[PATCH] e1000: Added functions declarations
[linux-2.6/mini2440.git] / fs / xfs / xfs_inode_item.c
blob36aa1fcb90a599e58e934ab647f7c9f2b4f981ef
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir_sf.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_rw.h"
47 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
50 * This returns the number of iovecs needed to log the given inode item.
52 * We need one iovec for the inode log format structure, one for the
53 * inode core, and possibly one for the inode data/extents/b-tree root
54 * and one for the inode attribute data/extents/b-tree root.
56 STATIC uint
57 xfs_inode_item_size(
58 xfs_inode_log_item_t *iip)
60 uint nvecs;
61 xfs_inode_t *ip;
63 ip = iip->ili_inode;
64 nvecs = 2;
67 * Only log the data/extents/b-tree root if there is something
68 * left to log.
70 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
72 switch (ip->i_d.di_format) {
73 case XFS_DINODE_FMT_EXTENTS:
74 iip->ili_format.ilf_fields &=
75 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
76 XFS_ILOG_DEV | XFS_ILOG_UUID);
77 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
78 (ip->i_d.di_nextents > 0) &&
79 (ip->i_df.if_bytes > 0)) {
80 ASSERT(ip->i_df.if_u1.if_extents != NULL);
81 nvecs++;
82 } else {
83 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
85 break;
87 case XFS_DINODE_FMT_BTREE:
88 ASSERT(ip->i_df.if_ext_max ==
89 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
90 iip->ili_format.ilf_fields &=
91 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
92 XFS_ILOG_DEV | XFS_ILOG_UUID);
93 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
94 (ip->i_df.if_broot_bytes > 0)) {
95 ASSERT(ip->i_df.if_broot != NULL);
96 nvecs++;
97 } else {
98 ASSERT(!(iip->ili_format.ilf_fields &
99 XFS_ILOG_DBROOT));
100 #ifdef XFS_TRANS_DEBUG
101 if (iip->ili_root_size > 0) {
102 ASSERT(iip->ili_root_size ==
103 ip->i_df.if_broot_bytes);
104 ASSERT(memcmp(iip->ili_orig_root,
105 ip->i_df.if_broot,
106 iip->ili_root_size) == 0);
107 } else {
108 ASSERT(ip->i_df.if_broot_bytes == 0);
110 #endif
111 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
113 break;
115 case XFS_DINODE_FMT_LOCAL:
116 iip->ili_format.ilf_fields &=
117 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
118 XFS_ILOG_DEV | XFS_ILOG_UUID);
119 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
120 (ip->i_df.if_bytes > 0)) {
121 ASSERT(ip->i_df.if_u1.if_data != NULL);
122 ASSERT(ip->i_d.di_size > 0);
123 nvecs++;
124 } else {
125 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
127 break;
129 case XFS_DINODE_FMT_DEV:
130 iip->ili_format.ilf_fields &=
131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 XFS_ILOG_DEXT | XFS_ILOG_UUID);
133 break;
135 case XFS_DINODE_FMT_UUID:
136 iip->ili_format.ilf_fields &=
137 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
138 XFS_ILOG_DEXT | XFS_ILOG_DEV);
139 break;
141 default:
142 ASSERT(0);
143 break;
147 * If there are no attributes associated with this file,
148 * then there cannot be anything more to log.
149 * Clear all attribute-related log flags.
151 if (!XFS_IFORK_Q(ip)) {
152 iip->ili_format.ilf_fields &=
153 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
154 return nvecs;
158 * Log any necessary attribute data.
160 switch (ip->i_d.di_aformat) {
161 case XFS_DINODE_FMT_EXTENTS:
162 iip->ili_format.ilf_fields &=
163 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
164 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
165 (ip->i_d.di_anextents > 0) &&
166 (ip->i_afp->if_bytes > 0)) {
167 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
168 nvecs++;
169 } else {
170 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
172 break;
174 case XFS_DINODE_FMT_BTREE:
175 iip->ili_format.ilf_fields &=
176 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
177 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
178 (ip->i_afp->if_broot_bytes > 0)) {
179 ASSERT(ip->i_afp->if_broot != NULL);
180 nvecs++;
181 } else {
182 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
184 break;
186 case XFS_DINODE_FMT_LOCAL:
187 iip->ili_format.ilf_fields &=
188 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
189 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
190 (ip->i_afp->if_bytes > 0)) {
191 ASSERT(ip->i_afp->if_u1.if_data != NULL);
192 nvecs++;
193 } else {
194 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
196 break;
198 default:
199 ASSERT(0);
200 break;
203 return nvecs;
207 * This is called to fill in the vector of log iovecs for the
208 * given inode log item. It fills the first item with an inode
209 * log format structure, the second with the on-disk inode structure,
210 * and a possible third and/or fourth with the inode data/extents/b-tree
211 * root and inode attributes data/extents/b-tree root.
