memcontrol: add vm_match_cgroup()
[linux-2.6/mini2440.git] / mm / memcontrol.c
blob6bded84c20c88b7b4687a2954f31509ef1527c0d
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
34 #include <asm/uaccess.h>
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
40 * Statistics for memory cgroup.
42 enum mem_cgroup_stat_index {
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
49 MEM_CGROUP_STAT_NSTATS,
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
61 * For accounting under irq disable, no need for increment preempt count.
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
81 * per-zone information in memory controller.
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
88 NR_MEM_CGROUP_ZSTAT,
91 struct mem_cgroup_per_zone {
93 * spin_lock to protect the per cgroup LRU
95 spinlock_t lru_lock;
96 struct list_head active_list;
97 struct list_head inactive_list;
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
103 struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
107 struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
122 struct mem_cgroup {
123 struct cgroup_subsys_state css;
125 * the counter to account for memory usage
127 struct res_counter res;
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
132 struct mem_cgroup_lru_info info;
134 int prev_priority; /* for recording reclaim priority */
136 * statistics.
138 struct mem_cgroup_stat stat;
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 * lock. We need to ensure that page->page_cgroup is atleast two
144 * byte aligned (based on comments from Nick Piggin)
146 #define PAGE_CGROUP_LOCK_BIT 0x0
147 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
150 * A page_cgroup page is associated with every page descriptor. The
151 * page_cgroup helps us identify information about the cgroup
153 struct page_cgroup {
154 struct list_head lru; /* per cgroup LRU list */
155 struct page *page;
156 struct mem_cgroup *mem_cgroup;
157 atomic_t ref_cnt; /* Helpful when pages move b/w */
158 /* mapped and cached states */
159 int flags;
161 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
162 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
164 static inline int page_cgroup_nid(struct page_cgroup *pc)
166 return page_to_nid(pc->page);
169 static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
171 return page_zonenum(pc->page);
174 enum {
175 MEM_CGROUP_TYPE_UNSPEC = 0,
176 MEM_CGROUP_TYPE_MAPPED,
177 MEM_CGROUP_TYPE_CACHED,
178 MEM_CGROUP_TYPE_ALL,
179 MEM_CGROUP_TYPE_MAX,
182 enum charge_type {
183 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
184 MEM_CGROUP_CHARGE_TYPE_MAPPED,
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
191 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192 bool charge)
194 int val = (charge)? 1 : -1;
195 struct mem_cgroup_stat *stat = &mem->stat;
196 VM_BUG_ON(!irqs_disabled());
198 if (flags & PAGE_CGROUP_FLAG_CACHE)
199 __mem_cgroup_stat_add_safe(stat,
200 MEM_CGROUP_STAT_CACHE, val);
201 else
202 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
205 static inline struct mem_cgroup_per_zone *
206 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
208 BUG_ON(!mem->info.nodeinfo[nid]);
209 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
212 static inline struct mem_cgroup_per_zone *
213 page_cgroup_zoneinfo(struct page_cgroup *pc)
215 struct mem_cgroup *mem = pc->mem_cgroup;
216 int nid = page_cgroup_nid(pc);
217 int zid = page_cgroup_zid(pc);
219 return mem_cgroup_zoneinfo(mem, nid, zid);
222 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
223 enum mem_cgroup_zstat_index idx)
225 int nid, zid;
226 struct mem_cgroup_per_zone *mz;
227 u64 total = 0;
229 for_each_online_node(nid)
230 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
231 mz = mem_cgroup_zoneinfo(mem, nid, zid);
232 total += MEM_CGROUP_ZSTAT(mz, idx);
234 return total;
237 static struct mem_cgroup init_mem_cgroup;
239 static inline
240 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
242 return container_of(cgroup_subsys_state(cont,
243 mem_cgroup_subsys_id), struct mem_cgroup,
244 css);
247 static inline
248 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
250 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
251 struct mem_cgroup, css);
254 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
256 struct mem_cgroup *mem;
258 mem = mem_cgroup_from_task(p);
259 css_get(&mem->css);
260 mm->mem_cgroup = mem;
263 void mm_free_cgroup(struct mm_struct *mm)
265 css_put(&mm->mem_cgroup->css);
268 static inline int page_cgroup_locked(struct page *page)
270 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
271 &page->page_cgroup);
274 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
276 int locked;
279 * While resetting the page_cgroup we might not hold the
280 * page_cgroup lock. free_hot_cold_page() is an example
281 * of such a scenario
283 if (pc)
284 VM_BUG_ON(!page_cgroup_locked(page));
285 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
286 page->page_cgroup = ((unsigned long)pc | locked);
289 struct page_cgroup *page_get_page_cgroup(struct page *page)
291 return (struct page_cgroup *)
292 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
295 static void __always_inline lock_page_cgroup(struct page *page)
297 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
298 VM_BUG_ON(!page_cgroup_locked(page));
301 static void __always_inline unlock_page_cgroup(struct page *page)
303 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
307 * Tie new page_cgroup to struct page under lock_page_cgroup()
308 * This can fail if the page has been tied to a page_cgroup.
