2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir_sf.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_ialloc.h"
47 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
50 * This returns the number of iovecs needed to log the given inode item.
52 * We need one iovec for the inode log format structure, one for the
53 * inode core, and possibly one for the inode data/extents/b-tree root
54 * and one for the inode attribute data/extents/b-tree root.
58 xfs_inode_log_item_t
*iip
)
67 * Only log the data/extents/b-tree root if there is something
70 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
72 switch (ip
->i_d
.di_format
) {
73 case XFS_DINODE_FMT_EXTENTS
:
74 iip
->ili_format
.ilf_fields
&=
75 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
76 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
77 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) &&
78 (ip
->i_d
.di_nextents
> 0) &&
79 (ip
->i_df
.if_bytes
> 0)) {
80 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
83 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DEXT
;
87 case XFS_DINODE_FMT_BTREE
:
88 ASSERT(ip
->i_df
.if_ext_max
==
89 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
));
90 iip
->ili_format
.ilf_fields
&=
91 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
92 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
93 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) &&
94 (ip
->i_df
.if_broot_bytes
> 0)) {
95 ASSERT(ip
->i_df
.if_broot
!= NULL
);
98 ASSERT(!(iip
->ili_format
.ilf_fields
&
100 #ifdef XFS_TRANS_DEBUG
101 if (iip
->ili_root_size
> 0) {
102 ASSERT(iip
->ili_root_size
==
103 ip
->i_df
.if_broot_bytes
);
104 ASSERT(memcmp(iip
->ili_orig_root
,
106 iip
->ili_root_size
) == 0);
108 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
111 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DBROOT
;
115 case XFS_DINODE_FMT_LOCAL
:
116 iip
->ili_format
.ilf_fields
&=
117 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
118 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
119 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) &&
120 (ip
->i_df
.if_bytes
> 0)) {
121 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
122 ASSERT(ip
->i_d
.di_size
> 0);
125 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DDATA
;
129 case XFS_DINODE_FMT_DEV
:
130 iip
->ili_format
.ilf_fields
&=
131 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
132 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
135 case XFS_DINODE_FMT_UUID
:
136 iip
->ili_format
.ilf_fields
&=
137 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
138 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
147 * If there are no attributes associated with this file,
148 * then there cannot be anything more to log.
149 * Clear all attribute-related log flags.
151 if (!XFS_IFORK_Q(ip
)) {
152 iip
->ili_format
.ilf_fields
&=
153 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
158 * Log any necessary attribute data.
160 switch (ip
->i_d
.di_aformat
) {
161 case XFS_DINODE_FMT_EXTENTS
:
162 iip
->ili_format
.ilf_fields
&=
163 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
164 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) &&
165 (ip
->i_d
.di_anextents
> 0) &&
166 (ip
->i_afp
->if_bytes
> 0)) {
167 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
170 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_AEXT
;
174 case XFS_DINODE_FMT_BTREE
:
175 iip
->ili_format
.ilf_fields
&=
176 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
177 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) &&
178 (ip
->i_afp
->if_broot_bytes
> 0)) {
179 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
182 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ABROOT
;
186 case XFS_DINODE_FMT_LOCAL
:
187 iip
->ili_format
.ilf_fields
&=
188 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
189 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) &&
190 (ip
->i_afp
->if_bytes
> 0)) {
191 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
194 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ADATA
;
207 * This is called to fill in the vector of log iovecs for the
208 * given inode log item. It fills the first item with an inode
209 * log format structure, the second with the on-disk inode structure,
210 * and a possible third and/or fourth with the inode data/extents/b-tree
211 * root and inode attributes data/extents/b-tree root.
214 xfs_inode_item_format(
215 xfs_inode_log_item_t
*iip
,
216 xfs_log_iovec_t
*log_vector
)
219 xfs_log_iovec_t
*vecp
;
222 xfs_bmbt_rec_t
*ext_buffer
;
229 vecp
->i_addr
= (xfs_caddr_t
)&iip
->ili_format
;
230 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
231 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IFORMAT
);
236 * Clear i_update_core if the timestamps (or any other
237 * non-transactional modification) need flushing/logging
238 * and we're about to log them with the rest of the core.
240 * This is the same logic as xfs_iflush() but this code can't
241 * run at the same time as xfs_iflush because we're in commit
242 * processing here and so we have the inode lock held in
243 * exclusive mode. Although it doesn't really matter
244 * for the timestamps if both routines were to grab the
245 * timestamps or not. That would be ok.
