sh: Move over SH-5 TLB and cache support code.
[linux-2.6/mini2440.git] / net / ipv4 / tcp_input.c
blobb39f0d86e44cb06abfc76fcfbebbad27c86ab367
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
130 icsk->icsk_ack.last_seg_size = 0;
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
142 * "len" is invariant segment length, including TCP header.
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 static void tcp_incr_quickack(struct sock *sk)
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
181 void tcp_enter_quickack_mode(struct sock *sk)
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
248 /* Buffer size and advertised window tuning.
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
253 static void tcp_fixup_sndbuf(struct sock *sk)
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299 truesize >>= 1;
300 window >>= 1;
302 return 0;
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
308 struct tcp_sock *tp = tcp_sk(sk);
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
331 /* 3. Tuning rcvbuf, when connection enters established state. */
333 static void tcp_fixup_rcvbuf(struct sock *sk)
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
351 static void tcp_init_buffer_space(struct sock *sk)
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
361 tp->rcvq_space.space = tp->rcv_wnd;
363 maxwin = tcp_full_space(sk);
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
390 icsk->icsk_ack.quick = 0;
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
411 void tcp_initialize_rcv_mss(struct sock *sk)
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
423 /* Receiver "autotuning" code.
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
439 if (m == 0)
440 m = 1;
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
495 void tcp_rcv_space_adjust(struct sock *sk)
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
511 space = max(tp->rcvq_space.space, space);
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
516 tp->rcvq_space.space = space;
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
565 inet_csk_schedule_ack(sk);
567 tcp_measure_rcv_mss(sk, skb);
569 tcp_rcv_rtt_measure(tp);
571 now = tcp_time_stamp;
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
597 icsk->icsk_ack.lrcvtime = now;
599 TCP_ECN_check_ce(tp, skb);
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
605 static u32 tcp_rto_min(struct sock *sk)
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
690 static inline void tcp_set_rto(struct sock *sk)
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
715 static inline void tcp_bound_rto(struct sock *sk)
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
725 void tcp_update_metrics(struct sock *sk)
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
730 if (sysctl_tcp_nometrics_save)
731 return;
733 dst_confirm(dst);
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
815 /* Numbers are taken from RFC3390.
817 * John Heffner states:
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
856 tcp_set_ca_state(sk, TCP_CA_CWR);
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
864 static void tcp_disable_fack(struct tcp_sock *tp)
866 tp->rx_opt.sack_ok &= ~2;
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
872 tp->rx_opt.sack_ok |= 4;
875 /* Initialize metrics on socket. */
877 static void tcp_init_metrics(struct sock *sk)
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
882 if (dst == NULL)
883 goto reset;
885 dst_confirm(dst);
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
936 reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
951 struct tcp_sock *tp = tcp_sk(sk);
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 else if (tcp_is_reno(tp))
959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 else if (tcp_is_fack(tp))
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
976 /* This procedure tags the retransmission queue when SACKs arrive.
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1024 * SACK block validation.
1025 * ----------------------
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, D-SACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1083 /* In outstanding window? ...This is valid exit for D-SACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1106 return !before(start_seq, end_seq - tp->max_window);
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114 * less than what is now known to be received by the other end (derived from
1115 * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116 * remaining retransmitted skbs to avoid some costly processing per ACKs.
1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1120 struct tcp_sock *tp = tcp_sk(sk);
1121 struct sk_buff *skb;
1122 int flag = 0;
1123 int cnt = 0;
1124 u32 new_low_seq = tp->snd_nxt;
1126 tcp_for_write_queue(skb, sk) {
1127 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1129 if (skb == tcp_send_head(sk))
1130 break;
1131 if (cnt == tp->retrans_out)
1132 break;
1133 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134 continue;
1136 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137 continue;
1139 if (after(received_upto, ack_seq) &&
1140 (tcp_is_fack(tp) ||
1141 !before(received_upto,
1142 ack_seq + tp->reordering * tp->mss_cache))) {
1143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144 tp->retrans_out -= tcp_skb_pcount(skb);
1146 /* clear lost hint */
1147 tp->retransmit_skb_hint = NULL;
1149 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 tp->lost_out += tcp_skb_pcount(skb);
1151 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 flag |= FLAG_DATA_SACKED;
1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1155 } else {
1156 if (before(ack_seq, new_low_seq))
1157 new_low_seq = ack_seq;
1158 cnt += tcp_skb_pcount(skb);
1162 if (tp->retrans_out)
1163 tp->lost_retrans_low = new_low_seq;
1165 return flag;
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169 struct tcp_sack_block_wire *sp, int num_sacks,
1170 u32 prior_snd_una)
1172 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174 int dup_sack = 0;
1176 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177 dup_sack = 1;
1178 tcp_dsack_seen(tp);
1179 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180 } else if (num_sacks > 1) {
1181 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1184 if (!after(end_seq_0, end_seq_1) &&
1185 !before(start_seq_0, start_seq_1)) {
1186 dup_sack = 1;
1187 tcp_dsack_seen(tp);
1188 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192 /* D-SACK for already forgotten data... Do dumb counting. */
1193 if (dup_sack &&
1194 !after(end_seq_0, prior_snd_una) &&
1195 after(end_seq_0, tp->undo_marker))
1196 tp->undo_retrans--;
1198 return dup_sack;
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202 * the incoming SACK may not exactly match but we can find smaller MSS
1203 * aligned portion of it that matches. Therefore we might need to fragment
1204 * which may fail and creates some hassle (caller must handle error case
1205 * returns).
1207 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208 u32 start_seq, u32 end_seq)
1210 int in_sack, err;
1211 unsigned int pkt_len;
1213 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1216 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1221 if (!in_sack)
1222 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223 else
1224 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226 if (err < 0)
1227 return err;
1230 return in_sack;
1233 static int
1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1236 const struct inet_connection_sock *icsk = inet_csk(sk);
1237 struct tcp_sock *tp = tcp_sk(sk);
1238 unsigned char *ptr = (skb_transport_header(ack_skb) +
1239 TCP_SKB_CB(ack_skb)->sacked);
1240 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241 struct sk_buff *cached_skb;
1242 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243 int reord = tp->packets_out;
1244 int prior_fackets;
1245 u32 highest_sack_end_seq = tp->lost_retrans_low;
1246 int flag = 0;
1247 int found_dup_sack = 0;
1248 int cached_fack_count;
1249 int i;
1250 int first_sack_index;
1251 int force_one_sack;
1253 if (!tp->sacked_out) {
1254 if (WARN_ON(tp->fackets_out))
1255 tp->fackets_out = 0;
1256 tp->highest_sack = tp->snd_una;
1258 prior_fackets = tp->fackets_out;
1260 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1261 num_sacks, prior_snd_una);
1262 if (found_dup_sack)
1263 flag |= FLAG_DSACKING_ACK;
1265 /* Eliminate too old ACKs, but take into
1266 * account more or less fresh ones, they can
1267 * contain valid SACK info.
1269 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1270 return 0;
1272 if (!tp->packets_out)
1273 goto out;
1275 /* SACK fastpath:
1276 * if the only SACK change is the increase of the end_seq of
1277 * the first block then only apply that SACK block
1278 * and use retrans queue hinting otherwise slowpath */
1279 force_one_sack = 1;
1280 for (i = 0; i < num_sacks; i++) {
1281 __be32 start_seq = sp[i].start_seq;
1282 __be32 end_seq = sp[i].end_seq;
1284 if (i == 0) {
1285 if (tp->recv_sack_cache[i].start_seq != start_seq)
1286 force_one_sack = 0;
1287 } else {
1288 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1289 (tp->recv_sack_cache[i].end_seq != end_seq))
1290 force_one_sack = 0;
1292 tp->recv_sack_cache[i].start_seq = start_seq;
1293 tp->recv_sack_cache[i].end_seq = end_seq;
1295 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1296 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1297 tp->recv_sack_cache[i].start_seq = 0;
1298 tp->recv_sack_cache[i].end_seq = 0;
1301 first_sack_index = 0;
1302 if (force_one_sack)
1303 num_sacks = 1;
1304 else {
1305 int j;
1306 tp->fastpath_skb_hint = NULL;
1308 /* order SACK blocks to allow in order walk of the retrans queue */
1309 for (i = num_sacks-1; i > 0; i--) {
1310 for (j = 0; j < i; j++){
1311 if (after(ntohl(sp[j].start_seq),
1312 ntohl(sp[j+1].start_seq))){
1313 struct tcp_sack_block_wire tmp;
1315 tmp = sp[j];
1316 sp[j] = sp[j+1];
1317 sp[j+1] = tmp;
1319 /* Track where the first SACK block goes to */
1320 if (j == first_sack_index)
1321 first_sack_index = j+1;
1328 /* Use SACK fastpath hint if valid */
1329 cached_skb = tp->fastpath_skb_hint;
1330 cached_fack_count = tp->fastpath_cnt_hint;
1331 if (!cached_skb) {
1332 cached_skb = tcp_write_queue_head(sk);
1333 cached_fack_count = 0;
1336 for (i = 0; i < num_sacks; i++) {
1337 struct sk_buff *skb;
1338 __u32 start_seq = ntohl(sp->start_seq);
1339 __u32 end_seq = ntohl(sp->end_seq);
1340 int fack_count;
1341 int dup_sack = (found_dup_sack && (i == first_sack_index));
1342 int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1344 sp++;
1346 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1347 if (dup_sack) {
1348 if (!tp->undo_marker)
1349 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1350 else
1351 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1352 } else {
1353 /* Don't count olds caused by ACK reordering */
1354 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1355 !after(end_seq, tp->snd_una))
1356 continue;
1357 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1359 continue;
1362 skb = cached_skb;
1363 fack_count = cached_fack_count;
1365 /* Event "B" in the comment above. */
1366 if (after(end_seq, tp->high_seq))
1367 flag |= FLAG_DATA_LOST;
1369 tcp_for_write_queue_from(skb, sk) {
1370 int in_sack = 0;
1371 u8 sacked;
1373 if (skb == tcp_send_head(sk))
1374 break;
1376 cached_skb = skb;
1377 cached_fack_count = fack_count;
1378 if (i == first_sack_index) {
1379 tp->fastpath_skb_hint = skb;
1380 tp->fastpath_cnt_hint = fack_count;
1383 /* The retransmission queue is always in order, so
1384 * we can short-circuit the walk early.
1386 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1387 break;
1389 dup_sack = (found_dup_sack && (i == first_sack_index));
1391 /* Due to sorting DSACK may reside within this SACK block! */
1392 if (next_dup) {
1393 u32 dup_start = ntohl(sp->start_seq);
1394 u32 dup_end = ntohl(sp->end_seq);
1396 if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1397 in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1398 if (in_sack > 0)
1399 dup_sack = 1;
1403 /* DSACK info lost if out-of-mem, try SACK still */
1404 if (in_sack <= 0)
1405 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1406 if (unlikely(in_sack < 0))
1407 break;
1409 sacked = TCP_SKB_CB(skb)->sacked;
1411 /* Account D-SACK for retransmitted packet. */
1412 if ((dup_sack && in_sack) &&
1413 (sacked & TCPCB_RETRANS) &&
1414 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1415 tp->undo_retrans--;
1417 /* The frame is ACKed. */
1418 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1419 if (sacked&TCPCB_RETRANS) {
1420 if ((dup_sack && in_sack) &&
1421 (sacked&TCPCB_SACKED_ACKED))
1422 reord = min(fack_count, reord);
1425 /* Nothing to do; acked frame is about to be dropped. */
1426 fack_count += tcp_skb_pcount(skb);
1427 continue;
1430 if (!in_sack) {
1431 fack_count += tcp_skb_pcount(skb);
1432 continue;
1435 if (!(sacked&TCPCB_SACKED_ACKED)) {
1436 if (sacked & TCPCB_SACKED_RETRANS) {
1437 /* If the segment is not tagged as lost,
1438 * we do not clear RETRANS, believing
1439 * that retransmission is still in flight.
1441 if (sacked & TCPCB_LOST) {
1442 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1443 tp->lost_out -= tcp_skb_pcount(skb);
1444 tp->retrans_out -= tcp_skb_pcount(skb);
1446 /* clear lost hint */
1447 tp->retransmit_skb_hint = NULL;
1449 } else {
1450 if (!(sacked & TCPCB_RETRANS)) {
1451 /* New sack for not retransmitted frame,
1452 * which was in hole. It is reordering.
1454 if (fack_count < prior_fackets)
1455 reord = min(fack_count, reord);
1457 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1458 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1459 flag |= FLAG_ONLY_ORIG_SACKED;
1462 if (sacked & TCPCB_LOST) {
1463 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1464 tp->lost_out -= tcp_skb_pcount(skb);
1466 /* clear lost hint */
1467 tp->retransmit_skb_hint = NULL;
1471 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1472 flag |= FLAG_DATA_SACKED;
1473 tp->sacked_out += tcp_skb_pcount(skb);
1475 fack_count += tcp_skb_pcount(skb);
1476 if (fack_count > tp->fackets_out)
1477 tp->fackets_out = fack_count;
1479 if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1480 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1481 highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1483 } else {
1484 if (dup_sack && (sacked&TCPCB_RETRANS))
1485 reord = min(fack_count, reord);
1487 fack_count += tcp_skb_pcount(skb);
1490 /* D-SACK. We can detect redundant retransmission
1491 * in S|R and plain R frames and clear it.
1492 * undo_retrans is decreased above, L|R frames
1493 * are accounted above as well.
1495 if (dup_sack &&
1496 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1497 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1498 tp->retrans_out -= tcp_skb_pcount(skb);
1499 tp->retransmit_skb_hint = NULL;
1503 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1504 * due to in-order walk
1506 if (after(end_seq, tp->frto_highmark))
1507 flag &= ~FLAG_ONLY_ORIG_SACKED;
1510 if (tp->retrans_out &&
1511 after(highest_sack_end_seq, tp->lost_retrans_low) &&
1512 icsk->icsk_ca_state == TCP_CA_Recovery)
1513 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1515 tcp_verify_left_out(tp);
1517 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1518 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1519 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1521 out:
1523 #if FASTRETRANS_DEBUG > 0
1524 BUG_TRAP((int)tp->sacked_out >= 0);
1525 BUG_TRAP((int)tp->lost_out >= 0);
1526 BUG_TRAP((int)tp->retrans_out >= 0);
1527 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1528 #endif
1529 return flag;
1532 /* If we receive more dupacks than we expected counting segments
1533 * in assumption of absent reordering, interpret this as reordering.
1534 * The only another reason could be bug in receiver TCP.