213 STATIC void
214 xfs_inode_item_format(
215 xfs_inode_log_item_t *iip,
216 xfs_log_iovec_t *log_vector)
218 uint nvecs;
219 xfs_log_iovec_t *vecp;
220 xfs_inode_t *ip;
221 size_t data_bytes;
222 xfs_bmbt_rec_t *ext_buffer;
223 int nrecs;
224 xfs_mount_t *mp;
226 ip = iip->ili_inode;
227 vecp = log_vector;
229 vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
230 vecp->i_len = sizeof(xfs_inode_log_format_t);
231 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
232 vecp++;
233 nvecs = 1;
236 * Clear i_update_core if the timestamps (or any other
237 * non-transactional modification) need flushing/logging
238 * and we're about to log them with the rest of the core.
240 * This is the same logic as xfs_iflush() but this code can't
241 * run at the same time as xfs_iflush because we're in commit
242 * processing here and so we have the inode lock held in
243 * exclusive mode. Although it doesn't really matter
244 * for the timestamps if both routines were to grab the
245 * timestamps or not. That would be ok.
247 * We clear i_update_core before copying out the data.
248 * This is for coordination with our timestamp updates
249 * that don't hold the inode lock. They will always
250 * update the timestamps BEFORE setting i_update_core,
251 * so if we clear i_update_core after they set it we
252 * are guaranteed to see their updates to the timestamps
253 * either here. Likewise, if they set it after we clear it
254 * here, we'll see it either on the next commit of this
255 * inode or the next time the inode gets flushed via
256 * xfs_iflush(). This depends on strongly ordered memory
257 * semantics, but we have that. We use the SYNCHRONIZE
258 * macro to make sure that the compiler does not reorder
259 * the i_update_core access below the data copy below.
261 if (ip->i_update_core) {
262 ip->i_update_core = 0;
263 SYNCHRONIZE();
267 * We don't have to worry about re-ordering here because
268 * the update_size field is protected by the inode lock
269 * and we have that held in exclusive mode.
271 if (ip->i_update_size)
272 ip->i_update_size = 0;
275 * Make sure to get the latest atime from the Linux inode.
277 xfs_synchronize_atime(ip);
279 vecp->i_addr = (xfs_caddr_t)&ip->i_d;
280 vecp->i_len = sizeof(xfs_dinode_core_t);
281 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
282 vecp++;
283 nvecs++;
284 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
287 * If this is really an old format inode, then we need to
288 * log it as such. This means that we have to copy the link
289 * count from the new field to the old. We don't have to worry
290 * about the new fields, because nothing trusts them as long as
291 * the old inode version number is there. If the superblock already
292 * has a new version number, then we don't bother converting back.
294 mp = ip->i_mount;
295 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
296 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
297 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
298 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
300 * Convert it back.
302 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
303 ip->i_d.di_onlink = ip->i_d.di_nlink;
304 } else {
306 * The superblock version has already been bumped,
307 * so just make the conversion to the new inode
308 * format permanent.
310 ip->i_d.di_version = XFS_DINODE_VERSION_2;
311 ip->i_d.di_onlink = 0;
312 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
316 switch (ip->i_d.di_format) {
317 case XFS_DINODE_FMT_EXTENTS:
318 ASSERT(!(iip->ili_format.ilf_fields &
319 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
320 XFS_ILOG_DEV | XFS_ILOG_UUID)));
321 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
322 ASSERT(ip->i_df.if_bytes > 0);
323 ASSERT(ip->i_df.if_u1.if_extents != NULL);
324 ASSERT(ip->i_d.di_nextents > 0);
325 ASSERT(iip->ili_extents_buf == NULL);
326 nrecs = ip->i_df.if_bytes /
327 (uint)sizeof(xfs_bmbt_rec_t);
328 ASSERT(nrecs > 0);
329 #ifdef XFS_NATIVE_HOST
330 if (nrecs == ip->i_d.di_nextents) {
332 * There are no delayed allocation
333 * extents, so just point to the
334 * real extents array.