247 * We clear i_update_core before copying out the data.
248 * This is for coordination with our timestamp updates
249 * that don't hold the inode lock. They will always
250 * update the timestamps BEFORE setting i_update_core,
251 * so if we clear i_update_core after they set it we
252 * are guaranteed to see their updates to the timestamps
253 * either here. Likewise, if they set it after we clear it
254 * here, we'll see it either on the next commit of this
255 * inode or the next time the inode gets flushed via
256 * xfs_iflush(). This depends on strongly ordered memory
257 * semantics, but we have that. We use the SYNCHRONIZE
258 * macro to make sure that the compiler does not reorder
259 * the i_update_core access below the data copy below.
261 if (ip
->i_update_core
) {
262 ip
->i_update_core
= 0;
267 * We don't have to worry about re-ordering here because
268 * the update_size field is protected by the inode lock
269 * and we have that held in exclusive mode.
271 if (ip
->i_update_size
)
272 ip
->i_update_size
= 0;
275 * Make sure to get the latest atime from the Linux inode.
277 xfs_synchronize_atime(ip
);
279 vecp
->i_addr
= (xfs_caddr_t
)&ip
->i_d
;
280 vecp
->i_len
= sizeof(xfs_dinode_core_t
);
281 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ICORE
);
284 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
287 * If this is really an old format inode, then we need to
288 * log it as such. This means that we have to copy the link
289 * count from the new field to the old. We don't have to worry
290 * about the new fields, because nothing trusts them as long as
291 * the old inode version number is there. If the superblock already
292 * has a new version number, then we don't bother converting back.
295 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
296 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
297 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
298 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
302 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
303 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
306 * The superblock version has already been bumped,
307 * so just make the conversion to the new inode
310 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
311 ip
->i_d
.di_onlink
= 0;
312 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
316 switch (ip
->i_d
.di_format
) {
317 case XFS_DINODE_FMT_EXTENTS
:
318 ASSERT(!(iip
->ili_format
.ilf_fields
&
319 (XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
320 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
321 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) {
322 ASSERT(ip
->i_df
.if_bytes
> 0);
323 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
324 ASSERT(ip
->i_d
.di_nextents
> 0);
325 ASSERT(iip
->ili_extents_buf
== NULL
);
326 nrecs
= ip
->i_df
.if_bytes
/
327 (uint
)sizeof(xfs_bmbt_rec_t
);
329 #ifdef XFS_NATIVE_HOST
330 if (nrecs
== ip
->i_d
.di_nextents
) {
332 * There are no delayed allocation
333 * extents, so just point to the
334 * real extents array.
337 (char *)(ip
->i_df
.if_u1
.if_extents
);
338 vecp
->i_len
= ip
->i_df
.if_bytes
;
339 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
344 * There are delayed allocation extents
345 * in the inode, or we need to convert
346 * the extents to on disk format.
347 * Use xfs_iextents_copy()
348 * to copy only the real extents into
349 * a separate buffer. We'll free the
350 * buffer in the unlock routine.
352 ext_buffer
= kmem_alloc(ip
->i_df
.if_bytes
,
354 iip
->ili_extents_buf
= ext_buffer
;
355 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
356 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
358 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
360 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
361 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
367 case XFS_DINODE_FMT_BTREE
:
368 ASSERT(!(iip
->ili_format
.ilf_fields
&
369 (XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
370 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
371 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) {
372 ASSERT(ip
->i_df
.if_broot_bytes
> 0);
373 ASSERT(ip
->i_df
.if_broot
!= NULL
);
374 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_broot
;
375 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
376 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IBROOT
);
379 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
383 case XFS_DINODE_FMT_LOCAL
:
384 ASSERT(!(iip
->ili_format
.ilf_fields
&
385 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
386 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
387 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) {
388 ASSERT(ip
->i_df
.if_bytes
> 0);
389 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
390 ASSERT(ip
->i_d
.di_size
> 0);
392 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_u1
.if_data
;
394 * Round i_bytes up to a word boundary.
395 * The underlying memory is guaranteed to
396 * to be there by xfs_idata_realloc().
