[NETFILTER]: nf_conntrack: introduce expectation classes and policies
[linux-2.6/mini2440.git] / drivers / pci / intel-iommu.c
blob977d29b322957066e1e6ecb26a37cb322b187237
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/slab.h>
26 #include <linux/irq.h>
27 #include <linux/interrupt.h>
28 #include <linux/sysdev.h>
29 #include <linux/spinlock.h>
30 #include <linux/pci.h>
31 #include <linux/dmar.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/mempool.h>
34 #include "iova.h"
35 #include "intel-iommu.h"
36 #include <asm/proto.h> /* force_iommu in this header in x86-64*/
37 #include <asm/cacheflush.h>
38 #include <asm/gart.h>
39 #include "pci.h"
41 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
42 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
44 #define IOAPIC_RANGE_START (0xfee00000)
45 #define IOAPIC_RANGE_END (0xfeefffff)
46 #define IOVA_START_ADDR (0x1000)
48 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
50 #define DMAR_OPERATION_TIMEOUT (HZ*60) /* 1m */
52 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
54 static void domain_remove_dev_info(struct dmar_domain *domain);
56 static int dmar_disabled;
57 static int __initdata dmar_map_gfx = 1;
58 static int dmar_forcedac;
60 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
61 static DEFINE_SPINLOCK(device_domain_lock);
62 static LIST_HEAD(device_domain_list);
64 static int __init intel_iommu_setup(char *str)
66 if (!str)
67 return -EINVAL;
68 while (*str) {
69 if (!strncmp(str, "off", 3)) {
70 dmar_disabled = 1;
71 printk(KERN_INFO"Intel-IOMMU: disabled\n");
72 } else if (!strncmp(str, "igfx_off", 8)) {
73 dmar_map_gfx = 0;
74 printk(KERN_INFO
75 "Intel-IOMMU: disable GFX device mapping\n");
76 } else if (!strncmp(str, "forcedac", 8)) {
77 printk (KERN_INFO
78 "Intel-IOMMU: Forcing DAC for PCI devices\n");
79 dmar_forcedac = 1;
82 str += strcspn(str, ",");
83 while (*str == ',')
84 str++;
86 return 0;
88 __setup("intel_iommu=", intel_iommu_setup);
90 static struct kmem_cache *iommu_domain_cache;
91 static struct kmem_cache *iommu_devinfo_cache;
92 static struct kmem_cache *iommu_iova_cache;
94 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
96 unsigned int flags;
97 void *vaddr;
99 /* trying to avoid low memory issues */
100 flags = current->flags & PF_MEMALLOC;
101 current->flags |= PF_MEMALLOC;
102 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
103 current->flags &= (~PF_MEMALLOC | flags);
104 return vaddr;
108 static inline void *alloc_pgtable_page(void)
110 unsigned int flags;
111 void *vaddr;
113 /* trying to avoid low memory issues */
114 flags = current->flags & PF_MEMALLOC;
115 current->flags |= PF_MEMALLOC;
116 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
117 current->flags &= (~PF_MEMALLOC | flags);
118 return vaddr;
121 static inline void free_pgtable_page(void *vaddr)
123 free_page((unsigned long)vaddr);
126 static inline void *alloc_domain_mem(void)
128 return iommu_kmem_cache_alloc(iommu_domain_cache);
131 static inline void free_domain_mem(void *vaddr)
133 kmem_cache_free(iommu_domain_cache, vaddr);
136 static inline void * alloc_devinfo_mem(void)
138 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
141 static inline void free_devinfo_mem(void *vaddr)
143 kmem_cache_free(iommu_devinfo_cache, vaddr);
146 struct iova *alloc_iova_mem(void)
148 return iommu_kmem_cache_alloc(iommu_iova_cache);
151 void free_iova_mem(struct iova *iova)
153 kmem_cache_free(iommu_iova_cache, iova);
156 static inline void __iommu_flush_cache(
157 struct intel_iommu *iommu, void *addr, int size)
159 if (!ecap_coherent(iommu->ecap))
160 clflush_cache_range(addr, size);
163 /* Gets context entry for a given bus and devfn */
164 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
165 u8 bus, u8 devfn)
167 struct root_entry *root;
168 struct context_entry *context;
169 unsigned long phy_addr;
170 unsigned long flags;
172 spin_lock_irqsave(&iommu->lock, flags);
173 root = &iommu->root_entry[bus];
174 context = get_context_addr_from_root(root);
175 if (!context) {
176 context = (struct context_entry *)alloc_pgtable_page();
177 if (!context) {
178 spin_unlock_irqrestore(&iommu->lock, flags);
179 return NULL;
181 __iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K);
182 phy_addr = virt_to_phys((void *)context);
183 set_root_value(root, phy_addr);
184 set_root_present(root);
185 __iommu_flush_cache(iommu, root, sizeof(*root));
187 spin_unlock_irqrestore(&iommu->lock, flags);
188 return &context[devfn];
191 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
193 struct root_entry *root;
194 struct context_entry *context;
195 int ret;
196 unsigned long flags;
198 spin_lock_irqsave(&iommu->lock, flags);
199 root = &iommu->root_entry[bus];
200 context = get_context_addr_from_root(root);
201 if (!context) {
202 ret = 0;
203 goto out;
205 ret = context_present(context[devfn]);
206 out:
207 spin_unlock_irqrestore(&iommu->lock, flags);
208 return ret;
211 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
213 struct root_entry *root;
214 struct context_entry *context;
215 unsigned long flags;
217 spin_lock_irqsave(&iommu->lock, flags);
218 root = &iommu->root_entry[bus];