309 * If success, returns 0.
311 static int page_cgroup_assign_new_page_cgroup(struct page *page,
312 struct page_cgroup *pc)
314 int ret = 0;
316 lock_page_cgroup(page);
317 if (!page_get_page_cgroup(page))
318 page_assign_page_cgroup(page, pc);
319 else /* A page is tied to other pc. */
320 ret = 1;
321 unlock_page_cgroup(page);
322 return ret;
326 * Clear page->page_cgroup member under lock_page_cgroup().
327 * If given "pc" value is different from one page->page_cgroup,
328 * page->cgroup is not cleared.
329 * Returns a value of page->page_cgroup at lock taken.
330 * A can can detect failure of clearing by following
331 * clear_page_cgroup(page, pc) == pc
334 static struct page_cgroup *clear_page_cgroup(struct page *page,
335 struct page_cgroup *pc)
337 struct page_cgroup *ret;
338 /* lock and clear */
339 lock_page_cgroup(page);
340 ret = page_get_page_cgroup(page);
341 if (likely(ret == pc))
342 page_assign_page_cgroup(page, NULL);
343 unlock_page_cgroup(page);
344 return ret;
347 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
349 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
350 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
352 if (from)
353 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
354 else
355 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
357 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
358 list_del_init(&pc->lru);
361 static void __mem_cgroup_add_list(struct page_cgroup *pc)
363 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
364 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
366 if (!to) {
367 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
368 list_add(&pc->lru, &mz->inactive_list);
369 } else {
370 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
371 list_add(&pc->lru, &mz->active_list);
373 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
376 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
378 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
379 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
381 if (from)
382 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
383 else
384 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
386 if (active) {
387 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
388 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
389 list_move(&pc->lru, &mz->active_list);
390 } else {
391 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
392 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
393 list_move(&pc->lru, &mz->inactive_list);
397 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
399 int ret;
401 task_lock(task);
402 ret = task->mm && vm_match_cgroup(task->mm, mem);
403 task_unlock(task);
404 return ret;
408 * This routine assumes that the appropriate zone's lru lock is already held
410 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
412 struct mem_cgroup_per_zone *mz;
413 unsigned long flags;
415 if (!pc)
416 return;
418 mz = page_cgroup_zoneinfo(pc);
419 spin_lock_irqsave(&mz->lru_lock, flags);
420 __mem_cgroup_move_lists(pc, active);
421 spin_unlock_irqrestore(&mz->lru_lock, flags);
425 * Calculate mapped_ratio under memory controller. This will be used in
426 * vmscan.c for deteremining we have to reclaim mapped pages.
428 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
430 long total, rss;
433 * usage is recorded in bytes. But, here, we assume the number of
434 * physical pages can be represented by "long" on any arch.
