
910 static void set_load_weight(struct task_struct
*p
)
912 if (task_has_rt_policy(p
)) {
913 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
914 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
919 * SCHED_IDLE tasks get minimal weight:
921 if (p
->policy
== SCHED_IDLE
) {
922 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
923 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
927 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
928 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
931 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
933 sched_info_queued(p
);
934 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
938 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
940 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
945 * __normal_prio - return the priority that is based on the static prio
947 static inline int __normal_prio(struct task_struct
*p
)
949 return p
->static_prio
;
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
959 static inline int normal_prio(struct task_struct
*p
)
963 if (task_has_rt_policy(p
))
964 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
966 prio
= __normal_prio(p
);
971 * Calculate the current priority, i.e. the priority
972 * taken into account by the scheduler. This value might
973 * be boosted by RT tasks, or might be boosted by
974 * interactivity modifiers. Will be RT if the task got
975 * RT-boosted. If not then it returns p->normal_prio.
977 static int effective_prio(struct task_struct
*p
)
979 p
->normal_prio
= normal_prio(p
);
981 * If we are RT tasks or we were boosted to RT priority,
982 * keep the priority unchanged. Otherwise, update priority
983 * to the normal priority:
985 if (!rt_prio(p
->prio
))
986 return p
->normal_prio
;
991 * activate_task - move a task to the runqueue.
993 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
995 if (p
->state
== TASK_UNINTERRUPTIBLE
)
996 rq
->nr_uninterruptible
--;
998 enqueue_task(rq
, p
, wakeup
);
999 inc_nr_running(p
, rq
);
1003 * deactivate_task - remove a task from the runqueue.
1005 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1007 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1008 rq
->nr_uninterruptible
++;
1010 dequeue_task(rq
, p
, sleep
);
1011 dec_nr_running(p
, rq
);
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1018 inline int task_curr(const struct task_struct
*p
)
1020 return cpu_curr(task_cpu(p
)) == p
;
1023 /* Used instead of source_load when we know the type == 0 */
1024 unsigned long weighted_cpuload(const int cpu
)
1026 return cpu_rq(cpu
)->load
.weight
;
1029 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1031 set_task_cfs_rq(p
, cpu
);
1034 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1035 * successfuly executed on another CPU. We must ensure that updates of
1036 * per-task data have been completed by this moment.
1039 task_thread_info(p
)->cpu
= cpu
;
1046 * Is this task likely cache-hot:
1049 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1053 if (p
->sched_class
!= &fair_sched_class
)
1056 if (sysctl_sched_migration_cost
== -1)
1058 if (sysctl_sched_migration_cost
== 0)
1061 delta
= now
- p
->se
.exec_start
;
1063 return delta
< (s64
)sysctl_sched_migration_cost
;
1067 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1069 int old_cpu
= task_cpu(p
);
1070 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1071 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1072 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1075 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1077 #ifdef CONFIG_SCHEDSTATS
1078 if (p
->se
.wait_start
)
1079 p
->se
.wait_start
-= clock_offset
;
1080 if (p
->se
.sleep_start
)
1081 p
->se
.sleep_start
-= clock_offset
;
1082 if (p
->se
.block_start
)
1083 p
->se
.block_start
-= clock_offset
;
1084 if (old_cpu
!= new_cpu
) {
1085 schedstat_inc(p
, se
.nr_migrations
);
1086 if (task_hot(p
, old_rq
->clock
, NULL
))
1087 schedstat_inc(p
, se
.nr_forced2_migrations
);
1090 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1091 new_cfsrq
->min_vruntime
;
1093 __set_task_cpu(p
, new_cpu
);
1096 struct migration_req
{
1097 struct list_head list
;
1099 struct task_struct
*task
;
1102 struct completion done
;
1106 * The task's runqueue lock must be held.
1107 * Returns true if you have to wait for migration thread.
1110 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1112 struct rq
*rq
= task_rq(p
);
1115 * If the task is not on a runqueue (and not running), then
1116 * it is sufficient to simply update the task's cpu field.
1118 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1119 set_task_cpu(p
, dest_cpu
);
1123 init_completion(&req
->done
);
1125 req
->dest_cpu
= dest_cpu
;
1126 list_add(&req
->list
, &rq
->migration_queue
);
1132 * wait_task_inactive - wait for a thread to unschedule.
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1140 void wait_task_inactive(struct task_struct
*p
)
1142 unsigned long flags
;
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1166 while (task_running(rq
, p
))
1170 * Ok, time to look more closely! We need the rq
1171 * lock now, to be *sure*. If we're wrong, we'll
1172 * just go back and repeat.
1174 rq
= task_rq_lock(p
, &flags
);
1175 running
= task_running(rq
, p
);
1176 on_rq
= p
->se
.on_rq
;
1177 task_rq_unlock(rq
, &flags
);
1180 * Was it really running after all now that we
1181 * checked with the proper locks actually held?
1183 * Oops. Go back and try again..
1185 if (unlikely(running
)) {
1191 * It's not enough that it's not actively running,
1192 * it must be off the runqueue _entirely_, and not
1195 * So if it wa still runnable (but just not actively
1196 * running right now), it's preempted, and we should
1197 * yield - it could be a while.
1199 if (unlikely(on_rq
)) {
1200 schedule_timeout_uninterruptible(1);
1205 * Ahh, all good. It wasn't running, and it wasn't
1206 * runnable, which means that it will never become
1207 * running in the future either. We're all done!
1214 * kick_process - kick a running thread to enter/exit the kernel
1215 * @p: the to-be-kicked thread
1217 * Cause a process which is running on another CPU to enter
1218 * kernel-mode, without any delay. (to get signals handled.)
1220 * NOTE: this function doesnt have to take the runqueue lock,
1221 * because all it wants to ensure is that the remote task enters
1222 * the kernel. If the IPI races and the task has been migrated
1223 * to another CPU then no harm is done and the purpose has been
1226 void kick_process(struct task_struct
*p
)
1232 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1233 smp_send_reschedule(cpu
);
1238 * Return a low guess at the load of a migration-source cpu weighted
1239 * according to the scheduling class and "nice" value.
1241 * We want to under-estimate the load of migration sources, to
1242 * balance conservatively.
1244 static unsigned long source_load(int cpu
, int type
)
1246 struct rq
*rq
= cpu_rq(cpu
);
1247 unsigned long total
= weighted_cpuload(cpu
);
1252 return min(rq
->cpu_load
[type
-1], total
);
1256 * Return a high guess at the load of a migration-target cpu weighted
1257 * according to the scheduling class and "nice" value.
1259 static unsigned long target_load(int cpu
, int type
)
1261 struct rq
*rq
= cpu_rq(cpu
);
1262 unsigned long total
= weighted_cpuload(cpu
);
1267 return max(rq
->cpu_load
[type
-1], total
);
1271 * Return the average load per task on the cpu's run queue
1273 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1275 struct rq
*rq
= cpu_rq(cpu
);
1276 unsigned long total
= weighted_cpuload(cpu
);
1277 unsigned long n
= rq
->nr_running
;
1279 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1283 * find_idlest_group finds and returns the least busy CPU group within the
1286 static struct sched_group
*
1287 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1289 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1290 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1291 int load_idx
= sd
->forkexec_idx
;
1292 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1295 unsigned long load
, avg_load
;
1299 /* Skip over this group if it has no CPUs allowed */
1300 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1303 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1305 /* Tally up the load of all CPUs in the group */
1308 for_each_cpu_mask(i
, group
->cpumask
) {
1309 /* Bias balancing toward cpus of our domain */
1311 load
= source_load(i
, load_idx
);
1313 load
= target_load(i
, load_idx
);
1318 /* Adjust by relative CPU power of the group */
1319 avg_load
= sg_div_cpu_power(group
,
1320 avg_load
* SCHED_LOAD_SCALE
);
1323 this_load
= avg_load
;
1325 } else if (avg_load
< min_load
) {
1326 min_load
= avg_load
;
1329 } while (group
= group
->next
, group
!= sd
->groups
);
1331 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1337 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1340 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1343 unsigned long load
, min_load
= ULONG_MAX
;
1347 /* Traverse only the allowed CPUs */
1348 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1350 for_each_cpu_mask(i
, tmp
) {
1351 load
= weighted_cpuload(i
);
1353 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1363 * sched_balance_self: balance the current task (running on cpu) in domains
1364 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1367 * Balance, ie. select the least loaded group.
1369 * Returns the target CPU number, or the same CPU if no balancing is needed.
1371 * preempt must be disabled.
1373 static int sched_balance_self(int cpu
, int flag
)
1375 struct task_struct
*t
= current
;
1376 struct sched_domain
*tmp
, *sd
= NULL
;
1378 for_each_domain(cpu
, tmp
) {
1380 * If power savings logic is enabled for a domain, stop there.
1382 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1384 if (tmp
->flags
& flag
)
1390 struct sched_group
*group
;
1391 int new_cpu
, weight
;
1393 if (!(sd
->flags
& flag
)) {
1399 group
= find_idlest_group(sd
, t
, cpu
);
1405 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1406 if (new_cpu
== -1 || new_cpu
== cpu
) {
1407 /* Now try balancing at a lower domain level of cpu */
1412 /* Now try balancing at a lower domain level of new_cpu */
1415 weight
= cpus_weight(span
);
1416 for_each_domain(cpu
, tmp
) {
1417 if (weight
<= cpus_weight(tmp
->span
))
1419 if (tmp
->flags
& flag
)
1422 /* while loop will break here if sd == NULL */
1428 #endif /* CONFIG_SMP */
1431 * wake_idle() will wake a task on an idle cpu if task->cpu is
1432 * not idle and an idle cpu is available. The span of cpus to
1433 * search starts with cpus closest then further out as needed,
1434 * so we always favor a closer, idle cpu.
1436 * Returns the CPU we should wake onto.
1438 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1439 static int wake_idle(int cpu
, struct task_struct
*p
)
1442 struct sched_domain
*sd
;
1446 * If it is idle, then it is the best cpu to run this task.
1448 * This cpu is also the best, if it has more than one task already.
1449 * Siblings must be also busy(in most cases) as they didn't already
1450 * pickup the extra load from this cpu and hence we need not check
1451 * sibling runqueue info. This will avoid the checks and cache miss
1452 * penalities associated with that.
1454 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1457 for_each_domain(cpu
, sd
) {
1458 if (sd
->flags
& SD_WAKE_IDLE
) {
1459 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1460 for_each_cpu_mask(i
, tmp
) {
1462 if (i
!= task_cpu(p
)) {
1464 se
.nr_wakeups_idle
);
1476 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1483 * try_to_wake_up - wake up a thread
1484 * @p: the to-be-woken-up thread
1485 * @state: the mask of task states that can be woken
1486 * @sync: do a synchronous wakeup?
1488 * Put it on the run-queue if it's not already there. The "current"
1489 * thread is always on the run-queue (except when the actual
1490 * re-schedule is in progress), and as such you're allowed to do
1491 * the simpler "current->state = TASK_RUNNING" to mark yourself
1492 * runnable without the overhead of this.
1494 * returns failure only if the task is already active.
1496 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1498 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1499 unsigned long flags
;
1503 struct sched_domain
*sd
, *this_sd
= NULL
;
1504 unsigned long load
, this_load
;
1508 rq
= task_rq_lock(p
, &flags
);
1509 old_state
= p
->state
;
1510 if (!(old_state
& state
))
1518 this_cpu
= smp_processor_id();
1521 if (unlikely(task_running(rq
, p
)))
1526 schedstat_inc(rq
, ttwu_count
);
1527 if (cpu
== this_cpu
) {
1528 schedstat_inc(rq
, ttwu_local
);
1532 for_each_domain(this_cpu
, sd
) {
1533 if (cpu_isset(cpu
, sd
->span
)) {
1534 schedstat_inc(sd
, ttwu_wake_remote
);
1540 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1544 * Check for affine wakeup and passive balancing possibilities.
1547 int idx
= this_sd
->wake_idx
;
1548 unsigned int imbalance
;
1550 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1552 load
= source_load(cpu
, idx
);
1553 this_load
= target_load(this_cpu
, idx
);
1555 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1557 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1558 unsigned long tl
= this_load
;
1559 unsigned long tl_per_task
;
1562 * Attract cache-cold tasks on sync wakeups:
1564 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1567 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1568 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1571 * If sync wakeup then subtract the (maximum possible)
1572 * effect of the currently running task from the load
1573 * of the current CPU:
1576 tl
-= current
->se
.load
.weight
;
1579 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1580 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1582 * This domain has SD_WAKE_AFFINE and
1583 * p is cache cold in this domain, and
1584 * there is no bad imbalance.
1586 schedstat_inc(this_sd
, ttwu_move_affine
);
1587 schedstat_inc(p
, se
.nr_wakeups_affine
);
1593 * Start passive balancing when half the imbalance_pct
1596 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1597 if (imbalance
*this_load
<= 100*load
) {
1598 schedstat_inc(this_sd
, ttwu_move_balance
);
1599 schedstat_inc(p
, se
.nr_wakeups_passive
);
1605 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1607 new_cpu
= wake_idle(new_cpu
, p
);
1608 if (new_cpu
!= cpu
) {
1609 set_task_cpu(p
, new_cpu
);
1610 task_rq_unlock(rq
, &flags
);
1611 /* might preempt at this point */
1612 rq
= task_rq_lock(p
, &flags
);
1613 old_state
= p
->state
;
1614 if (!(old_state
& state
))
1619 this_cpu
= smp_processor_id();
1624 #endif /* CONFIG_SMP */
1625 schedstat_inc(p
, se
.nr_wakeups
);
1627 schedstat_inc(p
, se
.nr_wakeups_sync
);
1628 if (orig_cpu
!= cpu
)
1629 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1630 if (cpu
== this_cpu
)
1631 schedstat_inc(p
, se
.nr_wakeups_local
);
1633 schedstat_inc(p
, se
.nr_wakeups_remote
);
1634 update_rq_clock(rq
);
1635 activate_task(rq
, p
, 1);
1636 check_preempt_curr(rq
, p
);
1640 p
->state
= TASK_RUNNING
;
1642 task_rq_unlock(rq
, &flags
);
1647 int fastcall
wake_up_process(struct task_struct
*p
)
1649 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1650 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1652 EXPORT_SYMBOL(wake_up_process
);
1654 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1656 return try_to_wake_up(p
, state
, 0);
1660 * Perform scheduler related setup for a newly forked process p.
1661 * p is forked by current.
1663 * __sched_fork() is basic setup used by init_idle() too:
1665 static void __sched_fork(struct task_struct
*p
)
1667 p
->se
.exec_start
= 0;
1668 p
->se
.sum_exec_runtime
= 0;
1669 p
->se
.prev_sum_exec_runtime
= 0;
1671 #ifdef CONFIG_SCHEDSTATS
1672 p
->se
.wait_start
= 0;
1673 p
->se
.sum_sleep_runtime
= 0;
1674 p
->se
.sleep_start
= 0;
1675 p
->se
.block_start
= 0;
1676 p
->se
.sleep_max
= 0;
1677 p
->se
.block_max
= 0;
1679 p
->se
.slice_max
= 0;
1683 INIT_LIST_HEAD(&p
->run_list
);
1686 #ifdef CONFIG_PREEMPT_NOTIFIERS
1687 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1691 * We mark the process as running here, but have not actually
1692 * inserted it onto the runqueue yet. This guarantees that
1693 * nobody will actually run it, and a signal or other external
1694 * event cannot wake it up and insert it on the runqueue either.
1696 p
->state
= TASK_RUNNING
;
1700 * fork()/clone()-time setup:
1702 void sched_fork(struct task_struct
*p
, int clone_flags
)
1704 int cpu
= get_cpu();
1709 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1711 set_task_cpu(p
, cpu
);
1714 * Make sure we do not leak PI boosting priority to the child:
1716 p
->prio
= current
->normal_prio
;
1717 if (!rt_prio(p
->prio
))
1718 p
->sched_class
= &fair_sched_class
;
1720 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1721 if (likely(sched_info_on()))
1722 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1724 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1727 #ifdef CONFIG_PREEMPT
1728 /* Want to start with kernel preemption disabled. */
1729 task_thread_info(p
)->preempt_count
= 1;
1735 * wake_up_new_task - wake up a newly created task for the first time.
1737 * This function will do some initial scheduler statistics housekeeping
1738 * that must be done for every newly created context, then puts the task
1739 * on the runqueue and wakes it.
1741 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1743 unsigned long flags
;
1746 rq
= task_rq_lock(p
, &flags
);
1747 BUG_ON(p
->state
!= TASK_RUNNING
);
1748 update_rq_clock(rq
);
1750 p
->prio
= effective_prio(p
);
1752 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1753 activate_task(rq
, p
, 0);
1756 * Let the scheduling class do new task startup
1757 * management (if any):
1759 p
->sched_class
->task_new(rq
, p
);
1760 inc_nr_running(p
, rq
);
1762 check_preempt_curr(rq
, p
);
1763 task_rq_unlock(rq
, &flags
);
1766 #ifdef CONFIG_PREEMPT_NOTIFIERS
1769 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1770 * @notifier: notifier struct to register
1772 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1774 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1776 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1779 * preempt_notifier_unregister - no longer interested in preemption notifications
1780 * @notifier: notifier struct to unregister
1782 * This is safe to call from within a preemption notifier.
1784 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1786 hlist_del(¬ifier
->link
);
1788 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1790 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1792 struct preempt_notifier
*notifier
;
1793 struct hlist_node
*node
;
1795 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1796 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1800 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1801 struct task_struct
*next
)
1803 struct preempt_notifier
*notifier
;
1804 struct hlist_node
*node
;
1806 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1807 notifier
->ops
->sched_out(notifier
, next
);
1812 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1817 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1818 struct task_struct
*next
)
1825 * prepare_task_switch - prepare to switch tasks
1826 * @rq: the runqueue preparing to switch
1827 * @prev: the current task that is being switched out
1828 * @next: the task we are going to switch to.