219 context = get_context_addr_from_root(root);
220 if (context) {
221 context_clear_entry(context[devfn]);
222 __iommu_flush_cache(iommu, &context[devfn], \
223 sizeof(*context));
225 spin_unlock_irqrestore(&iommu->lock, flags);
228 static void free_context_table(struct intel_iommu *iommu)
230 struct root_entry *root;
231 int i;
232 unsigned long flags;
233 struct context_entry *context;
235 spin_lock_irqsave(&iommu->lock, flags);
236 if (!iommu->root_entry) {
237 goto out;
239 for (i = 0; i < ROOT_ENTRY_NR; i++) {
240 root = &iommu->root_entry[i];
241 context = get_context_addr_from_root(root);
242 if (context)
243 free_pgtable_page(context);
245 free_pgtable_page(iommu->root_entry);
246 iommu->root_entry = NULL;
247 out:
248 spin_unlock_irqrestore(&iommu->lock, flags);
251 /* page table handling */
252 #define LEVEL_STRIDE (9)
253 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
255 static inline int agaw_to_level(int agaw)
257 return agaw + 2;
260 static inline int agaw_to_width(int agaw)
262 return 30 + agaw * LEVEL_STRIDE;
266 static inline int width_to_agaw(int width)
268 return (width - 30) / LEVEL_STRIDE;
271 static inline unsigned int level_to_offset_bits(int level)
273 return (12 + (level - 1) * LEVEL_STRIDE);
276 static inline int address_level_offset(u64 addr, int level)
278 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
281 static inline u64 level_mask(int level)
283 return ((u64)-1 << level_to_offset_bits(level));
286 static inline u64 level_size(int level)
288 return ((u64)1 << level_to_offset_bits(level));
291 static inline u64 align_to_level(u64 addr, int level)
293 return ((addr + level_size(level) - 1) & level_mask(level));
296 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
298 int addr_width = agaw_to_width(domain->agaw);
299 struct dma_pte *parent, *pte = NULL;
300 int level = agaw_to_level(domain->agaw);
301 int offset;
302 unsigned long flags;
304 BUG_ON(!domain->pgd);
306 addr &= (((u64)1) << addr_width) - 1;
307 parent = domain->pgd;
309 spin_lock_irqsave(&domain->mapping_lock, flags);
310 while (level > 0) {
311 void *tmp_page;
313 offset = address_level_offset(addr, level);
314 pte = &parent[offset];
315 if (level == 1)
316 break;
318 if (!dma_pte_present(*pte)) {
319 tmp_page = alloc_pgtable_page();
321 if (!tmp_page) {
322 spin_unlock_irqrestore(&domain->mapping_lock,
323 flags);
324 return NULL;
326 __iommu_flush_cache(domain->iommu, tmp_page,
327 PAGE_SIZE_4K);
328 dma_set_pte_addr(*pte, virt_to_phys(tmp_page));
330 * high level table always sets r/w, last level page
331 * table control read/write
333 dma_set_pte_readable(*pte);
334 dma_set_pte_writable(*pte);
335 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
337 parent = phys_to_virt(dma_pte_addr(*pte));
338 level--;
341 spin_unlock_irqrestore(&domain->mapping_lock, flags);
342 return pte;
345 /* return address's pte at specific level */
346 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
347 int level)
349 struct dma_pte *parent, *pte = NULL;
350 int total = agaw_to_level(domain->agaw);
351 int offset;
353 parent = domain->pgd;
354 while (level <= total) {
355 offset = address_level_offset(addr, total);
356 pte = &parent[offset];
357 if (level == total)
358 return pte;
360 if (!dma_pte_present(*pte))
361 break;
362 parent = phys_to_virt(dma_pte_addr(*pte));
363 total--;
365 return NULL;
368 /* clear one page's page table */
369 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
371 struct dma_pte *pte = NULL;
373 /* get last level pte */
374 pte = dma_addr_level_pte(domain, addr, 1);
376 if (pte) {
377 dma_clear_pte(*pte);
378 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
382 /* clear last level pte, a tlb flush should be followed */
383 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
385 int addr_width = agaw_to_width(domain->agaw);
387 start &= (((u64)1) << addr_width) - 1;
388 end &= (((u64)1) << addr_width) - 1;
389 /* in case it's partial page */
390 start = PAGE_ALIGN_4K(start);
391 end &= PAGE_MASK_4K;
393 /* we don't need lock here, nobody else touches the iova range */
394 while (start < end) {
395 dma_pte_clear_one(domain, start);
396 start += PAGE_SIZE_4K;
400 /* free page table pages. last level pte should already be cleared */
401 static void dma_pte_free_pagetable(struct dmar_domain *domain,
402 u64 start, u64 end)
404 int addr_width = agaw_to_width(domain->agaw);
405 struct dma_pte *pte;
406 int total = agaw_to_level(domain->agaw);
407 int level;
408 u64 tmp;
410 start &= (((u64)1) << addr_width) - 1;
411 end &= (((u64)1) << addr_width) - 1;
413 /* we don't need lock here, nobody else touches the iova range */
414 level = 2;
415 while (level <= total) {
416 tmp = align_to_level(start, level);
417 if (tmp >= end || (tmp + level_size(level) > end))
418 return;
420 while (tmp < end) {
421 pte = dma_addr_level_pte(domain, tmp, level);
422 if (pte) {
423 free_pgtable_page(
424 phys_to_virt(dma_pte_addr(*pte)));
425 dma_clear_pte(*pte);
426 __iommu_flush_cache(domain->iommu,
427 pte, sizeof(*pte));
429 tmp += level_size(level);
431 level++;
433 /* free pgd */
434 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