398 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
399 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
400 (ip
->i_df
.if_real_bytes
== data_bytes
));
401 vecp
->i_len
= (int)data_bytes
;
402 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ILOCAL
);
405 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
409 case XFS_DINODE_FMT_DEV
:
410 ASSERT(!(iip
->ili_format
.ilf_fields
&
411 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
412 XFS_ILOG_DDATA
| XFS_ILOG_UUID
)));
413 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
414 iip
->ili_format
.ilf_u
.ilfu_rdev
=
415 ip
->i_df
.if_u2
.if_rdev
;
419 case XFS_DINODE_FMT_UUID
:
420 ASSERT(!(iip
->ili_format
.ilf_fields
&
421 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
422 XFS_ILOG_DDATA
| XFS_ILOG_DEV
)));
423 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
424 iip
->ili_format
.ilf_u
.ilfu_uuid
=
425 ip
->i_df
.if_u2
.if_uuid
;
435 * If there are no attributes associated with the file,
437 * Assert that no attribute-related log flags are set.
439 if (!XFS_IFORK_Q(ip
)) {
440 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
441 iip
->ili_format
.ilf_size
= nvecs
;
442 ASSERT(!(iip
->ili_format
.ilf_fields
&
443 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
447 switch (ip
->i_d
.di_aformat
) {
448 case XFS_DINODE_FMT_EXTENTS
:
449 ASSERT(!(iip
->ili_format
.ilf_fields
&
450 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
)));
451 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) {
452 ASSERT(ip
->i_afp
->if_bytes
> 0);
453 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
454 ASSERT(ip
->i_d
.di_anextents
> 0);
456 nrecs
= ip
->i_afp
->if_bytes
/
457 (uint
)sizeof(xfs_bmbt_rec_t
);
460 ASSERT(nrecs
== ip
->i_d
.di_anextents
);
461 #ifdef XFS_NATIVE_HOST
463 * There are not delayed allocation extents
464 * for attributes, so just point at the array.
466 vecp
->i_addr
= (char *)(ip
->i_afp
->if_u1
.if_extents
);
467 vecp
->i_len
= ip
->i_afp
->if_bytes
;
469 ASSERT(iip
->ili_aextents_buf
== NULL
);
471 * Need to endian flip before logging
473 ext_buffer
= kmem_alloc(ip
->i_afp
->if_bytes
,
475 iip
->ili_aextents_buf
= ext_buffer
;
476 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
477 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
480 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_EXT
);
481 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
487 case XFS_DINODE_FMT_BTREE
:
488 ASSERT(!(iip
->ili_format
.ilf_fields
&
489 (XFS_ILOG_ADATA
| XFS_ILOG_AEXT
)));
490 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) {
491 ASSERT(ip
->i_afp
->if_broot_bytes
> 0);
492 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
493 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_broot
;
494 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
495 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_BROOT
);
498 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
502 case XFS_DINODE_FMT_LOCAL
:
503 ASSERT(!(iip
->ili_format
.ilf_fields
&
504 (XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
505 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) {
506 ASSERT(ip
->i_afp
->if_bytes
> 0);
507 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
509 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_u1
.if_data
;
511 * Round i_bytes up to a word boundary.
512 * The underlying memory is guaranteed to
513 * to be there by xfs_idata_realloc().
515 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
516 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
517 (ip
->i_afp
->if_real_bytes
== data_bytes
));
518 vecp
->i_len
= (int)data_bytes
;
519 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_LOCAL
);
522 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
531 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
532 iip
->ili_format
.ilf_size
= nvecs
;
537 * This is called to pin the inode associated with the inode log
538 * item in memory so it cannot be written out. Do this by calling
539 * xfs_ipin() to bump the pin count in the inode while holding the
544 xfs_inode_log_item_t
*iip
)
546 ASSERT(ismrlocked(&(iip
->ili_inode
->i_lock
), MR_UPDATE
));
547 xfs_ipin(iip
->ili_inode
);
552 * This is called to unpin the inode associated with the inode log
553 * item which was previously pinned with a call to xfs_inode_item_pin().
554 * Just call xfs_iunpin() on the inode to do this.
558 xfs_inode_item_unpin(
559 xfs_inode_log_item_t
*iip
,
562 xfs_iunpin(iip
->ili_inode
);
567 xfs_inode_item_unpin_remove(
568 xfs_inode_log_item_t
*iip
,
571 xfs_iunpin(iip
->ili_inode
);
575 * This is called to attempt to lock the inode associated with this
576 * inode log item, in preparation for the push routine which does the actual
577 * iflush. Don't sleep on the inode lock or the flush lock.