1830 * This is called with the rq lock held and interrupts off. It must
1831 * be paired with a subsequent finish_task_switch after the context
1834 * prepare_task_switch sets up locking and calls architecture specific
1838 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1839 struct task_struct
*next
)
1841 fire_sched_out_preempt_notifiers(prev
, next
);
1842 prepare_lock_switch(rq
, next
);
1843 prepare_arch_switch(next
);
1847 * finish_task_switch - clean up after a task-switch
1848 * @rq: runqueue associated with task-switch
1849 * @prev: the thread we just switched away from.
1851 * finish_task_switch must be called after the context switch, paired
1852 * with a prepare_task_switch call before the context switch.
1853 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1854 * and do any other architecture-specific cleanup actions.
1856 * Note that we may have delayed dropping an mm in context_switch(). If
1857 * so, we finish that here outside of the runqueue lock. (Doing it
1858 * with the lock held can cause deadlocks; see schedule() for
1861 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1862 __releases(rq
->lock
)
1864 struct mm_struct
*mm
= rq
->prev_mm
;
1870 * A task struct has one reference for the use as "current".
1871 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1872 * schedule one last time. The schedule call will never return, and
1873 * the scheduled task must drop that reference.
1874 * The test for TASK_DEAD must occur while the runqueue locks are
1875 * still held, otherwise prev could be scheduled on another cpu, die
1876 * there before we look at prev->state, and then the reference would
1878 * Manfred Spraul <manfred@colorfullife.com>
1880 prev_state
= prev
->state
;
1881 finish_arch_switch(prev
);
1882 finish_lock_switch(rq
, prev
);
1883 fire_sched_in_preempt_notifiers(current
);
1886 if (unlikely(prev_state
== TASK_DEAD
)) {
1888 * Remove function-return probe instances associated with this
1889 * task and put them back on the free list.
1891 kprobe_flush_task(prev
);
1892 put_task_struct(prev
);
1897 * schedule_tail - first thing a freshly forked thread must call.
1898 * @prev: the thread we just switched away from.
1900 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1901 __releases(rq
->lock
)
1903 struct rq
*rq
= this_rq();
1905 finish_task_switch(rq
, prev
);
1906 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1907 /* In this case, finish_task_switch does not reenable preemption */
1910 if (current
->set_child_tid
)
1911 put_user(task_pid_vnr(current
), current
->set_child_tid
);
1915 * context_switch - switch to the new MM and the new
1916 * thread's register state.
1919 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1920 struct task_struct
*next
)
1922 struct mm_struct
*mm
, *oldmm
;
1924 prepare_task_switch(rq
, prev
, next
);
1926 oldmm
= prev
->active_mm
;
1928 * For paravirt, this is coupled with an exit in switch_to to
1929 * combine the page table reload and the switch backend into
1932 arch_enter_lazy_cpu_mode();
1934 if (unlikely(!mm
)) {
1935 next
->active_mm
= oldmm
;
1936 atomic_inc(&oldmm
->mm_count
);
1937 enter_lazy_tlb(oldmm
, next
);
1939 switch_mm(oldmm
, mm
, next
);
1941 if (unlikely(!prev
->mm
)) {
1942 prev
->active_mm
= NULL
;
1943 rq
->prev_mm
= oldmm
;
1946 * Since the runqueue lock will be released by the next
1947 * task (which is an invalid locking op but in the case
1948 * of the scheduler it's an obvious special-case), so we
1949 * do an early lockdep release here:
1951 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1952 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1955 /* Here we just switch the register state and the stack. */
1956 switch_to(prev
, next
, prev
);
1960 * this_rq must be evaluated again because prev may have moved
1961 * CPUs since it called schedule(), thus the 'rq' on its stack
1962 * frame will be invalid.
1964 finish_task_switch(this_rq(), prev
);
1968 * nr_running, nr_uninterruptible and nr_context_switches:
1970 * externally visible scheduler statistics: current number of runnable
1971 * threads, current number of uninterruptible-sleeping threads, total
1972 * number of context switches performed since bootup.
1974 unsigned long nr_running(void)
1976 unsigned long i
, sum
= 0;
1978 for_each_online_cpu(i
)
1979 sum
+= cpu_rq(i
)->nr_running
;
1984 unsigned long nr_uninterruptible(void)
1986 unsigned long i
, sum
= 0;
1988 for_each_possible_cpu(i
)
1989 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1992 * Since we read the counters lockless, it might be slightly
1993 * inaccurate. Do not allow it to go below zero though:
1995 if (unlikely((long)sum
< 0))
2001 unsigned long long nr_context_switches(void)
2004 unsigned long long sum
= 0;
2006 for_each_possible_cpu(i
)
2007 sum
+= cpu_rq(i
)->nr_switches
;
2012 unsigned long nr_iowait(void)
2014 unsigned long i
, sum
= 0;
2016 for_each_possible_cpu(i
)
2017 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2022 unsigned long nr_active(void)
2024 unsigned long i
, running
= 0, uninterruptible
= 0;
2026 for_each_online_cpu(i
) {
2027 running
+= cpu_rq(i
)->nr_running
;
2028 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2031 if (unlikely((long)uninterruptible
< 0))
2032 uninterruptible
= 0;
2034 return running
+ uninterruptible
;
2038 * Update rq->cpu_load[] statistics. This function is usually called every
2039 * scheduler tick (TICK_NSEC).
2041 static void update_cpu_load(struct rq
*this_rq
)
2043 unsigned long this_load
= this_rq
->load
.weight
;
2046 this_rq
->nr_load_updates
++;
2048 /* Update our load: */
2049 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2050 unsigned long old_load
, new_load
;
2052 /* scale is effectively 1 << i now, and >> i divides by scale */
2054 old_load
= this_rq
->cpu_load
[i
];
2055 new_load
= this_load
;
2057 * Round up the averaging division if load is increasing. This
2058 * prevents us from getting stuck on 9 if the load is 10, for
2061 if (new_load
> old_load
)
2062 new_load
+= scale
-1;
2063 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2070 * double_rq_lock - safely lock two runqueues
2072 * Note this does not disable interrupts like task_rq_lock,
2073 * you need to do so manually before calling.
2075 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2076 __acquires(rq1
->lock
)
2077 __acquires(rq2
->lock
)
2079 BUG_ON(!irqs_disabled());
2081 spin_lock(&rq1
->lock
);
2082 __acquire(rq2
->lock
); /* Fake it out ;) */
2085 spin_lock(&rq1
->lock
);
2086 spin_lock(&rq2
->lock
);
2088 spin_lock(&rq2
->lock
);
2089 spin_lock(&rq1
->lock
);
2092 update_rq_clock(rq1
);
2093 update_rq_clock(rq2
);
2097 * double_rq_unlock - safely unlock two runqueues
2099 * Note this does not restore interrupts like task_rq_unlock,
2100 * you need to do so manually after calling.
2102 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2103 __releases(rq1
->lock
)
2104 __releases(rq2
->lock
)
2106 spin_unlock(&rq1
->lock
);
2108 spin_unlock(&rq2
->lock
);
2110 __release(rq2
->lock
);
2114 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2116 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2117 __releases(this_rq
->lock
)
2118 __acquires(busiest
->lock
)
2119 __acquires(this_rq
->lock
)
2121 if (unlikely(!irqs_disabled())) {
2122 /* printk() doesn't work good under rq->lock */
2123 spin_unlock(&this_rq
->lock
);
2126 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2127 if (busiest
< this_rq
) {
2128 spin_unlock(&this_rq
->lock
);
2129 spin_lock(&busiest
->lock
);
2130 spin_lock(&this_rq
->lock
);
2132 spin_lock(&busiest
->lock
);
2137 * If dest_cpu is allowed for this process, migrate the task to it.
2138 * This is accomplished by forcing the cpu_allowed mask to only
2139 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2140 * the cpu_allowed mask is restored.
2142 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2144 struct migration_req req
;
2145 unsigned long flags
;
2148 rq
= task_rq_lock(p
, &flags
);
2149 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2150 || unlikely(cpu_is_offline(dest_cpu
)))
2153 /* force the process onto the specified CPU */
2154 if (migrate_task(p
, dest_cpu
, &req
)) {
2155 /* Need to wait for migration thread (might exit: take ref). */
2156 struct task_struct
*mt
= rq
->migration_thread
;
2158 get_task_struct(mt
);
2159 task_rq_unlock(rq
, &flags
);
2160 wake_up_process(mt
);
2161 put_task_struct(mt
);
2162 wait_for_completion(&req
.done
);
2167 task_rq_unlock(rq
, &flags
);
2171 * sched_exec - execve() is a valuable balancing opportunity, because at
2172 * this point the task has the smallest effective memory and cache footprint.
2174 void sched_exec(void)
2176 int new_cpu
, this_cpu
= get_cpu();
2177 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2179 if (new_cpu
!= this_cpu
)
2180 sched_migrate_task(current
, new_cpu
);
2184 * pull_task - move a task from a remote runqueue to the local runqueue.
2185 * Both runqueues must be locked.
2187 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2188 struct rq
*this_rq
, int this_cpu
)
2190 deactivate_task(src_rq
, p
, 0);
2191 set_task_cpu(p
, this_cpu
);
2192 activate_task(this_rq
, p
, 0);
2194 * Note that idle threads have a prio of MAX_PRIO, for this test
2195 * to be always true for them.
2197 check_preempt_curr(this_rq
, p
);
2201 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2204 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2205 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2209 * We do not migrate tasks that are:
2210 * 1) running (obviously), or
2211 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2212 * 3) are cache-hot on their current CPU.
2214 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2215 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2220 if (task_running(rq
, p
)) {
2221 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2226 * Aggressive migration if:
2227 * 1) task is cache cold, or
2228 * 2) too many balance attempts have failed.
2231 if (!task_hot(p
, rq
->clock
, sd
) ||
2232 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2233 #ifdef CONFIG_SCHEDSTATS
2234 if (task_hot(p
, rq
->clock
, sd
)) {
2235 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2236 schedstat_inc(p
, se
.nr_forced_migrations
);
2242 if (task_hot(p
, rq
->clock
, sd
)) {
2243 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2249 static unsigned long
2250 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2251 unsigned long max_load_move
, struct sched_domain
*sd
,
2252 enum cpu_idle_type idle
, int *all_pinned
,
2253 int *this_best_prio
, struct rq_iterator
*iterator
)
2255 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2256 struct task_struct
*p
;
2257 long rem_load_move
= max_load_move
;
2259 if (max_load_move
== 0)
2265 * Start the load-balancing iterator:
2267 p
= iterator
->start(iterator
->arg
);
2269 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2272 * To help distribute high priority tasks across CPUs we don't
2273 * skip a task if it will be the highest priority task (i.e. smallest
2274 * prio value) on its new queue regardless of its load weight
2276 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2277 SCHED_LOAD_SCALE_FUZZ
;
2278 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2279 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2280 p
= iterator
->next(iterator
->arg
);
2284 pull_task(busiest
, p
, this_rq
, this_cpu
);
2286 rem_load_move
-= p
->se
.load
.weight
;
2289 * We only want to steal up to the prescribed amount of weighted load.
2291 if (rem_load_move
> 0) {
2292 if (p
->prio
< *this_best_prio
)
2293 *this_best_prio
= p
->prio
;
2294 p
= iterator
->next(iterator
->arg
);
2299 * Right now, this is one of only two places pull_task() is called,
2300 * so we can safely collect pull_task() stats here rather than
2301 * inside pull_task().
2303 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2306 *all_pinned
= pinned
;
2308 return max_load_move
- rem_load_move
;
2312 * move_tasks tries to move up to max_load_move weighted load from busiest to
2313 * this_rq, as part of a balancing operation within domain "sd".
2314 * Returns 1 if successful and 0 otherwise.
2316 * Called with both runqueues locked.
2318 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2319 unsigned long max_load_move
,
2320 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2323 const struct sched_class
*class = sched_class_highest
;
2324 unsigned long total_load_moved
= 0;
2325 int this_best_prio
= this_rq
->curr
->prio
;
2329 class->load_balance(this_rq
, this_cpu
, busiest
,
2330 max_load_move
- total_load_moved
,
2331 sd
, idle
, all_pinned
, &this_best_prio
);
2332 class = class->next
;
2333 } while (class && max_load_move
> total_load_moved
);
2335 return total_load_moved
> 0;
2339 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2340 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2341 struct rq_iterator
*iterator
)
2343 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2347 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2348 pull_task(busiest
, p
, this_rq
, this_cpu
);
2350 * Right now, this is only the second place pull_task()
2351 * is called, so we can safely collect pull_task()
2352 * stats here rather than inside pull_task().
2354 schedstat_inc(sd
, lb_gained
[idle
]);
2358 p
= iterator
->next(iterator
->arg
);
2365 * move_one_task tries to move exactly one task from busiest to this_rq, as
2366 * part of active balancing operations within "domain".
2367 * Returns 1 if successful and 0 otherwise.
2369 * Called with both runqueues locked.
2371 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2372 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2374 const struct sched_class
*class;
2376 for (class = sched_class_highest
; class; class = class->next
)
2377 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2384 * find_busiest_group finds and returns the busiest CPU group within the
2385 * domain. It calculates and returns the amount of weighted load which
2386 * should be moved to restore balance via the imbalance parameter.
2388 static struct sched_group
*
2389 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2390 unsigned long *imbalance
, enum cpu_idle_type idle
,
2391 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2393 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2394 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2395 unsigned long max_pull
;
2396 unsigned long busiest_load_per_task
, busiest_nr_running
;
2397 unsigned long this_load_per_task
, this_nr_running
;
2398 int load_idx
, group_imb
= 0;
2399 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2400 int power_savings_balance
= 1;
2401 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2402 unsigned long min_nr_running
= ULONG_MAX
;
2403 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2406 max_load
= this_load
= total_load
= total_pwr
= 0;
2407 busiest_load_per_task
= busiest_nr_running
= 0;
2408 this_load_per_task
= this_nr_running
= 0;
2409 if (idle
== CPU_NOT_IDLE
)
2410 load_idx
= sd
->busy_idx
;
2411 else if (idle
== CPU_NEWLY_IDLE
)
2412 load_idx
= sd
->newidle_idx
;
2414 load_idx
= sd
->idle_idx
;
2417 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2420 int __group_imb
= 0;
2421 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2422 unsigned long sum_nr_running
, sum_weighted_load
;
2424 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2427 balance_cpu
= first_cpu(group
->cpumask
);
2429 /* Tally up the load of all CPUs in the group */
2430 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2432 min_cpu_load
= ~0UL;
2434 for_each_cpu_mask(i
, group
->cpumask
) {
2437 if (!cpu_isset(i
, *cpus
))
2442 if (*sd_idle
&& rq
->nr_running
)
2445 /* Bias balancing toward cpus of our domain */
2447 if (idle_cpu(i
) && !first_idle_cpu
) {
2452 load
= target_load(i
, load_idx
);
2454 load
= source_load(i
, load_idx
);
2455 if (load
> max_cpu_load
)
2456 max_cpu_load
= load
;
2457 if (min_cpu_load
> load
)
2458 min_cpu_load
= load
;
2462 sum_nr_running
+= rq
->nr_running
;
2463 sum_weighted_load
+= weighted_cpuload(i
);
2467 * First idle cpu or the first cpu(busiest) in this sched group
2468 * is eligible for doing load balancing at this and above
2469 * domains. In the newly idle case, we will allow all the cpu's
2470 * to do the newly idle load balance.
2472 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2473 balance_cpu
!= this_cpu
&& balance
) {
2478 total_load
+= avg_load
;
2479 total_pwr
+= group
->__cpu_power
;
2481 /* Adjust by relative CPU power of the group */
2482 avg_load
= sg_div_cpu_power(group
,
2483 avg_load
* SCHED_LOAD_SCALE
);
2485 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2488 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2491 this_load
= avg_load
;
2493 this_nr_running
= sum_nr_running
;
2494 this_load_per_task
= sum_weighted_load
;
2495 } else if (avg_load
> max_load
&&
2496 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2497 max_load
= avg_load
;
2499 busiest_nr_running
= sum_nr_running
;
2500 busiest_load_per_task
= sum_weighted_load
;
2501 group_imb
= __group_imb
;
2504 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2506 * Busy processors will not participate in power savings
2509 if (idle
== CPU_NOT_IDLE
||
2510 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2514 * If the local group is idle or completely loaded
2515 * no need to do power savings balance at this domain
2517 if (local_group
&& (this_nr_running
>= group_capacity
||
2519 power_savings_balance
= 0;
2522 * If a group is already running at full capacity or idle,
2523 * don't include that group in power savings calculations
2525 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2530 * Calculate the group which has the least non-idle load.
2531 * This is the group from where we need to pick up the load
2534 if ((sum_nr_running
< min_nr_running
) ||
2535 (sum_nr_running
== min_nr_running
&&
2536 first_cpu(group
->cpumask
) <
2537 first_cpu(group_min
->cpumask
))) {
2539 min_nr_running
= sum_nr_running
;
2540 min_load_per_task
= sum_weighted_load
/
2545 * Calculate the group which is almost near its
2546 * capacity but still has some space to pick up some load
2547 * from other group and save more power
2549 if (sum_nr_running
<= group_capacity
- 1) {
2550 if (sum_nr_running
> leader_nr_running
||
2551 (sum_nr_running
== leader_nr_running
&&
2552 first_cpu(group
->cpumask
) >
2553 first_cpu(group_leader
->cpumask
))) {
2554 group_leader
= group
;
2555 leader_nr_running
= sum_nr_running
;
2560 group
= group
->next
;
2561 } while (group
!= sd
->groups
);
2563 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2566 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2568 if (this_load
>= avg_load
||
2569 100*max_load
<= sd
->imbalance_pct
*this_load
)
2572 busiest_load_per_task
/= busiest_nr_running
;
2574 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2577 * We're trying to get all the cpus to the average_load, so we don't
2578 * want to push ourselves above the average load, nor do we wish to
2579 * reduce the max loaded cpu below the average load, as either of these
2580 * actions would just result in more rebalancing later, and ping-pong
2581 * tasks around. Thus we look for the minimum possible imbalance.