336 vecp->i_addr =
337 (char *)(ip->i_df.if_u1.if_extents);
338 vecp->i_len = ip->i_df.if_bytes;
339 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
340 } else
341 #endif
344 * There are delayed allocation extents
345 * in the inode, or we need to convert
346 * the extents to on disk format.
347 * Use xfs_iextents_copy()
348 * to copy only the real extents into
349 * a separate buffer. We'll free the
350 * buffer in the unlock routine.
352 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
353 KM_SLEEP);
354 iip->ili_extents_buf = ext_buffer;
355 vecp->i_addr = (xfs_caddr_t)ext_buffer;
356 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
357 XFS_DATA_FORK);
358 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
360 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
361 iip->ili_format.ilf_dsize = vecp->i_len;
362 vecp++;
363 nvecs++;
365 break;
367 case XFS_DINODE_FMT_BTREE:
368 ASSERT(!(iip->ili_format.ilf_fields &
369 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
370 XFS_ILOG_DEV | XFS_ILOG_UUID)));
371 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
372 ASSERT(ip->i_df.if_broot_bytes > 0);
373 ASSERT(ip->i_df.if_broot != NULL);
374 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
375 vecp->i_len = ip->i_df.if_broot_bytes;
376 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
377 vecp++;
378 nvecs++;
379 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
381 break;
383 case XFS_DINODE_FMT_LOCAL:
384 ASSERT(!(iip->ili_format.ilf_fields &
385 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
386 XFS_ILOG_DEV | XFS_ILOG_UUID)));
387 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
388 ASSERT(ip->i_df.if_bytes > 0);
389 ASSERT(ip->i_df.if_u1.if_data != NULL);
390 ASSERT(ip->i_d.di_size > 0);
392 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
394 * Round i_bytes up to a word boundary.
395 * The underlying memory is guaranteed to
396 * to be there by xfs_idata_realloc().
398 data_bytes = roundup(ip->i_df.if_bytes, 4);
399 ASSERT((ip->i_df.if_real_bytes == 0) ||
400 (ip->i_df.if_real_bytes == data_bytes));
401 vecp->i_len = (int)data_bytes;
402 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
403 vecp++;
404 nvecs++;
405 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
407 break;
409 case XFS_DINODE_FMT_DEV:
410 ASSERT(!(iip->ili_format.ilf_fields &
411 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
412 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
413 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
414 iip->ili_format.ilf_u.ilfu_rdev =
415 ip->i_df.if_u2.if_rdev;
417 break;
419 case XFS_DINODE_FMT_UUID:
420 ASSERT(!(iip->ili_format.ilf_fields &
421 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
422 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
423 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
424 iip->ili_format.ilf_u.ilfu_uuid =
425 ip->i_df.if_u2.if_uuid;
427 break;
429 default:
430 ASSERT(0);
431 break;
435 * If there are no attributes associated with the file,
436 * then we're done.
437 * Assert that no attribute-related log flags are set.
439 if (!XFS_IFORK_Q(ip)) {
440 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
441 iip->ili_format.ilf_size = nvecs;
442 ASSERT(!(iip->ili_format.ilf_fields &
443 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
444 return;
447 switch (ip->i_d.di_aformat) {
448 case XFS_DINODE_FMT_EXTENTS:
449 ASSERT(!(iip->ili_format.ilf_fields &
450 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
451 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
452 ASSERT(ip->i_afp->if_bytes > 0);
453 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
454 ASSERT(ip->i_d.di_anextents > 0);
455 #ifdef DEBUG
456 nrecs = ip->i_afp->if_bytes /
457 (uint)sizeof(xfs_bmbt_rec_t);
458 #endif
459 ASSERT(nrecs > 0);
460 ASSERT(nrecs == ip->i_d.di_anextents);
461 #ifdef XFS_NATIVE_HOST
463 * There are not delayed allocation extents
464 * for attributes, so just point at the array.
