2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
19 * Ville Nuorvala: Fixed routing subtrees.
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
31 #include <linux/proc_fs.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #define RT6_TRACE(x...) do { ; } while (0)
49 static struct kmem_cache
* fib6_node_kmem __read_mostly
;
53 #ifdef CONFIG_IPV6_SUBTREES
64 struct fib6_walker_t w
;
66 int (*func
)(struct rt6_info
*, void *arg
);
70 static DEFINE_RWLOCK(fib6_walker_lock
);
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
75 #define FWS_INIT FWS_L
78 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
80 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
);
81 static struct fib6_node
*fib6_repair_tree(struct net
*net
, struct fib6_node
*fn
);
82 static int fib6_walk(struct fib6_walker_t
*w
);
83 static int fib6_walk_continue(struct fib6_walker_t
*w
);
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
92 static __u32 rt_sernum
;
94 static void fib6_gc_timer_cb(unsigned long arg
);
96 static struct fib6_walker_t fib6_walker_list
= {
97 .prev
= &fib6_walker_list
,
98 .next
= &fib6_walker_list
,
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
103 static inline void fib6_walker_link(struct fib6_walker_t
*w
)
105 write_lock_bh(&fib6_walker_lock
);
106 w
->next
= fib6_walker_list
.next
;
107 w
->prev
= &fib6_walker_list
;
110 write_unlock_bh(&fib6_walker_lock
);
113 static inline void fib6_walker_unlink(struct fib6_walker_t
*w
)
115 write_lock_bh(&fib6_walker_lock
);
116 w
->next
->prev
= w
->prev
;
117 w
->prev
->next
= w
->next
;
118 w
->prev
= w
->next
= w
;
119 write_unlock_bh(&fib6_walker_lock
);
121 static __inline__ u32
fib6_new_sernum(void)
130 * Auxiliary address test functions for the radix tree.
132 * These assume a 32bit processor (although it will work on
140 static __inline__ __be32
addr_bit_set(void *token
, int fn_bit
)
142 __be32
*addr
= token
;
144 return htonl(1 << ((~fn_bit
)&0x1F)) & addr
[fn_bit
>>5];
147 static __inline__
struct fib6_node
* node_alloc(void)
149 struct fib6_node
*fn
;
151 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
156 static __inline__
void node_free(struct fib6_node
* fn
)
158 kmem_cache_free(fib6_node_kmem
, fn
);
161 static __inline__
void rt6_release(struct rt6_info
*rt
)
163 if (atomic_dec_and_test(&rt
->rt6i_ref
))
164 dst_free(&rt
->u
.dst
);
167 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
168 #define FIB_TABLE_HASHSZ 256
170 #define FIB_TABLE_HASHSZ 1
173 static void fib6_link_table(struct net
*net
, struct fib6_table
*tb
)
178 * Initialize table lock at a single place to give lockdep a key,
179 * tables aren't visible prior to being linked to the list.
181 rwlock_init(&tb
->tb6_lock
);
183 h
= tb
->tb6_id
& (FIB_TABLE_HASHSZ
- 1);
186 * No protection necessary, this is the only list mutatation
187 * operation, tables never disappear once they exist.