2582 * Negative imbalances (*we* are more loaded than anyone else) will
2583 * be counted as no imbalance for these purposes -- we can't fix that
2584 * by pulling tasks to us. Be careful of negative numbers as they'll
2585 * appear as very large values with unsigned longs.
2587 if (max_load
<= busiest_load_per_task
)
2591 * In the presence of smp nice balancing, certain scenarios can have
2592 * max load less than avg load(as we skip the groups at or below
2593 * its cpu_power, while calculating max_load..)
2595 if (max_load
< avg_load
) {
2597 goto small_imbalance
;
2600 /* Don't want to pull so many tasks that a group would go idle */
2601 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2603 /* How much load to actually move to equalise the imbalance */
2604 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2605 (avg_load
- this_load
) * this->__cpu_power
)
2609 * if *imbalance is less than the average load per runnable task
2610 * there is no gaurantee that any tasks will be moved so we'll have
2611 * a think about bumping its value to force at least one task to be
2614 if (*imbalance
< busiest_load_per_task
) {
2615 unsigned long tmp
, pwr_now
, pwr_move
;
2619 pwr_move
= pwr_now
= 0;
2621 if (this_nr_running
) {
2622 this_load_per_task
/= this_nr_running
;
2623 if (busiest_load_per_task
> this_load_per_task
)
2626 this_load_per_task
= SCHED_LOAD_SCALE
;
2628 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2629 busiest_load_per_task
* imbn
) {
2630 *imbalance
= busiest_load_per_task
;
2635 * OK, we don't have enough imbalance to justify moving tasks,
2636 * however we may be able to increase total CPU power used by
2640 pwr_now
+= busiest
->__cpu_power
*
2641 min(busiest_load_per_task
, max_load
);
2642 pwr_now
+= this->__cpu_power
*
2643 min(this_load_per_task
, this_load
);
2644 pwr_now
/= SCHED_LOAD_SCALE
;
2646 /* Amount of load we'd subtract */
2647 tmp
= sg_div_cpu_power(busiest
,
2648 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2650 pwr_move
+= busiest
->__cpu_power
*
2651 min(busiest_load_per_task
, max_load
- tmp
);
2653 /* Amount of load we'd add */
2654 if (max_load
* busiest
->__cpu_power
<
2655 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2656 tmp
= sg_div_cpu_power(this,
2657 max_load
* busiest
->__cpu_power
);
2659 tmp
= sg_div_cpu_power(this,
2660 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2661 pwr_move
+= this->__cpu_power
*
2662 min(this_load_per_task
, this_load
+ tmp
);
2663 pwr_move
/= SCHED_LOAD_SCALE
;
2665 /* Move if we gain throughput */
2666 if (pwr_move
> pwr_now
)
2667 *imbalance
= busiest_load_per_task
;
2673 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2674 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2677 if (this == group_leader
&& group_leader
!= group_min
) {
2678 *imbalance
= min_load_per_task
;
2688 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2691 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2692 unsigned long imbalance
, cpumask_t
*cpus
)
2694 struct rq
*busiest
= NULL
, *rq
;
2695 unsigned long max_load
= 0;
2698 for_each_cpu_mask(i
, group
->cpumask
) {
2701 if (!cpu_isset(i
, *cpus
))
2705 wl
= weighted_cpuload(i
);
2707 if (rq
->nr_running
== 1 && wl
> imbalance
)
2710 if (wl
> max_load
) {
2720 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2721 * so long as it is large enough.
2723 #define MAX_PINNED_INTERVAL 512
2726 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2727 * tasks if there is an imbalance.
2729 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2730 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2733 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2734 struct sched_group
*group
;
2735 unsigned long imbalance
;
2737 cpumask_t cpus
= CPU_MASK_ALL
;
2738 unsigned long flags
;
2741 * When power savings policy is enabled for the parent domain, idle
2742 * sibling can pick up load irrespective of busy siblings. In this case,
2743 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2744 * portraying it as CPU_NOT_IDLE.
2746 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2747 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2750 schedstat_inc(sd
, lb_count
[idle
]);
2753 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2760 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2764 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2766 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2770 BUG_ON(busiest
== this_rq
);
2772 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2775 if (busiest
->nr_running
> 1) {
2777 * Attempt to move tasks. If find_busiest_group has found
2778 * an imbalance but busiest->nr_running <= 1, the group is
2779 * still unbalanced. ld_moved simply stays zero, so it is
2780 * correctly treated as an imbalance.
2782 local_irq_save(flags
);
2783 double_rq_lock(this_rq
, busiest
);
2784 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2785 imbalance
, sd
, idle
, &all_pinned
);
2786 double_rq_unlock(this_rq
, busiest
);
2787 local_irq_restore(flags
);
2790 * some other cpu did the load balance for us.
2792 if (ld_moved
&& this_cpu
!= smp_processor_id())
2793 resched_cpu(this_cpu
);
2795 /* All tasks on this runqueue were pinned by CPU affinity */
2796 if (unlikely(all_pinned
)) {
2797 cpu_clear(cpu_of(busiest
), cpus
);
2798 if (!cpus_empty(cpus
))
2805 schedstat_inc(sd
, lb_failed
[idle
]);
2806 sd
->nr_balance_failed
++;
2808 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2810 spin_lock_irqsave(&busiest
->lock
, flags
);
2812 /* don't kick the migration_thread, if the curr
2813 * task on busiest cpu can't be moved to this_cpu
2815 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2816 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2818 goto out_one_pinned
;
2821 if (!busiest
->active_balance
) {
2822 busiest
->active_balance
= 1;
2823 busiest
->push_cpu
= this_cpu
;
2826 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2828 wake_up_process(busiest
->migration_thread
);
2831 * We've kicked active balancing, reset the failure
2834 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2837 sd
->nr_balance_failed
= 0;
2839 if (likely(!active_balance
)) {
2840 /* We were unbalanced, so reset the balancing interval */
2841 sd
->balance_interval
= sd
->min_interval
;
2844 * If we've begun active balancing, start to back off. This
2845 * case may not be covered by the all_pinned logic if there
2846 * is only 1 task on the busy runqueue (because we don't call
2849 if (sd
->balance_interval
< sd
->max_interval
)
2850 sd
->balance_interval
*= 2;
2853 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2854 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2859 schedstat_inc(sd
, lb_balanced
[idle
]);
2861 sd
->nr_balance_failed
= 0;
2864 /* tune up the balancing interval */
2865 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2866 (sd
->balance_interval
< sd
->max_interval
))
2867 sd
->balance_interval
*= 2;
2869 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2870 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2876 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2877 * tasks if there is an imbalance.
2879 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2880 * this_rq is locked.
2883 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2885 struct sched_group
*group
;
2886 struct rq
*busiest
= NULL
;
2887 unsigned long imbalance
;
2891 cpumask_t cpus
= CPU_MASK_ALL
;
2894 * When power savings policy is enabled for the parent domain, idle
2895 * sibling can pick up load irrespective of busy siblings. In this case,
2896 * let the state of idle sibling percolate up as IDLE, instead of
2897 * portraying it as CPU_NOT_IDLE.
2899 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2900 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2903 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2905 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2906 &sd_idle
, &cpus
, NULL
);
2908 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2912 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2915 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2919 BUG_ON(busiest
== this_rq
);
2921 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2924 if (busiest
->nr_running
> 1) {
2925 /* Attempt to move tasks */
2926 double_lock_balance(this_rq
, busiest
);
2927 /* this_rq->clock is already updated */
2928 update_rq_clock(busiest
);
2929 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2930 imbalance
, sd
, CPU_NEWLY_IDLE
,
2932 spin_unlock(&busiest
->lock
);
2934 if (unlikely(all_pinned
)) {
2935 cpu_clear(cpu_of(busiest
), cpus
);
2936 if (!cpus_empty(cpus
))
2942 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2943 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2944 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2947 sd
->nr_balance_failed
= 0;
2952 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2953 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2954 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2956 sd
->nr_balance_failed
= 0;
2962 * idle_balance is called by schedule() if this_cpu is about to become
2963 * idle. Attempts to pull tasks from other CPUs.
2965 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2967 struct sched_domain
*sd
;
2968 int pulled_task
= -1;
2969 unsigned long next_balance
= jiffies
+ HZ
;
2971 for_each_domain(this_cpu
, sd
) {
2972 unsigned long interval
;
2974 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2977 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2978 /* If we've pulled tasks over stop searching: */
2979 pulled_task
= load_balance_newidle(this_cpu
,
2982 interval
= msecs_to_jiffies(sd
->balance_interval
);
2983 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2984 next_balance
= sd
->last_balance
+ interval
;
2988 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2990 * We are going idle. next_balance may be set based on
2991 * a busy processor. So reset next_balance.
2993 this_rq
->next_balance
= next_balance
;
2998 * active_load_balance is run by migration threads. It pushes running tasks
2999 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3000 * running on each physical CPU where possible, and avoids physical /
3001 * logical imbalances.
3003 * Called with busiest_rq locked.
3005 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3007 int target_cpu
= busiest_rq
->push_cpu
;
3008 struct sched_domain
*sd
;
3009 struct rq
*target_rq
;
3011 /* Is there any task to move? */
3012 if (busiest_rq
->nr_running
<= 1)
3015 target_rq
= cpu_rq(target_cpu
);
3018 * This condition is "impossible", if it occurs
3019 * we need to fix it. Originally reported by
3020 * Bjorn Helgaas on a 128-cpu setup.
3022 BUG_ON(busiest_rq
== target_rq
);
3024 /* move a task from busiest_rq to target_rq */
3025 double_lock_balance(busiest_rq
, target_rq
);
3026 update_rq_clock(busiest_rq
);
3027 update_rq_clock(target_rq
);
3029 /* Search for an sd spanning us and the target CPU. */
3030 for_each_domain(target_cpu
, sd
) {
3031 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3032 cpu_isset(busiest_cpu
, sd
->span
))
3037 schedstat_inc(sd
, alb_count
);
3039 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3041 schedstat_inc(sd
, alb_pushed
);
3043 schedstat_inc(sd
, alb_failed
);
3045 spin_unlock(&target_rq
->lock
);
3050 atomic_t load_balancer
;
3052 } nohz ____cacheline_aligned
= {
3053 .load_balancer
= ATOMIC_INIT(-1),
3054 .cpu_mask
= CPU_MASK_NONE
,
3058 * This routine will try to nominate the ilb (idle load balancing)
3059 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3060 * load balancing on behalf of all those cpus. If all the cpus in the system
3061 * go into this tickless mode, then there will be no ilb owner (as there is
3062 * no need for one) and all the cpus will sleep till the next wakeup event
3065 * For the ilb owner, tick is not stopped. And this tick will be used
3066 * for idle load balancing. ilb owner will still be part of
3069 * While stopping the tick, this cpu will become the ilb owner if there
3070 * is no other owner. And will be the owner till that cpu becomes busy
3071 * or if all cpus in the system stop their ticks at which point
3072 * there is no need for ilb owner.
3074 * When the ilb owner becomes busy, it nominates another owner, during the
3075 * next busy scheduler_tick()
3077 int select_nohz_load_balancer(int stop_tick
)
3079 int cpu
= smp_processor_id();
3082 cpu_set(cpu
, nohz
.cpu_mask
);
3083 cpu_rq(cpu
)->in_nohz_recently
= 1;
3086 * If we are going offline and still the leader, give up!
3088 if (cpu_is_offline(cpu
) &&
3089 atomic_read(&nohz
.load_balancer
) == cpu
) {
3090 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3095 /* time for ilb owner also to sleep */
3096 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3097 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3098 atomic_set(&nohz
.load_balancer
, -1);
3102 if (atomic_read(&nohz
.load_balancer
) == -1) {
3103 /* make me the ilb owner */
3104 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3106 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3109 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3112 cpu_clear(cpu
, nohz
.cpu_mask
);
3114 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3115 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3122 static DEFINE_SPINLOCK(balancing
);
3125 * It checks each scheduling domain to see if it is due to be balanced,
3126 * and initiates a balancing operation if so.
3128 * Balancing parameters are set up in arch_init_sched_domains.
3130 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3133 struct rq
*rq
= cpu_rq(cpu
);
3134 unsigned long interval
;
3135 struct sched_domain
*sd
;
3136 /* Earliest time when we have to do rebalance again */
3137 unsigned long next_balance
= jiffies
+ 60*HZ
;
3138 int update_next_balance
= 0;
3140 for_each_domain(cpu
, sd
) {
3141 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3144 interval
= sd
->balance_interval
;
3145 if (idle
!= CPU_IDLE
)
3146 interval
*= sd
->busy_factor
;
3148 /* scale ms to jiffies */
3149 interval
= msecs_to_jiffies(interval
);
3150 if (unlikely(!interval
))
3152 if (interval
> HZ
*NR_CPUS
/10)
3153 interval
= HZ
*NR_CPUS
/10;
3156 if (sd
->flags
& SD_SERIALIZE
) {
3157 if (!spin_trylock(&balancing
))
3161 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3162 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3164 * We've pulled tasks over so either we're no
3165 * longer idle, or one of our SMT siblings is
3168 idle
= CPU_NOT_IDLE
;
3170 sd
->last_balance
= jiffies
;
3172 if (sd
->flags
& SD_SERIALIZE
)
3173 spin_unlock(&balancing
);
3175 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3176 next_balance
= sd
->last_balance
+ interval
;
3177 update_next_balance
= 1;
3181 * Stop the load balance at this level. There is another
3182 * CPU in our sched group which is doing load balancing more
3190 * next_balance will be updated only when there is a need.
3191 * When the cpu is attached to null domain for ex, it will not be
3194 if (likely(update_next_balance
))
3195 rq
->next_balance
= next_balance
;
3199 * run_rebalance_domains is triggered when needed from the scheduler tick.
3200 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3201 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3203 static void run_rebalance_domains(struct softirq_action
*h
)
3205 int this_cpu
= smp_processor_id();
3206 struct rq
*this_rq
= cpu_rq(this_cpu
);
3207 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3208 CPU_IDLE
: CPU_NOT_IDLE
;
3210 rebalance_domains(this_cpu
, idle
);
3214 * If this cpu is the owner for idle load balancing, then do the
3215 * balancing on behalf of the other idle cpus whose ticks are
3218 if (this_rq
->idle_at_tick
&&
3219 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3220 cpumask_t cpus
= nohz
.cpu_mask
;
3224 cpu_clear(this_cpu
, cpus
);
3225 for_each_cpu_mask(balance_cpu
, cpus
) {
3227 * If this cpu gets work to do, stop the load balancing
3228 * work being done for other cpus. Next load
3229 * balancing owner will pick it up.
3234 rebalance_domains(balance_cpu
, CPU_IDLE
);
3236 rq
= cpu_rq(balance_cpu
);
3237 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3238 this_rq
->next_balance
= rq
->next_balance
;
3245 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3247 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3248 * idle load balancing owner or decide to stop the periodic load balancing,
3249 * if the whole system is idle.
3251 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3255 * If we were in the nohz mode recently and busy at the current
3256 * scheduler tick, then check if we need to nominate new idle
3259 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3260 rq
->in_nohz_recently
= 0;
3262 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3263 cpu_clear(cpu
, nohz
.cpu_mask
);
3264 atomic_set(&nohz
.load_balancer
, -1);
3267 if (atomic_read(&nohz
.load_balancer
) == -1) {
3269 * simple selection for now: Nominate the
3270 * first cpu in the nohz list to be the next
3273 * TBD: Traverse the sched domains and nominate
3274 * the nearest cpu in the nohz.cpu_mask.
3276 int ilb
= first_cpu(nohz
.cpu_mask
);
3284 * If this cpu is idle and doing idle load balancing for all the
3285 * cpus with ticks stopped, is it time for that to stop?
3287 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3288 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3294 * If this cpu is idle and the idle load balancing is done by
3295 * someone else, then no need raise the SCHED_SOFTIRQ
3297 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3298 cpu_isset(cpu
, nohz
.cpu_mask
))
3301 if (time_after_eq(jiffies
, rq
->next_balance
))
3302 raise_softirq(SCHED_SOFTIRQ
);
3305 #else /* CONFIG_SMP */
3308 * on UP we do not need to balance between CPUs:
3310 static inline void idle_balance(int cpu
, struct rq
*rq
)
3316 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3318 EXPORT_PER_CPU_SYMBOL(kstat
);
3321 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3322 * that have not yet been banked in case the task is currently running.
3324 unsigned long long task_sched_runtime(struct task_struct
*p
)
3326 unsigned long flags
;
3330 rq
= task_rq_lock(p
, &flags
);
3331 ns
= p
->se
.sum_exec_runtime
;
3332 if (rq
->curr
== p
) {
3333 update_rq_clock(rq
);
3334 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3335 if ((s64
)delta_exec
> 0)
3338 task_rq_unlock(rq
, &flags
);
3344 * Account user cpu time to a process.
3345 * @p: the process that the cpu time gets accounted to
3346 * @cputime: the cpu time spent in user space since the last update
3348 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3350 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3353 p
->utime
= cputime_add(p
->utime
, cputime
);
3355 /* Add user time to cpustat. */
3356 tmp
= cputime_to_cputime64(cputime
);
3357 if (TASK_NICE(p
) > 0)
3358 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3360 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3364 * Account guest cpu time to a process.