579 * If the flush lock is already held, indicating that the inode has
580 * been or is in the process of being flushed, then (ideally) we'd like to
581 * see if the inode's buffer is still incore, and if so give it a nudge.
582 * We delay doing so until the pushbuf routine, though, to avoid holding
583 * the AIL lock across a call to the blackhole which is the buffercache.
584 * Also we don't want to sleep in any device strategy routines, which can happen
585 * if we do the subsequent bawrite in here.
588 xfs_inode_item_trylock(
589 xfs_inode_log_item_t
*iip
)
591 register xfs_inode_t
*ip
;
595 if (xfs_ipincount(ip
) > 0) {
596 return XFS_ITEM_PINNED
;
599 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
600 return XFS_ITEM_LOCKED
;
603 if (!xfs_iflock_nowait(ip
)) {
605 * If someone else isn't already trying to push the inode
606 * buffer, we get to do it.
608 if (iip
->ili_pushbuf_flag
== 0) {
609 iip
->ili_pushbuf_flag
= 1;
611 iip
->ili_push_owner
= current_pid();
614 * Inode is left locked in shared mode.
615 * Pushbuf routine gets to unlock it.
617 return XFS_ITEM_PUSHBUF
;
620 * We hold the AIL_LOCK, so we must specify the
621 * NONOTIFY flag so that we won't double trip.
623 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
624 return XFS_ITEM_FLUSHING
;
629 /* Stale items should force out the iclog */
630 if (ip
->i_flags
& XFS_ISTALE
) {
632 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
633 return XFS_ITEM_PINNED
;
637 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
638 ASSERT(iip
->ili_format
.ilf_fields
!= 0);
639 ASSERT(iip
->ili_logged
== 0);
640 ASSERT(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
);
643 return XFS_ITEM_SUCCESS
;
647 * Unlock the inode associated with the inode log item.
648 * Clear the fields of the inode and inode log item that
649 * are specific to the current transaction. If the
650 * hold flags is set, do not unlock the inode.
653 xfs_inode_item_unlock(
654 xfs_inode_log_item_t
*iip
)
662 ASSERT(iip
->ili_inode
->i_itemp
!= NULL
);
663 ASSERT(ismrlocked(&(iip
->ili_inode
->i_lock
), MR_UPDATE
));
664 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
665 XFS_ILI_IOLOCKED_EXCL
)) ||
666 ismrlocked(&(iip
->ili_inode
->i_iolock
), MR_UPDATE
));
667 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
668 XFS_ILI_IOLOCKED_SHARED
)) ||
669 ismrlocked(&(iip
->ili_inode
->i_iolock
), MR_ACCESS
));
671 * Clear the transaction pointer in the inode.
677 * If the inode needed a separate buffer with which to log
678 * its extents, then free it now.
680 if (iip
->ili_extents_buf
!= NULL
) {
681 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
682 ASSERT(ip
->i_d
.di_nextents
> 0);
683 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
);
684 ASSERT(ip
->i_df
.if_bytes
> 0);
685 kmem_free(iip
->ili_extents_buf
, ip
->i_df
.if_bytes
);
686 iip
->ili_extents_buf
= NULL
;
688 if (iip
->ili_aextents_buf
!= NULL
) {
689 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
690 ASSERT(ip
->i_d
.di_anextents
> 0);
691 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
);
692 ASSERT(ip
->i_afp
->if_bytes
> 0);
693 kmem_free(iip
->ili_aextents_buf
, ip
->i_afp
->if_bytes
);
694 iip
->ili_aextents_buf
= NULL
;
698 * Figure out if we should unlock the inode or not.
700 hold
= iip
->ili_flags
& XFS_ILI_HOLD
;
703 * Before clearing out the flags, remember whether we
704 * are holding the inode's IO lock.
706 iolocked
= iip
->ili_flags
& XFS_ILI_IOLOCKED_ANY
;
709 * Clear out the fields of the inode log item particular
710 * to the current transaction.
712 iip
->ili_ilock_recur
= 0;
713 iip
->ili_iolock_recur
= 0;
717 * Unlock the inode if XFS_ILI_HOLD was not set.