1536 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 u32 holes;
1541 holes = max(tp->lost_out, 1U);
1542 holes = min(holes, tp->packets_out);
1544 if ((tp->sacked_out + holes) > tp->packets_out) {
1545 tp->sacked_out = tp->packets_out - holes;
1546 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1550 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1552 static void tcp_add_reno_sack(struct sock *sk)
1554 struct tcp_sock *tp = tcp_sk(sk);
1555 tp->sacked_out++;
1556 tcp_check_reno_reordering(sk, 0);
1557 tcp_verify_left_out(tp);
1560 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1562 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1564 struct tcp_sock *tp = tcp_sk(sk);
1566 if (acked > 0) {
1567 /* One ACK acked hole. The rest eat duplicate ACKs. */
1568 if (acked-1 >= tp->sacked_out)
1569 tp->sacked_out = 0;
1570 else
1571 tp->sacked_out -= acked-1;
1573 tcp_check_reno_reordering(sk, acked);
1574 tcp_verify_left_out(tp);
1577 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1579 tp->sacked_out = 0;
1582 /* F-RTO can only be used if TCP has never retransmitted anything other than
1583 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1585 int tcp_use_frto(struct sock *sk)
1587 const struct tcp_sock *tp = tcp_sk(sk);
1588 struct sk_buff *skb;
1590 if (!sysctl_tcp_frto)
1591 return 0;
1593 if (IsSackFrto())
1594 return 1;
1596 /* Avoid expensive walking of rexmit queue if possible */
1597 if (tp->retrans_out > 1)
1598 return 0;
1600 skb = tcp_write_queue_head(sk);
1601 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1602 tcp_for_write_queue_from(skb, sk) {
1603 if (skb == tcp_send_head(sk))
1604 break;
1605 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1606 return 0;
1607 /* Short-circuit when first non-SACKed skb has been checked */
1608 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1609 break;
1611 return 1;
1614 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1615 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1616 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1617 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1618 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1619 * bits are handled if the Loss state is really to be entered (in
1620 * tcp_enter_frto_loss).
1622 * Do like tcp_enter_loss() would; when RTO expires the second time it
1623 * does:
1624 * "Reduce ssthresh if it has not yet been made inside this window."
1626 void tcp_enter_frto(struct sock *sk)
1628 const struct inet_connection_sock *icsk = inet_csk(sk);
1629 struct tcp_sock *tp = tcp_sk(sk);
1630 struct sk_buff *skb;
1632 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1633 tp->snd_una == tp->high_seq ||
1634 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1635 !icsk->icsk_retransmits)) {
1636 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1637 /* Our state is too optimistic in ssthresh() call because cwnd
1638 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1639 * recovery has not yet completed. Pattern would be this: RTO,
1640 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1641 * up here twice).
1642 * RFC4138 should be more specific on what to do, even though
1643 * RTO is quite unlikely to occur after the first Cumulative ACK
1644 * due to back-off and complexity of triggering events ...
1646 if (tp->frto_counter) {
1647 u32 stored_cwnd;
1648 stored_cwnd = tp->snd_cwnd;
1649 tp->snd_cwnd = 2;
1650 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1651 tp->snd_cwnd = stored_cwnd;
1652 } else {
1653 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1655 /* ... in theory, cong.control module could do "any tricks" in
1656 * ssthresh(), which means that ca_state, lost bits and lost_out
1657 * counter would have to be faked before the call occurs. We
1658 * consider that too expensive, unlikely and hacky, so modules
1659 * using these in ssthresh() must deal these incompatibility
1660 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1662 tcp_ca_event(sk, CA_EVENT_FRTO);
1665 tp->undo_marker = tp->snd_una;
1666 tp->undo_retrans = 0;
1668 skb = tcp_write_queue_head(sk);
1669 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1670 tp->undo_marker = 0;
1671 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1672 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1673 tp->retrans_out -= tcp_skb_pcount(skb);
1675 tcp_verify_left_out(tp);
1677 /* Too bad if TCP was application limited */
1678 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1680 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1681 * The last condition is necessary at least in tp->frto_counter case.
1683 if (IsSackFrto() && (tp->frto_counter ||
1684 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1685 after(tp->high_seq, tp->snd_una)) {
1686 tp->frto_highmark = tp->high_seq;
1687 } else {
1688 tp->frto_highmark = tp->snd_nxt;
1690 tcp_set_ca_state(sk, TCP_CA_Disorder);
1691 tp->high_seq = tp->snd_nxt;
1692 tp->frto_counter = 1;
1695 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1696 * which indicates that we should follow the traditional RTO recovery,
1697 * i.e. mark everything lost and do go-back-N retransmission.
1699 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1701 struct tcp_sock *tp = tcp_sk(sk);
1702 struct sk_buff *skb;
1704 tp->lost_out = 0;
1705 tp->retrans_out = 0;
1706 if (tcp_is_reno(tp))
1707 tcp_reset_reno_sack(tp);
1709 tcp_for_write_queue(skb, sk) {
1710 if (skb == tcp_send_head(sk))
1711 break;
1713 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1715 * Count the retransmission made on RTO correctly (only when
1716 * waiting for the first ACK and did not get it)...
1718 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1719 /* For some reason this R-bit might get cleared? */
1720 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1721 tp->retrans_out += tcp_skb_pcount(skb);
1722 /* ...enter this if branch just for the first segment */
1723 flag |= FLAG_DATA_ACKED;
1724 } else {
1725 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1726 tp->undo_marker = 0;
1727 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1730 /* Don't lost mark skbs that were fwd transmitted after RTO */
1731 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1732 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1733 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1734 tp->lost_out += tcp_skb_pcount(skb);
1737 tcp_verify_left_out(tp);
1739 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1740 tp->snd_cwnd_cnt = 0;
1741 tp->snd_cwnd_stamp = tcp_time_stamp;
1742 tp->frto_counter = 0;
1743 tp->bytes_acked = 0;
1745 tp->reordering = min_t(unsigned int, tp->reordering,
1746 sysctl_tcp_reordering);
1747 tcp_set_ca_state(sk, TCP_CA_Loss);
1748 tp->high_seq = tp->frto_highmark;
1749 TCP_ECN_queue_cwr(tp);
1751 tcp_clear_retrans_hints_partial(tp);
1754 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1756 tp->retrans_out = 0;
1757 tp->lost_out = 0;
1759 tp->undo_marker = 0;
1760 tp->undo_retrans = 0;
1763 void tcp_clear_retrans(struct tcp_sock *tp)
1765 tcp_clear_retrans_partial(tp);
1767 tp->fackets_out = 0;
1768 tp->sacked_out = 0;
1771 /* Enter Loss state. If "how" is not zero, forget all SACK information
1772 * and reset tags completely, otherwise preserve SACKs. If receiver
1773 * dropped its ofo queue, we will know this due to reneging detection.
1775 void tcp_enter_loss(struct sock *sk, int how)
1777 const struct inet_connection_sock *icsk = inet_csk(sk);
1778 struct tcp_sock *tp = tcp_sk(sk);
1779 struct sk_buff *skb;
1781 /* Reduce ssthresh if it has not yet been made inside this window. */
1782 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1783 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1784 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1785 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1786 tcp_ca_event(sk, CA_EVENT_LOSS);
1788 tp->snd_cwnd = 1;
1789 tp->snd_cwnd_cnt = 0;
1790 tp->snd_cwnd_stamp = tcp_time_stamp;
1792 tp->bytes_acked = 0;
1793 tcp_clear_retrans_partial(tp);
1795 if (tcp_is_reno(tp))
1796 tcp_reset_reno_sack(tp);
1798 if (!how) {
1799 /* Push undo marker, if it was plain RTO and nothing
1800 * was retransmitted. */
1801 tp->undo_marker = tp->snd_una;
1802 tcp_clear_retrans_hints_partial(tp);
1803 } else {
1804 tp->sacked_out = 0;
1805 tp->fackets_out = 0;
1806 tcp_clear_all_retrans_hints(tp);
1809 tcp_for_write_queue(skb, sk) {
1810 if (skb == tcp_send_head(sk))
1811 break;
1813 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1814 tp->undo_marker = 0;
1815 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1816 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1817 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1818 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1819 tp->lost_out += tcp_skb_pcount(skb);
1822 tcp_verify_left_out(tp);
1824 tp->reordering = min_t(unsigned int, tp->reordering,
1825 sysctl_tcp_reordering);
1826 tcp_set_ca_state(sk, TCP_CA_Loss);
1827 tp->high_seq = tp->snd_nxt;
1828 TCP_ECN_queue_cwr(tp);
1829 /* Abort F-RTO algorithm if one is in progress */
1830 tp->frto_counter = 0;
1833 static int tcp_check_sack_reneging(struct sock *sk)
1835 struct sk_buff *skb;
1837 /* If ACK arrived pointing to a remembered SACK,
1838 * it means that our remembered SACKs do not reflect
1839 * real state of receiver i.e.
1840 * receiver _host_ is heavily congested (or buggy).
1841 * Do processing similar to RTO timeout.
1843 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1844 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1845 struct inet_connection_sock *icsk = inet_csk(sk);
1846 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1848 tcp_enter_loss(sk, 1);
1849 icsk->icsk_retransmits++;
1850 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1851 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1852 icsk->icsk_rto, TCP_RTO_MAX);
1853 return 1;
1855 return 0;
1858 static inline int tcp_fackets_out(struct tcp_sock *tp)
1860 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1863 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1865 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1868 static inline int tcp_head_timedout(struct sock *sk)
1870 struct tcp_sock *tp = tcp_sk(sk);
1872 return tp->packets_out &&
1873 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1876 /* Linux NewReno/SACK/FACK/ECN state machine.
1877 * --------------------------------------
1879 * "Open" Normal state, no dubious events, fast path.
1880 * "Disorder" In all the respects it is "Open",
1881 * but requires a bit more attention. It is entered when
1882 * we see some SACKs or dupacks. It is split of "Open"
1883 * mainly to move some processing from fast path to slow one.
1884 * "CWR" CWND was reduced due to some Congestion Notification event.
1885 * It can be ECN, ICMP source quench, local device congestion.
1886 * "Recovery" CWND was reduced, we are fast-retransmitting.
1887 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1889 * tcp_fastretrans_alert() is entered:
1890 * - each incoming ACK, if state is not "Open"
1891 * - when arrived ACK is unusual, namely:
1892 * * SACK
1893 * * Duplicate ACK.
1894 * * ECN ECE.
1896 * Counting packets in flight is pretty simple.
1898 * in_flight = packets_out - left_out + retrans_out
1900 * packets_out is SND.NXT-SND.UNA counted in packets.
1902 * retrans_out is number of retransmitted segments.
1904 * left_out is number of segments left network, but not ACKed yet.
1906 * left_out = sacked_out + lost_out
1908 * sacked_out: Packets, which arrived to receiver out of order
1909 * and hence not ACKed. With SACKs this number is simply
1910 * amount of SACKed data. Even without SACKs
1911 * it is easy to give pretty reliable estimate of this number,
1912 * counting duplicate ACKs.
1914 * lost_out: Packets lost by network. TCP has no explicit
1915 * "loss notification" feedback from network (for now).
1916 * It means that this number can be only _guessed_.
1917 * Actually, it is the heuristics to predict lossage that
1918 * distinguishes different algorithms.
1920 * F.e. after RTO, when all the queue is considered as lost,
1921 * lost_out = packets_out and in_flight = retrans_out.
1923 * Essentially, we have now two algorithms counting
1924 * lost packets.
1926 * FACK: It is the simplest heuristics. As soon as we decided
1927 * that something is lost, we decide that _all_ not SACKed
1928 * packets until the most forward SACK are lost. I.e.
1929 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1930 * It is absolutely correct estimate, if network does not reorder
1931 * packets. And it loses any connection to reality when reordering
1932 * takes place. We use FACK by default until reordering
1933 * is suspected on the path to this destination.
1935 * NewReno: when Recovery is entered, we assume that one segment
1936 * is lost (classic Reno). While we are in Recovery and
1937 * a partial ACK arrives, we assume that one more packet
1938 * is lost (NewReno). This heuristics are the same in NewReno
1939 * and SACK.
1941 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1942 * deflation etc. CWND is real congestion window, never inflated, changes
1943 * only according to classic VJ rules.
1945 * Really tricky (and requiring careful tuning) part of algorithm
1946 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1947 * The first determines the moment _when_ we should reduce CWND and,
1948 * hence, slow down forward transmission. In fact, it determines the moment
1949 * when we decide that hole is caused by loss, rather than by a reorder.
1951 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1952 * holes, caused by lost packets.
1954 * And the most logically complicated part of algorithm is undo
1955 * heuristics. We detect false retransmits due to both too early
1956 * fast retransmit (reordering) and underestimated RTO, analyzing
1957 * timestamps and D-SACKs. When we detect that some segments were
1958 * retransmitted by mistake and CWND reduction was wrong, we undo
1959 * window reduction and abort recovery phase. This logic is hidden
1960 * inside several functions named tcp_try_undo_<something>.
1963 /* This function decides, when we should leave Disordered state
1964 * and enter Recovery phase, reducing congestion window.
1966 * Main question: may we further continue forward transmission
1967 * with the same cwnd?
1969 static int tcp_time_to_recover(struct sock *sk)
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 __u32 packets_out;
1974 /* Do not perform any recovery during F-RTO algorithm */
1975 if (tp->frto_counter)
1976 return 0;
1978 /* Trick#1: The loss is proven. */
1979 if (tp->lost_out)
1980 return 1;
1982 /* Not-A-Trick#2 : Classic rule... */
1983 if (tcp_fackets_out(tp) > tp->reordering)
1984 return 1;
1986 /* Trick#3 : when we use RFC2988 timer restart, fast
1987 * retransmit can be triggered by timeout of queue head.
1989 if (tcp_head_timedout(sk))
1990 return 1;
1992 /* Trick#4: It is still not OK... But will it be useful to delay
1993 * recovery more?
1995 packets_out = tp->packets_out;
1996 if (packets_out <= tp->reordering &&
1997 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1998 !tcp_may_send_now(sk)) {
1999 /* We have nothing to send. This connection is limited
2000 * either by receiver window or by application.
2002 return 1;
2005 return 0;
2008 /* RFC: This is from the original, I doubt that this is necessary at all:
2009 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2010 * retransmitted past LOST markings in the first place? I'm not fully sure
2011 * about undo and end of connection cases, which can cause R without L?