3365 * @p: the process that the cpu time gets accounted to
3366 * @cputime: the cpu time spent in virtual machine since the last update
3368 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3371 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3373 tmp
= cputime_to_cputime64(cputime
);
3375 p
->utime
= cputime_add(p
->utime
, cputime
);
3376 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3378 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3379 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3383 * Account scaled user cpu time to a process.
3384 * @p: the process that the cpu time gets accounted to
3385 * @cputime: the cpu time spent in user space since the last update
3387 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3389 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3393 * Account system cpu time to a process.
3394 * @p: the process that the cpu time gets accounted to
3395 * @hardirq_offset: the offset to subtract from hardirq_count()
3396 * @cputime: the cpu time spent in kernel space since the last update
3398 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3401 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3402 struct rq
*rq
= this_rq();
3405 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3406 return account_guest_time(p
, cputime
);
3408 p
->stime
= cputime_add(p
->stime
, cputime
);
3410 /* Add system time to cpustat. */
3411 tmp
= cputime_to_cputime64(cputime
);
3412 if (hardirq_count() - hardirq_offset
)
3413 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3414 else if (softirq_count())
3415 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3416 else if (p
!= rq
->idle
)
3417 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3418 else if (atomic_read(&rq
->nr_iowait
) > 0)
3419 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3421 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3422 /* Account for system time used */
3423 acct_update_integrals(p
);
3427 * Account scaled system cpu time to a process.
3428 * @p: the process that the cpu time gets accounted to
3429 * @hardirq_offset: the offset to subtract from hardirq_count()
3430 * @cputime: the cpu time spent in kernel space since the last update
3432 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3434 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3438 * Account for involuntary wait time.
3439 * @p: the process from which the cpu time has been stolen
3440 * @steal: the cpu time spent in involuntary wait
3442 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3444 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3445 cputime64_t tmp
= cputime_to_cputime64(steal
);
3446 struct rq
*rq
= this_rq();
3448 if (p
== rq
->idle
) {
3449 p
->stime
= cputime_add(p
->stime
, steal
);
3450 if (atomic_read(&rq
->nr_iowait
) > 0)
3451 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3453 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3455 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3459 * This function gets called by the timer code, with HZ frequency.
3460 * We call it with interrupts disabled.
3462 * It also gets called by the fork code, when changing the parent's
3465 void scheduler_tick(void)
3467 int cpu
= smp_processor_id();
3468 struct rq
*rq
= cpu_rq(cpu
);
3469 struct task_struct
*curr
= rq
->curr
;
3470 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3472 spin_lock(&rq
->lock
);
3473 __update_rq_clock(rq
);
3475 * Let rq->clock advance by at least TICK_NSEC:
3477 if (unlikely(rq
->clock
< next_tick
))
3478 rq
->clock
= next_tick
;
3479 rq
->tick_timestamp
= rq
->clock
;
3480 update_cpu_load(rq
);
3481 if (curr
!= rq
->idle
) /* FIXME: needed? */
3482 curr
->sched_class
->task_tick(rq
, curr
);
3483 spin_unlock(&rq
->lock
);
3486 rq
->idle_at_tick
= idle_cpu(cpu
);
3487 trigger_load_balance(rq
, cpu
);
3491 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3493 void fastcall
add_preempt_count(int val
)
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3500 preempt_count() += val
;
3502 * Spinlock count overflowing soon?
3504 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3507 EXPORT_SYMBOL(add_preempt_count
);
3509 void fastcall
sub_preempt_count(int val
)
3514 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3517 * Is the spinlock portion underflowing?
3519 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3520 !(preempt_count() & PREEMPT_MASK
)))
3523 preempt_count() -= val
;
3525 EXPORT_SYMBOL(sub_preempt_count
);
3530 * Print scheduling while atomic bug:
3532 static noinline
void __schedule_bug(struct task_struct
*prev
)
3534 struct pt_regs
*regs
= get_irq_regs();
3536 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3537 prev
->comm
, prev
->pid
, preempt_count());
3539 debug_show_held_locks(prev
);
3540 if (irqs_disabled())
3541 print_irqtrace_events(prev
);
3550 * Various schedule()-time debugging checks and statistics:
3552 static inline void schedule_debug(struct task_struct
*prev
)
3555 * Test if we are atomic. Since do_exit() needs to call into
3556 * schedule() atomically, we ignore that path for now.
3557 * Otherwise, whine if we are scheduling when we should not be.
3559 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3560 __schedule_bug(prev
);
3562 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3564 schedstat_inc(this_rq(), sched_count
);
3565 #ifdef CONFIG_SCHEDSTATS
3566 if (unlikely(prev
->lock_depth
>= 0)) {
3567 schedstat_inc(this_rq(), bkl_count
);
3568 schedstat_inc(prev
, sched_info
.bkl_count
);
3574 * Pick up the highest-prio task:
3576 static inline struct task_struct
*
3577 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3579 const struct sched_class
*class;
3580 struct task_struct
*p
;
3583 * Optimization: we know that if all tasks are in
3584 * the fair class we can call that function directly:
3586 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3587 p
= fair_sched_class
.pick_next_task(rq
);
3592 class = sched_class_highest
;
3594 p
= class->pick_next_task(rq
);
3598 * Will never be NULL as the idle class always
3599 * returns a non-NULL p:
3601 class = class->next
;
3606 * schedule() is the main scheduler function.
3608 asmlinkage
void __sched
schedule(void)
3610 struct task_struct
*prev
, *next
;
3617 cpu
= smp_processor_id();
3621 switch_count
= &prev
->nivcsw
;
3623 release_kernel_lock(prev
);
3624 need_resched_nonpreemptible
:
3626 schedule_debug(prev
);
3629 * Do the rq-clock update outside the rq lock:
3631 local_irq_disable();
3632 __update_rq_clock(rq
);
3633 spin_lock(&rq
->lock
);
3634 clear_tsk_need_resched(prev
);
3636 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3637 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3638 unlikely(signal_pending(prev
)))) {
3639 prev
->state
= TASK_RUNNING
;
3641 deactivate_task(rq
, prev
, 1);
3643 switch_count
= &prev
->nvcsw
;
3646 if (unlikely(!rq
->nr_running
))
3647 idle_balance(cpu
, rq
);
3649 prev
->sched_class
->put_prev_task(rq
, prev
);
3650 next
= pick_next_task(rq
, prev
);
3652 sched_info_switch(prev
, next
);
3654 if (likely(prev
!= next
)) {
3659 context_switch(rq
, prev
, next
); /* unlocks the rq */
3661 spin_unlock_irq(&rq
->lock
);
3663 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3664 cpu
= smp_processor_id();
3666 goto need_resched_nonpreemptible
;
3668 preempt_enable_no_resched();
3669 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3672 EXPORT_SYMBOL(schedule
);
3674 #ifdef CONFIG_PREEMPT
3676 * this is the entry point to schedule() from in-kernel preemption
3677 * off of preempt_enable. Kernel preemptions off return from interrupt
3678 * occur there and call schedule directly.
3680 asmlinkage
void __sched
preempt_schedule(void)
3682 struct thread_info
*ti
= current_thread_info();
3683 #ifdef CONFIG_PREEMPT_BKL
3684 struct task_struct
*task
= current
;
3685 int saved_lock_depth
;
3688 * If there is a non-zero preempt_count or interrupts are disabled,
3689 * we do not want to preempt the current task. Just return..
3691 if (likely(ti
->preempt_count
|| irqs_disabled()))
3695 add_preempt_count(PREEMPT_ACTIVE
);
3698 * We keep the big kernel semaphore locked, but we
3699 * clear ->lock_depth so that schedule() doesnt
3700 * auto-release the semaphore:
3702 #ifdef CONFIG_PREEMPT_BKL
3703 saved_lock_depth
= task
->lock_depth
;
3704 task
->lock_depth
= -1;
3707 #ifdef CONFIG_PREEMPT_BKL
3708 task
->lock_depth
= saved_lock_depth
;
3710 sub_preempt_count(PREEMPT_ACTIVE
);
3713 * Check again in case we missed a preemption opportunity
3714 * between schedule and now.
3717 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3719 EXPORT_SYMBOL(preempt_schedule
);
3722 * this is the entry point to schedule() from kernel preemption
3723 * off of irq context.
3724 * Note, that this is called and return with irqs disabled. This will
3725 * protect us against recursive calling from irq.
3727 asmlinkage
void __sched
preempt_schedule_irq(void)
3729 struct thread_info
*ti
= current_thread_info();
3730 #ifdef CONFIG_PREEMPT_BKL
3731 struct task_struct
*task
= current
;
3732 int saved_lock_depth
;
3734 /* Catch callers which need to be fixed */
3735 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3738 add_preempt_count(PREEMPT_ACTIVE
);
3741 * We keep the big kernel semaphore locked, but we
3742 * clear ->lock_depth so that schedule() doesnt
3743 * auto-release the semaphore:
3745 #ifdef CONFIG_PREEMPT_BKL
3746 saved_lock_depth
= task
->lock_depth
;
3747 task
->lock_depth
= -1;
3751 local_irq_disable();
3752 #ifdef CONFIG_PREEMPT_BKL
3753 task
->lock_depth
= saved_lock_depth
;
3755 sub_preempt_count(PREEMPT_ACTIVE
);
3758 * Check again in case we missed a preemption opportunity
3759 * between schedule and now.
3762 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3765 #endif /* CONFIG_PREEMPT */
3767 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3770 return try_to_wake_up(curr
->private, mode
, sync
);
3772 EXPORT_SYMBOL(default_wake_function
);
3775 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3776 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3777 * number) then we wake all the non-exclusive tasks and one exclusive task.
3779 * There are circumstances in which we can try to wake a task which has already
3780 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3781 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3783 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3784 int nr_exclusive
, int sync
, void *key
)
3786 wait_queue_t
*curr
, *next
;
3788 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3789 unsigned flags
= curr
->flags
;
3791 if (curr
->func(curr
, mode
, sync
, key
) &&
3792 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3798 * __wake_up - wake up threads blocked on a waitqueue.
3800 * @mode: which threads
3801 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3802 * @key: is directly passed to the wakeup function
3804 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3805 int nr_exclusive
, void *key
)
3807 unsigned long flags
;
3809 spin_lock_irqsave(&q
->lock
, flags
);
3810 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3811 spin_unlock_irqrestore(&q
->lock
, flags
);
3813 EXPORT_SYMBOL(__wake_up
);
3816 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3818 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3820 __wake_up_common(q
, mode
, 1, 0, NULL
);
3824 * __wake_up_sync - wake up threads blocked on a waitqueue.
3826 * @mode: which threads
3827 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3829 * The sync wakeup differs that the waker knows that it will schedule
3830 * away soon, so while the target thread will be woken up, it will not
3831 * be migrated to another CPU - ie. the two threads are 'synchronized'
3832 * with each other. This can prevent needless bouncing between CPUs.
3834 * On UP it can prevent extra preemption.
3837 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3839 unsigned long flags
;
3845 if (unlikely(!nr_exclusive
))
3848 spin_lock_irqsave(&q
->lock
, flags
);
3849 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3850 spin_unlock_irqrestore(&q
->lock
, flags
);
3852 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3854 void complete(struct completion
*x
)
3856 unsigned long flags
;
3858 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3860 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3862 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3864 EXPORT_SYMBOL(complete
);
3866 void complete_all(struct completion
*x
)
3868 unsigned long flags
;
3870 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3871 x
->done
+= UINT_MAX
/2;
3872 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3874 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3876 EXPORT_SYMBOL(complete_all
);
3878 static inline long __sched
3879 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3882 DECLARE_WAITQUEUE(wait
, current
);
3884 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3885 __add_wait_queue_tail(&x
->wait
, &wait
);
3887 if (state
== TASK_INTERRUPTIBLE
&&
3888 signal_pending(current
)) {
3889 __remove_wait_queue(&x
->wait
, &wait
);
3890 return -ERESTARTSYS
;
3892 __set_current_state(state
);
3893 spin_unlock_irq(&x
->wait
.lock
);
3894 timeout
= schedule_timeout(timeout
);
3895 spin_lock_irq(&x
->wait
.lock
);
3897 __remove_wait_queue(&x
->wait
, &wait
);
3901 __remove_wait_queue(&x
->wait
, &wait
);
3908 wait_for_common(struct completion
*x
, long timeout
, int state
)
3912 spin_lock_irq(&x
->wait
.lock
);
3913 timeout
= do_wait_for_common(x
, timeout
, state
);
3914 spin_unlock_irq(&x
->wait
.lock
);
3918 void __sched
wait_for_completion(struct completion
*x
)
3920 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3922 EXPORT_SYMBOL(wait_for_completion
);
3924 unsigned long __sched
3925 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3927 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3929 EXPORT_SYMBOL(wait_for_completion_timeout
);
3931 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3933 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3934 if (t
== -ERESTARTSYS
)
3938 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3940 unsigned long __sched
3941 wait_for_completion_interruptible_timeout(struct completion
*x
,
3942 unsigned long timeout
)
3944 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3946 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3949 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3951 unsigned long flags
;
3954 init_waitqueue_entry(&wait
, current
);
3956 __set_current_state(state
);
3958 spin_lock_irqsave(&q
->lock
, flags
);
3959 __add_wait_queue(q
, &wait
);
3960 spin_unlock(&q
->lock
);
3961 timeout
= schedule_timeout(timeout
);
3962 spin_lock_irq(&q
->lock
);
3963 __remove_wait_queue(q
, &wait
);
3964 spin_unlock_irqrestore(&q
->lock
, flags
);
3969 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3971 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3973 EXPORT_SYMBOL(interruptible_sleep_on
);
3976 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3978 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3980 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3982 void __sched
sleep_on(wait_queue_head_t
*q
)
3984 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3986 EXPORT_SYMBOL(sleep_on
);
3988 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3990 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3992 EXPORT_SYMBOL(sleep_on_timeout
);
3994 #ifdef CONFIG_RT_MUTEXES
3997 * rt_mutex_setprio - set the current priority of a task
3999 * @prio: prio value (kernel-internal form)
4001 * This function changes the 'effective' priority of a task. It does
4002 * not touch ->normal_prio like __setscheduler().
4004 * Used by the rt_mutex code to implement priority inheritance logic.
4006 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4008 unsigned long flags
;
4009 int oldprio
, on_rq
, running
;
4012 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4014 rq
= task_rq_lock(p
, &flags
);
4015 update_rq_clock(rq
);
4018 on_rq
= p
->se
.on_rq
;
4019 running
= task_running(rq
, p
);
4021 dequeue_task(rq
, p
, 0);
4023 p
->sched_class
->put_prev_task(rq
, p
);
4027 p
->sched_class
= &rt_sched_class
;
4029 p
->sched_class
= &fair_sched_class
;
4035 p
->sched_class
->set_curr_task(rq
);
4036 enqueue_task(rq
, p
, 0);
4038 * Reschedule if we are currently running on this runqueue and
4039 * our priority decreased, or if we are not currently running on
4040 * this runqueue and our priority is higher than the current's
4043 if (p
->prio
> oldprio
)
4044 resched_task(rq
->curr
);
4046 check_preempt_curr(rq
, p
);
4049 task_rq_unlock(rq
, &flags
);
4054 void set_user_nice(struct task_struct
*p
, long nice
)
4056 int old_prio
, delta
, on_rq
;
4057 unsigned long flags
;
4060 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4063 * We have to be careful, if called from sys_setpriority(),
4064 * the task might be in the middle of scheduling on another CPU.
4066 rq
= task_rq_lock(p
, &flags
);
4067 update_rq_clock(rq
);
4069 * The RT priorities are set via sched_setscheduler(), but we still
4070 * allow the 'normal' nice value to be set - but as expected
4071 * it wont have any effect on scheduling until the task is
4072 * SCHED_FIFO/SCHED_RR:
4074 if (task_has_rt_policy(p
)) {
4075 p
->static_prio
= NICE_TO_PRIO(nice
);
4078 on_rq
= p
->se
.on_rq
;
4080 dequeue_task(rq
, p
, 0);
4084 p
->static_prio
= NICE_TO_PRIO(nice
);
4087 p
->prio
= effective_prio(p
);
4088 delta
= p
->prio
- old_prio
;
4091 enqueue_task(rq
, p
, 0);
4094 * If the task increased its priority or is running and
4095 * lowered its priority, then reschedule its CPU:
4097 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4098 resched_task(rq
->curr
);
4101 task_rq_unlock(rq
, &flags
);
4103 EXPORT_SYMBOL(set_user_nice
);
4106 * can_nice - check if a task can reduce its nice value
4110 int can_nice(const struct task_struct
*p
, const int nice
)
4112 /* convert nice value [19,-20] to rlimit style value [1,40] */
4113 int nice_rlim
= 20 - nice
;
4115 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4116 capable(CAP_SYS_NICE
));
4119 #ifdef __ARCH_WANT_SYS_NICE
4122 * sys_nice - change the priority of the current process.
4123 * @increment: priority increment
4125 * sys_setpriority is a more generic, but much slower function that
4126 * does similar things.
4128 asmlinkage
long sys_nice(int increment
)
4133 * Setpriority might change our priority at the same moment.
4134 * We don't have to worry. Conceptually one call occurs first
4135 * and we have a single winner.
4137 if (increment
< -40)
4142 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4148 if (increment
< 0 && !can_nice(current
, nice
))
4151 retval
= security_task_setnice(current
, nice
);
4155 set_user_nice(current
, nice
);
4162 * task_prio - return the priority value of a given task.
4163 * @p: the task in question.
4165 * This is the priority value as seen by users in /proc.