436 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
437 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
438 return (int)((rss * 100L) / total);
441 * This function is called from vmscan.c. In page reclaiming loop. balance
442 * between active and inactive list is calculated. For memory controller
443 * page reclaiming, we should use using mem_cgroup's imbalance rather than
444 * zone's global lru imbalance.
446 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
448 unsigned long active, inactive;
449 /* active and inactive are the number of pages. 'long' is ok.*/
450 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
451 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
452 return (long) (active / (inactive + 1));
456 * prev_priority control...this will be used in memory reclaim path.
458 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
460 return mem->prev_priority;
463 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
465 if (priority < mem->prev_priority)
466 mem->prev_priority = priority;
469 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
471 mem->prev_priority = priority;
475 * Calculate # of pages to be scanned in this priority/zone.
476 * See also vmscan.c
478 * priority starts from "DEF_PRIORITY" and decremented in each loop.
479 * (see include/linux/mmzone.h)
482 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
483 struct zone *zone, int priority)
485 long nr_active;
486 int nid = zone->zone_pgdat->node_id;
487 int zid = zone_idx(zone);
488 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
490 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
491 return (nr_active >> priority);
494 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
495 struct zone *zone, int priority)
497 long nr_inactive;
498 int nid = zone->zone_pgdat->node_id;
499 int zid = zone_idx(zone);
500 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
502 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
504 return (nr_inactive >> priority);
507 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
508 struct list_head *dst,
509 unsigned long *scanned, int order,
510 int mode, struct zone *z,
511 struct mem_cgroup *mem_cont,
512 int active)
514 unsigned long nr_taken = 0;
515 struct page *page;
516 unsigned long scan;
517 LIST_HEAD(pc_list);
518 struct list_head *src;
519 struct page_cgroup *pc, *tmp;
520 int nid = z->zone_pgdat->node_id;
521 int zid = zone_idx(z);
522 struct mem_cgroup_per_zone *mz;
524 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
525 if (active)
526 src = &mz->active_list;
527 else
528 src = &mz->inactive_list;
531 spin_lock(&mz->lru_lock);
532 scan = 0;
533 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
534 if (scan >= nr_to_scan)
535 break;
536 page = pc->page;
537 VM_BUG_ON(!pc);
539 if (unlikely(!PageLRU(page)))
540 continue;
542 if (PageActive(page) && !active) {
543 __mem_cgroup_move_lists(pc, true);
544 continue;
546 if (!PageActive(page) && active) {
547 __mem_cgroup_move_lists(pc, false);
548 continue;
551 scan++;
552 list_move(&pc->lru, &pc_list);
554 if (__isolate_lru_page(page, mode) == 0) {
555 list_move(&page->lru, dst);
556 nr_taken++;
560 list_splice(&pc_list, src);
561 spin_unlock(&mz->lru_lock);
563 *scanned = scan;
564 return nr_taken;
568 * Charge the memory controller for page usage.
569 * Return
570 * 0 if the charge was successful
571 * < 0 if the cgroup is over its limit
573 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
574 gfp_t gfp_mask, enum charge_type ctype)
576 struct mem_cgroup *mem;
577 struct page_cgroup *pc;
578 unsigned long flags;
579 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
580 struct mem_cgroup_per_zone *mz;
583 * Should page_cgroup's go to their own slab?
584 * One could optimize the performance of the charging routine
585 * by saving a bit in the page_flags and using it as a lock
586 * to see if the cgroup page already has a page_cgroup associated
587 * with it
589 retry:
590 if (page) {
591 lock_page_cgroup(page);
592 pc = page_get_page_cgroup(page);
594 * The page_cgroup exists and
595 * the page has already been accounted.
597 if (pc) {
598 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
599 /* this page is under being uncharged ? */
600 unlock_page_cgroup(page);
601 cpu_relax();
602 goto retry;
603 } else {
604 unlock_page_cgroup(page);
605 goto done;
608 unlock_page_cgroup(page);
611 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
612 if (pc == NULL)
613 goto err;
616 * We always charge the cgroup the mm_struct belongs to.