2013 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2014 struct sk_buff *skb)
2016 if ((tp->retransmit_skb_hint != NULL) &&
2017 before(TCP_SKB_CB(skb)->seq,
2018 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2019 tp->retransmit_skb_hint = NULL;
2022 /* Mark head of queue up as lost. */
2023 static void tcp_mark_head_lost(struct sock *sk, int packets)
2025 struct tcp_sock *tp = tcp_sk(sk);
2026 struct sk_buff *skb;
2027 int cnt;
2029 BUG_TRAP(packets <= tp->packets_out);
2030 if (tp->lost_skb_hint) {
2031 skb = tp->lost_skb_hint;
2032 cnt = tp->lost_cnt_hint;
2033 } else {
2034 skb = tcp_write_queue_head(sk);
2035 cnt = 0;
2038 tcp_for_write_queue_from(skb, sk) {
2039 if (skb == tcp_send_head(sk))
2040 break;
2041 /* TODO: do this better */
2042 /* this is not the most efficient way to do this... */
2043 tp->lost_skb_hint = skb;
2044 tp->lost_cnt_hint = cnt;
2045 cnt += tcp_skb_pcount(skb);
2046 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2047 break;
2048 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2049 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2050 tp->lost_out += tcp_skb_pcount(skb);
2051 tcp_verify_retransmit_hint(tp, skb);
2054 tcp_verify_left_out(tp);
2057 /* Account newly detected lost packet(s) */
2059 static void tcp_update_scoreboard(struct sock *sk)
2061 struct tcp_sock *tp = tcp_sk(sk);
2063 if (tcp_is_fack(tp)) {
2064 int lost = tp->fackets_out - tp->reordering;
2065 if (lost <= 0)
2066 lost = 1;
2067 tcp_mark_head_lost(sk, lost);
2068 } else {
2069 tcp_mark_head_lost(sk, 1);
2072 /* New heuristics: it is possible only after we switched
2073 * to restart timer each time when something is ACKed.
2074 * Hence, we can detect timed out packets during fast
2075 * retransmit without falling to slow start.
2077 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2078 struct sk_buff *skb;
2080 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2081 : tcp_write_queue_head(sk);
2083 tcp_for_write_queue_from(skb, sk) {
2084 if (skb == tcp_send_head(sk))
2085 break;
2086 if (!tcp_skb_timedout(sk, skb))
2087 break;
2089 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2090 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2091 tp->lost_out += tcp_skb_pcount(skb);
2092 tcp_verify_retransmit_hint(tp, skb);
2096 tp->scoreboard_skb_hint = skb;
2098 tcp_verify_left_out(tp);
2102 /* CWND moderation, preventing bursts due to too big ACKs
2103 * in dubious situations.
2105 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2107 tp->snd_cwnd = min(tp->snd_cwnd,
2108 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2109 tp->snd_cwnd_stamp = tcp_time_stamp;
2112 /* Lower bound on congestion window is slow start threshold
2113 * unless congestion avoidance choice decides to overide it.
2115 static inline u32 tcp_cwnd_min(const struct sock *sk)
2117 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2119 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2122 /* Decrease cwnd each second ack. */
2123 static void tcp_cwnd_down(struct sock *sk, int flag)
2125 struct tcp_sock *tp = tcp_sk(sk);
2126 int decr = tp->snd_cwnd_cnt + 1;
2128 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2129 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2130 tp->snd_cwnd_cnt = decr&1;
2131 decr >>= 1;
2133 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2134 tp->snd_cwnd -= decr;
2136 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2137 tp->snd_cwnd_stamp = tcp_time_stamp;
2141 /* Nothing was retransmitted or returned timestamp is less
2142 * than timestamp of the first retransmission.
2144 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2146 return !tp->retrans_stamp ||
2147 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2148 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2151 /* Undo procedures. */
2153 #if FASTRETRANS_DEBUG > 1
2154 static void DBGUNDO(struct sock *sk, const char *msg)
2156 struct tcp_sock *tp = tcp_sk(sk);
2157 struct inet_sock *inet = inet_sk(sk);
2159 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2160 msg,
2161 NIPQUAD(inet->daddr), ntohs(inet->dport),
2162 tp->snd_cwnd, tcp_left_out(tp),
2163 tp->snd_ssthresh, tp->prior_ssthresh,
2164 tp->packets_out);
2166 #else
2167 #define DBGUNDO(x...) do { } while (0)
2168 #endif
2170 static void tcp_undo_cwr(struct sock *sk, const int undo)
2172 struct tcp_sock *tp = tcp_sk(sk);
2174 if (tp->prior_ssthresh) {
2175 const struct inet_connection_sock *icsk = inet_csk(sk);
2177 if (icsk->icsk_ca_ops->undo_cwnd)
2178 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2179 else
2180 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2182 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2183 tp->snd_ssthresh = tp->prior_ssthresh;
2184 TCP_ECN_withdraw_cwr(tp);
2186 } else {
2187 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2189 tcp_moderate_cwnd(tp);
2190 tp->snd_cwnd_stamp = tcp_time_stamp;
2192 /* There is something screwy going on with the retrans hints after
2193 an undo */
2194 tcp_clear_all_retrans_hints(tp);
2197 static inline int tcp_may_undo(struct tcp_sock *tp)
2199 return tp->undo_marker &&
2200 (!tp->undo_retrans || tcp_packet_delayed(tp));
2203 /* People celebrate: "We love our President!" */
2204 static int tcp_try_undo_recovery(struct sock *sk)
2206 struct tcp_sock *tp = tcp_sk(sk);
2208 if (tcp_may_undo(tp)) {
2209 /* Happy end! We did not retransmit anything
2210 * or our original transmission succeeded.
2212 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2213 tcp_undo_cwr(sk, 1);
2214 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2215 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2216 else
2217 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2218 tp->undo_marker = 0;
2220 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2221 /* Hold old state until something *above* high_seq
2222 * is ACKed. For Reno it is MUST to prevent false
2223 * fast retransmits (RFC2582). SACK TCP is safe. */
2224 tcp_moderate_cwnd(tp);
2225 return 1;
2227 tcp_set_ca_state(sk, TCP_CA_Open);
2228 return 0;
2231 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2232 static void tcp_try_undo_dsack(struct sock *sk)
2234 struct tcp_sock *tp = tcp_sk(sk);
2236 if (tp->undo_marker && !tp->undo_retrans) {
2237 DBGUNDO(sk, "D-SACK");
2238 tcp_undo_cwr(sk, 1);
2239 tp->undo_marker = 0;
2240 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2244 /* Undo during fast recovery after partial ACK. */
2246 static int tcp_try_undo_partial(struct sock *sk, int acked)
2248 struct tcp_sock *tp = tcp_sk(sk);
2249 /* Partial ACK arrived. Force Hoe's retransmit. */
2250 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2252 if (tcp_may_undo(tp)) {
2253 /* Plain luck! Hole if filled with delayed
2254 * packet, rather than with a retransmit.
2256 if (tp->retrans_out == 0)
2257 tp->retrans_stamp = 0;
2259 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2261 DBGUNDO(sk, "Hoe");
2262 tcp_undo_cwr(sk, 0);
2263 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2265 /* So... Do not make Hoe's retransmit yet.
2266 * If the first packet was delayed, the rest
2267 * ones are most probably delayed as well.
2269 failed = 0;
2271 return failed;
2274 /* Undo during loss recovery after partial ACK. */
2275 static int tcp_try_undo_loss(struct sock *sk)
2277 struct tcp_sock *tp = tcp_sk(sk);
2279 if (tcp_may_undo(tp)) {
2280 struct sk_buff *skb;
2281 tcp_for_write_queue(skb, sk) {
2282 if (skb == tcp_send_head(sk))
2283 break;
2284 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2287 tcp_clear_all_retrans_hints(tp);
2289 DBGUNDO(sk, "partial loss");
2290 tp->lost_out = 0;
2291 tcp_undo_cwr(sk, 1);
2292 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2293 inet_csk(sk)->icsk_retransmits = 0;
2294 tp->undo_marker = 0;
2295 if (tcp_is_sack(tp))
2296 tcp_set_ca_state(sk, TCP_CA_Open);
2297 return 1;
2299 return 0;
2302 static inline void tcp_complete_cwr(struct sock *sk)
2304 struct tcp_sock *tp = tcp_sk(sk);
2305 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2306 tp->snd_cwnd_stamp = tcp_time_stamp;
2307 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2310 static void tcp_try_to_open(struct sock *sk, int flag)
2312 struct tcp_sock *tp = tcp_sk(sk);
2314 tcp_verify_left_out(tp);
2316 if (tp->retrans_out == 0)
2317 tp->retrans_stamp = 0;
2319 if (flag&FLAG_ECE)
2320 tcp_enter_cwr(sk, 1);
2322 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2323 int state = TCP_CA_Open;
2325 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2326 state = TCP_CA_Disorder;
2328 if (inet_csk(sk)->icsk_ca_state != state) {
2329 tcp_set_ca_state(sk, state);
2330 tp->high_seq = tp->snd_nxt;
2332 tcp_moderate_cwnd(tp);
2333 } else {
2334 tcp_cwnd_down(sk, flag);
2338 static void tcp_mtup_probe_failed(struct sock *sk)
2340 struct inet_connection_sock *icsk = inet_csk(sk);
2342 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2343 icsk->icsk_mtup.probe_size = 0;
2346 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2348 struct tcp_sock *tp = tcp_sk(sk);
2349 struct inet_connection_sock *icsk = inet_csk(sk);
2351 /* FIXME: breaks with very large cwnd */
2352 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2353 tp->snd_cwnd = tp->snd_cwnd *
2354 tcp_mss_to_mtu(sk, tp->mss_cache) /
2355 icsk->icsk_mtup.probe_size;
2356 tp->snd_cwnd_cnt = 0;
2357 tp->snd_cwnd_stamp = tcp_time_stamp;
2358 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2360 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2361 icsk->icsk_mtup.probe_size = 0;
2362 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2366 /* Process an event, which can update packets-in-flight not trivially.
2367 * Main goal of this function is to calculate new estimate for left_out,
2368 * taking into account both packets sitting in receiver's buffer and
2369 * packets lost by network.
2371 * Besides that it does CWND reduction, when packet loss is detected
2372 * and changes state of machine.
2374 * It does _not_ decide what to send, it is made in function
2375 * tcp_xmit_retransmit_queue().
2377 static void
2378 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2380 struct inet_connection_sock *icsk = inet_csk(sk);
2381 struct tcp_sock *tp = tcp_sk(sk);
2382 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2383 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2384 (tp->fackets_out > tp->reordering));
2386 /* Some technical things:
2387 * 1. Reno does not count dupacks (sacked_out) automatically. */
2388 if (!tp->packets_out)
2389 tp->sacked_out = 0;
2391 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2392 tp->fackets_out = 0;
2394 /* Now state machine starts.
2395 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2396 if (flag&FLAG_ECE)
2397 tp->prior_ssthresh = 0;
2399 /* B. In all the states check for reneging SACKs. */
2400 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2401 return;
2403 /* C. Process data loss notification, provided it is valid. */
2404 if ((flag&FLAG_DATA_LOST) &&
2405 before(tp->snd_una, tp->high_seq) &&
2406 icsk->icsk_ca_state != TCP_CA_Open &&
2407 tp->fackets_out > tp->reordering) {
2408 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2409 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2412 /* D. Check consistency of the current state. */
2413 tcp_verify_left_out(tp);
2415 /* E. Check state exit conditions. State can be terminated
2416 * when high_seq is ACKed. */
2417 if (icsk->icsk_ca_state == TCP_CA_Open) {
2418 BUG_TRAP(tp->retrans_out == 0);
2419 tp->retrans_stamp = 0;
2420 } else if (!before(tp->snd_una, tp->high_seq)) {
2421 switch (icsk->icsk_ca_state) {
2422 case TCP_CA_Loss:
2423 icsk->icsk_retransmits = 0;
2424 if (tcp_try_undo_recovery(sk))
2425 return;
2426 break;
2428 case TCP_CA_CWR:
2429 /* CWR is to be held something *above* high_seq
2430 * is ACKed for CWR bit to reach receiver. */
2431 if (tp->snd_una != tp->high_seq) {
2432 tcp_complete_cwr(sk);
2433 tcp_set_ca_state(sk, TCP_CA_Open);
2435 break;
2437 case TCP_CA_Disorder:
2438 tcp_try_undo_dsack(sk);
2439 if (!tp->undo_marker ||
2440 /* For SACK case do not Open to allow to undo
2441 * catching for all duplicate ACKs. */
2442 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2443 tp->undo_marker = 0;
2444 tcp_set_ca_state(sk, TCP_CA_Open);
2446 break;
2448 case TCP_CA_Recovery:
2449 if (tcp_is_reno(tp))
2450 tcp_reset_reno_sack(tp);
2451 if (tcp_try_undo_recovery(sk))
2452 return;
2453 tcp_complete_cwr(sk);
2454 break;
2458 /* F. Process state. */
2459 switch (icsk->icsk_ca_state) {
2460 case TCP_CA_Recovery:
2461 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2462 if (tcp_is_reno(tp) && is_dupack)
2463 tcp_add_reno_sack(sk);
2464 } else
2465 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2466 break;
2467 case TCP_CA_Loss:
2468 if (flag&FLAG_DATA_ACKED)
2469 icsk->icsk_retransmits = 0;
2470 if (!tcp_try_undo_loss(sk)) {
2471 tcp_moderate_cwnd(tp);
2472 tcp_xmit_retransmit_queue(sk);
2473 return;
2475 if (icsk->icsk_ca_state != TCP_CA_Open)
2476 return;
2477 /* Loss is undone; fall through to processing in Open state. */
2478 default:
2479 if (tcp_is_reno(tp)) {
2480 if (flag & FLAG_SND_UNA_ADVANCED)
2481 tcp_reset_reno_sack(tp);
2482 if (is_dupack)
2483 tcp_add_reno_sack(sk);
2486 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2487 tcp_try_undo_dsack(sk);
2489 if (!tcp_time_to_recover(sk)) {
2490 tcp_try_to_open(sk, flag);
2491 return;
2494 /* MTU probe failure: don't reduce cwnd */
2495 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2496 icsk->icsk_mtup.probe_size &&
2497 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2498 tcp_mtup_probe_failed(sk);
2499 /* Restores the reduction we did in tcp_mtup_probe() */
2500 tp->snd_cwnd++;
2501 tcp_simple_retransmit(sk);
2502 return;
2505 /* Otherwise enter Recovery state */
2507 if (tcp_is_reno(tp))
2508 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2509 else
2510 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2512 tp->high_seq = tp->snd_nxt;
2513 tp->prior_ssthresh = 0;
2514 tp->undo_marker = tp->snd_una;
2515 tp->undo_retrans = tp->retrans_out;
2517 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2518 if (!(flag&FLAG_ECE))
2519 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2520 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2521 TCP_ECN_queue_cwr(tp);
2524 tp->bytes_acked = 0;
2525 tp->snd_cwnd_cnt = 0;
2526 tcp_set_ca_state(sk, TCP_CA_Recovery);
2529 if (do_lost || tcp_head_timedout(sk))
2530 tcp_update_scoreboard(sk);
2531 tcp_cwnd_down(sk, flag);
2532 tcp_xmit_retransmit_queue(sk);
2535 /* Read draft-ietf-tcplw-high-performance before mucking
2536 * with this code. (Supersedes RFC1323)
2538 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2540 /* RTTM Rule: A TSecr value received in a segment is used to
2541 * update the averaged RTT measurement only if the segment
2542 * acknowledges some new data, i.e., only if it advances the
2543 * left edge of the send window.