189 hlist_add_head_rcu(&tb
->tb6_hlist
, &net
->ipv6
.fib_table_hash
[h
]);
192 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
194 static struct fib6_table
*fib6_alloc_table(struct net
*net
, u32 id
)
196 struct fib6_table
*table
;
198 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
201 table
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
202 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
208 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
210 struct fib6_table
*tb
;
214 tb
= fib6_get_table(net
, id
);
218 tb
= fib6_alloc_table(net
, id
);
220 fib6_link_table(net
, tb
);
225 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
227 struct fib6_table
*tb
;
228 struct hlist_head
*head
;
229 struct hlist_node
*node
;
234 h
= id
& (FIB_TABLE_HASHSZ
- 1);
236 head
= &net
->ipv6
.fib_table_hash
[h
];
237 hlist_for_each_entry_rcu(tb
, node
, head
, tb6_hlist
) {
238 if (tb
->tb6_id
== id
) {
248 static void fib6_tables_init(struct net
*net
)
250 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
251 fib6_link_table(net
, net
->ipv6
.fib6_local_tbl
);
255 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
257 return fib6_get_table(net
, id
);
260 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
262 return net
->ipv6
.fib6_main_tbl
;
265 struct dst_entry
*fib6_rule_lookup(struct net
*net
, struct flowi
*fl
,
266 int flags
, pol_lookup_t lookup
)
268 return (struct dst_entry
*) lookup(net
, net
->ipv6
.fib6_main_tbl
, fl
, flags
);
271 static void fib6_tables_init(struct net
*net
)
273 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
278 static int fib6_dump_node(struct fib6_walker_t
*w
)
283 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
284 res
= rt6_dump_route(rt
, w
->args
);
286 /* Frame is full, suspend walking */
296 static void fib6_dump_end(struct netlink_callback
*cb
)
298 struct fib6_walker_t
*w
= (void*)cb
->args
[2];
303 fib6_walker_unlink(w
);
308 cb
->done
= (void*)cb
->args
[3];
312 static int fib6_dump_done(struct netlink_callback
*cb
)
315 return cb
->done
? cb
->done(cb
) : 0;
318 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
319 struct netlink_callback
*cb
)
321 struct fib6_walker_t
*w
;
324 w
= (void *)cb
->args
[2];
325 w
->root
= &table
->tb6_root
;
327 if (cb
->args
[4] == 0) {
328 read_lock_bh(&table
->tb6_lock
);
330 read_unlock_bh(&table
->tb6_lock
);
334 read_lock_bh(&table
->tb6_lock
);
335 res
= fib6_walk_continue(w
);
336 read_unlock_bh(&table
->tb6_lock
);
338 fib6_walker_unlink(w
);
346 static int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
348 struct net
*net
= sock_net(skb
->sk
);
350 unsigned int e
= 0, s_e
;
351 struct rt6_rtnl_dump_arg arg
;
352 struct fib6_walker_t
*w
;
353 struct fib6_table
*tb
;
354 struct hlist_node
*node
;
355 struct hlist_head
*head
;
361 w
= (void *)cb
->args
[2];
365 * 1. hook callback destructor.
367 cb
->args
[3] = (long)cb
->done
;
368 cb
->done
= fib6_dump_done
;
371 * 2. allocate and initialize walker.
373 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
376 w
->func
= fib6_dump_node
;
377 cb
->args
[2] = (long)w
;
385 for (h
= s_h
; h
< FIB_TABLE_HASHSZ
; h
++, s_e
= 0) {
387 head
= &net
->ipv6
.fib_table_hash
[h
];
388 hlist_for_each_entry(tb
, node
, head
, tb6_hlist
) {
391 res
= fib6_dump_table(tb
, skb
, cb
);
402 res
= res
< 0 ? res
: skb
->len
;
411 * return the appropriate node for a routing tree "add" operation
412 * by either creating and inserting or by returning an existing
416 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
417 int addrlen
, int plen
,
420 struct fib6_node
*fn
, *in
, *ln
;
421 struct fib6_node
*pn
= NULL
;
425 __u32 sernum
= fib6_new_sernum();
427 RT6_TRACE("fib6_add_1\n");
429 /* insert node in tree */
434 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
439 if (plen
< fn
->fn_bit
||
440 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
447 if (plen
== fn
->fn_bit
) {
448 /* clean up an intermediate node */
449 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
450 rt6_release(fn
->leaf
);
454 fn
->fn_sernum
= sernum
;
460 * We have more bits to go
463 /* Try to walk down on tree. */
464 fn
->fn_sernum
= sernum
;
465 dir
= addr_bit_set(addr
, fn
->fn_bit
);
467 fn
= dir
? fn
->right
: fn
->left
;
471 * We walked to the bottom of tree.
472 * Create new leaf node without children.
482 ln
->fn_sernum
= sernum
;
494 * split since we don't have a common prefix anymore or
495 * we have a less significant route.
496 * we've to insert an intermediate node on the list
497 * this new node will point to the one we need to create
503 /* find 1st bit in difference between the 2 addrs.
505 See comment in __ipv6_addr_diff: bit may be an invalid value,
506 but if it is >= plen, the value is ignored in any case.
509 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
514 * (new leaf node)[ln] (old node)[fn]
520 if (in
== NULL
|| ln
== NULL
) {
529 * new intermediate node.