466 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
467 vecp->i_len = ip->i_afp->if_bytes;
468 #else
469 ASSERT(iip->ili_aextents_buf == NULL);
471 * Need to endian flip before logging
473 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
474 KM_SLEEP);
475 iip->ili_aextents_buf = ext_buffer;
476 vecp->i_addr = (xfs_caddr_t)ext_buffer;
477 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
478 XFS_ATTR_FORK);
479 #endif
480 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
481 iip->ili_format.ilf_asize = vecp->i_len;
482 vecp++;
483 nvecs++;
485 break;
487 case XFS_DINODE_FMT_BTREE:
488 ASSERT(!(iip->ili_format.ilf_fields &
489 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
490 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
491 ASSERT(ip->i_afp->if_broot_bytes > 0);
492 ASSERT(ip->i_afp->if_broot != NULL);
493 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
494 vecp->i_len = ip->i_afp->if_broot_bytes;
495 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
496 vecp++;
497 nvecs++;
498 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
500 break;
502 case XFS_DINODE_FMT_LOCAL:
503 ASSERT(!(iip->ili_format.ilf_fields &
504 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
505 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
506 ASSERT(ip->i_afp->if_bytes > 0);
507 ASSERT(ip->i_afp->if_u1.if_data != NULL);
509 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
511 * Round i_bytes up to a word boundary.
512 * The underlying memory is guaranteed to
513 * to be there by xfs_idata_realloc().
515 data_bytes = roundup(ip->i_afp->if_bytes, 4);
516 ASSERT((ip->i_afp->if_real_bytes == 0) ||
517 (ip->i_afp->if_real_bytes == data_bytes));
518 vecp->i_len = (int)data_bytes;
519 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
520 vecp++;
521 nvecs++;
522 iip->ili_format.ilf_asize = (unsigned)data_bytes;
524 break;
526 default:
527 ASSERT(0);
528 break;
531 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
532 iip->ili_format.ilf_size = nvecs;
537 * This is called to pin the inode associated with the inode log
538 * item in memory so it cannot be written out. Do this by calling
539 * xfs_ipin() to bump the pin count in the inode while holding the
540 * inode pin lock.
542 STATIC void
543 xfs_inode_item_pin(
544 xfs_inode_log_item_t *iip)
546 ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
547 xfs_ipin(iip->ili_inode);
552 * This is called to unpin the inode associated with the inode log
553 * item which was previously pinned with a call to xfs_inode_item_pin().
554 * Just call xfs_iunpin() on the inode to do this.
556 /* ARGSUSED */
557 STATIC void
558 xfs_inode_item_unpin(
559 xfs_inode_log_item_t *iip,
560 int stale)
562 xfs_iunpin(iip->ili_inode);
565 /* ARGSUSED */
566 STATIC void
567 xfs_inode_item_unpin_remove(
568 xfs_inode_log_item_t *iip,
569 xfs_trans_t *tp)
571 xfs_iunpin(iip->ili_inode);
575 * This is called to attempt to lock the inode associated with this
576 * inode log item, in preparation for the push routine which does the actual
577 * iflush. Don't sleep on the inode lock or the flush lock.
579 * If the flush lock is already held, indicating that the inode has
580 * been or is in the process of being flushed, then (ideally) we'd like to
581 * see if the inode's buffer is still incore, and if so give it a nudge.
582 * We delay doing so until the pushbuf routine, though, to avoid holding
583 * the AIL lock across a call to the blackhole which is the buffercache.
584 * Also we don't want to sleep in any device strategy routines, which can happen
585 * if we do the subsequent bawrite in here.
587 STATIC uint
588 xfs_inode_item_trylock(
589 xfs_inode_log_item_t *iip)
591 register xfs_inode_t *ip;
593 ip = iip->ili_inode;
595 if (xfs_ipincount(ip) > 0) {
596 return XFS_ITEM_PINNED;
599 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
600 return XFS_ITEM_LOCKED;
603 if (!xfs_iflock_nowait(ip)) {
605 * If someone else isn't already trying to push the inode
606 * buffer, we get to do it.
608 if (iip->ili_pushbuf_flag == 0) {
609 iip->ili_pushbuf_flag = 1;
610 #ifdef DEBUG
611 iip->ili_push_owner = current_pid();
612 #endif
614 * Inode is left locked in shared mode.
615 * Pushbuf routine gets to unlock it.