2545 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2546 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2548 * Changed: reset backoff as soon as we see the first valid sample.
2549 * If we do not, we get strongly overestimated rto. With timestamps
2550 * samples are accepted even from very old segments: f.e., when rtt=1
2551 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2552 * answer arrives rto becomes 120 seconds! If at least one of segments
2553 * in window is lost... Voila. --ANK (010210)
2555 struct tcp_sock *tp = tcp_sk(sk);
2556 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2557 tcp_rtt_estimator(sk, seq_rtt);
2558 tcp_set_rto(sk);
2559 inet_csk(sk)->icsk_backoff = 0;
2560 tcp_bound_rto(sk);
2563 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2565 /* We don't have a timestamp. Can only use
2566 * packets that are not retransmitted to determine
2567 * rtt estimates. Also, we must not reset the
2568 * backoff for rto until we get a non-retransmitted
2569 * packet. This allows us to deal with a situation
2570 * where the network delay has increased suddenly.
2571 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2574 if (flag & FLAG_RETRANS_DATA_ACKED)
2575 return;
2577 tcp_rtt_estimator(sk, seq_rtt);
2578 tcp_set_rto(sk);
2579 inet_csk(sk)->icsk_backoff = 0;
2580 tcp_bound_rto(sk);
2583 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2584 const s32 seq_rtt)
2586 const struct tcp_sock *tp = tcp_sk(sk);
2587 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2588 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2589 tcp_ack_saw_tstamp(sk, flag);
2590 else if (seq_rtt >= 0)
2591 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2594 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2595 u32 in_flight, int good)
2597 const struct inet_connection_sock *icsk = inet_csk(sk);
2598 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2599 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2602 /* Restart timer after forward progress on connection.
2603 * RFC2988 recommends to restart timer to now+rto.
2605 static void tcp_rearm_rto(struct sock *sk)
2607 struct tcp_sock *tp = tcp_sk(sk);
2609 if (!tp->packets_out) {
2610 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2611 } else {
2612 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2616 /* If we get here, the whole TSO packet has not been acked. */
2617 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2619 struct tcp_sock *tp = tcp_sk(sk);
2620 u32 packets_acked;
2622 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2624 packets_acked = tcp_skb_pcount(skb);
2625 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2626 return 0;
2627 packets_acked -= tcp_skb_pcount(skb);
2629 if (packets_acked) {
2630 BUG_ON(tcp_skb_pcount(skb) == 0);
2631 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2634 return packets_acked;
2637 /* Remove acknowledged frames from the retransmission queue. If our packet
2638 * is before the ack sequence we can discard it as it's confirmed to have
2639 * arrived at the other end.
2641 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2642 int prior_fackets)
2644 struct tcp_sock *tp = tcp_sk(sk);
2645 const struct inet_connection_sock *icsk = inet_csk(sk);
2646 struct sk_buff *skb;
2647 u32 now = tcp_time_stamp;
2648 int fully_acked = 1;
2649 int flag = 0;
2650 int prior_packets = tp->packets_out;
2651 u32 cnt = 0;
2652 u32 reord = tp->packets_out;
2653 s32 seq_rtt = -1;
2654 s32 ca_seq_rtt = -1;
2655 ktime_t last_ackt = net_invalid_timestamp();
2657 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2658 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2659 u32 end_seq;
2660 u32 packets_acked;
2661 u8 sacked = scb->sacked;
2663 /* Determine how many packets and what bytes were acked, tso and else */
2664 if (after(scb->end_seq, tp->snd_una)) {
2665 if (tcp_skb_pcount(skb) == 1 ||
2666 !after(tp->snd_una, scb->seq))
2667 break;
2669 packets_acked = tcp_tso_acked(sk, skb);
2670 if (!packets_acked)
2671 break;
2673 fully_acked = 0;
2674 end_seq = tp->snd_una;
2675 } else {
2676 packets_acked = tcp_skb_pcount(skb);
2677 end_seq = scb->end_seq;
2680 /* MTU probing checks */
2681 if (fully_acked && icsk->icsk_mtup.probe_size &&
2682 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2683 tcp_mtup_probe_success(sk, skb);
2686 if (sacked) {
2687 if (sacked & TCPCB_RETRANS) {
2688 if (sacked & TCPCB_SACKED_RETRANS)
2689 tp->retrans_out -= packets_acked;
2690 flag |= FLAG_RETRANS_DATA_ACKED;
2691 ca_seq_rtt = -1;
2692 seq_rtt = -1;
2693 if ((flag & FLAG_DATA_ACKED) ||
2694 (packets_acked > 1))
2695 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2696 } else {
2697 ca_seq_rtt = now - scb->when;
2698 last_ackt = skb->tstamp;
2699 if (seq_rtt < 0) {
2700 seq_rtt = ca_seq_rtt;
2702 if (!(sacked & TCPCB_SACKED_ACKED))
2703 reord = min(cnt, reord);
2706 if (sacked & TCPCB_SACKED_ACKED)
2707 tp->sacked_out -= packets_acked;
2708 if (sacked & TCPCB_LOST)
2709 tp->lost_out -= packets_acked;
2711 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2712 !before(end_seq, tp->snd_up))
2713 tp->urg_mode = 0;
2714 } else {
2715 ca_seq_rtt = now - scb->when;
2716 last_ackt = skb->tstamp;
2717 if (seq_rtt < 0) {
2718 seq_rtt = ca_seq_rtt;
2720 reord = min(cnt, reord);
2722 tp->packets_out -= packets_acked;
2723 cnt += packets_acked;
2725 /* Initial outgoing SYN's get put onto the write_queue
2726 * just like anything else we transmit. It is not
2727 * true data, and if we misinform our callers that
2728 * this ACK acks real data, we will erroneously exit
2729 * connection startup slow start one packet too
2730 * quickly. This is severely frowned upon behavior.
2732 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2733 flag |= FLAG_DATA_ACKED;
2734 } else {
2735 flag |= FLAG_SYN_ACKED;
2736 tp->retrans_stamp = 0;
2739 if (!fully_acked)
2740 break;
2742 tcp_unlink_write_queue(skb, sk);
2743 sk_stream_free_skb(sk, skb);
2744 tcp_clear_all_retrans_hints(tp);
2747 if (flag & FLAG_ACKED) {
2748 u32 pkts_acked = prior_packets - tp->packets_out;
2749 const struct tcp_congestion_ops *ca_ops
2750 = inet_csk(sk)->icsk_ca_ops;
2752 tcp_ack_update_rtt(sk, flag, seq_rtt);
2753 tcp_rearm_rto(sk);
2755 if (tcp_is_reno(tp)) {
2756 tcp_remove_reno_sacks(sk, pkts_acked);
2757 } else {
2758 /* Non-retransmitted hole got filled? That's reordering */
2759 if (reord < prior_fackets)
2760 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2763 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2764 /* hint's skb might be NULL but we don't need to care */
2765 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2766 tp->fastpath_cnt_hint);
2767 if (ca_ops->pkts_acked) {
2768 s32 rtt_us = -1;
2770 /* Is the ACK triggering packet unambiguous? */
2771 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2772 /* High resolution needed and available? */
2773 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2774 !ktime_equal(last_ackt,
2775 net_invalid_timestamp()))
2776 rtt_us = ktime_us_delta(ktime_get_real(),
2777 last_ackt);
2778 else if (ca_seq_rtt > 0)
2779 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2782 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2786 #if FASTRETRANS_DEBUG > 0
2787 BUG_TRAP((int)tp->sacked_out >= 0);
2788 BUG_TRAP((int)tp->lost_out >= 0);
2789 BUG_TRAP((int)tp->retrans_out >= 0);
2790 if (!tp->packets_out && tcp_is_sack(tp)) {
2791 icsk = inet_csk(sk);
2792 if (tp->lost_out) {
2793 printk(KERN_DEBUG "Leak l=%u %d\n",
2794 tp->lost_out, icsk->icsk_ca_state);
2795 tp->lost_out = 0;
2797 if (tp->sacked_out) {
2798 printk(KERN_DEBUG "Leak s=%u %d\n",
2799 tp->sacked_out, icsk->icsk_ca_state);
2800 tp->sacked_out = 0;
2802 if (tp->retrans_out) {
2803 printk(KERN_DEBUG "Leak r=%u %d\n",
2804 tp->retrans_out, icsk->icsk_ca_state);
2805 tp->retrans_out = 0;
2808 #endif
2809 *seq_rtt_p = seq_rtt;
2810 return flag;
2813 static void tcp_ack_probe(struct sock *sk)
2815 const struct tcp_sock *tp = tcp_sk(sk);
2816 struct inet_connection_sock *icsk = inet_csk(sk);
2818 /* Was it a usable window open? */
2820 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2821 tp->snd_una + tp->snd_wnd)) {
2822 icsk->icsk_backoff = 0;
2823 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2824 /* Socket must be waked up by subsequent tcp_data_snd_check().
2825 * This function is not for random using!
2827 } else {
2828 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2829 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2830 TCP_RTO_MAX);
2834 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2836 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2837 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2840 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2842 const struct tcp_sock *tp = tcp_sk(sk);
2843 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2844 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2847 /* Check that window update is acceptable.
2848 * The function assumes that snd_una<=ack<=snd_next.
2850 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2851 const u32 ack_seq, const u32 nwin)
2853 return (after(ack, tp->snd_una) ||
2854 after(ack_seq, tp->snd_wl1) ||
2855 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2858 /* Update our send window.
2860 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2861 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2863 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2864 u32 ack_seq)
2866 struct tcp_sock *tp = tcp_sk(sk);
2867 int flag = 0;
2868 u32 nwin = ntohs(tcp_hdr(skb)->window);
2870 if (likely(!tcp_hdr(skb)->syn))
2871 nwin <<= tp->rx_opt.snd_wscale;
2873 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2874 flag |= FLAG_WIN_UPDATE;
2875 tcp_update_wl(tp, ack, ack_seq);
2877 if (tp->snd_wnd != nwin) {
2878 tp->snd_wnd = nwin;
2880 /* Note, it is the only place, where
2881 * fast path is recovered for sending TCP.
2883 tp->pred_flags = 0;
2884 tcp_fast_path_check(sk);
2886 if (nwin > tp->max_window) {
2887 tp->max_window = nwin;
2888 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2893 tp->snd_una = ack;
2895 return flag;
2898 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2899 * continue in congestion avoidance.
2901 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2903 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2904 tp->snd_cwnd_cnt = 0;
2905 tp->bytes_acked = 0;
2906 TCP_ECN_queue_cwr(tp);
2907 tcp_moderate_cwnd(tp);
2910 /* A conservative spurious RTO response algorithm: reduce cwnd using
2911 * rate halving and continue in congestion avoidance.
2913 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2915 tcp_enter_cwr(sk, 0);
2918 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2920 if (flag&FLAG_ECE)
2921 tcp_ratehalving_spur_to_response(sk);
2922 else
2923 tcp_undo_cwr(sk, 1);
2926 /* F-RTO spurious RTO detection algorithm (RFC4138)
2928 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2929 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2930 * window (but not to or beyond highest sequence sent before RTO):
2931 * On First ACK, send two new segments out.
2932 * On Second ACK, RTO was likely spurious. Do spurious response (response
2933 * algorithm is not part of the F-RTO detection algorithm
2934 * given in RFC4138 but can be selected separately).
2935 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2936 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2937 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2938 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2940 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2941 * original window even after we transmit two new data segments.
2943 * SACK version:
2944 * on first step, wait until first cumulative ACK arrives, then move to
2945 * the second step. In second step, the next ACK decides.
2947 * F-RTO is implemented (mainly) in four functions:
2948 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2949 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2950 * called when tcp_use_frto() showed green light
2951 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2952 * - tcp_enter_frto_loss() is called if there is not enough evidence
2953 * to prove that the RTO is indeed spurious. It transfers the control
2954 * from F-RTO to the conventional RTO recovery
2956 static int tcp_process_frto(struct sock *sk, int flag)
2958 struct tcp_sock *tp = tcp_sk(sk);
2960 tcp_verify_left_out(tp);
2962 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2963 if (flag&FLAG_DATA_ACKED)
2964 inet_csk(sk)->icsk_retransmits = 0;
2966 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2967 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2968 tp->undo_marker = 0;
2970 if (!before(tp->snd_una, tp->frto_highmark)) {
2971 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2972 return 1;
2975 if (!IsSackFrto() || tcp_is_reno(tp)) {
2976 /* RFC4138 shortcoming in step 2; should also have case c):
2977 * ACK isn't duplicate nor advances window, e.g., opposite dir
2978 * data, winupdate
2980 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2981 return 1;
2983 if (!(flag&FLAG_DATA_ACKED)) {
2984 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2985 flag);
2986 return 1;
2988 } else {
2989 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2990 /* Prevent sending of new data. */
2991 tp->snd_cwnd = min(tp->snd_cwnd,
2992 tcp_packets_in_flight(tp));
2993 return 1;
2996 if ((tp->frto_counter >= 2) &&
2997 (!(flag&FLAG_FORWARD_PROGRESS) ||
2998 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2999 /* RFC4138 shortcoming (see comment above) */
3000 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3001 return 1;
3003 tcp_enter_frto_loss(sk, 3, flag);
3004 return 1;
3008 if (tp->frto_counter == 1) {
3009 /* tcp_may_send_now needs to see updated state */
3010 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3011 tp->frto_counter = 2;
3013 if (!tcp_may_send_now(sk))
3014 tcp_enter_frto_loss(sk, 2, flag);
3016 return 1;
3017 } else {
3018 switch (sysctl_tcp_frto_response) {
3019 case 2:
3020 tcp_undo_spur_to_response(sk, flag);
3021 break;
3022 case 1:
3023 tcp_conservative_spur_to_response(tp);
3024 break;
3025 default:
3026 tcp_ratehalving_spur_to_response(sk);
3027 break;
3029 tp->frto_counter = 0;
3030 tp->undo_marker = 0;
3031 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3033 return 0;
3036 /* This routine deals with incoming acks, but not outgoing ones. */
3037 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3039 struct inet_connection_sock *icsk = inet_csk(sk);
3040 struct tcp_sock *tp = tcp_sk(sk);
3041 u32 prior_snd_una = tp->snd_una;
3042 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3043 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3044 u32 prior_in_flight;
3045 u32 prior_fackets;
3046 s32 seq_rtt;
3047 int prior_packets;
3048 int frto_cwnd = 0;
3050 /* If the ack is newer than sent or older than previous acks
3051 * then we can probably ignore it.