531 * be off since that an address that chooses one of
532 * the branches would not match less specific routes
533 * in the other branch
540 atomic_inc(&in
->leaf
->rt6i_ref
);
542 in
->fn_sernum
= sernum
;
544 /* update parent pointer */
555 ln
->fn_sernum
= sernum
;
557 if (addr_bit_set(addr
, bit
)) {
564 } else { /* plen <= bit */
567 * (new leaf node)[ln]
569 * (old node)[fn] NULL
581 ln
->fn_sernum
= sernum
;
588 if (addr_bit_set(&key
->addr
, plen
))
599 * Insert routing information in a node.
602 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
603 struct nl_info
*info
)
605 struct rt6_info
*iter
= NULL
;
606 struct rt6_info
**ins
;
610 for (iter
= fn
->leaf
; iter
; iter
=iter
->u
.dst
.rt6_next
) {
612 * Search for duplicates
615 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
617 * Same priority level
620 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
621 iter
->rt6i_idev
== rt
->rt6i_idev
&&
622 ipv6_addr_equal(&iter
->rt6i_gateway
,
623 &rt
->rt6i_gateway
)) {
624 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
626 iter
->rt6i_expires
= rt
->rt6i_expires
;
627 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
628 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
629 iter
->rt6i_expires
= 0;
635 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
638 ins
= &iter
->u
.dst
.rt6_next
;
641 /* Reset round-robin state, if necessary */
642 if (ins
== &fn
->leaf
)
649 rt
->u
.dst
.rt6_next
= iter
;
652 atomic_inc(&rt
->rt6i_ref
);
653 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
654 info
->nl_net
->ipv6
.rt6_stats
->fib_rt_entries
++;
656 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
657 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
658 fn
->fn_flags
|= RTN_RTINFO
;
664 static __inline__
void fib6_start_gc(struct net
*net
, struct rt6_info
*rt
)
666 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
) &&
667 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
668 mod_timer(&net
->ipv6
.ip6_fib_timer
,
669 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
672 void fib6_force_start_gc(struct net
*net
)
674 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
))
675 mod_timer(&net
->ipv6
.ip6_fib_timer
,
676 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
680 * Add routing information to the routing tree.
681 * <destination addr>/<source addr>
682 * with source addr info in sub-trees
685 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
, struct nl_info
*info
)
687 struct fib6_node
*fn
, *pn
= NULL
;
690 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
691 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
698 #ifdef CONFIG_IPV6_SUBTREES
699 if (rt
->rt6i_src
.plen
) {
700 struct fib6_node
*sn
;
702 if (fn
->subtree
== NULL
) {
703 struct fib6_node
*sfn
;
715 /* Create subtree root node */
720 sfn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
721 atomic_inc(&info
->nl_net
->ipv6
.ip6_null_entry
->rt6i_ref
);
722 sfn
->fn_flags
= RTN_ROOT
;
723 sfn
->fn_sernum
= fib6_new_sernum();
725 /* Now add the first leaf node to new subtree */
727 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
728 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
729 offsetof(struct rt6_info
, rt6i_src
));
732 /* If it is failed, discard just allocated
733 root, and then (in st_failure) stale node
740 /* Now link new subtree to main tree */
744 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
745 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
746 offsetof(struct rt6_info
, rt6i_src
));
752 if (fn
->leaf
== NULL
) {
754 atomic_inc(&rt
->rt6i_ref
);
760 err
= fib6_add_rt2node(fn
, rt
, info
);
763 fib6_start_gc(info
->nl_net
, rt
);
764 if (!(rt
->rt6i_flags
&RTF_CACHE
))
765 fib6_prune_clones(info
->nl_net
, pn
, rt
);
770 #ifdef CONFIG_IPV6_SUBTREES
772 * If fib6_add_1 has cleared the old leaf pointer in the
773 * super-tree leaf node we have to find a new one for it.
775 if (pn
!= fn
&& pn
->leaf
== rt
) {
777 atomic_dec(&rt
->rt6i_ref
);
779 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
780 pn
->leaf
= fib6_find_prefix(info
->nl_net
, pn
);
783 WARN_ON(pn
->leaf
== NULL
);
784 pn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
787 atomic_inc(&pn
->leaf
->rt6i_ref
);
790 dst_free(&rt
->u
.dst
);
794 #ifdef CONFIG_IPV6_SUBTREES
795 /* Subtree creation failed, probably main tree node
796 is orphan. If it is, shoot it.