617 * The mm_struct's mem_cgroup changes on task migration if the
618 * thread group leader migrates. It's possible that mm is not
619 * set, if so charge the init_mm (happens for pagecache usage).
621 if (!mm)
622 mm = &init_mm;
624 rcu_read_lock();
625 mem = rcu_dereference(mm->mem_cgroup);
627 * For every charge from the cgroup, increment reference
628 * count
630 css_get(&mem->css);
631 rcu_read_unlock();
634 * If we created the page_cgroup, we should free it on exceeding
635 * the cgroup limit.
637 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
638 if (!(gfp_mask & __GFP_WAIT))
639 goto out;
641 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
642 continue;
645 * try_to_free_mem_cgroup_pages() might not give us a full
646 * picture of reclaim. Some pages are reclaimed and might be
647 * moved to swap cache or just unmapped from the cgroup.
648 * Check the limit again to see if the reclaim reduced the
649 * current usage of the cgroup before giving up
651 if (res_counter_check_under_limit(&mem->res))
652 continue;
654 if (!nr_retries--) {
655 mem_cgroup_out_of_memory(mem, gfp_mask);
656 goto out;
658 congestion_wait(WRITE, HZ/10);
661 atomic_set(&pc->ref_cnt, 1);
662 pc->mem_cgroup = mem;
663 pc->page = page;
664 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
665 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
666 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
668 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
670 * Another charge has been added to this page already.
671 * We take lock_page_cgroup(page) again and read
672 * page->cgroup, increment refcnt.... just retry is OK.
674 res_counter_uncharge(&mem->res, PAGE_SIZE);
675 css_put(&mem->css);
676 kfree(pc);
677 if (!page)
678 goto done;
679 goto retry;
682 mz = page_cgroup_zoneinfo(pc);
683 spin_lock_irqsave(&mz->lru_lock, flags);
684 /* Update statistics vector */
685 __mem_cgroup_add_list(pc);
686 spin_unlock_irqrestore(&mz->lru_lock, flags);
688 done:
689 return 0;
690 out:
691 css_put(&mem->css);
692 kfree(pc);
693 err:
694 return -ENOMEM;
697 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
698 gfp_t gfp_mask)
700 return mem_cgroup_charge_common(page, mm, gfp_mask,
701 MEM_CGROUP_CHARGE_TYPE_MAPPED);
705 * See if the cached pages should be charged at all?
707 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
708 gfp_t gfp_mask)
710 int ret = 0;
711 if (!mm)
712 mm = &init_mm;
714 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
715 MEM_CGROUP_CHARGE_TYPE_CACHE);
716 return ret;
720 * Uncharging is always a welcome operation, we never complain, simply
721 * uncharge. This routine should be called with lock_page_cgroup held
723 void mem_cgroup_uncharge(struct page_cgroup *pc)
725 struct mem_cgroup *mem;
726 struct mem_cgroup_per_zone *mz;
727 struct page *page;
728 unsigned long flags;
731 * Check if our page_cgroup is valid
733 if (!pc)
734 return;
736 if (atomic_dec_and_test(&pc->ref_cnt)) {
737 page = pc->page;
738 mz = page_cgroup_zoneinfo(pc);
740 * get page->cgroup and clear it under lock.
741 * force_empty can drop page->cgroup without checking refcnt.
743 unlock_page_cgroup(page);
744 if (clear_page_cgroup(page, pc) == pc) {
745 mem = pc->mem_cgroup;
746 css_put(&mem->css);
747 res_counter_uncharge(&mem->res, PAGE_SIZE);
748 spin_lock_irqsave(&mz->lru_lock, flags);
749 __mem_cgroup_remove_list(pc);
750 spin_unlock_irqrestore(&mz->lru_lock, flags);
751 kfree(pc);
753 lock_page_cgroup(page);
757 void mem_cgroup_uncharge_page(struct page *page)
759 lock_page_cgroup(page);
760 mem_cgroup_uncharge(page_get_page_cgroup(page));
761 unlock_page_cgroup(page);
765 * Returns non-zero if a page (under migration) has valid page_cgroup member.