435 free_pgtable_page(domain->pgd);
436 domain->pgd = NULL;
440 /* iommu handling */
441 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
443 struct root_entry *root;
444 unsigned long flags;
446 root = (struct root_entry *)alloc_pgtable_page();
447 if (!root)
448 return -ENOMEM;
450 __iommu_flush_cache(iommu, root, PAGE_SIZE_4K);
452 spin_lock_irqsave(&iommu->lock, flags);
453 iommu->root_entry = root;
454 spin_unlock_irqrestore(&iommu->lock, flags);
456 return 0;
459 #define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
461 unsigned long start_time = jiffies;\
462 while (1) {\
463 sts = op (iommu->reg + offset);\
464 if (cond)\
465 break;\
466 if (time_after(jiffies, start_time + DMAR_OPERATION_TIMEOUT))\
467 panic("DMAR hardware is malfunctioning\n");\
468 cpu_relax();\
472 static void iommu_set_root_entry(struct intel_iommu *iommu)
474 void *addr;
475 u32 cmd, sts;
476 unsigned long flag;
478 addr = iommu->root_entry;
480 spin_lock_irqsave(&iommu->register_lock, flag);
481 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
483 cmd = iommu->gcmd | DMA_GCMD_SRTP;
484 writel(cmd, iommu->reg + DMAR_GCMD_REG);
486 /* Make sure hardware complete it */
487 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
488 readl, (sts & DMA_GSTS_RTPS), sts);
490 spin_unlock_irqrestore(&iommu->register_lock, flag);
493 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
495 u32 val;
496 unsigned long flag;
498 if (!cap_rwbf(iommu->cap))
499 return;
500 val = iommu->gcmd | DMA_GCMD_WBF;
502 spin_lock_irqsave(&iommu->register_lock, flag);
503 writel(val, iommu->reg + DMAR_GCMD_REG);
505 /* Make sure hardware complete it */
506 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
507 readl, (!(val & DMA_GSTS_WBFS)), val);
509 spin_unlock_irqrestore(&iommu->register_lock, flag);
512 /* return value determine if we need a write buffer flush */
513 static int __iommu_flush_context(struct intel_iommu *iommu,
514 u16 did, u16 source_id, u8 function_mask, u64 type,
515 int non_present_entry_flush)
517 u64 val = 0;
518 unsigned long flag;
521 * In the non-present entry flush case, if hardware doesn't cache
522 * non-present entry we do nothing and if hardware cache non-present
523 * entry, we flush entries of domain 0 (the domain id is used to cache
524 * any non-present entries)
526 if (non_present_entry_flush) {
527 if (!cap_caching_mode(iommu->cap))
528 return 1;
529 else
530 did = 0;
533 switch (type) {
534 case DMA_CCMD_GLOBAL_INVL:
535 val = DMA_CCMD_GLOBAL_INVL;
536 break;
537 case DMA_CCMD_DOMAIN_INVL:
538 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
539 break;
540 case DMA_CCMD_DEVICE_INVL:
541 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
542 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
543 break;
544 default:
545 BUG();
547 val |= DMA_CCMD_ICC;
549 spin_lock_irqsave(&iommu->register_lock, flag);
550 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
552 /* Make sure hardware complete it */
553 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
554 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
556 spin_unlock_irqrestore(&iommu->register_lock, flag);
558 /* flush context entry will implictly flush write buffer */
559 return 0;
562 static int inline iommu_flush_context_global(struct intel_iommu *iommu,
563 int non_present_entry_flush)
565 return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
566 non_present_entry_flush);
569 static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did,
570 int non_present_entry_flush)
572 return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL,
573 non_present_entry_flush);
576 static int inline iommu_flush_context_device(struct intel_iommu *iommu,
577 u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush)
579 return __iommu_flush_context(iommu, did, source_id, function_mask,
580 DMA_CCMD_DEVICE_INVL, non_present_entry_flush);
583 /* return value determine if we need a write buffer flush */
584 static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
585 u64 addr, unsigned int size_order, u64 type,
586 int non_present_entry_flush)
588 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
589 u64 val = 0, val_iva = 0;
590 unsigned long flag;
593 * In the non-present entry flush case, if hardware doesn't cache
594 * non-present entry we do nothing and if hardware cache non-present
595 * entry, we flush entries of domain 0 (the domain id is used to cache
596 * any non-present entries)
598 if (non_present_entry_flush) {
599 if (!cap_caching_mode(iommu->cap))
600 return 1;
601 else
602 did = 0;
605 switch (type) {
606 case DMA_TLB_GLOBAL_FLUSH:
607 /* global flush doesn't need set IVA_REG */
608 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
609 break;
610 case DMA_TLB_DSI_FLUSH:
611 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
612 break;
613 case DMA_TLB_PSI_FLUSH:
614 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
615 /* Note: always flush non-leaf currently */
616 val_iva = size_order | addr;
617 break;
618 default:
619 BUG();
621 /* Note: set drain read/write */
622 #if 0
624 * This is probably to be super secure.. Looks like we can
625 * ignore it without any impact.