720 lock_flags
= XFS_ILOCK_EXCL
;
721 if (iolocked
& XFS_ILI_IOLOCKED_EXCL
) {
722 lock_flags
|= XFS_IOLOCK_EXCL
;
723 } else if (iolocked
& XFS_ILI_IOLOCKED_SHARED
) {
724 lock_flags
|= XFS_IOLOCK_SHARED
;
726 xfs_iput(iip
->ili_inode
, lock_flags
);
731 * This is called to find out where the oldest active copy of the
732 * inode log item in the on disk log resides now that the last log
733 * write of it completed at the given lsn. Since we always re-log
734 * all dirty data in an inode, the latest copy in the on disk log
735 * is the only one that matters. Therefore, simply return the
740 xfs_inode_item_committed(
741 xfs_inode_log_item_t
*iip
,
748 * The transaction with the inode locked has aborted. The inode
749 * must not be dirty within the transaction (unless we're forcibly
750 * shutting down). We simply unlock just as if the transaction
751 * had been cancelled.
754 xfs_inode_item_abort(
755 xfs_inode_log_item_t
*iip
)
757 xfs_inode_item_unlock(iip
);
763 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
764 * failed to get the inode flush lock but did get the inode locked SHARED.
765 * Here we're trying to see if the inode buffer is incore, and if so whether it's
766 * marked delayed write. If that's the case, we'll initiate a bawrite on that
767 * buffer to expedite the process.
769 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
770 * so it is inherently race-y.
773 xfs_inode_item_pushbuf(
774 xfs_inode_log_item_t
*iip
)
783 ASSERT(ismrlocked(&(ip
->i_lock
), MR_ACCESS
));
786 * The ili_pushbuf_flag keeps others from
787 * trying to duplicate our effort.
789 ASSERT(iip
->ili_pushbuf_flag
!= 0);
790 ASSERT(iip
->ili_push_owner
== current_pid());
793 * If flushlock isn't locked anymore, chances are that the
794 * inode flush completed and the inode was taken off the AIL.
797 if ((valusema(&(ip
->i_flock
)) > 0) ||
798 ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0)) {
799 iip
->ili_pushbuf_flag
= 0;
800 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
805 bp
= xfs_incore(mp
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
806 iip
->ili_format
.ilf_len
, XFS_INCORE_TRYLOCK
);
809 if (XFS_BUF_ISDELAYWRITE(bp
)) {
811 * We were racing with iflush because we don't hold
812 * the AIL_LOCK or the flush lock. However, at this point,
813 * we have the buffer, and we know that it's dirty.
814 * So, it's possible that iflush raced with us, and
815 * this item is already taken off the AIL.
816 * If not, we can flush it async.
818 dopush
= ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) &&
819 (valusema(&(ip
->i_flock
)) <= 0));
820 iip
->ili_pushbuf_flag
= 0;
821 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
822 xfs_buftrace("INODE ITEM PUSH", bp
);
823 if (XFS_BUF_ISPINNED(bp
)) {
824 xfs_log_force(mp
, (xfs_lsn_t
)0,
833 iip
->ili_pushbuf_flag
= 0;
834 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
840 * We have to be careful about resetting pushbuf flag too early (above).
841 * Even though in theory we can do it as soon as we have the buflock,
842 * we don't want others to be doing work needlessly. They'll come to
843 * this function thinking that pushing the buffer is their
844 * responsibility only to find that the buffer is still locked by
845 * another doing the same thing
847 iip
->ili_pushbuf_flag
= 0;
848 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
854 * This is called to asynchronously write the inode associated with this
855 * inode log item out to disk. The inode will already have been locked by
856 * a successful call to xfs_inode_item_trylock().
860 xfs_inode_log_item_t
*iip
)
866 ASSERT(ismrlocked(&(ip
->i_lock
), MR_ACCESS
));
867 ASSERT(valusema(&(ip
->i_flock
)) <= 0);
869 * Since we were able to lock the inode's flush lock and
870 * we found it on the AIL, the inode must be dirty. This
871 * is because the inode is removed from the AIL while still
872 * holding the flush lock in xfs_iflush_done(). Thus, if
873 * we found it in the AIL and were able to obtain the flush
874 * lock without sleeping, then there must not have been
875 * anyone in the process of flushing the inode.
877 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) ||
878 iip
->ili_format
.ilf_fields
!= 0);
881 * Write out the inode. The completion routine ('iflush_done') will
882 * pull it from the AIL, mark it clean, unlock the flush lock.
884 (void) xfs_iflush(ip
, XFS_IFLUSH_ASYNC
);
885 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
891 * XXX rcc - this one really has to do something. Probably needs
892 * to stamp in a new field in the incore inode.