766 * Refcnt of page_cgroup is incremented.
769 int mem_cgroup_prepare_migration(struct page *page)
771 struct page_cgroup *pc;
772 int ret = 0;
773 lock_page_cgroup(page);
774 pc = page_get_page_cgroup(page);
775 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
776 ret = 1;
777 unlock_page_cgroup(page);
778 return ret;
781 void mem_cgroup_end_migration(struct page *page)
783 struct page_cgroup *pc;
785 lock_page_cgroup(page);
786 pc = page_get_page_cgroup(page);
787 mem_cgroup_uncharge(pc);
788 unlock_page_cgroup(page);
791 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
792 * And no race with uncharge() routines because page_cgroup for *page*
793 * has extra one reference by mem_cgroup_prepare_migration.
796 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
798 struct page_cgroup *pc;
799 struct mem_cgroup *mem;
800 unsigned long flags;
801 struct mem_cgroup_per_zone *mz;
802 retry:
803 pc = page_get_page_cgroup(page);
804 if (!pc)
805 return;
806 mem = pc->mem_cgroup;
807 mz = page_cgroup_zoneinfo(pc);
808 if (clear_page_cgroup(page, pc) != pc)
809 goto retry;
810 spin_lock_irqsave(&mz->lru_lock, flags);
812 __mem_cgroup_remove_list(pc);
813 spin_unlock_irqrestore(&mz->lru_lock, flags);
815 pc->page = newpage;
816 lock_page_cgroup(newpage);
817 page_assign_page_cgroup(newpage, pc);
818 unlock_page_cgroup(newpage);
820 mz = page_cgroup_zoneinfo(pc);
821 spin_lock_irqsave(&mz->lru_lock, flags);
822 __mem_cgroup_add_list(pc);
823 spin_unlock_irqrestore(&mz->lru_lock, flags);
824 return;
828 * This routine traverse page_cgroup in given list and drop them all.
829 * This routine ignores page_cgroup->ref_cnt.
830 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
832 #define FORCE_UNCHARGE_BATCH (128)
833 static void
834 mem_cgroup_force_empty_list(struct mem_cgroup *mem,
835 struct mem_cgroup_per_zone *mz,
836 int active)
838 struct page_cgroup *pc;
839 struct page *page;
840 int count;
841 unsigned long flags;
842 struct list_head *list;
844 if (active)
845 list = &mz->active_list;
846 else
847 list = &mz->inactive_list;
849 if (list_empty(list))
850 return;
851 retry:
852 count = FORCE_UNCHARGE_BATCH;
853 spin_lock_irqsave(&mz->lru_lock, flags);
855 while (--count && !list_empty(list)) {
856 pc = list_entry(list->prev, struct page_cgroup, lru);
857 page = pc->page;
858 /* Avoid race with charge */
859 atomic_set(&pc->ref_cnt, 0);
860 if (clear_page_cgroup(page, pc) == pc) {
861 css_put(&mem->css);
862 res_counter_uncharge(&mem->res, PAGE_SIZE);
863 __mem_cgroup_remove_list(pc);
864 kfree(pc);
865 } else /* being uncharged ? ...do relax */
866 break;
868 spin_unlock_irqrestore(&mz->lru_lock, flags);
869 if (!list_empty(list)) {
870 cond_resched();
871 goto retry;
873 return;
877 * make mem_cgroup's charge to be 0 if there is no task.
878 * This enables deleting this mem_cgroup.
881 int mem_cgroup_force_empty(struct mem_cgroup *mem)
883 int ret = -EBUSY;
884 int node, zid;
885 css_get(&mem->css);
887 * page reclaim code (kswapd etc..) will move pages between
888 ` * active_list <-> inactive_list while we don't take a lock.