627 if (cap_read_drain(iommu->cap))
628 val |= DMA_TLB_READ_DRAIN;
629 #endif
630 if (cap_write_drain(iommu->cap))
631 val |= DMA_TLB_WRITE_DRAIN;
633 spin_lock_irqsave(&iommu->register_lock, flag);
634 /* Note: Only uses first TLB reg currently */
635 if (val_iva)
636 dmar_writeq(iommu->reg + tlb_offset, val_iva);
637 dmar_writeq(iommu->reg + tlb_offset + 8, val);
639 /* Make sure hardware complete it */
640 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
641 dmar_readq, (!(val & DMA_TLB_IVT)), val);
643 spin_unlock_irqrestore(&iommu->register_lock, flag);
645 /* check IOTLB invalidation granularity */
646 if (DMA_TLB_IAIG(val) == 0)
647 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
648 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
649 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
650 DMA_TLB_IIRG(type), DMA_TLB_IAIG(val));
651 /* flush context entry will implictly flush write buffer */
652 return 0;
655 static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu,
656 int non_present_entry_flush)
658 return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
659 non_present_entry_flush);
662 static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did,
663 int non_present_entry_flush)
665 return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH,
666 non_present_entry_flush);
669 static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
670 u64 addr, unsigned int pages, int non_present_entry_flush)
672 unsigned int mask;
674 BUG_ON(addr & (~PAGE_MASK_4K));
675 BUG_ON(pages == 0);
677 /* Fallback to domain selective flush if no PSI support */
678 if (!cap_pgsel_inv(iommu->cap))
679 return iommu_flush_iotlb_dsi(iommu, did,
680 non_present_entry_flush);
683 * PSI requires page size to be 2 ^ x, and the base address is naturally
684 * aligned to the size
686 mask = ilog2(__roundup_pow_of_two(pages));
687 /* Fallback to domain selective flush if size is too big */
688 if (mask > cap_max_amask_val(iommu->cap))
689 return iommu_flush_iotlb_dsi(iommu, did,
690 non_present_entry_flush);
692 return __iommu_flush_iotlb(iommu, did, addr, mask,
693 DMA_TLB_PSI_FLUSH, non_present_entry_flush);
696 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
698 u32 pmen;
699 unsigned long flags;
701 spin_lock_irqsave(&iommu->register_lock, flags);
702 pmen = readl(iommu->reg + DMAR_PMEN_REG);
703 pmen &= ~DMA_PMEN_EPM;
704 writel(pmen, iommu->reg + DMAR_PMEN_REG);
706 /* wait for the protected region status bit to clear */
707 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
708 readl, !(pmen & DMA_PMEN_PRS), pmen);
710 spin_unlock_irqrestore(&iommu->register_lock, flags);
713 static int iommu_enable_translation(struct intel_iommu *iommu)
715 u32 sts;
716 unsigned long flags;
718 spin_lock_irqsave(&iommu->register_lock, flags);
719 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
721 /* Make sure hardware complete it */
722 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
723 readl, (sts & DMA_GSTS_TES), sts);
725 iommu->gcmd |= DMA_GCMD_TE;
726 spin_unlock_irqrestore(&iommu->register_lock, flags);
727 return 0;
730 static int iommu_disable_translation(struct intel_iommu *iommu)
732 u32 sts;
733 unsigned long flag;
735 spin_lock_irqsave(&iommu->register_lock, flag);
736 iommu->gcmd &= ~DMA_GCMD_TE;
737 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
739 /* Make sure hardware complete it */
740 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
741 readl, (!(sts & DMA_GSTS_TES)), sts);
743 spin_unlock_irqrestore(&iommu->register_lock, flag);
744 return 0;
747 /* iommu interrupt handling. Most stuff are MSI-like. */
749 static const char *fault_reason_strings[] =
751 "Software",
752 "Present bit in root entry is clear",
753 "Present bit in context entry is clear",
754 "Invalid context entry",
755 "Access beyond MGAW",
756 "PTE Write access is not set",
757 "PTE Read access is not set",
758 "Next page table ptr is invalid",
759 "Root table address invalid",
760 "Context table ptr is invalid",
761 "non-zero reserved fields in RTP",
762 "non-zero reserved fields in CTP",
763 "non-zero reserved fields in PTE",
765 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
767 const char *dmar_get_fault_reason(u8 fault_reason)
769 if (fault_reason > MAX_FAULT_REASON_IDX)
770 return "Unknown";
771 else
772 return fault_reason_strings[fault_reason];
775 void dmar_msi_unmask(unsigned int irq)
777 struct intel_iommu *iommu = get_irq_data(irq);
778 unsigned long flag;
780 /* unmask it */
781 spin_lock_irqsave(&iommu->register_lock, flag);
782 writel(0, iommu->reg + DMAR_FECTL_REG);
783 /* Read a reg to force flush the post write */
784 readl(iommu->reg + DMAR_FECTL_REG);
785 spin_unlock_irqrestore(&iommu->register_lock, flag);
788 void dmar_msi_mask(unsigned int irq)
790 unsigned long flag;
791 struct intel_iommu *iommu = get_irq_data(irq);