617 return XFS_ITEM_PUSHBUF;
618 } else {
620 * We hold the AIL_LOCK, so we must specify the
621 * NONOTIFY flag so that we won't double trip.
623 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
624 return XFS_ITEM_FLUSHING;
626 /* NOTREACHED */
629 /* Stale items should force out the iclog */
630 if (ip->i_flags & XFS_ISTALE) {
631 xfs_ifunlock(ip);
632 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
633 return XFS_ITEM_PINNED;
636 #ifdef DEBUG
637 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
638 ASSERT(iip->ili_format.ilf_fields != 0);
639 ASSERT(iip->ili_logged == 0);
640 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
642 #endif
643 return XFS_ITEM_SUCCESS;
647 * Unlock the inode associated with the inode log item.
648 * Clear the fields of the inode and inode log item that
649 * are specific to the current transaction. If the
650 * hold flags is set, do not unlock the inode.
652 STATIC void
653 xfs_inode_item_unlock(
654 xfs_inode_log_item_t *iip)
656 uint hold;
657 uint iolocked;
658 uint lock_flags;
659 xfs_inode_t *ip;
661 ASSERT(iip != NULL);
662 ASSERT(iip->ili_inode->i_itemp != NULL);
663 ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
664 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
665 XFS_ILI_IOLOCKED_EXCL)) ||
666 ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
667 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
668 XFS_ILI_IOLOCKED_SHARED)) ||
669 ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
671 * Clear the transaction pointer in the inode.
673 ip = iip->ili_inode;
674 ip->i_transp = NULL;
677 * If the inode needed a separate buffer with which to log
678 * its extents, then free it now.
680 if (iip->ili_extents_buf != NULL) {
681 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
682 ASSERT(ip->i_d.di_nextents > 0);
683 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
684 ASSERT(ip->i_df.if_bytes > 0);
685 kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
686 iip->ili_extents_buf = NULL;
688 if (iip->ili_aextents_buf != NULL) {
689 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
690 ASSERT(ip->i_d.di_anextents > 0);
691 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
692 ASSERT(ip->i_afp->if_bytes > 0);
693 kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
694 iip->ili_aextents_buf = NULL;
698 * Figure out if we should unlock the inode or not.
700 hold = iip->ili_flags & XFS_ILI_HOLD;
703 * Before clearing out the flags, remember whether we
704 * are holding the inode's IO lock.
706 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
709 * Clear out the fields of the inode log item particular
710 * to the current transaction.
712 iip->ili_ilock_recur = 0;
713 iip->ili_iolock_recur = 0;
714 iip->ili_flags = 0;
717 * Unlock the inode if XFS_ILI_HOLD was not set.
719 if (!hold) {
720 lock_flags = XFS_ILOCK_EXCL;
721 if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
722 lock_flags |= XFS_IOLOCK_EXCL;
723 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
724 lock_flags |= XFS_IOLOCK_SHARED;
726 xfs_iput(iip->ili_inode, lock_flags);
731 * This is called to find out where the oldest active copy of the
732 * inode log item in the on disk log resides now that the last log
733 * write of it completed at the given lsn. Since we always re-log
734 * all dirty data in an inode, the latest copy in the on disk log
735 * is the only one that matters. Therefore, simply return the
736 * given lsn.
738 /*ARGSUSED*/
739 STATIC xfs_lsn_t
740 xfs_inode_item_committed(
741 xfs_inode_log_item_t *iip,
742 xfs_lsn_t lsn)
744 return (lsn);
748 * The transaction with the inode locked has aborted. The inode
749 * must not be dirty within the transaction (unless we're forcibly
750 * shutting down). We simply unlock just as if the transaction
751 * had been cancelled.
753 STATIC void
754 xfs_inode_item_abort(
755 xfs_inode_log_item_t *iip)
757 xfs_inode_item_unlock(iip);
758 return;
763 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
764 * failed to get the inode flush lock but did get the inode locked SHARED.
765 * Here we're trying to see if the inode buffer is incore, and if so whether it's
766 * marked delayed write. If that's the case, we'll initiate a bawrite on that
767 * buffer to expedite the process.
769 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
770 * so it is inherently race-y.
772 STATIC void
773 xfs_inode_item_pushbuf(
774 xfs_inode_log_item_t *iip)
776 xfs_inode_t *ip;
777 xfs_mount_t *mp;
778 xfs_buf_t *bp;
779 uint dopush;
781 ip = iip->ili_inode;
783 ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
786 * The ili_pushbuf_flag keeps others from
787 * trying to duplicate our effort.