889 * So, we have to do loop here until all lists are empty.
891 while (mem->res.usage > 0) {
892 if (atomic_read(&mem->css.cgroup->count) > 0)
893 goto out;
894 for_each_node_state(node, N_POSSIBLE)
895 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
896 struct mem_cgroup_per_zone *mz;
897 mz = mem_cgroup_zoneinfo(mem, node, zid);
898 /* drop all page_cgroup in active_list */
899 mem_cgroup_force_empty_list(mem, mz, 1);
900 /* drop all page_cgroup in inactive_list */
901 mem_cgroup_force_empty_list(mem, mz, 0);
904 ret = 0;
905 out:
906 css_put(&mem->css);
907 return ret;
912 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
914 *tmp = memparse(buf, &buf);
915 if (*buf != '\0')
916 return -EINVAL;
919 * Round up the value to the closest page size
921 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
922 return 0;
925 static ssize_t mem_cgroup_read(struct cgroup *cont,
926 struct cftype *cft, struct file *file,
927 char __user *userbuf, size_t nbytes, loff_t *ppos)
929 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
930 cft->private, userbuf, nbytes, ppos,
931 NULL);
934 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
935 struct file *file, const char __user *userbuf,
936 size_t nbytes, loff_t *ppos)
938 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
939 cft->private, userbuf, nbytes, ppos,
940 mem_cgroup_write_strategy);
943 static ssize_t mem_force_empty_write(struct cgroup *cont,
944 struct cftype *cft, struct file *file,
945 const char __user *userbuf,
946 size_t nbytes, loff_t *ppos)
948 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
949 int ret;
950 ret = mem_cgroup_force_empty(mem);
951 if (!ret)
952 ret = nbytes;
953 return ret;
957 * Note: This should be removed if cgroup supports write-only file.
960 static ssize_t mem_force_empty_read(struct cgroup *cont,
961 struct cftype *cft,
962 struct file *file, char __user *userbuf,
963 size_t nbytes, loff_t *ppos)
965 return -EINVAL;
969 static const struct mem_cgroup_stat_desc {
970 const char *msg;
971 u64 unit;
972 } mem_cgroup_stat_desc[] = {
973 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
974 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
977 static int mem_control_stat_show(struct seq_file *m, void *arg)
979 struct cgroup *cont = m->private;
980 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
981 struct mem_cgroup_stat *stat = &mem_cont->stat;
982 int i;
984 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
985 s64 val;
987 val = mem_cgroup_read_stat(stat, i);
988 val *= mem_cgroup_stat_desc[i].unit;
989 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
990 (long long)val);
992 /* showing # of active pages */
994 unsigned long active, inactive;
996 inactive = mem_cgroup_get_all_zonestat(mem_cont,
997 MEM_CGROUP_ZSTAT_INACTIVE);
998 active = mem_cgroup_get_all_zonestat(mem_cont,
999 MEM_CGROUP_ZSTAT_ACTIVE);
1000 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
1001 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
1003 return 0;
1006 static const struct file_operations mem_control_stat_file_operations = {
1007 .read = seq_read,
1008 .llseek = seq_lseek,
1009 .release = single_release,
1012 static int mem_control_stat_open(struct inode *unused, struct file *file)
1014 /* XXX __d_cont */
1015 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
1017 file->f_op = &mem_control_stat_file_operations;
1018 return single_open(file, mem_control_stat_show, cont);
1023 static struct cftype mem_cgroup_files[] = {
1025 .name = "usage_in_bytes",
1026 .private = RES_USAGE,
1027 .read = mem_cgroup_read,
1030 .name = "limit_in_bytes",
1031 .private = RES_LIMIT,
1032 .write = mem_cgroup_write,
1033 .read = mem_cgroup_read,
1036 .name = "failcnt",
1037 .private = RES_FAILCNT,
1038 .read = mem_cgroup_read,
1041 .name = "force_empty",
1042 .write = mem_force_empty_write,
1043 .read = mem_force_empty_read,
1046 .name = "stat",
1047 .open = mem_control_stat_open,
1051 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1053 struct mem_cgroup_per_node *pn;
1054 struct mem_cgroup_per_zone *mz;
1055 int zone;
1057 * This routine is called against possible nodes.