793 /* mask it */
794 spin_lock_irqsave(&iommu->register_lock, flag);
795 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
796 /* Read a reg to force flush the post write */
797 readl(iommu->reg + DMAR_FECTL_REG);
798 spin_unlock_irqrestore(&iommu->register_lock, flag);
801 void dmar_msi_write(int irq, struct msi_msg *msg)
803 struct intel_iommu *iommu = get_irq_data(irq);
804 unsigned long flag;
806 spin_lock_irqsave(&iommu->register_lock, flag);
807 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
808 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
809 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
810 spin_unlock_irqrestore(&iommu->register_lock, flag);
813 void dmar_msi_read(int irq, struct msi_msg *msg)
815 struct intel_iommu *iommu = get_irq_data(irq);
816 unsigned long flag;
818 spin_lock_irqsave(&iommu->register_lock, flag);
819 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
820 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
821 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
822 spin_unlock_irqrestore(&iommu->register_lock, flag);
825 static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
826 u8 fault_reason, u16 source_id, u64 addr)
828 const char *reason;
830 reason = dmar_get_fault_reason(fault_reason);
832 printk(KERN_ERR
833 "DMAR:[%s] Request device [%02x:%02x.%d] "
834 "fault addr %llx \n"
835 "DMAR:[fault reason %02d] %s\n",
836 (type ? "DMA Read" : "DMA Write"),
837 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
838 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
839 return 0;
842 #define PRIMARY_FAULT_REG_LEN (16)
843 static irqreturn_t iommu_page_fault(int irq, void *dev_id)
845 struct intel_iommu *iommu = dev_id;
846 int reg, fault_index;
847 u32 fault_status;
848 unsigned long flag;
850 spin_lock_irqsave(&iommu->register_lock, flag);
851 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
853 /* TBD: ignore advanced fault log currently */
854 if (!(fault_status & DMA_FSTS_PPF))
855 goto clear_overflow;
857 fault_index = dma_fsts_fault_record_index(fault_status);
858 reg = cap_fault_reg_offset(iommu->cap);
859 while (1) {
860 u8 fault_reason;
861 u16 source_id;
862 u64 guest_addr;
863 int type;
864 u32 data;
866 /* highest 32 bits */
867 data = readl(iommu->reg + reg +
868 fault_index * PRIMARY_FAULT_REG_LEN + 12);
869 if (!(data & DMA_FRCD_F))
870 break;
872 fault_reason = dma_frcd_fault_reason(data);
873 type = dma_frcd_type(data);
875 data = readl(iommu->reg + reg +
876 fault_index * PRIMARY_FAULT_REG_LEN + 8);
877 source_id = dma_frcd_source_id(data);
879 guest_addr = dmar_readq(iommu->reg + reg +
880 fault_index * PRIMARY_FAULT_REG_LEN);
881 guest_addr = dma_frcd_page_addr(guest_addr);
882 /* clear the fault */
883 writel(DMA_FRCD_F, iommu->reg + reg +
884 fault_index * PRIMARY_FAULT_REG_LEN + 12);
886 spin_unlock_irqrestore(&iommu->register_lock, flag);
888 iommu_page_fault_do_one(iommu, type, fault_reason,
889 source_id, guest_addr);
891 fault_index++;
892 if (fault_index > cap_num_fault_regs(iommu->cap))
893 fault_index = 0;
894 spin_lock_irqsave(&iommu->register_lock, flag);
896 clear_overflow:
897 /* clear primary fault overflow */
898 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
899 if (fault_status & DMA_FSTS_PFO)
900 writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);
902 spin_unlock_irqrestore(&iommu->register_lock, flag);
903 return IRQ_HANDLED;
906 int dmar_set_interrupt(struct intel_iommu *iommu)
908 int irq, ret;
910 irq = create_irq();
911 if (!irq) {
912 printk(KERN_ERR "IOMMU: no free vectors\n");
913 return -EINVAL;
916 set_irq_data(irq, iommu);
917 iommu->irq = irq;
919 ret = arch_setup_dmar_msi(irq);
920 if (ret) {
921 set_irq_data(irq, NULL);
922 iommu->irq = 0;
923 destroy_irq(irq);
924 return 0;
927 /* Force fault register is cleared */
928 iommu_page_fault(irq, iommu);
930 ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
931 if (ret)
932 printk(KERN_ERR "IOMMU: can't request irq\n");
933 return ret;
936 static int iommu_init_domains(struct intel_iommu *iommu)
938 unsigned long ndomains;
939 unsigned long nlongs;
941 ndomains = cap_ndoms(iommu->cap);
942 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
943 nlongs = BITS_TO_LONGS(ndomains);
945 /* TBD: there might be 64K domains,
946 * consider other allocation for future chip
948 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
949 if (!iommu->domain_ids) {
950 printk(KERN_ERR "Allocating domain id array failed\n");
951 return -ENOMEM;
953 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
954 GFP_KERNEL);
955 if (!iommu->domains) {
956 printk(KERN_ERR "Allocating domain array failed\n");
957 kfree(iommu->domain_ids);
958 return -ENOMEM;
962 * if Caching mode is set, then invalid translations are tagged
963 * with domainid 0. Hence we need to pre-allocate it.