799 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
800 fib6_repair_tree(info
->nl_net
, fn
);
801 dst_free(&rt
->u
.dst
);
807 * Routing tree lookup
812 int offset
; /* key offset on rt6_info */
813 struct in6_addr
*addr
; /* search key */
816 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
817 struct lookup_args
*args
)
819 struct fib6_node
*fn
;
822 if (unlikely(args
->offset
== 0))
832 struct fib6_node
*next
;
834 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
836 next
= dir
? fn
->right
: fn
->left
;
847 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
850 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
853 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
854 #ifdef CONFIG_IPV6_SUBTREES
856 fn
= fib6_lookup_1(fn
->subtree
, args
+ 1);
858 if (!fn
|| fn
->fn_flags
& RTN_RTINFO
)
863 if (fn
->fn_flags
& RTN_ROOT
)
872 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
873 struct in6_addr
*saddr
)
875 struct fib6_node
*fn
;
876 struct lookup_args args
[] = {
878 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
881 #ifdef CONFIG_IPV6_SUBTREES
883 .offset
= offsetof(struct rt6_info
, rt6i_src
),
888 .offset
= 0, /* sentinel */
892 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
894 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
901 * Get node with specified destination prefix (and source prefix,
902 * if subtrees are used)
906 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
907 struct in6_addr
*addr
,
908 int plen
, int offset
)
910 struct fib6_node
*fn
;
912 for (fn
= root
; fn
; ) {
913 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
918 if (plen
< fn
->fn_bit
||
919 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
922 if (plen
== fn
->fn_bit
)
926 * We have more bits to go
928 if (addr_bit_set(addr
, fn
->fn_bit
))
936 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
937 struct in6_addr
*daddr
, int dst_len
,
938 struct in6_addr
*saddr
, int src_len
)
940 struct fib6_node
*fn
;
942 fn
= fib6_locate_1(root
, daddr
, dst_len
,
943 offsetof(struct rt6_info
, rt6i_dst
));
945 #ifdef CONFIG_IPV6_SUBTREES
947 WARN_ON(saddr
== NULL
);
948 if (fn
&& fn
->subtree
)
949 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
950 offsetof(struct rt6_info
, rt6i_src
));
954 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
966 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
)
968 if (fn
->fn_flags
&RTN_ROOT
)
969 return net
->ipv6
.ip6_null_entry
;
973 return fn
->left
->leaf
;
976 return fn
->right
->leaf
;
978 fn
= FIB6_SUBTREE(fn
);
984 * Called to trim the tree of intermediate nodes when possible. "fn"
985 * is the node we want to try and remove.
988 static struct fib6_node
*fib6_repair_tree(struct net
*net
,
989 struct fib6_node
*fn
)
993 struct fib6_node
*child
, *pn
;
994 struct fib6_walker_t
*w
;
998 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1001 WARN_ON(fn
->fn_flags
& RTN_RTINFO
);
1002 WARN_ON(fn
->fn_flags
& RTN_TL_ROOT
);
1003 WARN_ON(fn
->leaf
!= NULL
);
1007 if (fn
->right
) child
= fn
->right
, children
|= 1;
1008 if (fn
->left
) child
= fn
->left
, children
|= 2;
1010 if (children
== 3 || FIB6_SUBTREE(fn
)
1011 #ifdef CONFIG_IPV6_SUBTREES
1012 /* Subtree root (i.e. fn) may have one child */
1013 || (children
&& fn
->fn_flags
&RTN_ROOT
)
1016 fn
->leaf
= fib6_find_prefix(net
, fn
);
1018 if (fn
->leaf
==NULL
) {
1020 fn
->leaf
= net
->ipv6
.ip6_null_entry
;
1023 atomic_inc(&fn
->leaf
->rt6i_ref
);
1028 #ifdef CONFIG_IPV6_SUBTREES
1029 if (FIB6_SUBTREE(pn
) == fn
) {
1030 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1031 FIB6_SUBTREE(pn
) = NULL
;
1034 WARN_ON(fn
->fn_flags
& RTN_ROOT
);
1036 if (pn
->right
== fn
) pn
->right
= child
;
1037 else if (pn
->left
== fn
) pn
->left
= child
;
1045 #ifdef CONFIG_IPV6_SUBTREES
1049 read_lock(&fib6_walker_lock
);