1058 * But it's BUG to call kmalloc() against offline node.
1060 * TODO: this routine can waste much memory for nodes which will
1061 * never be onlined. It's better to use memory hotplug callback
1062 * function.
1064 if (node_state(node, N_HIGH_MEMORY))
1065 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1066 else
1067 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1068 if (!pn)
1069 return 1;
1071 mem->info.nodeinfo[node] = pn;
1072 memset(pn, 0, sizeof(*pn));
1074 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1075 mz = &pn->zoneinfo[zone];
1076 INIT_LIST_HEAD(&mz->active_list);
1077 INIT_LIST_HEAD(&mz->inactive_list);
1078 spin_lock_init(&mz->lru_lock);
1080 return 0;
1083 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1085 kfree(mem->info.nodeinfo[node]);
1089 static struct mem_cgroup init_mem_cgroup;
1091 static struct cgroup_subsys_state *
1092 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1094 struct mem_cgroup *mem;
1095 int node;
1097 if (unlikely((cont->parent) == NULL)) {
1098 mem = &init_mem_cgroup;
1099 init_mm.mem_cgroup = mem;
1100 } else
1101 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1103 if (mem == NULL)
1104 return NULL;
1106 res_counter_init(&mem->res);
1108 memset(&mem->info, 0, sizeof(mem->info));
1110 for_each_node_state(node, N_POSSIBLE)
1111 if (alloc_mem_cgroup_per_zone_info(mem, node))
1112 goto free_out;
1114 return &mem->css;
1115 free_out:
1116 for_each_node_state(node, N_POSSIBLE)
1117 free_mem_cgroup_per_zone_info(mem, node);
1118 if (cont->parent != NULL)
1119 kfree(mem);
1120 return NULL;
1123 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1124 struct cgroup *cont)
1126 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1127 mem_cgroup_force_empty(mem);
1130 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1131 struct cgroup *cont)
1133 int node;
1134 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1136 for_each_node_state(node, N_POSSIBLE)
1137 free_mem_cgroup_per_zone_info(mem, node);
1139 kfree(mem_cgroup_from_cont(cont));
1142 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1143 struct cgroup *cont)
1145 return cgroup_add_files(cont, ss, mem_cgroup_files,
1146 ARRAY_SIZE(mem_cgroup_files));
1149 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1150 struct cgroup *cont,
1151 struct cgroup *old_cont,
1152 struct task_struct *p)
1154 struct mm_struct *mm;
1155 struct mem_cgroup *mem, *old_mem;
1157 mm = get_task_mm(p);
1158 if (mm == NULL)
1159 return;
1161 mem = mem_cgroup_from_cont(cont);
1162 old_mem = mem_cgroup_from_cont(old_cont);
1164 if (mem == old_mem)
1165 goto out;
1168 * Only thread group leaders are allowed to migrate, the mm_struct is
1169 * in effect owned by the leader
1171 if (p->tgid != p->pid)
1172 goto out;
1174 css_get(&mem->css);
1175 rcu_assign_pointer(mm->mem_cgroup, mem);
1176 css_put(&old_mem->css);
1178 out:
1179 mmput(mm);
1180 return;
1183 struct cgroup_subsys mem_cgroup_subsys = {
1184 .name = "memory",
1185 .subsys_id = mem_cgroup_subsys_id,
1186 .create = mem_cgroup_create,
1187 .pre_destroy = mem_cgroup_pre_destroy,
1188 .destroy = mem_cgroup_destroy,
1189 .populate = mem_cgroup_populate,
1190 .attach = mem_cgroup_move_task,
1191 .early_init = 0,