3053 if (after(ack, tp->snd_nxt))
3054 goto uninteresting_ack;
3056 if (before(ack, prior_snd_una))
3057 goto old_ack;
3059 if (after(ack, prior_snd_una))
3060 flag |= FLAG_SND_UNA_ADVANCED;
3062 if (sysctl_tcp_abc) {
3063 if (icsk->icsk_ca_state < TCP_CA_CWR)
3064 tp->bytes_acked += ack - prior_snd_una;
3065 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3066 /* we assume just one segment left network */
3067 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3070 prior_fackets = tp->fackets_out;
3071 prior_in_flight = tcp_packets_in_flight(tp);
3073 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3074 /* Window is constant, pure forward advance.
3075 * No more checks are required.
3076 * Note, we use the fact that SND.UNA>=SND.WL2.
3078 tcp_update_wl(tp, ack, ack_seq);
3079 tp->snd_una = ack;
3080 flag |= FLAG_WIN_UPDATE;
3082 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3084 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3085 } else {
3086 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3087 flag |= FLAG_DATA;
3088 else
3089 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3091 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3093 if (TCP_SKB_CB(skb)->sacked)
3094 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3096 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3097 flag |= FLAG_ECE;
3099 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3102 /* We passed data and got it acked, remove any soft error
3103 * log. Something worked...
3105 sk->sk_err_soft = 0;
3106 tp->rcv_tstamp = tcp_time_stamp;
3107 prior_packets = tp->packets_out;
3108 if (!prior_packets)
3109 goto no_queue;
3111 /* See if we can take anything off of the retransmit queue. */
3112 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3114 if (tp->frto_counter)
3115 frto_cwnd = tcp_process_frto(sk, flag);
3116 /* Guarantee sacktag reordering detection against wrap-arounds */
3117 if (before(tp->frto_highmark, tp->snd_una))
3118 tp->frto_highmark = 0;
3120 if (tcp_ack_is_dubious(sk, flag)) {
3121 /* Advance CWND, if state allows this. */
3122 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3123 tcp_may_raise_cwnd(sk, flag))
3124 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3125 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3126 } else {
3127 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3128 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3131 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3132 dst_confirm(sk->sk_dst_cache);
3134 return 1;
3136 no_queue:
3137 icsk->icsk_probes_out = 0;
3139 /* If this ack opens up a zero window, clear backoff. It was
3140 * being used to time the probes, and is probably far higher than
3141 * it needs to be for normal retransmission.
3143 if (tcp_send_head(sk))
3144 tcp_ack_probe(sk);
3145 return 1;
3147 old_ack:
3148 if (TCP_SKB_CB(skb)->sacked)
3149 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3151 uninteresting_ack:
3152 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3153 return 0;
3157 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3158 * But, this can also be called on packets in the established flow when
3159 * the fast version below fails.
3161 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3163 unsigned char *ptr;
3164 struct tcphdr *th = tcp_hdr(skb);
3165 int length=(th->doff*4)-sizeof(struct tcphdr);
3167 ptr = (unsigned char *)(th + 1);
3168 opt_rx->saw_tstamp = 0;
3170 while (length > 0) {
3171 int opcode=*ptr++;
3172 int opsize;
3174 switch (opcode) {
3175 case TCPOPT_EOL:
3176 return;
3177 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3178 length--;
3179 continue;
3180 default:
3181 opsize=*ptr++;
3182 if (opsize < 2) /* "silly options" */
3183 return;
3184 if (opsize > length)
3185 return; /* don't parse partial options */
3186 switch (opcode) {
3187 case TCPOPT_MSS:
3188 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3189 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3190 if (in_mss) {
3191 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3192 in_mss = opt_rx->user_mss;
3193 opt_rx->mss_clamp = in_mss;
3196 break;
3197 case TCPOPT_WINDOW:
3198 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3199 if (sysctl_tcp_window_scaling) {
3200 __u8 snd_wscale = *(__u8 *) ptr;
3201 opt_rx->wscale_ok = 1;
3202 if (snd_wscale > 14) {
3203 if (net_ratelimit())
3204 printk(KERN_INFO "tcp_parse_options: Illegal window "
3205 "scaling value %d >14 received.\n",
3206 snd_wscale);
3207 snd_wscale = 14;
3209 opt_rx->snd_wscale = snd_wscale;
3211 break;
3212 case TCPOPT_TIMESTAMP:
3213 if (opsize==TCPOLEN_TIMESTAMP) {
3214 if ((estab && opt_rx->tstamp_ok) ||
3215 (!estab && sysctl_tcp_timestamps)) {
3216 opt_rx->saw_tstamp = 1;
3217 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3218 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3221 break;
3222 case TCPOPT_SACK_PERM:
3223 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3224 if (sysctl_tcp_sack) {
3225 opt_rx->sack_ok = 1;
3226 tcp_sack_reset(opt_rx);
3229 break;
3231 case TCPOPT_SACK:
3232 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3233 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3234 opt_rx->sack_ok) {
3235 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3237 break;
3238 #ifdef CONFIG_TCP_MD5SIG
3239 case TCPOPT_MD5SIG:
3241 * The MD5 Hash has already been
3242 * checked (see tcp_v{4,6}_do_rcv()).
3244 break;
3245 #endif
3248 ptr+=opsize-2;
3249 length-=opsize;
3254 /* Fast parse options. This hopes to only see timestamps.
3255 * If it is wrong it falls back on tcp_parse_options().
3257 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3258 struct tcp_sock *tp)
3260 if (th->doff == sizeof(struct tcphdr)>>2) {
3261 tp->rx_opt.saw_tstamp = 0;
3262 return 0;
3263 } else if (tp->rx_opt.tstamp_ok &&
3264 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3265 __be32 *ptr = (__be32 *)(th + 1);
3266 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3267 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3268 tp->rx_opt.saw_tstamp = 1;
3269 ++ptr;
3270 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3271 ++ptr;
3272 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3273 return 1;
3276 tcp_parse_options(skb, &tp->rx_opt, 1);
3277 return 1;
3280 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3282 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3283 tp->rx_opt.ts_recent_stamp = get_seconds();
3286 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3288 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3289 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3290 * extra check below makes sure this can only happen
3291 * for pure ACK frames. -DaveM
3293 * Not only, also it occurs for expired timestamps.
3296 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3297 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3298 tcp_store_ts_recent(tp);
3302 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3304 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3305 * it can pass through stack. So, the following predicate verifies that
3306 * this segment is not used for anything but congestion avoidance or
3307 * fast retransmit. Moreover, we even are able to eliminate most of such
3308 * second order effects, if we apply some small "replay" window (~RTO)
3309 * to timestamp space.
3311 * All these measures still do not guarantee that we reject wrapped ACKs
3312 * on networks with high bandwidth, when sequence space is recycled fastly,
3313 * but it guarantees that such events will be very rare and do not affect
3314 * connection seriously. This doesn't look nice, but alas, PAWS is really
3315 * buggy extension.
3317 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3318 * states that events when retransmit arrives after original data are rare.
3319 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3320 * the biggest problem on large power networks even with minor reordering.
3321 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3322 * up to bandwidth of 18Gigabit/sec. 8) ]
3325 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3327 struct tcp_sock *tp = tcp_sk(sk);
3328 struct tcphdr *th = tcp_hdr(skb);
3329 u32 seq = TCP_SKB_CB(skb)->seq;
3330 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3332 return (/* 1. Pure ACK with correct sequence number. */
3333 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3335 /* 2. ... and duplicate ACK. */
3336 ack == tp->snd_una &&
3338 /* 3. ... and does not update window. */
3339 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3341 /* 4. ... and sits in replay window. */
3342 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3345 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3347 const struct tcp_sock *tp = tcp_sk(sk);
3348 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3349 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3350 !tcp_disordered_ack(sk, skb));
3353 /* Check segment sequence number for validity.
3355 * Segment controls are considered valid, if the segment
3356 * fits to the window after truncation to the window. Acceptability
3357 * of data (and SYN, FIN, of course) is checked separately.
3358 * See tcp_data_queue(), for example.
3360 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3361 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3362 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3363 * (borrowed from freebsd)
3366 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3368 return !before(end_seq, tp->rcv_wup) &&
3369 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3372 /* When we get a reset we do this. */
3373 static void tcp_reset(struct sock *sk)
3375 /* We want the right error as BSD sees it (and indeed as we do). */
3376 switch (sk->sk_state) {
3377 case TCP_SYN_SENT:
3378 sk->sk_err = ECONNREFUSED;
3379 break;
3380 case TCP_CLOSE_WAIT:
3381 sk->sk_err = EPIPE;
3382 break;
3383 case TCP_CLOSE:
3384 return;
3385 default:
3386 sk->sk_err = ECONNRESET;
3389 if (!sock_flag(sk, SOCK_DEAD))
3390 sk->sk_error_report(sk);
3392 tcp_done(sk);
3396 * Process the FIN bit. This now behaves as it is supposed to work
3397 * and the FIN takes effect when it is validly part of sequence
3398 * space. Not before when we get holes.
3400 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3401 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3402 * TIME-WAIT)
3404 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3405 * close and we go into CLOSING (and later onto TIME-WAIT)
3407 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3409 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3411 struct tcp_sock *tp = tcp_sk(sk);
3413 inet_csk_schedule_ack(sk);
3415 sk->sk_shutdown |= RCV_SHUTDOWN;
3416 sock_set_flag(sk, SOCK_DONE);
3418 switch (sk->sk_state) {
3419 case TCP_SYN_RECV:
3420 case TCP_ESTABLISHED:
3421 /* Move to CLOSE_WAIT */
3422 tcp_set_state(sk, TCP_CLOSE_WAIT);
3423 inet_csk(sk)->icsk_ack.pingpong = 1;
3424 break;
3426 case TCP_CLOSE_WAIT:
3427 case TCP_CLOSING:
3428 /* Received a retransmission of the FIN, do
3429 * nothing.
3431 break;
3432 case TCP_LAST_ACK:
3433 /* RFC793: Remain in the LAST-ACK state. */
3434 break;
3436 case TCP_FIN_WAIT1:
3437 /* This case occurs when a simultaneous close
3438 * happens, we must ack the received FIN and
3439 * enter the CLOSING state.
3441 tcp_send_ack(sk);
3442 tcp_set_state(sk, TCP_CLOSING);
3443 break;
3444 case TCP_FIN_WAIT2:
3445 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3446 tcp_send_ack(sk);
3447 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3448 break;
3449 default:
3450 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3451 * cases we should never reach this piece of code.
3453 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3454 __FUNCTION__, sk->sk_state);
3455 break;
3458 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3459 * Probably, we should reset in this case. For now drop them.
3461 __skb_queue_purge(&tp->out_of_order_queue);
3462 if (tcp_is_sack(tp))
3463 tcp_sack_reset(&tp->rx_opt);
3464 sk_stream_mem_reclaim(sk);
3466 if (!sock_flag(sk, SOCK_DEAD)) {
3467 sk->sk_state_change(sk);
3469 /* Do not send POLL_HUP for half duplex close. */
3470 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3471 sk->sk_state == TCP_CLOSE)
3472 sk_wake_async(sk, 1, POLL_HUP);
3473 else
3474 sk_wake_async(sk, 1, POLL_IN);
3478 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3480 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3481 if (before(seq, sp->start_seq))
3482 sp->start_seq = seq;
3483 if (after(end_seq, sp->end_seq))
3484 sp->end_seq = end_seq;
3485 return 1;
3487 return 0;
3490 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3492 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3493 if (before(seq, tp->rcv_nxt))
3494 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3495 else
3496 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3498 tp->rx_opt.dsack = 1;
3499 tp->duplicate_sack[0].start_seq = seq;
3500 tp->duplicate_sack[0].end_seq = end_seq;
3501 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3505 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3507 if (!tp->rx_opt.dsack)
3508 tcp_dsack_set(tp, seq, end_seq);
3509 else
3510 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3513 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3515 struct tcp_sock *tp = tcp_sk(sk);
3517 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3518 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3519 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3520 tcp_enter_quickack_mode(sk);
3522 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3523 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3525 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3526 end_seq = tp->rcv_nxt;
3527 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3531 tcp_send_ack(sk);
3534 /* These routines update the SACK block as out-of-order packets arrive or
3535 * in-order packets close up the sequence space.
3537 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3539 int this_sack;
3540 struct tcp_sack_block *sp = &tp->selective_acks[0];
3541 struct tcp_sack_block *swalk = sp+1;
3543 /* See if the recent change to the first SACK eats into
3544 * or hits the sequence space of other SACK blocks, if so coalesce.
3546 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3547 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3548 int i;
3550 /* Zap SWALK, by moving every further SACK up by one slot.
3551 * Decrease num_sacks.
3553 tp->rx_opt.num_sacks--;
3554 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3555 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3556 sp[i] = sp[i+1];
3557 continue;
3559 this_sack++, swalk++;
3563 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3565 __u32 tmp;
3567 tmp = sack1->start_seq;
3568 sack1->start_seq = sack2->start_seq;
3569 sack2->start_seq = tmp;
3571 tmp = sack1->end_seq;
3572 sack1->end_seq = sack2->end_seq;
3573 sack2->end_seq = tmp;
3576 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3578 struct tcp_sock *tp = tcp_sk(sk);
3579 struct tcp_sack_block *sp = &tp->selective_acks[0];
3580 int cur_sacks = tp->rx_opt.num_sacks;
3581 int this_sack;
3583 if (!cur_sacks)
3584 goto new_sack;
3586 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3587 if (tcp_sack_extend(sp, seq, end_seq)) {
3588 /* Rotate this_sack to the first one. */
3589 for (; this_sack>0; this_sack--, sp--)
3590 tcp_sack_swap(sp, sp-1);
3591 if (cur_sacks > 1)
3592 tcp_sack_maybe_coalesce(tp);
3593 return;
3597 /* Could not find an adjacent existing SACK, build a new one,
3598 * put it at the front, and shift everyone else down. We
3599 * always know there is at least one SACK present already here.
3601 * If the sack array is full, forget about the last one.