1051 if (child
== NULL
) {
1052 if (w
->root
== fn
) {
1053 w
->root
= w
->node
= NULL
;
1054 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1055 } else if (w
->node
== fn
) {
1056 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1061 if (w
->root
== fn
) {
1063 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1065 if (w
->node
== fn
) {
1068 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1069 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
1071 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1072 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
1077 read_unlock(&fib6_walker_lock
);
1080 if (pn
->fn_flags
&RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1083 rt6_release(pn
->leaf
);
1089 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1090 struct nl_info
*info
)
1092 struct fib6_walker_t
*w
;
1093 struct rt6_info
*rt
= *rtp
;
1094 struct net
*net
= info
->nl_net
;
1096 RT6_TRACE("fib6_del_route\n");
1099 *rtp
= rt
->u
.dst
.rt6_next
;
1100 rt
->rt6i_node
= NULL
;
1101 net
->ipv6
.rt6_stats
->fib_rt_entries
--;
1102 net
->ipv6
.rt6_stats
->fib_discarded_routes
++;
1104 /* Reset round-robin state, if necessary */
1105 if (fn
->rr_ptr
== rt
)
1108 /* Adjust walkers */
1109 read_lock(&fib6_walker_lock
);
1111 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1112 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1113 w
->leaf
= rt
->u
.dst
.rt6_next
;
1114 if (w
->leaf
== NULL
)
1118 read_unlock(&fib6_walker_lock
);
1120 rt
->u
.dst
.rt6_next
= NULL
;
1122 /* If it was last route, expunge its radix tree node */
1123 if (fn
->leaf
== NULL
) {
1124 fn
->fn_flags
&= ~RTN_RTINFO
;
1125 net
->ipv6
.rt6_stats
->fib_route_nodes
--;
1126 fn
= fib6_repair_tree(net
, fn
);
1129 if (atomic_read(&rt
->rt6i_ref
) != 1) {
1130 /* This route is used as dummy address holder in some split
1131 * nodes. It is not leaked, but it still holds other resources,
1132 * which must be released in time. So, scan ascendant nodes
1133 * and replace dummy references to this route with references
1134 * to still alive ones.
1137 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
1138 fn
->leaf
= fib6_find_prefix(net
, fn
);
1139 atomic_inc(&fn
->leaf
->rt6i_ref
);
1144 /* No more references are possible at this point. */
1145 BUG_ON(atomic_read(&rt
->rt6i_ref
) != 1);
1148 inet6_rt_notify(RTM_DELROUTE
, rt
, info
);
1152 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1154 struct net
*net
= info
->nl_net
;
1155 struct fib6_node
*fn
= rt
->rt6i_node
;
1156 struct rt6_info
**rtp
;
1159 if (rt
->u
.dst
.obsolete
>0) {
1160 WARN_ON(fn
!= NULL
);
1164 if (fn
== NULL
|| rt
== net
->ipv6
.ip6_null_entry
)
1167 WARN_ON(!(fn
->fn_flags
& RTN_RTINFO
));
1169 if (!(rt
->rt6i_flags
&RTF_CACHE
)) {
1170 struct fib6_node
*pn
= fn
;
1171 #ifdef CONFIG_IPV6_SUBTREES
1172 /* clones of this route might be in another subtree */
1173 if (rt
->rt6i_src
.plen
) {
1174 while (!(pn
->fn_flags
&RTN_ROOT
))
1179 fib6_prune_clones(info
->nl_net
, pn
, rt
);
1183 * Walk the leaf entries looking for ourself
1186 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->u
.dst
.rt6_next
) {
1188 fib6_del_route(fn
, rtp
, info
);
1196 * Tree traversal function.
1198 * Certainly, it is not interrupt safe.
1199 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1200 * It means, that we can modify tree during walking
1201 * and use this function for garbage collection, clone pruning,
1202 * cleaning tree when a device goes down etc. etc.
1204 * It guarantees that every node will be traversed,
1205 * and that it will be traversed only once.
1207 * Callback function w->func may return:
1208 * 0 -> continue walking.
1209 * positive value -> walking is suspended (used by tree dumps,
1210 * and probably by gc, if it will be split to several slices)
1211 * negative value -> terminate walking.