4166 * RT tasks are offset by -200. Normal tasks are centered
4167 * around 0, value goes from -16 to +15.
4169 int task_prio(const struct task_struct
*p
)
4171 return p
->prio
- MAX_RT_PRIO
;
4175 * task_nice - return the nice value of a given task.
4176 * @p: the task in question.
4178 int task_nice(const struct task_struct
*p
)
4180 return TASK_NICE(p
);
4182 EXPORT_SYMBOL_GPL(task_nice
);
4185 * idle_cpu - is a given cpu idle currently?
4186 * @cpu: the processor in question.
4188 int idle_cpu(int cpu
)
4190 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4194 * idle_task - return the idle task for a given cpu.
4195 * @cpu: the processor in question.
4197 struct task_struct
*idle_task(int cpu
)
4199 return cpu_rq(cpu
)->idle
;
4203 * find_process_by_pid - find a process with a matching PID value.
4204 * @pid: the pid in question.
4206 static struct task_struct
*find_process_by_pid(pid_t pid
)
4208 return pid
? find_task_by_vpid(pid
) : current
;
4211 /* Actually do priority change: must hold rq lock. */
4213 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4215 BUG_ON(p
->se
.on_rq
);
4218 switch (p
->policy
) {
4222 p
->sched_class
= &fair_sched_class
;
4226 p
->sched_class
= &rt_sched_class
;
4230 p
->rt_priority
= prio
;
4231 p
->normal_prio
= normal_prio(p
);
4232 /* we are holding p->pi_lock already */
4233 p
->prio
= rt_mutex_getprio(p
);
4238 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4239 * @p: the task in question.
4240 * @policy: new policy.
4241 * @param: structure containing the new RT priority.
4243 * NOTE that the task may be already dead.
4245 int sched_setscheduler(struct task_struct
*p
, int policy
,
4246 struct sched_param
*param
)
4248 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4249 unsigned long flags
;
4252 /* may grab non-irq protected spin_locks */
4253 BUG_ON(in_interrupt());
4255 /* double check policy once rq lock held */
4257 policy
= oldpolicy
= p
->policy
;
4258 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4259 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4260 policy
!= SCHED_IDLE
)
4263 * Valid priorities for SCHED_FIFO and SCHED_RR are
4264 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4265 * SCHED_BATCH and SCHED_IDLE is 0.
4267 if (param
->sched_priority
< 0 ||
4268 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4269 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4271 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4275 * Allow unprivileged RT tasks to decrease priority:
4277 if (!capable(CAP_SYS_NICE
)) {
4278 if (rt_policy(policy
)) {
4279 unsigned long rlim_rtprio
;
4281 if (!lock_task_sighand(p
, &flags
))
4283 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4284 unlock_task_sighand(p
, &flags
);
4286 /* can't set/change the rt policy */
4287 if (policy
!= p
->policy
&& !rlim_rtprio
)
4290 /* can't increase priority */
4291 if (param
->sched_priority
> p
->rt_priority
&&
4292 param
->sched_priority
> rlim_rtprio
)
4296 * Like positive nice levels, dont allow tasks to
4297 * move out of SCHED_IDLE either:
4299 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4302 /* can't change other user's priorities */
4303 if ((current
->euid
!= p
->euid
) &&
4304 (current
->euid
!= p
->uid
))
4308 retval
= security_task_setscheduler(p
, policy
, param
);
4312 * make sure no PI-waiters arrive (or leave) while we are
4313 * changing the priority of the task:
4315 spin_lock_irqsave(&p
->pi_lock
, flags
);
4317 * To be able to change p->policy safely, the apropriate
4318 * runqueue lock must be held.
4320 rq
= __task_rq_lock(p
);
4321 /* recheck policy now with rq lock held */
4322 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4323 policy
= oldpolicy
= -1;
4324 __task_rq_unlock(rq
);
4325 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4328 update_rq_clock(rq
);
4329 on_rq
= p
->se
.on_rq
;
4330 running
= task_running(rq
, p
);
4332 deactivate_task(rq
, p
, 0);
4334 p
->sched_class
->put_prev_task(rq
, p
);
4338 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4342 p
->sched_class
->set_curr_task(rq
);
4343 activate_task(rq
, p
, 0);
4345 * Reschedule if we are currently running on this runqueue and
4346 * our priority decreased, or if we are not currently running on
4347 * this runqueue and our priority is higher than the current's
4350 if (p
->prio
> oldprio
)
4351 resched_task(rq
->curr
);
4353 check_preempt_curr(rq
, p
);
4356 __task_rq_unlock(rq
);
4357 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4359 rt_mutex_adjust_pi(p
);
4363 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4366 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4368 struct sched_param lparam
;
4369 struct task_struct
*p
;
4372 if (!param
|| pid
< 0)
4374 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4379 p
= find_process_by_pid(pid
);
4381 retval
= sched_setscheduler(p
, policy
, &lparam
);
4388 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4389 * @pid: the pid in question.
4390 * @policy: new policy.
4391 * @param: structure containing the new RT priority.
4393 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4394 struct sched_param __user
*param
)
4396 /* negative values for policy are not valid */
4400 return do_sched_setscheduler(pid
, policy
, param
);
4404 * sys_sched_setparam - set/change the RT priority of a thread
4405 * @pid: the pid in question.
4406 * @param: structure containing the new RT priority.
4408 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4410 return do_sched_setscheduler(pid
, -1, param
);
4414 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4415 * @pid: the pid in question.
4417 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4419 struct task_struct
*p
;
4426 read_lock(&tasklist_lock
);
4427 p
= find_process_by_pid(pid
);
4429 retval
= security_task_getscheduler(p
);
4433 read_unlock(&tasklist_lock
);
4438 * sys_sched_getscheduler - get the RT priority of a thread
4439 * @pid: the pid in question.
4440 * @param: structure containing the RT priority.
4442 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4444 struct sched_param lp
;
4445 struct task_struct
*p
;
4448 if (!param
|| pid
< 0)
4451 read_lock(&tasklist_lock
);
4452 p
= find_process_by_pid(pid
);
4457 retval
= security_task_getscheduler(p
);
4461 lp
.sched_priority
= p
->rt_priority
;
4462 read_unlock(&tasklist_lock
);
4465 * This one might sleep, we cannot do it with a spinlock held ...
4467 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4472 read_unlock(&tasklist_lock
);
4476 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4478 cpumask_t cpus_allowed
;
4479 struct task_struct
*p
;
4482 mutex_lock(&sched_hotcpu_mutex
);
4483 read_lock(&tasklist_lock
);
4485 p
= find_process_by_pid(pid
);
4487 read_unlock(&tasklist_lock
);
4488 mutex_unlock(&sched_hotcpu_mutex
);
4493 * It is not safe to call set_cpus_allowed with the
4494 * tasklist_lock held. We will bump the task_struct's
4495 * usage count and then drop tasklist_lock.
4498 read_unlock(&tasklist_lock
);
4501 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4502 !capable(CAP_SYS_NICE
))
4505 retval
= security_task_setscheduler(p
, 0, NULL
);
4509 cpus_allowed
= cpuset_cpus_allowed(p
);
4510 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4512 retval
= set_cpus_allowed(p
, new_mask
);
4515 cpus_allowed
= cpuset_cpus_allowed(p
);
4516 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4518 * We must have raced with a concurrent cpuset
4519 * update. Just reset the cpus_allowed to the
4520 * cpuset's cpus_allowed
4522 new_mask
= cpus_allowed
;
4528 mutex_unlock(&sched_hotcpu_mutex
);
4532 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4533 cpumask_t
*new_mask
)
4535 if (len
< sizeof(cpumask_t
)) {
4536 memset(new_mask
, 0, sizeof(cpumask_t
));
4537 } else if (len
> sizeof(cpumask_t
)) {
4538 len
= sizeof(cpumask_t
);
4540 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4544 * sys_sched_setaffinity - set the cpu affinity of a process
4545 * @pid: pid of the process
4546 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4547 * @user_mask_ptr: user-space pointer to the new cpu mask
4549 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4550 unsigned long __user
*user_mask_ptr
)
4555 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4559 return sched_setaffinity(pid
, new_mask
);
4563 * Represents all cpu's present in the system
4564 * In systems capable of hotplug, this map could dynamically grow
4565 * as new cpu's are detected in the system via any platform specific
4566 * method, such as ACPI for e.g.
4569 cpumask_t cpu_present_map __read_mostly
;
4570 EXPORT_SYMBOL(cpu_present_map
);
4573 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4574 EXPORT_SYMBOL(cpu_online_map
);
4576 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4577 EXPORT_SYMBOL(cpu_possible_map
);
4580 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4582 struct task_struct
*p
;
4585 mutex_lock(&sched_hotcpu_mutex
);
4586 read_lock(&tasklist_lock
);
4589 p
= find_process_by_pid(pid
);
4593 retval
= security_task_getscheduler(p
);
4597 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4600 read_unlock(&tasklist_lock
);
4601 mutex_unlock(&sched_hotcpu_mutex
);
4607 * sys_sched_getaffinity - get the cpu affinity of a process
4608 * @pid: pid of the process
4609 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4610 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4612 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4613 unsigned long __user
*user_mask_ptr
)
4618 if (len
< sizeof(cpumask_t
))
4621 ret
= sched_getaffinity(pid
, &mask
);
4625 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4628 return sizeof(cpumask_t
);
4632 * sys_sched_yield - yield the current processor to other threads.
4634 * This function yields the current CPU to other tasks. If there are no
4635 * other threads running on this CPU then this function will return.
4637 asmlinkage
long sys_sched_yield(void)
4639 struct rq
*rq
= this_rq_lock();
4641 schedstat_inc(rq
, yld_count
);
4642 current
->sched_class
->yield_task(rq
);
4645 * Since we are going to call schedule() anyway, there's
4646 * no need to preempt or enable interrupts:
4648 __release(rq
->lock
);
4649 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4650 _raw_spin_unlock(&rq
->lock
);
4651 preempt_enable_no_resched();
4658 static void __cond_resched(void)
4660 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4661 __might_sleep(__FILE__
, __LINE__
);
4664 * The BKS might be reacquired before we have dropped
4665 * PREEMPT_ACTIVE, which could trigger a second
4666 * cond_resched() call.
4669 add_preempt_count(PREEMPT_ACTIVE
);
4671 sub_preempt_count(PREEMPT_ACTIVE
);
4672 } while (need_resched());
4675 int __sched
cond_resched(void)
4677 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4678 system_state
== SYSTEM_RUNNING
) {
4684 EXPORT_SYMBOL(cond_resched
);
4687 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4688 * call schedule, and on return reacquire the lock.
4690 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4691 * operations here to prevent schedule() from being called twice (once via
4692 * spin_unlock(), once by hand).
4694 int cond_resched_lock(spinlock_t
*lock
)
4698 if (need_lockbreak(lock
)) {
4704 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4705 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4706 _raw_spin_unlock(lock
);
4707 preempt_enable_no_resched();
4714 EXPORT_SYMBOL(cond_resched_lock
);
4716 int __sched
cond_resched_softirq(void)
4718 BUG_ON(!in_softirq());
4720 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4728 EXPORT_SYMBOL(cond_resched_softirq
);
4731 * yield - yield the current processor to other threads.
4733 * This is a shortcut for kernel-space yielding - it marks the
4734 * thread runnable and calls sys_sched_yield().
4736 void __sched
yield(void)
4738 set_current_state(TASK_RUNNING
);
4741 EXPORT_SYMBOL(yield
);
4744 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4745 * that process accounting knows that this is a task in IO wait state.
4747 * But don't do that if it is a deliberate, throttling IO wait (this task
4748 * has set its backing_dev_info: the queue against which it should throttle)
4750 void __sched
io_schedule(void)
4752 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4754 delayacct_blkio_start();
4755 atomic_inc(&rq
->nr_iowait
);
4757 atomic_dec(&rq
->nr_iowait
);
4758 delayacct_blkio_end();
4760 EXPORT_SYMBOL(io_schedule
);
4762 long __sched
io_schedule_timeout(long timeout
)
4764 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4767 delayacct_blkio_start();
4768 atomic_inc(&rq
->nr_iowait
);
4769 ret
= schedule_timeout(timeout
);
4770 atomic_dec(&rq
->nr_iowait
);
4771 delayacct_blkio_end();
4776 * sys_sched_get_priority_max - return maximum RT priority.
4777 * @policy: scheduling class.
4779 * this syscall returns the maximum rt_priority that can be used
4780 * by a given scheduling class.
4782 asmlinkage
long sys_sched_get_priority_max(int policy
)
4789 ret
= MAX_USER_RT_PRIO
-1;
4801 * sys_sched_get_priority_min - return minimum RT priority.
4802 * @policy: scheduling class.
4804 * this syscall returns the minimum rt_priority that can be used
4805 * by a given scheduling class.
4807 asmlinkage
long sys_sched_get_priority_min(int policy
)
4825 * sys_sched_rr_get_interval - return the default timeslice of a process.
4826 * @pid: pid of the process.
4827 * @interval: userspace pointer to the timeslice value.
4829 * this syscall writes the default timeslice value of a given process
4830 * into the user-space timespec buffer. A value of '0' means infinity.
4833 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4835 struct task_struct
*p
;
4836 unsigned int time_slice
;
4844 read_lock(&tasklist_lock
);
4845 p
= find_process_by_pid(pid
);
4849 retval
= security_task_getscheduler(p
);
4853 if (p
->policy
== SCHED_FIFO
)
4855 else if (p
->policy
== SCHED_RR
)
4856 time_slice
= DEF_TIMESLICE
;
4858 struct sched_entity
*se
= &p
->se
;
4859 unsigned long flags
;
4862 rq
= task_rq_lock(p
, &flags
);
4863 time_slice
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
4864 task_rq_unlock(rq
, &flags
);
4866 read_unlock(&tasklist_lock
);
4867 jiffies_to_timespec(time_slice
, &t
);
4868 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4872 read_unlock(&tasklist_lock
);
4876 static const char stat_nam
[] = "RSDTtZX";
4878 static void show_task(struct task_struct
*p
)
4880 unsigned long free
= 0;
4883 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4884 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
4885 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4886 #if BITS_PER_LONG == 32
4887 if (state
== TASK_RUNNING
)
4888 printk(KERN_CONT
" running ");
4890 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4892 if (state
== TASK_RUNNING
)
4893 printk(KERN_CONT
" running task ");
4895 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4897 #ifdef CONFIG_DEBUG_STACK_USAGE
4899 unsigned long *n
= end_of_stack(p
);
4902 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4905 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
4906 task_pid_nr(p
), task_pid_nr(p
->parent
));
4908 if (state
!= TASK_RUNNING
)
4909 show_stack(p
, NULL
);
4912 void show_state_filter(unsigned long state_filter
)
4914 struct task_struct
*g
, *p
;
4916 #if BITS_PER_LONG == 32
4918 " task PC stack pid father\n");
4921 " task PC stack pid father\n");
4923 read_lock(&tasklist_lock
);
4924 do_each_thread(g
, p
) {
4926 * reset the NMI-timeout, listing all files on a slow
4927 * console might take alot of time:
4929 touch_nmi_watchdog();
4930 if (!state_filter
|| (p
->state
& state_filter
))
4932 } while_each_thread(g
, p
);
4934 touch_all_softlockup_watchdogs();
4936 #ifdef CONFIG_SCHED_DEBUG
4937 sysrq_sched_debug_show();
4939 read_unlock(&tasklist_lock
);
4941 * Only show locks if all tasks are dumped:
4943 if (state_filter
== -1)
4944 debug_show_all_locks();
4947 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4949 idle
->sched_class
= &idle_sched_class
;
4953 * init_idle - set up an idle thread for a given CPU
4954 * @idle: task in question
4955 * @cpu: cpu the idle task belongs to
4957 * NOTE: this function does not set the idle thread's NEED_RESCHED
4958 * flag, to make booting more robust.
4960 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4962 struct rq
*rq
= cpu_rq(cpu
);
4963 unsigned long flags
;
4966 idle
->se
.exec_start
= sched_clock();
4968 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4969 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4970 __set_task_cpu(idle
, cpu
);
4972 spin_lock_irqsave(&rq
->lock
, flags
);
4973 rq
->curr
= rq
->idle
= idle
;
4974 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4977 spin_unlock_irqrestore(&rq
->lock
, flags
);
4979 /* Set the preempt count _outside_ the spinlocks! */
4980 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4981 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4983 task_thread_info(idle
)->preempt_count
= 0;
4986 * The idle tasks have their own, simple scheduling class:
4988 idle
->sched_class
= &idle_sched_class
;
4992 * In a system that switches off the HZ timer nohz_cpu_mask
4993 * indicates which cpus entered this state. This is used
4994 * in the rcu update to wait only for active cpus. For system
4995 * which do not switch off the HZ timer nohz_cpu_mask should
4996 * always be CPU_MASK_NONE.
4998 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5001 * Increase the granularity value when there are more CPUs,
5002 * because with more CPUs the 'effective latency' as visible
5003 * to users decreases. But the relationship is not linear,
5004 * so pick a second-best guess by going with the log2 of the
5007 * This idea comes from the SD scheduler of Con Kolivas:
5009 static inline void sched_init_granularity(void)
5011 unsigned int factor
= 1 + ilog2(num_online_cpus());
5012 const unsigned long limit
= 200000000;
5014 sysctl_sched_min_granularity
*= factor
;
5015 if (sysctl_sched_min_granularity
> limit
)
5016 sysctl_sched_min_granularity
= limit
;
5018 sysctl_sched_latency
*= factor
;
5019 if (sysctl_sched_latency
> limit
)
5020 sysctl_sched_latency
= limit
;
5022 sysctl_sched_wakeup_granularity
*= factor
;
5023 sysctl_sched_batch_wakeup_granularity
*= factor
;
5028 * This is how migration works:
5030 * 1) we queue a struct migration_req structure in the source CPU's
5031 * runqueue and wake up that CPU's migration thread.