965 if (cap_caching_mode(iommu->cap))
966 set_bit(0, iommu->domain_ids);
967 return 0;
970 static struct intel_iommu *alloc_iommu(struct dmar_drhd_unit *drhd)
972 struct intel_iommu *iommu;
973 int ret;
974 int map_size;
975 u32 ver;
977 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
978 if (!iommu)
979 return NULL;
980 iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K);
981 if (!iommu->reg) {
982 printk(KERN_ERR "IOMMU: can't map the region\n");
983 goto error;
985 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
986 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
988 /* the registers might be more than one page */
989 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
990 cap_max_fault_reg_offset(iommu->cap));
991 map_size = PAGE_ALIGN_4K(map_size);
992 if (map_size > PAGE_SIZE_4K) {
993 iounmap(iommu->reg);
994 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
995 if (!iommu->reg) {
996 printk(KERN_ERR "IOMMU: can't map the region\n");
997 goto error;
1001 ver = readl(iommu->reg + DMAR_VER_REG);
1002 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
1003 drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1004 iommu->cap, iommu->ecap);
1005 ret = iommu_init_domains(iommu);
1006 if (ret)
1007 goto error_unmap;
1008 spin_lock_init(&iommu->lock);
1009 spin_lock_init(&iommu->register_lock);
1011 drhd->iommu = iommu;
1012 return iommu;
1013 error_unmap:
1014 iounmap(iommu->reg);
1015 error:
1016 kfree(iommu);
1017 return NULL;
1020 static void domain_exit(struct dmar_domain *domain);
1021 static void free_iommu(struct intel_iommu *iommu)
1023 struct dmar_domain *domain;
1024 int i;
1026 if (!iommu)
1027 return;
1029 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1030 for (; i < cap_ndoms(iommu->cap); ) {
1031 domain = iommu->domains[i];
1032 clear_bit(i, iommu->domain_ids);
1033 domain_exit(domain);
1034 i = find_next_bit(iommu->domain_ids,
1035 cap_ndoms(iommu->cap), i+1);
1038 if (iommu->gcmd & DMA_GCMD_TE)
1039 iommu_disable_translation(iommu);
1041 if (iommu->irq) {
1042 set_irq_data(iommu->irq, NULL);
1043 /* This will mask the irq */
1044 free_irq(iommu->irq, iommu);
1045 destroy_irq(iommu->irq);
1048 kfree(iommu->domains);
1049 kfree(iommu->domain_ids);
1051 /* free context mapping */
1052 free_context_table(iommu);
1054 if (iommu->reg)
1055 iounmap(iommu->reg);
1056 kfree(iommu);
1059 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1061 unsigned long num;
1062 unsigned long ndomains;
1063 struct dmar_domain *domain;
1064 unsigned long flags;
1066 domain = alloc_domain_mem();
1067 if (!domain)
1068 return NULL;
1070 ndomains = cap_ndoms(iommu->cap);
1072 spin_lock_irqsave(&iommu->lock, flags);
1073 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1074 if (num >= ndomains) {
1075 spin_unlock_irqrestore(&iommu->lock, flags);
1076 free_domain_mem(domain);
1077 printk(KERN_ERR "IOMMU: no free domain ids\n");
1078 return NULL;
1081 set_bit(num, iommu->domain_ids);
1082 domain->id = num;
1083 domain->iommu = iommu;
1084 iommu->domains[num] = domain;
1085 spin_unlock_irqrestore(&iommu->lock, flags);
1087 return domain;
1090 static void iommu_free_domain(struct dmar_domain *domain)
1092 unsigned long flags;
1094 spin_lock_irqsave(&domain->iommu->lock, flags);
1095 clear_bit(domain->id, domain->iommu->domain_ids);
1096 spin_unlock_irqrestore(&domain->iommu->lock, flags);
1099 static struct iova_domain reserved_iova_list;
1101 static void dmar_init_reserved_ranges(void)
1103 struct pci_dev *pdev = NULL;
1104 struct iova *iova;
1105 int i;
1106 u64 addr, size;
1108 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1110 /* IOAPIC ranges shouldn't be accessed by DMA */
1111 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1112 IOVA_PFN(IOAPIC_RANGE_END));
1113 if (!iova)
1114 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1116 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1117 for_each_pci_dev(pdev) {
1118 struct resource *r;
1120 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1121 r = &pdev->resource[i];
1122 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1123 continue;
1124 addr = r->start;
1125 addr &= PAGE_MASK_4K;
1126 size = r->end - addr;
1127 size = PAGE_ALIGN_4K(size);
1128 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1129 IOVA_PFN(size + addr) - 1);
1130 if (!iova)
1131 printk(KERN_ERR "Reserve iova failed\n");
1137 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1139 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1142 static inline int guestwidth_to_adjustwidth(int gaw)
1144 int agaw;
1145 int r = (gaw - 12) % 9;
1147 if (r == 0)
1148 agaw = gaw;
1149 else
1150 agaw = gaw + 9 - r;
1151 if (agaw > 64)
1152 agaw = 64;
1153 return agaw;
1156 static int domain_init(struct dmar_domain *domain, int guest_width)
1158 struct intel_iommu *iommu;
1159 int adjust_width, agaw;
1160 unsigned long sagaw;
1162 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1163 spin_lock_init(&domain->mapping_lock);
1165 domain_reserve_special_ranges(domain);
1167 /* calculate AGAW */
1168 iommu = domain->iommu;
1169 if (guest_width > cap_mgaw(iommu->cap))
1170 guest_width = cap_mgaw(iommu->cap);
1171 domain->gaw = guest_width;
1172 adjust_width = guestwidth_to_adjustwidth(guest_width);
1173 agaw = width_to_agaw(adjust_width);
1174 sagaw = cap_sagaw(iommu->cap);
1175 if (!test_bit(agaw, &sagaw)) {
1176 /* hardware doesn't support it, choose a bigger one */
1177 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1178 agaw = find_next_bit(&sagaw, 5, agaw);