1213 * The function itself returns:
1214 * 0 -> walk is complete.
1215 * >0 -> walk is incomplete (i.e. suspended)
1216 * <0 -> walk is terminated by an error.
1219 static int fib6_walk_continue(struct fib6_walker_t
*w
)
1221 struct fib6_node
*fn
, *pn
;
1228 if (w
->prune
&& fn
!= w
->root
&&
1229 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
1234 #ifdef CONFIG_IPV6_SUBTREES
1236 if (FIB6_SUBTREE(fn
)) {
1237 w
->node
= FIB6_SUBTREE(fn
);
1245 w
->state
= FWS_INIT
;
1251 w
->node
= fn
->right
;
1252 w
->state
= FWS_INIT
;
1258 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
1259 int err
= w
->func(w
);
1270 #ifdef CONFIG_IPV6_SUBTREES
1271 if (FIB6_SUBTREE(pn
) == fn
) {
1272 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1277 if (pn
->left
== fn
) {
1281 if (pn
->right
== fn
) {
1283 w
->leaf
= w
->node
->leaf
;
1293 static int fib6_walk(struct fib6_walker_t
*w
)
1297 w
->state
= FWS_INIT
;
1300 fib6_walker_link(w
);
1301 res
= fib6_walk_continue(w
);
1303 fib6_walker_unlink(w
);
1307 static int fib6_clean_node(struct fib6_walker_t
*w
)
1310 struct rt6_info
*rt
;
1311 struct fib6_cleaner_t
*c
= container_of(w
, struct fib6_cleaner_t
, w
);
1312 struct nl_info info
= {
1316 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
1317 res
= c
->func(rt
, c
->arg
);
1320 res
= fib6_del(rt
, &info
);
1323 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1336 * Convenient frontend to tree walker.
1338 * func is called on each route.
1339 * It may return -1 -> delete this route.
1340 * 0 -> continue walking
1342 * prune==1 -> only immediate children of node (certainly,
1343 * ignoring pure split nodes) will be scanned.
1346 static void fib6_clean_tree(struct net
*net
, struct fib6_node
*root
,
1347 int (*func
)(struct rt6_info
*, void *arg
),
1348 int prune
, void *arg
)
1350 struct fib6_cleaner_t c
;
1353 c
.w
.func
= fib6_clean_node
;
1362 void fib6_clean_all(struct net
*net
, int (*func
)(struct rt6_info
*, void *arg
),
1363 int prune
, void *arg
)
1365 struct fib6_table
*table
;
1366 struct hlist_node
*node
;
1367 struct hlist_head
*head
;
1371 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
1372 head
= &net
->ipv6
.fib_table_hash
[h
];
1373 hlist_for_each_entry_rcu(table
, node
, head
, tb6_hlist
) {
1374 write_lock_bh(&table
->tb6_lock
);
1375 fib6_clean_tree(net
, &table
->tb6_root
,
1377 write_unlock_bh(&table
->tb6_lock
);
1383 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1385 if (rt
->rt6i_flags
& RTF_CACHE
) {
1386 RT6_TRACE("pruning clone %p\n", rt
);
1393 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
1394 struct rt6_info
*rt
)
1396 fib6_clean_tree(net
, fn
, fib6_prune_clone
, 1, rt
);
1400 * Garbage collection
1403 static struct fib6_gc_args
1409 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1411 unsigned long now
= jiffies
;
1414 * check addrconf expiration here.
1415 * Routes are expired even if they are in use.
1417 * Also age clones. Note, that clones are aged out
1418 * only if they are not in use now.