5032 * 2) we down() the locked semaphore => thread blocks.
5033 * 3) migration thread wakes up (implicitly it forces the migrated
5034 * thread off the CPU)
5035 * 4) it gets the migration request and checks whether the migrated
5036 * task is still in the wrong runqueue.
5037 * 5) if it's in the wrong runqueue then the migration thread removes
5038 * it and puts it into the right queue.
5039 * 6) migration thread up()s the semaphore.
5040 * 7) we wake up and the migration is done.
5044 * Change a given task's CPU affinity. Migrate the thread to a
5045 * proper CPU and schedule it away if the CPU it's executing on
5046 * is removed from the allowed bitmask.
5048 * NOTE: the caller must have a valid reference to the task, the
5049 * task must not exit() & deallocate itself prematurely. The
5050 * call is not atomic; no spinlocks may be held.
5052 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5054 struct migration_req req
;
5055 unsigned long flags
;
5059 rq
= task_rq_lock(p
, &flags
);
5060 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5065 p
->cpus_allowed
= new_mask
;
5066 /* Can the task run on the task's current CPU? If so, we're done */
5067 if (cpu_isset(task_cpu(p
), new_mask
))
5070 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5071 /* Need help from migration thread: drop lock and wait. */
5072 task_rq_unlock(rq
, &flags
);
5073 wake_up_process(rq
->migration_thread
);
5074 wait_for_completion(&req
.done
);
5075 tlb_migrate_finish(p
->mm
);
5079 task_rq_unlock(rq
, &flags
);
5083 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5086 * Move (not current) task off this cpu, onto dest cpu. We're doing
5087 * this because either it can't run here any more (set_cpus_allowed()
5088 * away from this CPU, or CPU going down), or because we're
5089 * attempting to rebalance this task on exec (sched_exec).
5091 * So we race with normal scheduler movements, but that's OK, as long
5092 * as the task is no longer on this CPU.
5094 * Returns non-zero if task was successfully migrated.
5096 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5098 struct rq
*rq_dest
, *rq_src
;
5101 if (unlikely(cpu_is_offline(dest_cpu
)))
5104 rq_src
= cpu_rq(src_cpu
);
5105 rq_dest
= cpu_rq(dest_cpu
);
5107 double_rq_lock(rq_src
, rq_dest
);
5108 /* Already moved. */
5109 if (task_cpu(p
) != src_cpu
)
5111 /* Affinity changed (again). */
5112 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5115 on_rq
= p
->se
.on_rq
;
5117 deactivate_task(rq_src
, p
, 0);
5119 set_task_cpu(p
, dest_cpu
);
5121 activate_task(rq_dest
, p
, 0);
5122 check_preempt_curr(rq_dest
, p
);
5126 double_rq_unlock(rq_src
, rq_dest
);
5131 * migration_thread - this is a highprio system thread that performs
5132 * thread migration by bumping thread off CPU then 'pushing' onto
5135 static int migration_thread(void *data
)
5137 int cpu
= (long)data
;
5141 BUG_ON(rq
->migration_thread
!= current
);
5143 set_current_state(TASK_INTERRUPTIBLE
);
5144 while (!kthread_should_stop()) {
5145 struct migration_req
*req
;
5146 struct list_head
*head
;
5148 spin_lock_irq(&rq
->lock
);
5150 if (cpu_is_offline(cpu
)) {
5151 spin_unlock_irq(&rq
->lock
);
5155 if (rq
->active_balance
) {
5156 active_load_balance(rq
, cpu
);
5157 rq
->active_balance
= 0;
5160 head
= &rq
->migration_queue
;
5162 if (list_empty(head
)) {
5163 spin_unlock_irq(&rq
->lock
);
5165 set_current_state(TASK_INTERRUPTIBLE
);
5168 req
= list_entry(head
->next
, struct migration_req
, list
);
5169 list_del_init(head
->next
);
5171 spin_unlock(&rq
->lock
);
5172 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5175 complete(&req
->done
);
5177 __set_current_state(TASK_RUNNING
);
5181 /* Wait for kthread_stop */
5182 set_current_state(TASK_INTERRUPTIBLE
);
5183 while (!kthread_should_stop()) {
5185 set_current_state(TASK_INTERRUPTIBLE
);
5187 __set_current_state(TASK_RUNNING
);
5191 #ifdef CONFIG_HOTPLUG_CPU
5193 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5197 local_irq_disable();
5198 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5204 * Figure out where task on dead CPU should go, use force if necessary.
5205 * NOTE: interrupts should be disabled by the caller
5207 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5209 unsigned long flags
;
5216 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5217 cpus_and(mask
, mask
, p
->cpus_allowed
);
5218 dest_cpu
= any_online_cpu(mask
);
5220 /* On any allowed CPU? */
5221 if (dest_cpu
== NR_CPUS
)
5222 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5224 /* No more Mr. Nice Guy. */
5225 if (dest_cpu
== NR_CPUS
) {
5226 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5228 * Try to stay on the same cpuset, where the
5229 * current cpuset may be a subset of all cpus.
5230 * The cpuset_cpus_allowed_locked() variant of
5231 * cpuset_cpus_allowed() will not block. It must be
5232 * called within calls to cpuset_lock/cpuset_unlock.
5234 rq
= task_rq_lock(p
, &flags
);
5235 p
->cpus_allowed
= cpus_allowed
;
5236 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5237 task_rq_unlock(rq
, &flags
);
5240 * Don't tell them about moving exiting tasks or
5241 * kernel threads (both mm NULL), since they never
5244 if (p
->mm
&& printk_ratelimit())
5245 printk(KERN_INFO
"process %d (%s) no "
5246 "longer affine to cpu%d\n",
5247 task_pid_nr(p
), p
->comm
, dead_cpu
);
5249 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5253 * While a dead CPU has no uninterruptible tasks queued at this point,
5254 * it might still have a nonzero ->nr_uninterruptible counter, because
5255 * for performance reasons the counter is not stricly tracking tasks to
5256 * their home CPUs. So we just add the counter to another CPU's counter,
5257 * to keep the global sum constant after CPU-down:
5259 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5261 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5262 unsigned long flags
;
5264 local_irq_save(flags
);
5265 double_rq_lock(rq_src
, rq_dest
);
5266 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5267 rq_src
->nr_uninterruptible
= 0;
5268 double_rq_unlock(rq_src
, rq_dest
);
5269 local_irq_restore(flags
);
5272 /* Run through task list and migrate tasks from the dead cpu. */
5273 static void migrate_live_tasks(int src_cpu
)
5275 struct task_struct
*p
, *t
;
5277 read_lock(&tasklist_lock
);
5279 do_each_thread(t
, p
) {
5283 if (task_cpu(p
) == src_cpu
)
5284 move_task_off_dead_cpu(src_cpu
, p
);
5285 } while_each_thread(t
, p
);
5287 read_unlock(&tasklist_lock
);
5291 * Schedules idle task to be the next runnable task on current CPU.
5292 * It does so by boosting its priority to highest possible.
5293 * Used by CPU offline code.
5295 void sched_idle_next(void)
5297 int this_cpu
= smp_processor_id();
5298 struct rq
*rq
= cpu_rq(this_cpu
);
5299 struct task_struct
*p
= rq
->idle
;
5300 unsigned long flags
;
5302 /* cpu has to be offline */
5303 BUG_ON(cpu_online(this_cpu
));
5306 * Strictly not necessary since rest of the CPUs are stopped by now
5307 * and interrupts disabled on the current cpu.
5309 spin_lock_irqsave(&rq
->lock
, flags
);
5311 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5313 update_rq_clock(rq
);
5314 activate_task(rq
, p
, 0);
5316 spin_unlock_irqrestore(&rq
->lock
, flags
);
5320 * Ensures that the idle task is using init_mm right before its cpu goes
5323 void idle_task_exit(void)
5325 struct mm_struct
*mm
= current
->active_mm
;
5327 BUG_ON(cpu_online(smp_processor_id()));
5330 switch_mm(mm
, &init_mm
, current
);
5334 /* called under rq->lock with disabled interrupts */
5335 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5337 struct rq
*rq
= cpu_rq(dead_cpu
);
5339 /* Must be exiting, otherwise would be on tasklist. */
5340 BUG_ON(!p
->exit_state
);
5342 /* Cannot have done final schedule yet: would have vanished. */
5343 BUG_ON(p
->state
== TASK_DEAD
);
5348 * Drop lock around migration; if someone else moves it,
5349 * that's OK. No task can be added to this CPU, so iteration is
5352 spin_unlock_irq(&rq
->lock
);
5353 move_task_off_dead_cpu(dead_cpu
, p
);
5354 spin_lock_irq(&rq
->lock
);
5359 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5360 static void migrate_dead_tasks(unsigned int dead_cpu
)
5362 struct rq
*rq
= cpu_rq(dead_cpu
);
5363 struct task_struct
*next
;
5366 if (!rq
->nr_running
)
5368 update_rq_clock(rq
);
5369 next
= pick_next_task(rq
, rq
->curr
);
5372 migrate_dead(dead_cpu
, next
);
5376 #endif /* CONFIG_HOTPLUG_CPU */
5378 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5380 static struct ctl_table sd_ctl_dir
[] = {
5382 .procname
= "sched_domain",
5388 static struct ctl_table sd_ctl_root
[] = {
5390 .ctl_name
= CTL_KERN
,
5391 .procname
= "kernel",
5393 .child
= sd_ctl_dir
,
5398 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5400 struct ctl_table
*entry
=
5401 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5406 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5408 struct ctl_table
*entry
;
5411 * In the intermediate directories, both the child directory and
5412 * procname are dynamically allocated and could fail but the mode
5413 * will always be set. In the lowest directory the names are
5414 * static strings and all have proc handlers.
5416 for (entry
= *tablep
; entry
->mode
; entry
++) {
5418 sd_free_ctl_entry(&entry
->child
);
5419 if (entry
->proc_handler
== NULL
)
5420 kfree(entry
->procname
);
5428 set_table_entry(struct ctl_table
*entry
,
5429 const char *procname
, void *data
, int maxlen
,
5430 mode_t mode
, proc_handler
*proc_handler
)
5432 entry
->procname
= procname
;
5434 entry
->maxlen
= maxlen
;
5436 entry
->proc_handler
= proc_handler
;
5439 static struct ctl_table
*
5440 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5442 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5447 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5448 sizeof(long), 0644, proc_doulongvec_minmax
);
5449 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5450 sizeof(long), 0644, proc_doulongvec_minmax
);
5451 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5452 sizeof(int), 0644, proc_dointvec_minmax
);
5453 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5454 sizeof(int), 0644, proc_dointvec_minmax
);
5455 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5456 sizeof(int), 0644, proc_dointvec_minmax
);
5457 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5458 sizeof(int), 0644, proc_dointvec_minmax
);
5459 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5460 sizeof(int), 0644, proc_dointvec_minmax
);
5461 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5462 sizeof(int), 0644, proc_dointvec_minmax
);
5463 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5464 sizeof(int), 0644, proc_dointvec_minmax
);
5465 set_table_entry(&table
[9], "cache_nice_tries",
5466 &sd
->cache_nice_tries
,
5467 sizeof(int), 0644, proc_dointvec_minmax
);
5468 set_table_entry(&table
[10], "flags", &sd
->flags
,
5469 sizeof(int), 0644, proc_dointvec_minmax
);
5470 /* &table[11] is terminator */
5475 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5477 struct ctl_table
*entry
, *table
;
5478 struct sched_domain
*sd
;
5479 int domain_num
= 0, i
;
5482 for_each_domain(cpu
, sd
)
5484 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5489 for_each_domain(cpu
, sd
) {
5490 snprintf(buf
, 32, "domain%d", i
);
5491 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5493 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5500 static struct ctl_table_header
*sd_sysctl_header
;
5501 static void register_sched_domain_sysctl(void)
5503 int i
, cpu_num
= num_online_cpus();
5504 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5507 WARN_ON(sd_ctl_dir
[0].child
);
5508 sd_ctl_dir
[0].child
= entry
;
5513 for_each_online_cpu(i
) {
5514 snprintf(buf
, 32, "cpu%d", i
);
5515 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5517 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5521 WARN_ON(sd_sysctl_header
);
5522 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5525 /* may be called multiple times per register */
5526 static void unregister_sched_domain_sysctl(void)
5528 if (sd_sysctl_header
)
5529 unregister_sysctl_table(sd_sysctl_header
);
5530 sd_sysctl_header
= NULL
;
5531 if (sd_ctl_dir
[0].child
)
5532 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5535 static void register_sched_domain_sysctl(void)
5538 static void unregister_sched_domain_sysctl(void)
5544 * migration_call - callback that gets triggered when a CPU is added.
5545 * Here we can start up the necessary migration thread for the new CPU.
5547 static int __cpuinit
5548 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5550 struct task_struct
*p
;
5551 int cpu
= (long)hcpu
;
5552 unsigned long flags
;
5556 case CPU_LOCK_ACQUIRE
:
5557 mutex_lock(&sched_hotcpu_mutex
);
5560 case CPU_UP_PREPARE
:
5561 case CPU_UP_PREPARE_FROZEN
:
5562 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5565 kthread_bind(p
, cpu
);
5566 /* Must be high prio: stop_machine expects to yield to it. */
5567 rq
= task_rq_lock(p
, &flags
);
5568 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5569 task_rq_unlock(rq
, &flags
);
5570 cpu_rq(cpu
)->migration_thread
= p
;
5574 case CPU_ONLINE_FROZEN
:
5575 /* Strictly unnecessary, as first user will wake it. */
5576 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5579 #ifdef CONFIG_HOTPLUG_CPU
5580 case CPU_UP_CANCELED
:
5581 case CPU_UP_CANCELED_FROZEN
:
5582 if (!cpu_rq(cpu
)->migration_thread
)
5584 /* Unbind it from offline cpu so it can run. Fall thru. */
5585 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5586 any_online_cpu(cpu_online_map
));
5587 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5588 cpu_rq(cpu
)->migration_thread
= NULL
;
5592 case CPU_DEAD_FROZEN
:
5593 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5594 migrate_live_tasks(cpu
);
5596 kthread_stop(rq
->migration_thread
);
5597 rq
->migration_thread
= NULL
;
5598 /* Idle task back to normal (off runqueue, low prio) */
5599 spin_lock_irq(&rq
->lock
);
5600 update_rq_clock(rq
);
5601 deactivate_task(rq
, rq
->idle
, 0);
5602 rq
->idle
->static_prio
= MAX_PRIO
;
5603 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5604 rq
->idle
->sched_class
= &idle_sched_class
;
5605 migrate_dead_tasks(cpu
);
5606 spin_unlock_irq(&rq
->lock
);
5608 migrate_nr_uninterruptible(rq
);
5609 BUG_ON(rq
->nr_running
!= 0);
5611 /* No need to migrate the tasks: it was best-effort if
5612 * they didn't take sched_hotcpu_mutex. Just wake up
5613 * the requestors. */
5614 spin_lock_irq(&rq
->lock
);
5615 while (!list_empty(&rq
->migration_queue
)) {
5616 struct migration_req
*req
;
5618 req
= list_entry(rq
->migration_queue
.next
,
5619 struct migration_req
, list
);
5620 list_del_init(&req
->list
);
5621 complete(&req
->done
);
5623 spin_unlock_irq(&rq
->lock
);
5626 case CPU_LOCK_RELEASE
:
5627 mutex_unlock(&sched_hotcpu_mutex
);
5633 /* Register at highest priority so that task migration (migrate_all_tasks)
5634 * happens before everything else.
5636 static struct notifier_block __cpuinitdata migration_notifier
= {
5637 .notifier_call
= migration_call
,
5641 void __init
migration_init(void)
5643 void *cpu
= (void *)(long)smp_processor_id();
5646 /* Start one for the boot CPU: */
5647 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5648 BUG_ON(err
== NOTIFY_BAD
);
5649 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5650 register_cpu_notifier(&migration_notifier
);
5656 /* Number of possible processor ids */
5657 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5658 EXPORT_SYMBOL(nr_cpu_ids
);
5660 #ifdef CONFIG_SCHED_DEBUG
5662 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5664 struct sched_group
*group
= sd
->groups
;
5665 cpumask_t groupmask
;
5668 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5669 cpus_clear(groupmask
);
5671 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5673 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5674 printk("does not load-balance\n");
5676 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5681 printk(KERN_CONT
"span %s\n", str
);
5683 if (!cpu_isset(cpu
, sd
->span
)) {
5684 printk(KERN_ERR
"ERROR: domain->span does not contain "
5687 if (!cpu_isset(cpu
, group
->cpumask
)) {
5688 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5692 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5696 printk(KERN_ERR
"ERROR: group is NULL\n");
5700 if (!group
->__cpu_power
) {
5701 printk(KERN_CONT
"\n");
5702 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5707 if (!cpus_weight(group
->cpumask
)) {
5708 printk(KERN_CONT
"\n");
5709 printk(KERN_ERR
"ERROR: empty group\n");
5713 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5714 printk(KERN_CONT
"\n");
5715 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5719 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5721 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5722 printk(KERN_CONT
" %s", str
);
5724 group
= group
->next
;
5725 } while (group
!= sd
->groups
);
5726 printk(KERN_CONT
"\n");
5728 if (!cpus_equal(sd
->span
, groupmask
))
5729 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5731 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
5732 printk(KERN_ERR
"ERROR: parent span is not a superset "
5733 "of domain->span\n");
5737 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5742 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5746 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5749 if (sched_domain_debug_one(sd
, cpu
, level
))
5758 # define sched_domain_debug(sd, cpu) do { } while (0)
5761 static int sd_degenerate(struct sched_domain
*sd
)
5763 if (cpus_weight(sd
->span
) == 1)
5766 /* Following flags need at least 2 groups */
5767 if (sd
->flags
& (SD_LOAD_BALANCE
|
5768 SD_BALANCE_NEWIDLE
|
5772 SD_SHARE_PKG_RESOURCES
)) {
5773 if (sd
->groups
!= sd
->groups
->next
)
5777 /* Following flags don't use groups */
5778 if (sd
->flags
& (SD_WAKE_IDLE
|
5787 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5789 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5791 if (sd_degenerate(parent
))
5794 if (!cpus_equal(sd
->span
, parent
->span
))
5797 /* Does parent contain flags not in child? */
5798 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5799 if (cflags
& SD_WAKE_AFFINE
)
5800 pflags
&= ~SD_WAKE_BALANCE
;
5801 /* Flags needing groups don't count if only 1 group in parent */
5802 if (parent
->groups
== parent
->groups
->next
) {
5803 pflags
&= ~(SD_LOAD_BALANCE
|
5804 SD_BALANCE_NEWIDLE
|
5808 SD_SHARE_PKG_RESOURCES
);
5810 if (~cflags
& pflags
)
5817 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5818 * hold the hotplug lock.