3603 if (this_sack >= 4) {
3604 this_sack--;
3605 tp->rx_opt.num_sacks--;
3606 sp--;
3608 for (; this_sack > 0; this_sack--, sp--)
3609 *sp = *(sp-1);
3611 new_sack:
3612 /* Build the new head SACK, and we're done. */
3613 sp->start_seq = seq;
3614 sp->end_seq = end_seq;
3615 tp->rx_opt.num_sacks++;
3616 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3619 /* RCV.NXT advances, some SACKs should be eaten. */
3621 static void tcp_sack_remove(struct tcp_sock *tp)
3623 struct tcp_sack_block *sp = &tp->selective_acks[0];
3624 int num_sacks = tp->rx_opt.num_sacks;
3625 int this_sack;
3627 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3628 if (skb_queue_empty(&tp->out_of_order_queue)) {
3629 tp->rx_opt.num_sacks = 0;
3630 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3631 return;
3634 for (this_sack = 0; this_sack < num_sacks; ) {
3635 /* Check if the start of the sack is covered by RCV.NXT. */
3636 if (!before(tp->rcv_nxt, sp->start_seq)) {
3637 int i;
3639 /* RCV.NXT must cover all the block! */
3640 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3642 /* Zap this SACK, by moving forward any other SACKS. */
3643 for (i=this_sack+1; i < num_sacks; i++)
3644 tp->selective_acks[i-1] = tp->selective_acks[i];
3645 num_sacks--;
3646 continue;
3648 this_sack++;
3649 sp++;
3651 if (num_sacks != tp->rx_opt.num_sacks) {
3652 tp->rx_opt.num_sacks = num_sacks;
3653 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3657 /* This one checks to see if we can put data from the
3658 * out_of_order queue into the receive_queue.
3660 static void tcp_ofo_queue(struct sock *sk)
3662 struct tcp_sock *tp = tcp_sk(sk);
3663 __u32 dsack_high = tp->rcv_nxt;
3664 struct sk_buff *skb;
3666 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3667 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3668 break;
3670 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3671 __u32 dsack = dsack_high;
3672 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3673 dsack_high = TCP_SKB_CB(skb)->end_seq;
3674 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3677 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3678 SOCK_DEBUG(sk, "ofo packet was already received \n");
3679 __skb_unlink(skb, &tp->out_of_order_queue);
3680 __kfree_skb(skb);
3681 continue;
3683 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3684 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3685 TCP_SKB_CB(skb)->end_seq);
3687 __skb_unlink(skb, &tp->out_of_order_queue);
3688 __skb_queue_tail(&sk->sk_receive_queue, skb);
3689 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3690 if (tcp_hdr(skb)->fin)
3691 tcp_fin(skb, sk, tcp_hdr(skb));
3695 static int tcp_prune_queue(struct sock *sk);
3697 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3699 struct tcphdr *th = tcp_hdr(skb);
3700 struct tcp_sock *tp = tcp_sk(sk);
3701 int eaten = -1;
3703 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3704 goto drop;
3706 __skb_pull(skb, th->doff*4);
3708 TCP_ECN_accept_cwr(tp, skb);
3710 if (tp->rx_opt.dsack) {
3711 tp->rx_opt.dsack = 0;
3712 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3713 4 - tp->rx_opt.tstamp_ok);
3716 /* Queue data for delivery to the user.
3717 * Packets in sequence go to the receive queue.
3718 * Out of sequence packets to the out_of_order_queue.
3720 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3721 if (tcp_receive_window(tp) == 0)
3722 goto out_of_window;
3724 /* Ok. In sequence. In window. */
3725 if (tp->ucopy.task == current &&
3726 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3727 sock_owned_by_user(sk) && !tp->urg_data) {
3728 int chunk = min_t(unsigned int, skb->len,
3729 tp->ucopy.len);
3731 __set_current_state(TASK_RUNNING);
3733 local_bh_enable();
3734 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3735 tp->ucopy.len -= chunk;
3736 tp->copied_seq += chunk;
3737 eaten = (chunk == skb->len && !th->fin);
3738 tcp_rcv_space_adjust(sk);
3740 local_bh_disable();
3743 if (eaten <= 0) {
3744 queue_and_out:
3745 if (eaten < 0 &&
3746 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3747 !sk_stream_rmem_schedule(sk, skb))) {
3748 if (tcp_prune_queue(sk) < 0 ||
3749 !sk_stream_rmem_schedule(sk, skb))
3750 goto drop;
3752 sk_stream_set_owner_r(skb, sk);
3753 __skb_queue_tail(&sk->sk_receive_queue, skb);
3755 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3756 if (skb->len)
3757 tcp_event_data_recv(sk, skb);
3758 if (th->fin)
3759 tcp_fin(skb, sk, th);
3761 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3762 tcp_ofo_queue(sk);
3764 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3765 * gap in queue is filled.
3767 if (skb_queue_empty(&tp->out_of_order_queue))
3768 inet_csk(sk)->icsk_ack.pingpong = 0;
3771 if (tp->rx_opt.num_sacks)
3772 tcp_sack_remove(tp);
3774 tcp_fast_path_check(sk);
3776 if (eaten > 0)
3777 __kfree_skb(skb);
3778 else if (!sock_flag(sk, SOCK_DEAD))
3779 sk->sk_data_ready(sk, 0);
3780 return;
3783 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3784 /* A retransmit, 2nd most common case. Force an immediate ack. */
3785 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3786 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3788 out_of_window:
3789 tcp_enter_quickack_mode(sk);
3790 inet_csk_schedule_ack(sk);
3791 drop:
3792 __kfree_skb(skb);
3793 return;
3796 /* Out of window. F.e. zero window probe. */
3797 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3798 goto out_of_window;
3800 tcp_enter_quickack_mode(sk);
3802 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3803 /* Partial packet, seq < rcv_next < end_seq */
3804 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3805 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3806 TCP_SKB_CB(skb)->end_seq);
3808 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3810 /* If window is closed, drop tail of packet. But after
3811 * remembering D-SACK for its head made in previous line.
3813 if (!tcp_receive_window(tp))
3814 goto out_of_window;
3815 goto queue_and_out;
3818 TCP_ECN_check_ce(tp, skb);
3820 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3821 !sk_stream_rmem_schedule(sk, skb)) {
3822 if (tcp_prune_queue(sk) < 0 ||
3823 !sk_stream_rmem_schedule(sk, skb))
3824 goto drop;
3827 /* Disable header prediction. */
3828 tp->pred_flags = 0;
3829 inet_csk_schedule_ack(sk);
3831 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3832 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3834 sk_stream_set_owner_r(skb, sk);
3836 if (!skb_peek(&tp->out_of_order_queue)) {
3837 /* Initial out of order segment, build 1 SACK. */
3838 if (tcp_is_sack(tp)) {
3839 tp->rx_opt.num_sacks = 1;
3840 tp->rx_opt.dsack = 0;
3841 tp->rx_opt.eff_sacks = 1;
3842 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3843 tp->selective_acks[0].end_seq =
3844 TCP_SKB_CB(skb)->end_seq;
3846 __skb_queue_head(&tp->out_of_order_queue,skb);
3847 } else {
3848 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3849 u32 seq = TCP_SKB_CB(skb)->seq;
3850 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3852 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3853 __skb_append(skb1, skb, &tp->out_of_order_queue);
3855 if (!tp->rx_opt.num_sacks ||
3856 tp->selective_acks[0].end_seq != seq)
3857 goto add_sack;
3859 /* Common case: data arrive in order after hole. */
3860 tp->selective_acks[0].end_seq = end_seq;
3861 return;
3864 /* Find place to insert this segment. */
3865 do {
3866 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3867 break;
3868 } while ((skb1 = skb1->prev) !=
3869 (struct sk_buff*)&tp->out_of_order_queue);
3871 /* Do skb overlap to previous one? */
3872 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3873 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3874 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3875 /* All the bits are present. Drop. */
3876 __kfree_skb(skb);
3877 tcp_dsack_set(tp, seq, end_seq);
3878 goto add_sack;
3880 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3881 /* Partial overlap. */
3882 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3883 } else {
3884 skb1 = skb1->prev;
3887 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3889 /* And clean segments covered by new one as whole. */
3890 while ((skb1 = skb->next) !=
3891 (struct sk_buff*)&tp->out_of_order_queue &&
3892 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3893 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3894 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3895 break;
3897 __skb_unlink(skb1, &tp->out_of_order_queue);
3898 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3899 __kfree_skb(skb1);
3902 add_sack:
3903 if (tcp_is_sack(tp))
3904 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3908 /* Collapse contiguous sequence of skbs head..tail with
3909 * sequence numbers start..end.
3910 * Segments with FIN/SYN are not collapsed (only because this
3911 * simplifies code)
3913 static void
3914 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3915 struct sk_buff *head, struct sk_buff *tail,
3916 u32 start, u32 end)
3918 struct sk_buff *skb;
3920 /* First, check that queue is collapsible and find
3921 * the point where collapsing can be useful. */
3922 for (skb = head; skb != tail; ) {
3923 /* No new bits? It is possible on ofo queue. */
3924 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3925 struct sk_buff *next = skb->next;
3926 __skb_unlink(skb, list);
3927 __kfree_skb(skb);
3928 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3929 skb = next;
3930 continue;
3933 /* The first skb to collapse is:
3934 * - not SYN/FIN and
3935 * - bloated or contains data before "start" or
3936 * overlaps to the next one.
3938 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3939 (tcp_win_from_space(skb->truesize) > skb->len ||
3940 before(TCP_SKB_CB(skb)->seq, start) ||
3941 (skb->next != tail &&
3942 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3943 break;
3945 /* Decided to skip this, advance start seq. */
3946 start = TCP_SKB_CB(skb)->end_seq;
3947 skb = skb->next;
3949 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3950 return;
3952 while (before(start, end)) {
3953 struct sk_buff *nskb;
3954 unsigned int header = skb_headroom(skb);
3955 int copy = SKB_MAX_ORDER(header, 0);
3957 /* Too big header? This can happen with IPv6. */
3958 if (copy < 0)
3959 return;
3960 if (end-start < copy)
3961 copy = end-start;
3962 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3963 if (!nskb)
3964 return;
3966 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3967 skb_set_network_header(nskb, (skb_network_header(skb) -
3968 skb->head));
3969 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3970 skb->head));
3971 skb_reserve(nskb, header);
3972 memcpy(nskb->head, skb->head, header);
3973 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3974 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3975 __skb_insert(nskb, skb->prev, skb, list);
3976 sk_stream_set_owner_r(nskb, sk);
3978 /* Copy data, releasing collapsed skbs. */
3979 while (copy > 0) {
3980 int offset = start - TCP_SKB_CB(skb)->seq;
3981 int size = TCP_SKB_CB(skb)->end_seq - start;
3983 BUG_ON(offset < 0);
3984 if (size > 0) {
3985 size = min(copy, size);
3986 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3987 BUG();
3988 TCP_SKB_CB(nskb)->end_seq += size;
3989 copy -= size;
3990 start += size;
3992 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3993 struct sk_buff *next = skb->next;
3994 __skb_unlink(skb, list);
3995 __kfree_skb(skb);
3996 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3997 skb = next;
3998 if (skb == tail ||
3999 tcp_hdr(skb)->syn ||
4000 tcp_hdr(skb)->fin)
4001 return;
4007 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4008 * and tcp_collapse() them until all the queue is collapsed.
4010 static void tcp_collapse_ofo_queue(struct sock *sk)
4012 struct tcp_sock *tp = tcp_sk(sk);
4013 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4014 struct sk_buff *head;
4015 u32 start, end;
4017 if (skb == NULL)
4018 return;
4020 start = TCP_SKB_CB(skb)->seq;
4021 end = TCP_SKB_CB(skb)->end_seq;
4022 head = skb;
4024 for (;;) {
4025 skb = skb->next;
4027 /* Segment is terminated when we see gap or when
4028 * we are at the end of all the queue. */
4029 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4030 after(TCP_SKB_CB(skb)->seq, end) ||
4031 before(TCP_SKB_CB(skb)->end_seq, start)) {
4032 tcp_collapse(sk, &tp->out_of_order_queue,
4033 head, skb, start, end);
4034 head = skb;
4035 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4036 break;
4037 /* Start new segment */
4038 start = TCP_SKB_CB(skb)->seq;
4039 end = TCP_SKB_CB(skb)->end_seq;
4040 } else {
4041 if (before(TCP_SKB_CB(skb)->seq, start))
4042 start = TCP_SKB_CB(skb)->seq;
4043 if (after(TCP_SKB_CB(skb)->end_seq, end))
4044 end = TCP_SKB_CB(skb)->end_seq;
4049 /* Reduce allocated memory if we can, trying to get
4050 * the socket within its memory limits again.
4052 * Return less than zero if we should start dropping frames
4053 * until the socket owning process reads some of the data
4054 * to stabilize the situation.
4056 static int tcp_prune_queue(struct sock *sk)
4058 struct tcp_sock *tp = tcp_sk(sk);
4060 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4062 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4064 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4065 tcp_clamp_window(sk);
4066 else if (tcp_memory_pressure)
4067 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4069 tcp_collapse_ofo_queue(sk);
4070 tcp_collapse(sk, &sk->sk_receive_queue,
4071 sk->sk_receive_queue.next,
4072 (struct sk_buff*)&sk->sk_receive_queue,
4073 tp->copied_seq, tp->rcv_nxt);
4074 sk_stream_mem_reclaim(sk);
4076 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4077 return 0;
4079 /* Collapsing did not help, destructive actions follow.
4080 * This must not ever occur. */
4082 /* First, purge the out_of_order queue. */
4083 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4084 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4085 __skb_queue_purge(&tp->out_of_order_queue);
4087 /* Reset SACK state. A conforming SACK implementation will
4088 * do the same at a timeout based retransmit. When a connection
4089 * is in a sad state like this, we care only about integrity
4090 * of the connection not performance.
4092 if (tcp_is_sack(tp))
4093 tcp_sack_reset(&tp->rx_opt);
4094 sk_stream_mem_reclaim(sk);
4097 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4098 return 0;
4100 /* If we are really being abused, tell the caller to silently
4101 * drop receive data on the floor. It will get retransmitted
4102 * and hopefully then we'll have sufficient space.
4104 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4106 /* Massive buffer overcommit. */
4107 tp->pred_flags = 0;
4108 return -1;
4112 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4113 * As additional protections, we do not touch cwnd in retransmission phases,
4114 * and if application hit its sndbuf limit recently.
4116 void tcp_cwnd_application_limited(struct sock *sk)
4118 struct tcp_sock *tp = tcp_sk(sk);
4120 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4121 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4122 /* Limited by application or receiver window. */
4123 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4124 u32 win_used = max(tp->snd_cwnd_used, init_win);
4125 if (win_used < tp->snd_cwnd) {
4126 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4127 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4129 tp->snd_cwnd_used = 0;
4131 tp->snd_cwnd_stamp = tcp_time_stamp;
4134 static int tcp_should_expand_sndbuf(struct sock *sk)
4136 struct tcp_sock *tp = tcp_sk(sk);
4138 /* If the user specified a specific send buffer setting, do
4139 * not modify it.