1421 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1422 if (time_after(now
, rt
->rt6i_expires
)) {
1423 RT6_TRACE("expiring %p\n", rt
);
1427 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1428 if (atomic_read(&rt
->u
.dst
.__refcnt
) == 0 &&
1429 time_after_eq(now
, rt
->u
.dst
.lastuse
+ gc_args
.timeout
)) {
1430 RT6_TRACE("aging clone %p\n", rt
);
1432 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1433 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1434 RT6_TRACE("purging route %p via non-router but gateway\n",
1444 static DEFINE_SPINLOCK(fib6_gc_lock
);
1446 void fib6_run_gc(unsigned long expires
, struct net
*net
)
1448 if (expires
!= ~0UL) {
1449 spin_lock_bh(&fib6_gc_lock
);
1450 gc_args
.timeout
= expires
? (int)expires
:
1451 net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1453 if (!spin_trylock_bh(&fib6_gc_lock
)) {
1454 mod_timer(&net
->ipv6
.ip6_fib_timer
, jiffies
+ HZ
);
1457 gc_args
.timeout
= net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1460 gc_args
.more
= icmp6_dst_gc();
1462 fib6_clean_all(net
, fib6_age
, 0, NULL
);
1465 mod_timer(&net
->ipv6
.ip6_fib_timer
,
1466 round_jiffies(jiffies
1467 + net
->ipv6
.sysctl
.ip6_rt_gc_interval
));
1469 del_timer(&net
->ipv6
.ip6_fib_timer
);
1470 spin_unlock_bh(&fib6_gc_lock
);
1473 static void fib6_gc_timer_cb(unsigned long arg
)
1475 fib6_run_gc(0, (struct net
*)arg
);
1478 static int fib6_net_init(struct net
*net
)
1480 setup_timer(&net
->ipv6
.ip6_fib_timer
, fib6_gc_timer_cb
, (unsigned long)net
);
1482 net
->ipv6
.rt6_stats
= kzalloc(sizeof(*net
->ipv6
.rt6_stats
), GFP_KERNEL
);
1483 if (!net
->ipv6
.rt6_stats
)
1486 net
->ipv6
.fib_table_hash
= kcalloc(FIB_TABLE_HASHSZ
,
1487 sizeof(*net
->ipv6
.fib_table_hash
),
1489 if (!net
->ipv6
.fib_table_hash
)
1492 net
->ipv6
.fib6_main_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_main_tbl
),
1494 if (!net
->ipv6
.fib6_main_tbl
)
1495 goto out_fib_table_hash
;
1497 net
->ipv6
.fib6_main_tbl
->tb6_id
= RT6_TABLE_MAIN
;
1498 net
->ipv6
.fib6_main_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1499 net
->ipv6
.fib6_main_tbl
->tb6_root
.fn_flags
=
1500 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1502 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1503 net
->ipv6
.fib6_local_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_local_tbl
),
1505 if (!net
->ipv6
.fib6_local_tbl
)
1506 goto out_fib6_main_tbl
;
1507 net
->ipv6
.fib6_local_tbl
->tb6_id
= RT6_TABLE_LOCAL
;
1508 net
->ipv6
.fib6_local_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1509 net
->ipv6
.fib6_local_tbl
->tb6_root
.fn_flags
=
1510 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1512 fib6_tables_init(net
);
1516 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1518 kfree(net
->ipv6
.fib6_main_tbl
);
1521 kfree(net
->ipv6
.fib_table_hash
);
1523 kfree(net
->ipv6
.rt6_stats
);
1528 static void fib6_net_exit(struct net
*net
)
1530 rt6_ifdown(net
, NULL
);
1531 del_timer_sync(&net
->ipv6
.ip6_fib_timer
);
1533 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1534 kfree(net
->ipv6
.fib6_local_tbl
);
1536 kfree(net
->ipv6
.fib6_main_tbl
);
1537 kfree(net
->ipv6
.fib_table_hash
);
1538 kfree(net
->ipv6
.rt6_stats
);
1541 static struct pernet_operations fib6_net_ops
= {
1542 .init
= fib6_net_init
,
1543 .exit
= fib6_net_exit
,
1546 int __init
fib6_init(void)
1550 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1551 sizeof(struct fib6_node
),
1552 0, SLAB_HWCACHE_ALIGN
,
1554 if (!fib6_node_kmem
)
1557 ret
= register_pernet_subsys(&fib6_net_ops
);
1559 goto out_kmem_cache_create
;
1561 ret
= __rtnl_register(PF_INET6
, RTM_GETROUTE
, NULL
, inet6_dump_fib
);
1563 goto out_unregister_subsys
;
1567 out_unregister_subsys
:
1568 unregister_pernet_subsys(&fib6_net_ops
);
1569 out_kmem_cache_create
:
1570 kmem_cache_destroy(fib6_node_kmem
);
1574 void fib6_gc_cleanup(void)
1576 unregister_pernet_subsys(&fib6_net_ops
);
1577 kmem_cache_destroy(fib6_node_kmem
);