1179 if (agaw >= 5)
1180 return -ENODEV;
1182 domain->agaw = agaw;
1183 INIT_LIST_HEAD(&domain->devices);
1185 /* always allocate the top pgd */
1186 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1187 if (!domain->pgd)
1188 return -ENOMEM;
1189 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K);
1190 return 0;
1193 static void domain_exit(struct dmar_domain *domain)
1195 u64 end;
1197 /* Domain 0 is reserved, so dont process it */
1198 if (!domain)
1199 return;
1201 domain_remove_dev_info(domain);
1202 /* destroy iovas */
1203 put_iova_domain(&domain->iovad);
1204 end = DOMAIN_MAX_ADDR(domain->gaw);
1205 end = end & (~PAGE_MASK_4K);
1207 /* clear ptes */
1208 dma_pte_clear_range(domain, 0, end);
1210 /* free page tables */
1211 dma_pte_free_pagetable(domain, 0, end);
1213 iommu_free_domain(domain);
1214 free_domain_mem(domain);
1217 static int domain_context_mapping_one(struct dmar_domain *domain,
1218 u8 bus, u8 devfn)
1220 struct context_entry *context;
1221 struct intel_iommu *iommu = domain->iommu;
1222 unsigned long flags;
1224 pr_debug("Set context mapping for %02x:%02x.%d\n",
1225 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1226 BUG_ON(!domain->pgd);
1227 context = device_to_context_entry(iommu, bus, devfn);
1228 if (!context)
1229 return -ENOMEM;
1230 spin_lock_irqsave(&iommu->lock, flags);
1231 if (context_present(*context)) {
1232 spin_unlock_irqrestore(&iommu->lock, flags);
1233 return 0;
1236 context_set_domain_id(*context, domain->id);
1237 context_set_address_width(*context, domain->agaw);
1238 context_set_address_root(*context, virt_to_phys(domain->pgd));
1239 context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL);
1240 context_set_fault_enable(*context);
1241 context_set_present(*context);
1242 __iommu_flush_cache(iommu, context, sizeof(*context));
1244 /* it's a non-present to present mapping */
1245 if (iommu_flush_context_device(iommu, domain->id,
1246 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1))
1247 iommu_flush_write_buffer(iommu);
1248 else
1249 iommu_flush_iotlb_dsi(iommu, 0, 0);
1250 spin_unlock_irqrestore(&iommu->lock, flags);
1251 return 0;
1254 static int
1255 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1257 int ret;
1258 struct pci_dev *tmp, *parent;
1260 ret = domain_context_mapping_one(domain, pdev->bus->number,
1261 pdev->devfn);
1262 if (ret)
1263 return ret;
1265 /* dependent device mapping */
1266 tmp = pci_find_upstream_pcie_bridge(pdev);
1267 if (!tmp)
1268 return 0;
1269 /* Secondary interface's bus number and devfn 0 */
1270 parent = pdev->bus->self;
1271 while (parent != tmp) {
1272 ret = domain_context_mapping_one(domain, parent->bus->number,
1273 parent->devfn);
1274 if (ret)
1275 return ret;
1276 parent = parent->bus->self;
1278 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1279 return domain_context_mapping_one(domain,
1280 tmp->subordinate->number, 0);
1281 else /* this is a legacy PCI bridge */
1282 return domain_context_mapping_one(domain,
1283 tmp->bus->number, tmp->devfn);
1286 static int domain_context_mapped(struct dmar_domain *domain,
1287 struct pci_dev *pdev)
1289 int ret;
1290 struct pci_dev *tmp, *parent;
1292 ret = device_context_mapped(domain->iommu,
1293 pdev->bus->number, pdev->devfn);
1294 if (!ret)
1295 return ret;
1296 /* dependent device mapping */
1297 tmp = pci_find_upstream_pcie_bridge(pdev);
1298 if (!tmp)
1299 return ret;
1300 /* Secondary interface's bus number and devfn 0 */
1301 parent = pdev->bus->self;
1302 while (parent != tmp) {
1303 ret = device_context_mapped(domain->iommu, parent->bus->number,
1304 parent->devfn);
1305 if (!ret)
1306 return ret;
1307 parent = parent->bus->self;
1309 if (tmp->is_pcie)
1310 return device_context_mapped(domain->iommu,
1311 tmp->subordinate->number, 0);
1312 else
1313 return device_context_mapped(domain->iommu,
1314 tmp->bus->number, tmp->devfn);
1317 static int
1318 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1319 u64 hpa, size_t size, int prot)
1321 u64 start_pfn, end_pfn;
1322 struct dma_pte *pte;
1323 int index;
1325 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1326 return -EINVAL;
1327 iova &= PAGE_MASK_4K;
1328 start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K;
1329 end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K;
1330 index = 0;
1331 while (start_pfn < end_pfn) {
1332 pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index);
1333 if (!pte)
1334 return -ENOMEM;
1335 /* We don't need lock here, nobody else
1336 * touches the iova range
1338 BUG_ON(dma_pte_addr(*pte));
1339 dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K);
1340 dma_set_pte_prot(*pte, prot);
1341 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
1342 start_pfn++;
1343 index++;
1345 return 0;
1348 static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn)
1350 clear_context_table(domain->iommu, bus, devfn);
1351 iommu_flush_context_global(domain->iommu, 0);
1352 iommu_flush_iotlb_global(domain->iommu, 0);
1355 static void domain_remove_dev_info(struct dmar_domain *domain)
1357 struct device_domain_info *info;
1358 unsigned long flags;
1360 spin_lock_irqsave(&device_domain_lock, flags);
1361 while (!list_empty(&domain->devices)) {
1362 info = list_entry(domain->devices.next,
1363 struct device_domain_info, link);
1364 list_del(&info->link);
1365 list_del(&info->global);
1366 if (info->dev)
1367 info->dev->dev.archdata.iommu = NULL;
1368 spin_unlock_irqrestore(&device_domain_lock, flags);
1370 detach_domain_for_dev(info->domain, info->bus, info->devfn);