896 xfs_inode_item_committing(
897 xfs_inode_log_item_t
*iip
,
900 iip
->ili_last_lsn
= lsn
;
905 * This is the ops vector shared by all buf log items.
907 STATIC
struct xfs_item_ops xfs_inode_item_ops
= {
908 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_size
,
909 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
910 xfs_inode_item_format
,
911 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pin
,
912 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_inode_item_unpin
,
913 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
914 xfs_inode_item_unpin_remove
,
915 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_trylock
,
916 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_inode_item_unlock
,
917 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
918 xfs_inode_item_committed
,
919 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_inode_item_push
,
920 .iop_abort
= (void(*)(xfs_log_item_t
*))xfs_inode_item_abort
,
921 .iop_pushbuf
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pushbuf
,
922 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
923 xfs_inode_item_committing
928 * Initialize the inode log item for a newly allocated (in-core) inode.
935 xfs_inode_log_item_t
*iip
;
937 ASSERT(ip
->i_itemp
== NULL
);
938 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
940 iip
->ili_item
.li_type
= XFS_LI_INODE
;
941 iip
->ili_item
.li_ops
= &xfs_inode_item_ops
;
942 iip
->ili_item
.li_mountp
= mp
;
946 We have zeroed memory. No need ...
947 iip->ili_extents_buf = NULL;
948 iip->ili_pushbuf_flag = 0;
951 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
952 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
953 iip
->ili_format
.ilf_blkno
= ip
->i_blkno
;
954 iip
->ili_format
.ilf_len
= ip
->i_len
;
955 iip
->ili_format
.ilf_boffset
= ip
->i_boffset
;
959 * Free the inode log item and any memory hanging off of it.
962 xfs_inode_item_destroy(
965 #ifdef XFS_TRANS_DEBUG
966 if (ip
->i_itemp
->ili_root_size
!= 0) {
967 kmem_free(ip
->i_itemp
->ili_orig_root
,
968 ip
->i_itemp
->ili_root_size
);
971 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
976 * This is the inode flushing I/O completion routine. It is called
977 * from interrupt level when the buffer containing the inode is
978 * flushed to disk. It is responsible for removing the inode item
979 * from the AIL if it has not been re-logged, and unlocking the inode's
986 xfs_inode_log_item_t
*iip
)
994 * We only want to pull the item from the AIL if it is
995 * actually there and its location in the log has not
996 * changed since we started the flush. Thus, we only bother
997 * if the ili_logged flag is set and the inode's lsn has not
998 * changed. First we check the lsn outside
999 * the lock since it's cheaper, and then we recheck while
1000 * holding the lock before removing the inode from the AIL.
1002 if (iip
->ili_logged
&&
1003 (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
)) {
1004 AIL_LOCK(ip
->i_mount
, s
);
1005 if (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
) {
1007 * xfs_trans_delete_ail() drops the AIL lock.
1009 xfs_trans_delete_ail(ip
->i_mount
,
1010 (xfs_log_item_t
*)iip
, s
);
1012 AIL_UNLOCK(ip
->i_mount
, s
);
1016 iip
->ili_logged
= 0;
1019 * Clear the ili_last_fields bits now that we know that the
1020 * data corresponding to them is safely on disk.
1022 iip
->ili_last_fields
= 0;
1025 * Release the inode's flush lock since we're done with it.
1033 * This is the inode flushing abort routine. It is called
1034 * from xfs_iflush when the filesystem is shutting down to clean
1035 * up the inode state.
1036 * It is responsible for removing the inode item
1037 * from the AIL if it has not been re-logged, and unlocking the inode's
1044 xfs_inode_log_item_t
*iip
;
1051 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1053 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1055 * xfs_trans_delete_ail() drops the AIL lock.
1057 xfs_trans_delete_ail(mp
, (xfs_log_item_t
*)iip
,
1062 iip
->ili_logged
= 0;
1064 * Clear the ili_last_fields bits now that we know that the
1065 * data corresponding to them is safely on disk.
1067 iip
->ili_last_fields
= 0;
1069 * Clear the inode logging fields so no more flushes are
1072 iip
->ili_format
.ilf_fields
= 0;
1075 * Release the inode's flush lock since we're done with it.
1083 xfs_inode_log_item_t
*iip
)
1085 xfs_iflush_abort(iip
->ili_inode
);