5820 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5822 struct rq
*rq
= cpu_rq(cpu
);
5823 struct sched_domain
*tmp
;
5825 /* Remove the sched domains which do not contribute to scheduling. */
5826 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5827 struct sched_domain
*parent
= tmp
->parent
;
5830 if (sd_parent_degenerate(tmp
, parent
)) {
5831 tmp
->parent
= parent
->parent
;
5833 parent
->parent
->child
= tmp
;
5837 if (sd
&& sd_degenerate(sd
)) {
5843 sched_domain_debug(sd
, cpu
);
5845 rcu_assign_pointer(rq
->sd
, sd
);
5848 /* cpus with isolated domains */
5849 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5851 /* Setup the mask of cpus configured for isolated domains */
5852 static int __init
isolated_cpu_setup(char *str
)
5854 int ints
[NR_CPUS
], i
;
5856 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5857 cpus_clear(cpu_isolated_map
);
5858 for (i
= 1; i
<= ints
[0]; i
++)
5859 if (ints
[i
] < NR_CPUS
)
5860 cpu_set(ints
[i
], cpu_isolated_map
);
5864 __setup("isolcpus=", isolated_cpu_setup
);
5867 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5868 * to a function which identifies what group(along with sched group) a CPU
5869 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5870 * (due to the fact that we keep track of groups covered with a cpumask_t).
5872 * init_sched_build_groups will build a circular linked list of the groups
5873 * covered by the given span, and will set each group's ->cpumask correctly,
5874 * and ->cpu_power to 0.
5877 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5878 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5879 struct sched_group
**sg
))
5881 struct sched_group
*first
= NULL
, *last
= NULL
;
5882 cpumask_t covered
= CPU_MASK_NONE
;
5885 for_each_cpu_mask(i
, span
) {
5886 struct sched_group
*sg
;
5887 int group
= group_fn(i
, cpu_map
, &sg
);
5890 if (cpu_isset(i
, covered
))
5893 sg
->cpumask
= CPU_MASK_NONE
;
5894 sg
->__cpu_power
= 0;
5896 for_each_cpu_mask(j
, span
) {
5897 if (group_fn(j
, cpu_map
, NULL
) != group
)
5900 cpu_set(j
, covered
);
5901 cpu_set(j
, sg
->cpumask
);
5912 #define SD_NODES_PER_DOMAIN 16
5917 * find_next_best_node - find the next node to include in a sched_domain
5918 * @node: node whose sched_domain we're building
5919 * @used_nodes: nodes already in the sched_domain
5921 * Find the next node to include in a given scheduling domain. Simply
5922 * finds the closest node not already in the @used_nodes map.
5924 * Should use nodemask_t.
5926 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5928 int i
, n
, val
, min_val
, best_node
= 0;
5932 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5933 /* Start at @node */
5934 n
= (node
+ i
) % MAX_NUMNODES
;
5936 if (!nr_cpus_node(n
))
5939 /* Skip already used nodes */
5940 if (test_bit(n
, used_nodes
))
5943 /* Simple min distance search */
5944 val
= node_distance(node
, n
);
5946 if (val
< min_val
) {
5952 set_bit(best_node
, used_nodes
);
5957 * sched_domain_node_span - get a cpumask for a node's sched_domain
5958 * @node: node whose cpumask we're constructing
5959 * @size: number of nodes to include in this span
5961 * Given a node, construct a good cpumask for its sched_domain to span. It
5962 * should be one that prevents unnecessary balancing, but also spreads tasks
5965 static cpumask_t
sched_domain_node_span(int node
)
5967 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5968 cpumask_t span
, nodemask
;
5972 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5974 nodemask
= node_to_cpumask(node
);
5975 cpus_or(span
, span
, nodemask
);
5976 set_bit(node
, used_nodes
);
5978 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5979 int next_node
= find_next_best_node(node
, used_nodes
);
5981 nodemask
= node_to_cpumask(next_node
);
5982 cpus_or(span
, span
, nodemask
);
5989 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5992 * SMT sched-domains:
5994 #ifdef CONFIG_SCHED_SMT
5995 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5996 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5998 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5999 struct sched_group
**sg
)
6002 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6008 * multi-core sched-domains:
6010 #ifdef CONFIG_SCHED_MC
6011 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6012 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6015 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6016 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
6017 struct sched_group
**sg
)
6020 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6021 cpus_and(mask
, mask
, *cpu_map
);
6022 group
= first_cpu(mask
);
6024 *sg
= &per_cpu(sched_group_core
, group
);
6027 #elif defined(CONFIG_SCHED_MC)
6028 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
6029 struct sched_group
**sg
)
6032 *sg
= &per_cpu(sched_group_core
, cpu
);
6037 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6038 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6040 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
6041 struct sched_group
**sg
)
6044 #ifdef CONFIG_SCHED_MC
6045 cpumask_t mask
= cpu_coregroup_map(cpu
);
6046 cpus_and(mask
, mask
, *cpu_map
);
6047 group
= first_cpu(mask
);
6048 #elif defined(CONFIG_SCHED_SMT)
6049 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6050 cpus_and(mask
, mask
, *cpu_map
);
6051 group
= first_cpu(mask
);
6056 *sg
= &per_cpu(sched_group_phys
, group
);
6062 * The init_sched_build_groups can't handle what we want to do with node
6063 * groups, so roll our own. Now each node has its own list of groups which
6064 * gets dynamically allocated.
6066 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6067 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6069 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6070 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6072 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6073 struct sched_group
**sg
)
6075 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6078 cpus_and(nodemask
, nodemask
, *cpu_map
);
6079 group
= first_cpu(nodemask
);
6082 *sg
= &per_cpu(sched_group_allnodes
, group
);
6086 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6088 struct sched_group
*sg
= group_head
;
6094 for_each_cpu_mask(j
, sg
->cpumask
) {
6095 struct sched_domain
*sd
;
6097 sd
= &per_cpu(phys_domains
, j
);
6098 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6100 * Only add "power" once for each
6106 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6109 } while (sg
!= group_head
);
6114 /* Free memory allocated for various sched_group structures */
6115 static void free_sched_groups(const cpumask_t
*cpu_map
)
6119 for_each_cpu_mask(cpu
, *cpu_map
) {
6120 struct sched_group
**sched_group_nodes
6121 = sched_group_nodes_bycpu
[cpu
];
6123 if (!sched_group_nodes
)
6126 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6127 cpumask_t nodemask
= node_to_cpumask(i
);
6128 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6130 cpus_and(nodemask
, nodemask
, *cpu_map
);
6131 if (cpus_empty(nodemask
))
6141 if (oldsg
!= sched_group_nodes
[i
])
6144 kfree(sched_group_nodes
);
6145 sched_group_nodes_bycpu
[cpu
] = NULL
;
6149 static void free_sched_groups(const cpumask_t
*cpu_map
)
6155 * Initialize sched groups cpu_power.
6157 * cpu_power indicates the capacity of sched group, which is used while
6158 * distributing the load between different sched groups in a sched domain.
6159 * Typically cpu_power for all the groups in a sched domain will be same unless
6160 * there are asymmetries in the topology. If there are asymmetries, group
6161 * having more cpu_power will pickup more load compared to the group having
6164 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6165 * the maximum number of tasks a group can handle in the presence of other idle
6166 * or lightly loaded groups in the same sched domain.
6168 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6170 struct sched_domain
*child
;
6171 struct sched_group
*group
;
6173 WARN_ON(!sd
|| !sd
->groups
);
6175 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6180 sd
->groups
->__cpu_power
= 0;
6183 * For perf policy, if the groups in child domain share resources
6184 * (for example cores sharing some portions of the cache hierarchy
6185 * or SMT), then set this domain groups cpu_power such that each group
6186 * can handle only one task, when there are other idle groups in the
6187 * same sched domain.
6189 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6191 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6192 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6197 * add cpu_power of each child group to this groups cpu_power
6199 group
= child
->groups
;
6201 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6202 group
= group
->next
;
6203 } while (group
!= child
->groups
);
6207 * Build sched domains for a given set of cpus and attach the sched domains
6208 * to the individual cpus
6210 static int build_sched_domains(const cpumask_t
*cpu_map
)
6214 struct sched_group
**sched_group_nodes
= NULL
;
6215 int sd_allnodes
= 0;
6218 * Allocate the per-node list of sched groups
6220 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6222 if (!sched_group_nodes
) {
6223 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6226 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6230 * Set up domains for cpus specified by the cpu_map.
6232 for_each_cpu_mask(i
, *cpu_map
) {
6233 struct sched_domain
*sd
= NULL
, *p
;
6234 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6236 cpus_and(nodemask
, nodemask
, *cpu_map
);
6239 if (cpus_weight(*cpu_map
) >
6240 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6241 sd
= &per_cpu(allnodes_domains
, i
);
6242 *sd
= SD_ALLNODES_INIT
;
6243 sd
->span
= *cpu_map
;
6244 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6250 sd
= &per_cpu(node_domains
, i
);
6252 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6256 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6260 sd
= &per_cpu(phys_domains
, i
);
6262 sd
->span
= nodemask
;
6266 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6268 #ifdef CONFIG_SCHED_MC
6270 sd
= &per_cpu(core_domains
, i
);
6272 sd
->span
= cpu_coregroup_map(i
);
6273 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6276 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6279 #ifdef CONFIG_SCHED_SMT
6281 sd
= &per_cpu(cpu_domains
, i
);
6282 *sd
= SD_SIBLING_INIT
;
6283 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6284 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6287 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6291 #ifdef CONFIG_SCHED_SMT
6292 /* Set up CPU (sibling) groups */
6293 for_each_cpu_mask(i
, *cpu_map
) {
6294 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6295 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6296 if (i
!= first_cpu(this_sibling_map
))
6299 init_sched_build_groups(this_sibling_map
, cpu_map
,
6304 #ifdef CONFIG_SCHED_MC
6305 /* Set up multi-core groups */
6306 for_each_cpu_mask(i
, *cpu_map
) {
6307 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6308 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6309 if (i
!= first_cpu(this_core_map
))
6311 init_sched_build_groups(this_core_map
, cpu_map
,
6312 &cpu_to_core_group
);
6316 /* Set up physical groups */
6317 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6318 cpumask_t nodemask
= node_to_cpumask(i
);
6320 cpus_and(nodemask
, nodemask
, *cpu_map
);
6321 if (cpus_empty(nodemask
))
6324 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6328 /* Set up node groups */
6330 init_sched_build_groups(*cpu_map
, cpu_map
,
6331 &cpu_to_allnodes_group
);
6333 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6334 /* Set up node groups */
6335 struct sched_group
*sg
, *prev
;
6336 cpumask_t nodemask
= node_to_cpumask(i
);
6337 cpumask_t domainspan
;
6338 cpumask_t covered
= CPU_MASK_NONE
;
6341 cpus_and(nodemask
, nodemask
, *cpu_map
);
6342 if (cpus_empty(nodemask
)) {
6343 sched_group_nodes
[i
] = NULL
;
6347 domainspan
= sched_domain_node_span(i
);
6348 cpus_and(domainspan
, domainspan
, *cpu_map
);
6350 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6352 printk(KERN_WARNING
"Can not alloc domain group for "
6356 sched_group_nodes
[i
] = sg
;
6357 for_each_cpu_mask(j
, nodemask
) {
6358 struct sched_domain
*sd
;
6360 sd
= &per_cpu(node_domains
, j
);
6363 sg
->__cpu_power
= 0;
6364 sg
->cpumask
= nodemask
;
6366 cpus_or(covered
, covered
, nodemask
);
6369 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6370 cpumask_t tmp
, notcovered
;
6371 int n
= (i
+ j
) % MAX_NUMNODES
;
6373 cpus_complement(notcovered
, covered
);
6374 cpus_and(tmp
, notcovered
, *cpu_map
);
6375 cpus_and(tmp
, tmp
, domainspan
);
6376 if (cpus_empty(tmp
))
6379 nodemask
= node_to_cpumask(n
);
6380 cpus_and(tmp
, tmp
, nodemask
);
6381 if (cpus_empty(tmp
))
6384 sg
= kmalloc_node(sizeof(struct sched_group
),
6388 "Can not alloc domain group for node %d\n", j
);
6391 sg
->__cpu_power
= 0;
6393 sg
->next
= prev
->next
;
6394 cpus_or(covered
, covered
, tmp
);
6401 /* Calculate CPU power for physical packages and nodes */
6402 #ifdef CONFIG_SCHED_SMT
6403 for_each_cpu_mask(i
, *cpu_map
) {
6404 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6406 init_sched_groups_power(i
, sd
);
6409 #ifdef CONFIG_SCHED_MC
6410 for_each_cpu_mask(i
, *cpu_map
) {
6411 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6413 init_sched_groups_power(i
, sd
);
6417 for_each_cpu_mask(i
, *cpu_map
) {
6418 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6420 init_sched_groups_power(i
, sd
);
6424 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6425 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6428 struct sched_group
*sg
;
6430 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6431 init_numa_sched_groups_power(sg
);
6435 /* Attach the domains */
6436 for_each_cpu_mask(i
, *cpu_map
) {
6437 struct sched_domain
*sd
;
6438 #ifdef CONFIG_SCHED_SMT
6439 sd
= &per_cpu(cpu_domains
, i
);
6440 #elif defined(CONFIG_SCHED_MC)
6441 sd
= &per_cpu(core_domains
, i
);
6443 sd
= &per_cpu(phys_domains
, i
);
6445 cpu_attach_domain(sd
, i
);
6452 free_sched_groups(cpu_map
);
6457 static cpumask_t
*doms_cur
; /* current sched domains */
6458 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6461 * Special case: If a kmalloc of a doms_cur partition (array of
6462 * cpumask_t) fails, then fallback to a single sched domain,
6463 * as determined by the single cpumask_t fallback_doms.
6465 static cpumask_t fallback_doms
;
6468 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6469 * For now this just excludes isolated cpus, but could be used to
6470 * exclude other special cases in the future.
6472 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6477 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6479 doms_cur
= &fallback_doms
;
6480 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6481 err
= build_sched_domains(doms_cur
);
6482 register_sched_domain_sysctl();
6487 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6489 free_sched_groups(cpu_map
);
6493 * Detach sched domains from a group of cpus specified in cpu_map
6494 * These cpus will now be attached to the NULL domain
6496 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6500 unregister_sched_domain_sysctl();
6502 for_each_cpu_mask(i
, *cpu_map
)
6503 cpu_attach_domain(NULL
, i
);
6504 synchronize_sched();
6505 arch_destroy_sched_domains(cpu_map
);
6509 * Partition sched domains as specified by the 'ndoms_new'
6510 * cpumasks in the array doms_new[] of cpumasks. This compares
6511 * doms_new[] to the current sched domain partitioning, doms_cur[].
6512 * It destroys each deleted domain and builds each new domain.
6514 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6515 * The masks don't intersect (don't overlap.) We should setup one
6516 * sched domain for each mask. CPUs not in any of the cpumasks will
6517 * not be load balanced. If the same cpumask appears both in the
6518 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6521 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6522 * ownership of it and will kfree it when done with it. If the caller
6523 * failed the kmalloc call, then it can pass in doms_new == NULL,
6524 * and partition_sched_domains() will fallback to the single partition
6527 * Call with hotplug lock held
6529 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6533 /* always unregister in case we don't destroy any domains */
6534 unregister_sched_domain_sysctl();
6536 if (doms_new
== NULL
) {
6538 doms_new
= &fallback_doms
;
6539 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6542 /* Destroy deleted domains */
6543 for (i
= 0; i
< ndoms_cur
; i
++) {
6544 for (j
= 0; j
< ndoms_new
; j
++) {
6545 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6548 /* no match - a current sched domain not in new doms_new[] */
6549 detach_destroy_domains(doms_cur
+ i
);
6554 /* Build new domains */
6555 for (i
= 0; i
< ndoms_new
; i
++) {
6556 for (j
= 0; j
< ndoms_cur
; j
++) {
6557 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6560 /* no match - add a new doms_new */
6561 build_sched_domains(doms_new
+ i
);
6566 /* Remember the new sched domains */
6567 if (doms_cur
!= &fallback_doms
)
6569 doms_cur
= doms_new
;
6570 ndoms_cur
= ndoms_new
;
6572 register_sched_domain_sysctl();
6575 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6576 static int arch_reinit_sched_domains(void)
6580 mutex_lock(&sched_hotcpu_mutex
);
6581 detach_destroy_domains(&cpu_online_map
);
6582 err
= arch_init_sched_domains(&cpu_online_map
);
6583 mutex_unlock(&sched_hotcpu_mutex
);
6588 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6592 if (buf
[0] != '0' && buf
[0] != '1')
6596 sched_smt_power_savings
= (buf
[0] == '1');
6598 sched_mc_power_savings
= (buf
[0] == '1');
6600 ret
= arch_reinit_sched_domains();
6602 return ret
? ret
: count
;
6605 #ifdef CONFIG_SCHED_MC
6606 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6608 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6610 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6611 const char *buf
, size_t count
)
6613 return sched_power_savings_store(buf
, count
, 0);
6615 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6616 sched_mc_power_savings_store
);
6619 #ifdef CONFIG_SCHED_SMT
6620 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6622 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6624 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6625 const char *buf
, size_t count
)
6627 return sched_power_savings_store(buf
, count
, 1);
6629 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6630 sched_smt_power_savings_store
);
6633 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6637 #ifdef CONFIG_SCHED_SMT
6639 err
= sysfs_create_file(&cls
->kset
.kobj
,
6640 &attr_sched_smt_power_savings
.attr
);
6642 #ifdef CONFIG_SCHED_MC
6643 if (!err
&& mc_capable())
6644 err
= sysfs_create_file(&cls
->kset
.kobj
,
6645 &attr_sched_mc_power_savings
.attr
);
6652 * Force a reinitialization of the sched domains hierarchy. The domains
6653 * and groups cannot be updated in place without racing with the balancing
6654 * code, so we temporarily attach all running cpus to the NULL domain
6655 * which will prevent rebalancing while the sched domains are recalculated.