4141 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4142 return 0;
4144 /* If we are under global TCP memory pressure, do not expand. */
4145 if (tcp_memory_pressure)
4146 return 0;
4148 /* If we are under soft global TCP memory pressure, do not expand. */
4149 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4150 return 0;
4152 /* If we filled the congestion window, do not expand. */
4153 if (tp->packets_out >= tp->snd_cwnd)
4154 return 0;
4156 return 1;
4159 /* When incoming ACK allowed to free some skb from write_queue,
4160 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4161 * on the exit from tcp input handler.
4163 * PROBLEM: sndbuf expansion does not work well with largesend.
4165 static void tcp_new_space(struct sock *sk)
4167 struct tcp_sock *tp = tcp_sk(sk);
4169 if (tcp_should_expand_sndbuf(sk)) {
4170 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4171 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4172 demanded = max_t(unsigned int, tp->snd_cwnd,
4173 tp->reordering + 1);
4174 sndmem *= 2*demanded;
4175 if (sndmem > sk->sk_sndbuf)
4176 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4177 tp->snd_cwnd_stamp = tcp_time_stamp;
4180 sk->sk_write_space(sk);
4183 static void tcp_check_space(struct sock *sk)
4185 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4186 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4187 if (sk->sk_socket &&
4188 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4189 tcp_new_space(sk);
4193 static inline void tcp_data_snd_check(struct sock *sk)
4195 tcp_push_pending_frames(sk);
4196 tcp_check_space(sk);
4200 * Check if sending an ack is needed.
4202 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4204 struct tcp_sock *tp = tcp_sk(sk);
4206 /* More than one full frame received... */
4207 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4208 /* ... and right edge of window advances far enough.
4209 * (tcp_recvmsg() will send ACK otherwise). Or...
4211 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4212 /* We ACK each frame or... */
4213 tcp_in_quickack_mode(sk) ||
4214 /* We have out of order data. */
4215 (ofo_possible &&
4216 skb_peek(&tp->out_of_order_queue))) {
4217 /* Then ack it now */
4218 tcp_send_ack(sk);
4219 } else {
4220 /* Else, send delayed ack. */
4221 tcp_send_delayed_ack(sk);
4225 static inline void tcp_ack_snd_check(struct sock *sk)
4227 if (!inet_csk_ack_scheduled(sk)) {
4228 /* We sent a data segment already. */
4229 return;
4231 __tcp_ack_snd_check(sk, 1);
4235 * This routine is only called when we have urgent data
4236 * signaled. Its the 'slow' part of tcp_urg. It could be
4237 * moved inline now as tcp_urg is only called from one
4238 * place. We handle URGent data wrong. We have to - as
4239 * BSD still doesn't use the correction from RFC961.
4240 * For 1003.1g we should support a new option TCP_STDURG to permit
4241 * either form (or just set the sysctl tcp_stdurg).
4244 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4246 struct tcp_sock *tp = tcp_sk(sk);
4247 u32 ptr = ntohs(th->urg_ptr);
4249 if (ptr && !sysctl_tcp_stdurg)
4250 ptr--;
4251 ptr += ntohl(th->seq);
4253 /* Ignore urgent data that we've already seen and read. */
4254 if (after(tp->copied_seq, ptr))
4255 return;
4257 /* Do not replay urg ptr.
4259 * NOTE: interesting situation not covered by specs.
4260 * Misbehaving sender may send urg ptr, pointing to segment,
4261 * which we already have in ofo queue. We are not able to fetch
4262 * such data and will stay in TCP_URG_NOTYET until will be eaten
4263 * by recvmsg(). Seems, we are not obliged to handle such wicked
4264 * situations. But it is worth to think about possibility of some
4265 * DoSes using some hypothetical application level deadlock.
4267 if (before(ptr, tp->rcv_nxt))
4268 return;
4270 /* Do we already have a newer (or duplicate) urgent pointer? */
4271 if (tp->urg_data && !after(ptr, tp->urg_seq))
4272 return;
4274 /* Tell the world about our new urgent pointer. */
4275 sk_send_sigurg(sk);
4277 /* We may be adding urgent data when the last byte read was
4278 * urgent. To do this requires some care. We cannot just ignore
4279 * tp->copied_seq since we would read the last urgent byte again
4280 * as data, nor can we alter copied_seq until this data arrives
4281 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4283 * NOTE. Double Dutch. Rendering to plain English: author of comment
4284 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4285 * and expect that both A and B disappear from stream. This is _wrong_.
4286 * Though this happens in BSD with high probability, this is occasional.
4287 * Any application relying on this is buggy. Note also, that fix "works"
4288 * only in this artificial test. Insert some normal data between A and B and we will
4289 * decline of BSD again. Verdict: it is better to remove to trap
4290 * buggy users.
4292 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4293 !sock_flag(sk, SOCK_URGINLINE) &&
4294 tp->copied_seq != tp->rcv_nxt) {
4295 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4296 tp->copied_seq++;
4297 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4298 __skb_unlink(skb, &sk->sk_receive_queue);
4299 __kfree_skb(skb);
4303 tp->urg_data = TCP_URG_NOTYET;
4304 tp->urg_seq = ptr;
4306 /* Disable header prediction. */
4307 tp->pred_flags = 0;
4310 /* This is the 'fast' part of urgent handling. */
4311 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4313 struct tcp_sock *tp = tcp_sk(sk);
4315 /* Check if we get a new urgent pointer - normally not. */
4316 if (th->urg)
4317 tcp_check_urg(sk,th);
4319 /* Do we wait for any urgent data? - normally not... */
4320 if (tp->urg_data == TCP_URG_NOTYET) {
4321 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4322 th->syn;
4324 /* Is the urgent pointer pointing into this packet? */
4325 if (ptr < skb->len) {
4326 u8 tmp;
4327 if (skb_copy_bits(skb, ptr, &tmp, 1))
4328 BUG();
4329 tp->urg_data = TCP_URG_VALID | tmp;
4330 if (!sock_flag(sk, SOCK_DEAD))
4331 sk->sk_data_ready(sk, 0);
4336 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4338 struct tcp_sock *tp = tcp_sk(sk);
4339 int chunk = skb->len - hlen;
4340 int err;
4342 local_bh_enable();
4343 if (skb_csum_unnecessary(skb))
4344 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4345 else
4346 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4347 tp->ucopy.iov);
4349 if (!err) {
4350 tp->ucopy.len -= chunk;
4351 tp->copied_seq += chunk;
4352 tcp_rcv_space_adjust(sk);
4355 local_bh_disable();
4356 return err;
4359 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4361 __sum16 result;
4363 if (sock_owned_by_user(sk)) {
4364 local_bh_enable();
4365 result = __tcp_checksum_complete(skb);
4366 local_bh_disable();
4367 } else {
4368 result = __tcp_checksum_complete(skb);
4370 return result;
4373 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4375 return !skb_csum_unnecessary(skb) &&
4376 __tcp_checksum_complete_user(sk, skb);
4379 #ifdef CONFIG_NET_DMA
4380 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4382 struct tcp_sock *tp = tcp_sk(sk);
4383 int chunk = skb->len - hlen;
4384 int dma_cookie;
4385 int copied_early = 0;
4387 if (tp->ucopy.wakeup)
4388 return 0;
4390 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4391 tp->ucopy.dma_chan = get_softnet_dma();
4393 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4395 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4396 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4398 if (dma_cookie < 0)
4399 goto out;
4401 tp->ucopy.dma_cookie = dma_cookie;
4402 copied_early = 1;
4404 tp->ucopy.len -= chunk;
4405 tp->copied_seq += chunk;
4406 tcp_rcv_space_adjust(sk);
4408 if ((tp->ucopy.len == 0) ||
4409 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4410 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4411 tp->ucopy.wakeup = 1;
4412 sk->sk_data_ready(sk, 0);
4414 } else if (chunk > 0) {
4415 tp->ucopy.wakeup = 1;
4416 sk->sk_data_ready(sk, 0);
4418 out:
4419 return copied_early;
4421 #endif /* CONFIG_NET_DMA */
4424 * TCP receive function for the ESTABLISHED state.
4426 * It is split into a fast path and a slow path. The fast path is
4427 * disabled when:
4428 * - A zero window was announced from us - zero window probing
4429 * is only handled properly in the slow path.
4430 * - Out of order segments arrived.
4431 * - Urgent data is expected.
4432 * - There is no buffer space left
4433 * - Unexpected TCP flags/window values/header lengths are received
4434 * (detected by checking the TCP header against pred_flags)
4435 * - Data is sent in both directions. Fast path only supports pure senders
4436 * or pure receivers (this means either the sequence number or the ack
4437 * value must stay constant)
4438 * - Unexpected TCP option.
4440 * When these conditions are not satisfied it drops into a standard
4441 * receive procedure patterned after RFC793 to handle all cases.
4442 * The first three cases are guaranteed by proper pred_flags setting,
4443 * the rest is checked inline. Fast processing is turned on in
4444 * tcp_data_queue when everything is OK.
4446 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4447 struct tcphdr *th, unsigned len)
4449 struct tcp_sock *tp = tcp_sk(sk);
4452 * Header prediction.
4453 * The code loosely follows the one in the famous
4454 * "30 instruction TCP receive" Van Jacobson mail.
4456 * Van's trick is to deposit buffers into socket queue
4457 * on a device interrupt, to call tcp_recv function
4458 * on the receive process context and checksum and copy
4459 * the buffer to user space. smart...
4461 * Our current scheme is not silly either but we take the
4462 * extra cost of the net_bh soft interrupt processing...
4463 * We do checksum and copy also but from device to kernel.
4466 tp->rx_opt.saw_tstamp = 0;
4468 /* pred_flags is 0xS?10 << 16 + snd_wnd
4469 * if header_prediction is to be made
4470 * 'S' will always be tp->tcp_header_len >> 2
4471 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4472 * turn it off (when there are holes in the receive
4473 * space for instance)
4474 * PSH flag is ignored.
4477 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4478 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4479 int tcp_header_len = tp->tcp_header_len;
4481 /* Timestamp header prediction: tcp_header_len
4482 * is automatically equal to th->doff*4 due to pred_flags
4483 * match.
4486 /* Check timestamp */
4487 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4488 __be32 *ptr = (__be32 *)(th + 1);
4490 /* No? Slow path! */
4491 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4492 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4493 goto slow_path;
4495 tp->rx_opt.saw_tstamp = 1;
4496 ++ptr;
4497 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4498 ++ptr;
4499 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4501 /* If PAWS failed, check it more carefully in slow path */
4502 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4503 goto slow_path;
4505 /* DO NOT update ts_recent here, if checksum fails
4506 * and timestamp was corrupted part, it will result
4507 * in a hung connection since we will drop all
4508 * future packets due to the PAWS test.
4512 if (len <= tcp_header_len) {
4513 /* Bulk data transfer: sender */
4514 if (len == tcp_header_len) {
4515 /* Predicted packet is in window by definition.
4516 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4517 * Hence, check seq<=rcv_wup reduces to:
4519 if (tcp_header_len ==
4520 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4521 tp->rcv_nxt == tp->rcv_wup)
4522 tcp_store_ts_recent(tp);
4524 /* We know that such packets are checksummed
4525 * on entry.
4527 tcp_ack(sk, skb, 0);
4528 __kfree_skb(skb);
4529 tcp_data_snd_check(sk);
4530 return 0;
4531 } else { /* Header too small */
4532 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4533 goto discard;
4535 } else {
4536 int eaten = 0;
4537 int copied_early = 0;
4539 if (tp->copied_seq == tp->rcv_nxt &&
4540 len - tcp_header_len <= tp->ucopy.len) {
4541 #ifdef CONFIG_NET_DMA
4542 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4543 copied_early = 1;
4544 eaten = 1;
4546 #endif
4547 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4548 __set_current_state(TASK_RUNNING);
4550 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4551 eaten = 1;
4553 if (eaten) {
4554 /* Predicted packet is in window by definition.
4555 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4556 * Hence, check seq<=rcv_wup reduces to:
4558 if (tcp_header_len ==
4559 (sizeof(struct tcphdr) +
4560 TCPOLEN_TSTAMP_ALIGNED) &&
4561 tp->rcv_nxt == tp->rcv_wup)
4562 tcp_store_ts_recent(tp);
4564 tcp_rcv_rtt_measure_ts(sk, skb);
4566 __skb_pull(skb, tcp_header_len);
4567 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4568 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4570 if (copied_early)
4571 tcp_cleanup_rbuf(sk, skb->len);
4573 if (!eaten) {
4574 if (tcp_checksum_complete_user(sk, skb))
4575 goto csum_error;
4577 /* Predicted packet is in window by definition.
4578 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4579 * Hence, check seq<=rcv_wup reduces to:
4581 if (tcp_header_len ==
4582 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4583 tp->rcv_nxt == tp->rcv_wup)
4584 tcp_store_ts_recent(tp);
4586 tcp_rcv_rtt_measure_ts(sk, skb);
4588 if ((int)skb->truesize > sk->sk_forward_alloc)
4589 goto step5;
4591 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4593 /* Bulk data transfer: receiver */
4594 __skb_pull(skb,tcp_header_len);
4595 __skb_queue_tail(&sk->sk_receive_queue, skb);
4596 sk_stream_set_owner_r(skb, sk);
4597 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4600 tcp_event_data_recv(sk, skb);
4602 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4603 /* Well, only one small jumplet in fast path... */
4604 tcp_ack(sk, skb, FLAG_DATA);
4605 tcp_data_snd_check(sk);
4606 if (!inet_csk_ack_scheduled(sk))
4607 goto no_ack;
4610 __tcp_ack_snd_check(sk, 0);
4611 no_ack:
4612 #ifdef CONFIG_NET_DMA
4613 if (copied_early)
4614 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4615 else
4616 #endif
4617 if (eaten)
4618 __kfree_skb(skb);
4619 else
4620 sk->sk_data_ready(sk, 0);
4621 return 0;
4625 slow_path:
4626 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4627 goto csum_error;
4630 * RFC1323: H1. Apply PAWS check first.
4632 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4633 tcp_paws_discard(sk, skb)) {
4634 if (!th->rst) {
4635 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4636 tcp_send_dupack(sk, skb);
4637 goto discard;
4639 /* Resets are accepted even if PAWS failed.
4641 ts_recent update must be made after we are sure
4642 that the packet is in window.
4647 * Standard slow path.
4650 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4651 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4652 * (RST) segments are validated by checking their SEQ-fields."
4653 * And page 69: "If an incoming segment is not acceptable,
4654 * an acknowledgment should be sent in reply (unless the RST bit
4655 * is set, if so drop the segment and return)".