789 ASSERT(iip->ili_pushbuf_flag != 0);
790 ASSERT(iip->ili_push_owner == current_pid());
793 * If flushlock isn't locked anymore, chances are that the
794 * inode flush completed and the inode was taken off the AIL.
795 * So, just get out.
797 if ((valusema(&(ip->i_flock)) > 0) ||
798 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
799 iip->ili_pushbuf_flag = 0;
800 xfs_iunlock(ip, XFS_ILOCK_SHARED);
801 return;
804 mp = ip->i_mount;
805 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
806 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
808 if (bp != NULL) {
809 if (XFS_BUF_ISDELAYWRITE(bp)) {
811 * We were racing with iflush because we don't hold
812 * the AIL_LOCK or the flush lock. However, at this point,
813 * we have the buffer, and we know that it's dirty.
814 * So, it's possible that iflush raced with us, and
815 * this item is already taken off the AIL.
816 * If not, we can flush it async.
818 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
819 (valusema(&(ip->i_flock)) <= 0));
820 iip->ili_pushbuf_flag = 0;
821 xfs_iunlock(ip, XFS_ILOCK_SHARED);
822 xfs_buftrace("INODE ITEM PUSH", bp);
823 if (XFS_BUF_ISPINNED(bp)) {
824 xfs_log_force(mp, (xfs_lsn_t)0,
825 XFS_LOG_FORCE);
827 if (dopush) {
828 xfs_bawrite(mp, bp);
829 } else {
830 xfs_buf_relse(bp);
832 } else {
833 iip->ili_pushbuf_flag = 0;
834 xfs_iunlock(ip, XFS_ILOCK_SHARED);
835 xfs_buf_relse(bp);
837 return;
840 * We have to be careful about resetting pushbuf flag too early (above).
841 * Even though in theory we can do it as soon as we have the buflock,
842 * we don't want others to be doing work needlessly. They'll come to
843 * this function thinking that pushing the buffer is their
844 * responsibility only to find that the buffer is still locked by
845 * another doing the same thing
847 iip->ili_pushbuf_flag = 0;
848 xfs_iunlock(ip, XFS_ILOCK_SHARED);
849 return;
854 * This is called to asynchronously write the inode associated with this
855 * inode log item out to disk. The inode will already have been locked by
856 * a successful call to xfs_inode_item_trylock().
858 STATIC void
859 xfs_inode_item_push(
860 xfs_inode_log_item_t *iip)
862 xfs_inode_t *ip;
864 ip = iip->ili_inode;
866 ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
867 ASSERT(valusema(&(ip->i_flock)) <= 0);
869 * Since we were able to lock the inode's flush lock and
870 * we found it on the AIL, the inode must be dirty. This
871 * is because the inode is removed from the AIL while still
872 * holding the flush lock in xfs_iflush_done(). Thus, if
873 * we found it in the AIL and were able to obtain the flush
874 * lock without sleeping, then there must not have been
875 * anyone in the process of flushing the inode.
877 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
878 iip->ili_format.ilf_fields != 0);
881 * Write out the inode. The completion routine ('iflush_done') will
882 * pull it from the AIL, mark it clean, unlock the flush lock.
884 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
885 xfs_iunlock(ip, XFS_ILOCK_SHARED);
887 return;
891 * XXX rcc - this one really has to do something. Probably needs
892 * to stamp in a new field in the incore inode.
894 /* ARGSUSED */
895 STATIC void
896 xfs_inode_item_committing(
897 xfs_inode_log_item_t *iip,
898 xfs_lsn_t lsn)
900 iip->ili_last_lsn = lsn;
901 return;
905 * This is the ops vector shared by all buf log items.
907 STATIC struct xfs_item_ops xfs_inode_item_ops = {
908 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
909 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
910 xfs_inode_item_format,
911 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
912 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
913 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
914 xfs_inode_item_unpin_remove,
915 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
916 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
917 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
918 xfs_inode_item_committed,
919 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
920 .iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort,
921 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
922 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
923 xfs_inode_item_committing
928 * Initialize the inode log item for a newly allocated (in-core) inode.