6657 static int update_sched_domains(struct notifier_block
*nfb
,
6658 unsigned long action
, void *hcpu
)
6661 case CPU_UP_PREPARE
:
6662 case CPU_UP_PREPARE_FROZEN
:
6663 case CPU_DOWN_PREPARE
:
6664 case CPU_DOWN_PREPARE_FROZEN
:
6665 detach_destroy_domains(&cpu_online_map
);
6668 case CPU_UP_CANCELED
:
6669 case CPU_UP_CANCELED_FROZEN
:
6670 case CPU_DOWN_FAILED
:
6671 case CPU_DOWN_FAILED_FROZEN
:
6673 case CPU_ONLINE_FROZEN
:
6675 case CPU_DEAD_FROZEN
:
6677 * Fall through and re-initialise the domains.
6684 /* The hotplug lock is already held by cpu_up/cpu_down */
6685 arch_init_sched_domains(&cpu_online_map
);
6690 void __init
sched_init_smp(void)
6692 cpumask_t non_isolated_cpus
;
6694 mutex_lock(&sched_hotcpu_mutex
);
6695 arch_init_sched_domains(&cpu_online_map
);
6696 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6697 if (cpus_empty(non_isolated_cpus
))
6698 cpu_set(smp_processor_id(), non_isolated_cpus
);
6699 mutex_unlock(&sched_hotcpu_mutex
);
6700 /* XXX: Theoretical race here - CPU may be hotplugged now */
6701 hotcpu_notifier(update_sched_domains
, 0);
6703 /* Move init over to a non-isolated CPU */
6704 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6706 sched_init_granularity();
6709 void __init
sched_init_smp(void)
6711 sched_init_granularity();
6713 #endif /* CONFIG_SMP */
6715 int in_sched_functions(unsigned long addr
)
6717 return in_lock_functions(addr
) ||
6718 (addr
>= (unsigned long)__sched_text_start
6719 && addr
< (unsigned long)__sched_text_end
);
6722 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6724 cfs_rq
->tasks_timeline
= RB_ROOT
;
6725 #ifdef CONFIG_FAIR_GROUP_SCHED
6728 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6731 void __init
sched_init(void)
6733 int highest_cpu
= 0;
6736 for_each_possible_cpu(i
) {
6737 struct rt_prio_array
*array
;
6741 spin_lock_init(&rq
->lock
);
6742 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6745 init_cfs_rq(&rq
->cfs
, rq
);
6746 #ifdef CONFIG_FAIR_GROUP_SCHED
6747 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6749 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6750 struct sched_entity
*se
=
6751 &per_cpu(init_sched_entity
, i
);
6753 init_cfs_rq_p
[i
] = cfs_rq
;
6754 init_cfs_rq(cfs_rq
, rq
);
6755 cfs_rq
->tg
= &init_task_group
;
6756 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6757 &rq
->leaf_cfs_rq_list
);
6759 init_sched_entity_p
[i
] = se
;
6760 se
->cfs_rq
= &rq
->cfs
;
6762 se
->load
.weight
= init_task_group_load
;
6763 se
->load
.inv_weight
=
6764 div64_64(1ULL<<32, init_task_group_load
);
6767 init_task_group
.shares
= init_task_group_load
;
6768 spin_lock_init(&init_task_group
.lock
);
6771 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6772 rq
->cpu_load
[j
] = 0;
6775 rq
->active_balance
= 0;
6776 rq
->next_balance
= jiffies
;
6779 rq
->migration_thread
= NULL
;
6780 INIT_LIST_HEAD(&rq
->migration_queue
);
6782 atomic_set(&rq
->nr_iowait
, 0);
6784 array
= &rq
->rt
.active
;
6785 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6786 INIT_LIST_HEAD(array
->queue
+ j
);
6787 __clear_bit(j
, array
->bitmap
);
6790 /* delimiter for bitsearch: */
6791 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6794 set_load_weight(&init_task
);
6796 #ifdef CONFIG_PREEMPT_NOTIFIERS
6797 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6801 nr_cpu_ids
= highest_cpu
+ 1;
6802 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6805 #ifdef CONFIG_RT_MUTEXES
6806 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6810 * The boot idle thread does lazy MMU switching as well:
6812 atomic_inc(&init_mm
.mm_count
);
6813 enter_lazy_tlb(&init_mm
, current
);
6816 * Make us the idle thread. Technically, schedule() should not be
6817 * called from this thread, however somewhere below it might be,
6818 * but because we are the idle thread, we just pick up running again
6819 * when this runqueue becomes "idle".
6821 init_idle(current
, smp_processor_id());
6823 * During early bootup we pretend to be a normal task:
6825 current
->sched_class
= &fair_sched_class
;
6828 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6829 void __might_sleep(char *file
, int line
)
6832 static unsigned long prev_jiffy
; /* ratelimiting */
6834 if ((in_atomic() || irqs_disabled()) &&
6835 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6836 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6838 prev_jiffy
= jiffies
;
6839 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6840 " context at %s:%d\n", file
, line
);
6841 printk("in_atomic():%d, irqs_disabled():%d\n",
6842 in_atomic(), irqs_disabled());
6843 debug_show_held_locks(current
);
6844 if (irqs_disabled())
6845 print_irqtrace_events(current
);
6850 EXPORT_SYMBOL(__might_sleep
);
6853 #ifdef CONFIG_MAGIC_SYSRQ
6854 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6857 update_rq_clock(rq
);
6858 on_rq
= p
->se
.on_rq
;
6860 deactivate_task(rq
, p
, 0);
6861 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6863 activate_task(rq
, p
, 0);
6864 resched_task(rq
->curr
);
6868 void normalize_rt_tasks(void)
6870 struct task_struct
*g
, *p
;
6871 unsigned long flags
;
6874 read_lock_irq(&tasklist_lock
);
6875 do_each_thread(g
, p
) {
6877 * Only normalize user tasks:
6882 p
->se
.exec_start
= 0;
6883 #ifdef CONFIG_SCHEDSTATS
6884 p
->se
.wait_start
= 0;
6885 p
->se
.sleep_start
= 0;
6886 p
->se
.block_start
= 0;
6888 task_rq(p
)->clock
= 0;
6892 * Renice negative nice level userspace
6895 if (TASK_NICE(p
) < 0 && p
->mm
)
6896 set_user_nice(p
, 0);
6900 spin_lock_irqsave(&p
->pi_lock
, flags
);
6901 rq
= __task_rq_lock(p
);
6903 normalize_task(rq
, p
);
6905 __task_rq_unlock(rq
);
6906 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6907 } while_each_thread(g
, p
);
6909 read_unlock_irq(&tasklist_lock
);
6912 #endif /* CONFIG_MAGIC_SYSRQ */
6916 * These functions are only useful for the IA64 MCA handling.
6918 * They can only be called when the whole system has been
6919 * stopped - every CPU needs to be quiescent, and no scheduling
6920 * activity can take place. Using them for anything else would
6921 * be a serious bug, and as a result, they aren't even visible
6922 * under any other configuration.
6926 * curr_task - return the current task for a given cpu.
6927 * @cpu: the processor in question.
6929 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6931 struct task_struct
*curr_task(int cpu
)
6933 return cpu_curr(cpu
);
6937 * set_curr_task - set the current task for a given cpu.
6938 * @cpu: the processor in question.
6939 * @p: the task pointer to set.
6941 * Description: This function must only be used when non-maskable interrupts
6942 * are serviced on a separate stack. It allows the architecture to switch the
6943 * notion of the current task on a cpu in a non-blocking manner. This function
6944 * must be called with all CPU's synchronized, and interrupts disabled, the
6945 * and caller must save the original value of the current task (see
6946 * curr_task() above) and restore that value before reenabling interrupts and
6947 * re-starting the system.
6949 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6951 void set_curr_task(int cpu
, struct task_struct
*p
)
6958 #ifdef CONFIG_FAIR_GROUP_SCHED
6960 /* allocate runqueue etc for a new task group */
6961 struct task_group
*sched_create_group(void)
6963 struct task_group
*tg
;
6964 struct cfs_rq
*cfs_rq
;
6965 struct sched_entity
*se
;
6969 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6971 return ERR_PTR(-ENOMEM
);
6973 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6976 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6980 for_each_possible_cpu(i
) {
6983 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6988 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6993 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6994 memset(se
, 0, sizeof(struct sched_entity
));
6996 tg
->cfs_rq
[i
] = cfs_rq
;
6997 init_cfs_rq(cfs_rq
, rq
);
7001 se
->cfs_rq
= &rq
->cfs
;
7003 se
->load
.weight
= NICE_0_LOAD
;
7004 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
7008 for_each_possible_cpu(i
) {
7010 cfs_rq
= tg
->cfs_rq
[i
];
7011 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7014 tg
->shares
= NICE_0_LOAD
;
7015 spin_lock_init(&tg
->lock
);
7020 for_each_possible_cpu(i
) {
7022 kfree(tg
->cfs_rq
[i
]);
7030 return ERR_PTR(-ENOMEM
);
7033 /* rcu callback to free various structures associated with a task group */
7034 static void free_sched_group(struct rcu_head
*rhp
)
7036 struct task_group
*tg
= container_of(rhp
, struct task_group
, rcu
);
7037 struct cfs_rq
*cfs_rq
;
7038 struct sched_entity
*se
;
7041 /* now it should be safe to free those cfs_rqs */
7042 for_each_possible_cpu(i
) {
7043 cfs_rq
= tg
->cfs_rq
[i
];
7055 /* Destroy runqueue etc associated with a task group */
7056 void sched_destroy_group(struct task_group
*tg
)
7058 struct cfs_rq
*cfs_rq
= NULL
;
7061 for_each_possible_cpu(i
) {
7062 cfs_rq
= tg
->cfs_rq
[i
];
7063 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7068 /* wait for possible concurrent references to cfs_rqs complete */
7069 call_rcu(&tg
->rcu
, free_sched_group
);
7072 /* change task's runqueue when it moves between groups.
7073 * The caller of this function should have put the task in its new group
7074 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7075 * reflect its new group.
7077 void sched_move_task(struct task_struct
*tsk
)
7080 unsigned long flags
;
7083 rq
= task_rq_lock(tsk
, &flags
);
7085 if (tsk
->sched_class
!= &fair_sched_class
) {
7086 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7090 update_rq_clock(rq
);
7092 running
= task_running(rq
, tsk
);
7093 on_rq
= tsk
->se
.on_rq
;
7096 dequeue_task(rq
, tsk
, 0);
7097 if (unlikely(running
))
7098 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7101 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7104 if (unlikely(running
))
7105 tsk
->sched_class
->set_curr_task(rq
);
7106 enqueue_task(rq
, tsk
, 0);
7110 task_rq_unlock(rq
, &flags
);
7113 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7115 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7116 struct rq
*rq
= cfs_rq
->rq
;
7119 spin_lock_irq(&rq
->lock
);
7123 dequeue_entity(cfs_rq
, se
, 0);
7125 se
->load
.weight
= shares
;
7126 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7129 enqueue_entity(cfs_rq
, se
, 0);
7131 spin_unlock_irq(&rq
->lock
);
7134 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7138 spin_lock(&tg
->lock
);
7139 if (tg
->shares
== shares
)
7142 tg
->shares
= shares
;
7143 for_each_possible_cpu(i
)
7144 set_se_shares(tg
->se
[i
], shares
);
7147 spin_unlock(&tg
->lock
);
7151 unsigned long sched_group_shares(struct task_group
*tg
)
7156 #endif /* CONFIG_FAIR_GROUP_SCHED */
7158 #ifdef CONFIG_FAIR_CGROUP_SCHED
7160 /* return corresponding task_group object of a cgroup */
7161 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7163 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7164 struct task_group
, css
);
7167 static struct cgroup_subsys_state
*
7168 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7170 struct task_group
*tg
;
7172 if (!cgrp
->parent
) {
7173 /* This is early initialization for the top cgroup */
7174 init_task_group
.css
.cgroup
= cgrp
;
7175 return &init_task_group
.css
;
7178 /* we support only 1-level deep hierarchical scheduler atm */
7179 if (cgrp
->parent
->parent
)
7180 return ERR_PTR(-EINVAL
);
7182 tg
= sched_create_group();
7184 return ERR_PTR(-ENOMEM
);
7186 /* Bind the cgroup to task_group object we just created */
7187 tg
->css
.cgroup
= cgrp
;
7192 static void cpu_cgroup_destroy(struct cgroup_subsys
*ss
,
7193 struct cgroup
*cgrp
)
7195 struct task_group
*tg
= cgroup_tg(cgrp
);
7197 sched_destroy_group(tg
);
7200 static int cpu_cgroup_can_attach(struct cgroup_subsys
*ss
,
7201 struct cgroup
*cgrp
, struct task_struct
*tsk
)
7203 /* We don't support RT-tasks being in separate groups */
7204 if (tsk
->sched_class
!= &fair_sched_class
)
7211 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7212 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7214 sched_move_task(tsk
);
7217 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7220 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7223 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7225 struct task_group
*tg
= cgroup_tg(cgrp
);
7227 return (u64
) tg
->shares
;
7230 static struct cftype cpu_files
[] = {
7233 .read_uint
= cpu_shares_read_uint
,
7234 .write_uint
= cpu_shares_write_uint
,
7238 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7240 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
7243 struct cgroup_subsys cpu_cgroup_subsys
= {
7245 .create
= cpu_cgroup_create
,
7246 .destroy
= cpu_cgroup_destroy
,
7247 .can_attach
= cpu_cgroup_can_attach
,
7248 .attach
= cpu_cgroup_attach
,
7249 .populate
= cpu_cgroup_populate
,
7250 .subsys_id
= cpu_cgroup_subsys_id
,
7254 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7256 #ifdef CONFIG_CGROUP_CPUACCT
7259 * CPU accounting code for task groups.
7261 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7262 * (balbir@in.ibm.com).
7265 /* track cpu usage of a group of tasks */
7267 struct cgroup_subsys_state css
;
7268 /* cpuusage holds pointer to a u64-type object on every cpu */
7272 struct cgroup_subsys cpuacct_subsys
;
7274 /* return cpu accounting group corresponding to this container */
7275 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
7277 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
7278 struct cpuacct
, css
);
7281 /* return cpu accounting group to which this task belongs */
7282 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
7284 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
7285 struct cpuacct
, css
);
7288 /* create a new cpu accounting group */
7289 static struct cgroup_subsys_state
*cpuacct_create(
7290 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7292 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
7295 return ERR_PTR(-ENOMEM
);
7297 ca
->cpuusage
= alloc_percpu(u64
);
7298 if (!ca
->cpuusage
) {
7300 return ERR_PTR(-ENOMEM
);
7306 /* destroy an existing cpu accounting group */
7307 static void cpuacct_destroy(struct cgroup_subsys
*ss
,
7308 struct cgroup
*cont
)
7310 struct cpuacct
*ca
= cgroup_ca(cont
);
7312 free_percpu(ca
->cpuusage
);
7316 /* return total cpu usage (in nanoseconds) of a group */
7317 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
7319 struct cpuacct
*ca
= cgroup_ca(cont
);
7320 u64 totalcpuusage
= 0;
7323 for_each_possible_cpu(i
) {
7324 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
7327 * Take rq->lock to make 64-bit addition safe on 32-bit
7330 spin_lock_irq(&cpu_rq(i
)->lock
);
7331 totalcpuusage
+= *cpuusage
;
7332 spin_unlock_irq(&cpu_rq(i
)->lock
);
7335 return totalcpuusage
;
7338 static struct cftype files
[] = {
7341 .read_uint
= cpuusage_read
,
7345 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7347 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
7351 * charge this task's execution time to its accounting group.
7353 * called with rq->lock held.
7355 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
7359 if (!cpuacct_subsys
.active
)
7364 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
7366 *cpuusage
+= cputime
;
7370 struct cgroup_subsys cpuacct_subsys
= {
7372 .create
= cpuacct_create
,
7373 .destroy
= cpuacct_destroy
,
7374 .populate
= cpuacct_populate
,
7375 .subsys_id
= cpuacct_subsys_id
,
7377 #endif /* CONFIG_CGROUP_CPUACCT */