4657 if (!th->rst)
4658 tcp_send_dupack(sk, skb);
4659 goto discard;
4662 if (th->rst) {
4663 tcp_reset(sk);
4664 goto discard;
4667 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4669 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4670 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4671 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4672 tcp_reset(sk);
4673 return 1;
4676 step5:
4677 if (th->ack)
4678 tcp_ack(sk, skb, FLAG_SLOWPATH);
4680 tcp_rcv_rtt_measure_ts(sk, skb);
4682 /* Process urgent data. */
4683 tcp_urg(sk, skb, th);
4685 /* step 7: process the segment text */
4686 tcp_data_queue(sk, skb);
4688 tcp_data_snd_check(sk);
4689 tcp_ack_snd_check(sk);
4690 return 0;
4692 csum_error:
4693 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4695 discard:
4696 __kfree_skb(skb);
4697 return 0;
4700 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4701 struct tcphdr *th, unsigned len)
4703 struct tcp_sock *tp = tcp_sk(sk);
4704 struct inet_connection_sock *icsk = inet_csk(sk);
4705 int saved_clamp = tp->rx_opt.mss_clamp;
4707 tcp_parse_options(skb, &tp->rx_opt, 0);
4709 if (th->ack) {
4710 /* rfc793:
4711 * "If the state is SYN-SENT then
4712 * first check the ACK bit
4713 * If the ACK bit is set
4714 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4715 * a reset (unless the RST bit is set, if so drop
4716 * the segment and return)"
4718 * We do not send data with SYN, so that RFC-correct
4719 * test reduces to:
4721 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4722 goto reset_and_undo;
4724 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4725 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4726 tcp_time_stamp)) {
4727 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4728 goto reset_and_undo;
4731 /* Now ACK is acceptable.
4733 * "If the RST bit is set
4734 * If the ACK was acceptable then signal the user "error:
4735 * connection reset", drop the segment, enter CLOSED state,
4736 * delete TCB, and return."
4739 if (th->rst) {
4740 tcp_reset(sk);
4741 goto discard;
4744 /* rfc793:
4745 * "fifth, if neither of the SYN or RST bits is set then
4746 * drop the segment and return."
4748 * See note below!
4749 * --ANK(990513)
4751 if (!th->syn)
4752 goto discard_and_undo;
4754 /* rfc793:
4755 * "If the SYN bit is on ...
4756 * are acceptable then ...
4757 * (our SYN has been ACKed), change the connection
4758 * state to ESTABLISHED..."
4761 TCP_ECN_rcv_synack(tp, th);
4763 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4764 tcp_ack(sk, skb, FLAG_SLOWPATH);
4766 /* Ok.. it's good. Set up sequence numbers and
4767 * move to established.
4769 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4770 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4772 /* RFC1323: The window in SYN & SYN/ACK segments is
4773 * never scaled.
4775 tp->snd_wnd = ntohs(th->window);
4776 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4778 if (!tp->rx_opt.wscale_ok) {
4779 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4780 tp->window_clamp = min(tp->window_clamp, 65535U);
4783 if (tp->rx_opt.saw_tstamp) {
4784 tp->rx_opt.tstamp_ok = 1;
4785 tp->tcp_header_len =
4786 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4787 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4788 tcp_store_ts_recent(tp);
4789 } else {
4790 tp->tcp_header_len = sizeof(struct tcphdr);
4793 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4794 tcp_enable_fack(tp);
4796 tcp_mtup_init(sk);
4797 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4798 tcp_initialize_rcv_mss(sk);
4800 /* Remember, tcp_poll() does not lock socket!
4801 * Change state from SYN-SENT only after copied_seq
4802 * is initialized. */
4803 tp->copied_seq = tp->rcv_nxt;
4804 smp_mb();
4805 tcp_set_state(sk, TCP_ESTABLISHED);
4807 security_inet_conn_established(sk, skb);
4809 /* Make sure socket is routed, for correct metrics. */
4810 icsk->icsk_af_ops->rebuild_header(sk);
4812 tcp_init_metrics(sk);
4814 tcp_init_congestion_control(sk);
4816 /* Prevent spurious tcp_cwnd_restart() on first data
4817 * packet.
4819 tp->lsndtime = tcp_time_stamp;
4821 tcp_init_buffer_space(sk);
4823 if (sock_flag(sk, SOCK_KEEPOPEN))
4824 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4826 if (!tp->rx_opt.snd_wscale)
4827 __tcp_fast_path_on(tp, tp->snd_wnd);
4828 else
4829 tp->pred_flags = 0;
4831 if (!sock_flag(sk, SOCK_DEAD)) {
4832 sk->sk_state_change(sk);
4833 sk_wake_async(sk, 0, POLL_OUT);
4836 if (sk->sk_write_pending ||
4837 icsk->icsk_accept_queue.rskq_defer_accept ||
4838 icsk->icsk_ack.pingpong) {
4839 /* Save one ACK. Data will be ready after
4840 * several ticks, if write_pending is set.
4842 * It may be deleted, but with this feature tcpdumps
4843 * look so _wonderfully_ clever, that I was not able
4844 * to stand against the temptation 8) --ANK
4846 inet_csk_schedule_ack(sk);
4847 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4848 icsk->icsk_ack.ato = TCP_ATO_MIN;
4849 tcp_incr_quickack(sk);
4850 tcp_enter_quickack_mode(sk);
4851 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4852 TCP_DELACK_MAX, TCP_RTO_MAX);
4854 discard:
4855 __kfree_skb(skb);
4856 return 0;
4857 } else {
4858 tcp_send_ack(sk);
4860 return -1;
4863 /* No ACK in the segment */
4865 if (th->rst) {
4866 /* rfc793:
4867 * "If the RST bit is set
4869 * Otherwise (no ACK) drop the segment and return."
4872 goto discard_and_undo;
4875 /* PAWS check. */
4876 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4877 goto discard_and_undo;
4879 if (th->syn) {
4880 /* We see SYN without ACK. It is attempt of
4881 * simultaneous connect with crossed SYNs.
4882 * Particularly, it can be connect to self.
4884 tcp_set_state(sk, TCP_SYN_RECV);
4886 if (tp->rx_opt.saw_tstamp) {
4887 tp->rx_opt.tstamp_ok = 1;
4888 tcp_store_ts_recent(tp);
4889 tp->tcp_header_len =
4890 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4891 } else {
4892 tp->tcp_header_len = sizeof(struct tcphdr);
4895 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4896 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4898 /* RFC1323: The window in SYN & SYN/ACK segments is
4899 * never scaled.
4901 tp->snd_wnd = ntohs(th->window);
4902 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4903 tp->max_window = tp->snd_wnd;
4905 TCP_ECN_rcv_syn(tp, th);
4907 tcp_mtup_init(sk);
4908 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4909 tcp_initialize_rcv_mss(sk);
4912 tcp_send_synack(sk);
4913 #if 0
4914 /* Note, we could accept data and URG from this segment.
4915 * There are no obstacles to make this.
4917 * However, if we ignore data in ACKless segments sometimes,
4918 * we have no reasons to accept it sometimes.
4919 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4920 * is not flawless. So, discard packet for sanity.
4921 * Uncomment this return to process the data.
4923 return -1;
4924 #else
4925 goto discard;
4926 #endif
4928 /* "fifth, if neither of the SYN or RST bits is set then
4929 * drop the segment and return."
4932 discard_and_undo:
4933 tcp_clear_options(&tp->rx_opt);
4934 tp->rx_opt.mss_clamp = saved_clamp;
4935 goto discard;
4937 reset_and_undo:
4938 tcp_clear_options(&tp->rx_opt);
4939 tp->rx_opt.mss_clamp = saved_clamp;
4940 return 1;
4945 * This function implements the receiving procedure of RFC 793 for
4946 * all states except ESTABLISHED and TIME_WAIT.
4947 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4948 * address independent.
4951 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4952 struct tcphdr *th, unsigned len)
4954 struct tcp_sock *tp = tcp_sk(sk);
4955 struct inet_connection_sock *icsk = inet_csk(sk);
4956 int queued = 0;
4958 tp->rx_opt.saw_tstamp = 0;
4960 switch (sk->sk_state) {
4961 case TCP_CLOSE:
4962 goto discard;
4964 case TCP_LISTEN:
4965 if (th->ack)
4966 return 1;
4968 if (th->rst)
4969 goto discard;
4971 if (th->syn) {
4972 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4973 return 1;
4975 /* Now we have several options: In theory there is
4976 * nothing else in the frame. KA9Q has an option to
4977 * send data with the syn, BSD accepts data with the
4978 * syn up to the [to be] advertised window and
4979 * Solaris 2.1 gives you a protocol error. For now
4980 * we just ignore it, that fits the spec precisely
4981 * and avoids incompatibilities. It would be nice in
4982 * future to drop through and process the data.
4984 * Now that TTCP is starting to be used we ought to
4985 * queue this data.
4986 * But, this leaves one open to an easy denial of
4987 * service attack, and SYN cookies can't defend
4988 * against this problem. So, we drop the data
4989 * in the interest of security over speed unless
4990 * it's still in use.
4992 kfree_skb(skb);
4993 return 0;
4995 goto discard;
4997 case TCP_SYN_SENT:
4998 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4999 if (queued >= 0)
5000 return queued;
5002 /* Do step6 onward by hand. */
5003 tcp_urg(sk, skb, th);
5004 __kfree_skb(skb);
5005 tcp_data_snd_check(sk);
5006 return 0;
5009 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5010 tcp_paws_discard(sk, skb)) {
5011 if (!th->rst) {
5012 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5013 tcp_send_dupack(sk, skb);
5014 goto discard;
5016 /* Reset is accepted even if it did not pass PAWS. */
5019 /* step 1: check sequence number */
5020 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5021 if (!th->rst)
5022 tcp_send_dupack(sk, skb);
5023 goto discard;
5026 /* step 2: check RST bit */
5027 if (th->rst) {
5028 tcp_reset(sk);
5029 goto discard;
5032 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5034 /* step 3: check security and precedence [ignored] */
5036 /* step 4:
5038 * Check for a SYN in window.
5040 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5041 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5042 tcp_reset(sk);
5043 return 1;
5046 /* step 5: check the ACK field */
5047 if (th->ack) {
5048 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5050 switch (sk->sk_state) {
5051 case TCP_SYN_RECV:
5052 if (acceptable) {
5053 tp->copied_seq = tp->rcv_nxt;
5054 smp_mb();
5055 tcp_set_state(sk, TCP_ESTABLISHED);
5056 sk->sk_state_change(sk);
5058 /* Note, that this wakeup is only for marginal
5059 * crossed SYN case. Passively open sockets
5060 * are not waked up, because sk->sk_sleep ==
5061 * NULL and sk->sk_socket == NULL.
5063 if (sk->sk_socket) {
5064 sk_wake_async(sk,0,POLL_OUT);
5067 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5068 tp->snd_wnd = ntohs(th->window) <<
5069 tp->rx_opt.snd_wscale;
5070 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5071 TCP_SKB_CB(skb)->seq);
5073 /* tcp_ack considers this ACK as duplicate
5074 * and does not calculate rtt.
5075 * Fix it at least with timestamps.
5077 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5078 !tp->srtt)
5079 tcp_ack_saw_tstamp(sk, 0);
5081 if (tp->rx_opt.tstamp_ok)
5082 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5084 /* Make sure socket is routed, for
5085 * correct metrics.
5087 icsk->icsk_af_ops->rebuild_header(sk);
5089 tcp_init_metrics(sk);
5091 tcp_init_congestion_control(sk);
5093 /* Prevent spurious tcp_cwnd_restart() on
5094 * first data packet.
5096 tp->lsndtime = tcp_time_stamp;
5098 tcp_mtup_init(sk);
5099 tcp_initialize_rcv_mss(sk);
5100 tcp_init_buffer_space(sk);
5101 tcp_fast_path_on(tp);
5102 } else {
5103 return 1;
5105 break;
5107 case TCP_FIN_WAIT1:
5108 if (tp->snd_una == tp->write_seq) {
5109 tcp_set_state(sk, TCP_FIN_WAIT2);
5110 sk->sk_shutdown |= SEND_SHUTDOWN;
5111 dst_confirm(sk->sk_dst_cache);
5113 if (!sock_flag(sk, SOCK_DEAD))
5114 /* Wake up lingering close() */
5115 sk->sk_state_change(sk);
5116 else {
5117 int tmo;
5119 if (tp->linger2 < 0 ||
5120 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5121 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5122 tcp_done(sk);
5123 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5124 return 1;
5127 tmo = tcp_fin_time(sk);
5128 if (tmo > TCP_TIMEWAIT_LEN) {
5129 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5130 } else if (th->fin || sock_owned_by_user(sk)) {
5131 /* Bad case. We could lose such FIN otherwise.
5132 * It is not a big problem, but it looks confusing
5133 * and not so rare event. We still can lose it now,
5134 * if it spins in bh_lock_sock(), but it is really
5135 * marginal case.
5137 inet_csk_reset_keepalive_timer(sk, tmo);
5138 } else {
5139 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5140 goto discard;
5144 break;
5146 case TCP_CLOSING:
5147 if (tp->snd_una == tp->write_seq) {
5148 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5149 goto discard;
5151 break;
5153 case TCP_LAST_ACK:
5154 if (tp->snd_una == tp->write_seq) {
5155 tcp_update_metrics(sk);
5156 tcp_done(sk);
5157 goto discard;
5159 break;
5161 } else
5162 goto discard;
5164 /* step 6: check the URG bit */
5165 tcp_urg(sk, skb, th);
5167 /* step 7: process the segment text */
5168 switch (sk->sk_state) {
5169 case TCP_CLOSE_WAIT:
5170 case TCP_CLOSING:
5171 case TCP_LAST_ACK:
5172 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5173 break;
5174 case TCP_FIN_WAIT1:
5175 case TCP_FIN_WAIT2:
5176 /* RFC 793 says to queue data in these states,
5177 * RFC 1122 says we MUST send a reset.
5178 * BSD 4.4 also does reset.
5180 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5181 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5182 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5183 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5184 tcp_reset(sk);
5185 return 1;
5188 /* Fall through */
5189 case TCP_ESTABLISHED:
5190 tcp_data_queue(sk, skb);
5191 queued = 1;
5192 break;
5195 /* tcp_data could move socket to TIME-WAIT */
5196 if (sk->sk_state != TCP_CLOSE) {
5197 tcp_data_snd_check(sk);
5198 tcp_ack_snd_check(sk);
5201 if (!queued) {
5202 discard:
5203 __kfree_skb(skb);
5205 return 0;
5208 EXPORT_SYMBOL(sysctl_tcp_ecn);
5209 EXPORT_SYMBOL(sysctl_tcp_reordering);
5210 EXPORT_SYMBOL(tcp_parse_options);
5211 EXPORT_SYMBOL(tcp_rcv_established);
5212 EXPORT_SYMBOL(tcp_rcv_state_process);
5213 EXPORT_SYMBOL(tcp_initialize_rcv_mss);