930 void
931 xfs_inode_item_init(
932 xfs_inode_t *ip,
933 xfs_mount_t *mp)
935 xfs_inode_log_item_t *iip;
937 ASSERT(ip->i_itemp == NULL);
938 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
940 iip->ili_item.li_type = XFS_LI_INODE;
941 iip->ili_item.li_ops = &xfs_inode_item_ops;
942 iip->ili_item.li_mountp = mp;
943 iip->ili_inode = ip;
946 We have zeroed memory. No need ...
947 iip->ili_extents_buf = NULL;
948 iip->ili_pushbuf_flag = 0;
951 iip->ili_format.ilf_type = XFS_LI_INODE;
952 iip->ili_format.ilf_ino = ip->i_ino;
953 iip->ili_format.ilf_blkno = ip->i_blkno;
954 iip->ili_format.ilf_len = ip->i_len;
955 iip->ili_format.ilf_boffset = ip->i_boffset;
959 * Free the inode log item and any memory hanging off of it.
961 void
962 xfs_inode_item_destroy(
963 xfs_inode_t *ip)
965 #ifdef XFS_TRANS_DEBUG
966 if (ip->i_itemp->ili_root_size != 0) {
967 kmem_free(ip->i_itemp->ili_orig_root,
968 ip->i_itemp->ili_root_size);
970 #endif
971 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
976 * This is the inode flushing I/O completion routine. It is called
977 * from interrupt level when the buffer containing the inode is
978 * flushed to disk. It is responsible for removing the inode item
979 * from the AIL if it has not been re-logged, and unlocking the inode's
980 * flush lock.
982 /*ARGSUSED*/
983 void
984 xfs_iflush_done(
985 xfs_buf_t *bp,
986 xfs_inode_log_item_t *iip)
988 xfs_inode_t *ip;
989 SPLDECL(s);
991 ip = iip->ili_inode;
994 * We only want to pull the item from the AIL if it is
995 * actually there and its location in the log has not
996 * changed since we started the flush. Thus, we only bother
997 * if the ili_logged flag is set and the inode's lsn has not
998 * changed. First we check the lsn outside
999 * the lock since it's cheaper, and then we recheck while
1000 * holding the lock before removing the inode from the AIL.
1002 if (iip->ili_logged &&
1003 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
1004 AIL_LOCK(ip->i_mount, s);
1005 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
1007 * xfs_trans_delete_ail() drops the AIL lock.
1009 xfs_trans_delete_ail(ip->i_mount,
1010 (xfs_log_item_t*)iip, s);
1011 } else {
1012 AIL_UNLOCK(ip->i_mount, s);
1016 iip->ili_logged = 0;
1019 * Clear the ili_last_fields bits now that we know that the
1020 * data corresponding to them is safely on disk.
1022 iip->ili_last_fields = 0;
1025 * Release the inode's flush lock since we're done with it.
1027 xfs_ifunlock(ip);
1029 return;
1033 * This is the inode flushing abort routine. It is called
1034 * from xfs_iflush when the filesystem is shutting down to clean
1035 * up the inode state.
1036 * It is responsible for removing the inode item
1037 * from the AIL if it has not been re-logged, and unlocking the inode's
1038 * flush lock.
1040 void
1041 xfs_iflush_abort(
1042 xfs_inode_t *ip)
1044 xfs_inode_log_item_t *iip;
1045 xfs_mount_t *mp;
1046 SPLDECL(s);
1048 iip = ip->i_itemp;
1049 mp = ip->i_mount;
1050 if (iip) {
1051 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1052 AIL_LOCK(mp, s);
1053 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1055 * xfs_trans_delete_ail() drops the AIL lock.
1057 xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip,
1059 } else
1060 AIL_UNLOCK(mp, s);
1062 iip->ili_logged = 0;
1064 * Clear the ili_last_fields bits now that we know that the
1065 * data corresponding to them is safely on disk.
1067 iip->ili_last_fields = 0;
1069 * Clear the inode logging fields so no more flushes are
1070 * attempted.
1072 iip->ili_format.ilf_fields = 0;
1075 * Release the inode's flush lock since we're done with it.
1077 xfs_ifunlock(ip);
1080 void
1081 xfs_istale_done(
1082 xfs_buf_t *bp,
1083 xfs_inode_log_item_t *iip)
1085 xfs_iflush_abort(iip->ili_inode);