1371 free_devinfo_mem(info);
1373 spin_lock_irqsave(&device_domain_lock, flags);
1375 spin_unlock_irqrestore(&device_domain_lock, flags);
1379 * find_domain
1380 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1382 struct dmar_domain *
1383 find_domain(struct pci_dev *pdev)
1385 struct device_domain_info *info;
1387 /* No lock here, assumes no domain exit in normal case */
1388 info = pdev->dev.archdata.iommu;
1389 if (info)
1390 return info->domain;
1391 return NULL;
1394 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
1395 struct pci_dev *dev)
1397 int index;
1399 while (dev) {
1400 for (index = 0; index < cnt; index ++)
1401 if (dev == devices[index])
1402 return 1;
1404 /* Check our parent */
1405 dev = dev->bus->self;
1408 return 0;
1411 static struct dmar_drhd_unit *
1412 dmar_find_matched_drhd_unit(struct pci_dev *dev)
1414 struct dmar_drhd_unit *drhd = NULL;
1416 list_for_each_entry(drhd, &dmar_drhd_units, list) {
1417 if (drhd->include_all || dmar_pci_device_match(drhd->devices,
1418 drhd->devices_cnt, dev))
1419 return drhd;
1422 return NULL;
1425 /* domain is initialized */
1426 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1428 struct dmar_domain *domain, *found = NULL;
1429 struct intel_iommu *iommu;
1430 struct dmar_drhd_unit *drhd;
1431 struct device_domain_info *info, *tmp;
1432 struct pci_dev *dev_tmp;
1433 unsigned long flags;
1434 int bus = 0, devfn = 0;
1436 domain = find_domain(pdev);
1437 if (domain)
1438 return domain;
1440 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1441 if (dev_tmp) {
1442 if (dev_tmp->is_pcie) {
1443 bus = dev_tmp->subordinate->number;
1444 devfn = 0;
1445 } else {
1446 bus = dev_tmp->bus->number;
1447 devfn = dev_tmp->devfn;
1449 spin_lock_irqsave(&device_domain_lock, flags);
1450 list_for_each_entry(info, &device_domain_list, global) {
1451 if (info->bus == bus && info->devfn == devfn) {
1452 found = info->domain;
1453 break;
1456 spin_unlock_irqrestore(&device_domain_lock, flags);
1457 /* pcie-pci bridge already has a domain, uses it */
1458 if (found) {
1459 domain = found;
1460 goto found_domain;
1464 /* Allocate new domain for the device */
1465 drhd = dmar_find_matched_drhd_unit(pdev);
1466 if (!drhd) {
1467 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1468 pci_name(pdev));
1469 return NULL;
1471 iommu = drhd->iommu;
1473 domain = iommu_alloc_domain(iommu);
1474 if (!domain)
1475 goto error;
1477 if (domain_init(domain, gaw)) {
1478 domain_exit(domain);
1479 goto error;
1482 /* register pcie-to-pci device */
1483 if (dev_tmp) {
1484 info = alloc_devinfo_mem();
1485 if (!info) {
1486 domain_exit(domain);
1487 goto error;
1489 info->bus = bus;
1490 info->devfn = devfn;
1491 info->dev = NULL;
1492 info->domain = domain;
1493 /* This domain is shared by devices under p2p bridge */
1494 domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES;
1496 /* pcie-to-pci bridge already has a domain, uses it */
1497 found = NULL;
1498 spin_lock_irqsave(&device_domain_lock, flags);
1499 list_for_each_entry(tmp, &device_domain_list, global) {
1500 if (tmp->bus == bus && tmp->devfn == devfn) {
1501 found = tmp->domain;
1502 break;
1505 if (found) {
1506 free_devinfo_mem(info);
1507 domain_exit(domain);
1508 domain = found;
1509 } else {
1510 list_add(&info->link, &domain->devices);
1511 list_add(&info->global, &device_domain_list);
1513 spin_unlock_irqrestore(&device_domain_lock, flags);
1516 found_domain:
1517 info = alloc_devinfo_mem();
1518 if (!info)
1519 goto error;
1520 info->bus = pdev->bus->number;
1521 info->devfn = pdev->devfn;
1522 info->dev = pdev;
1523 info->domain = domain;
1524 spin_lock_irqsave(&device_domain_lock, flags);
1525 /* somebody is fast */
1526 found = find_domain(pdev);
1527 if (found != NULL) {
1528 spin_unlock_irqrestore(&device_domain_lock, flags);
1529 if (found != domain) {
1530 domain_exit(domain);
1531 domain = found;
1533 free_devinfo_mem(info);
1534 return domain;
1536 list_add(&info->link, &domain->devices);
1537 list_add(&info->global, &device_domain_list);
1538 pdev->dev.archdata.iommu = info;
1539 spin_unlock_irqrestore(&device_domain_lock, flags);
1540 return domain;
1541 error:
1542 /* recheck it here, maybe others set it */
1543 return find_domain(pdev);
1546 static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end)
1548 struct dmar_domain *domain;
1549 unsigned long size;
1550 u64 base;
1551 int ret;
1553 printk(KERN_INFO
1554 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1555 pci_name(pdev), start, end);
1556 /* page table init */
1557 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1558 if (!domain)
1559 return -ENOMEM;
1561 /* The address might not be aligned */
1562 base = start & PAGE_MASK_4K;
1563 size = end - base;
1564 size = PAGE_ALIGN_4K(size);
1565 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1566 IOVA_PFN(base + size) - 1)) {
1567 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1568 ret = -ENOMEM;
1569 goto error;
1572 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1573 size, base, pci_name(pdev));
1575 * RMRR range might have overlap with physical memory range,
1576 * clear it first
1578 dma_pte_clear_range(domain, base, base + size);
1580 ret = domain_page_mapping(domain, base, base, size,
1581 DMA_PTE_READ|DMA_PTE_WRITE);
1582 if (ret)
1583 goto error;
1585 /* context entry init */
1586 ret = domain_context_mapping(domain, pdev);
1587 if (!ret)
1588 return 0;
1589 error:
1590 domain_exit(domain);
1591 return ret;
1595 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1596 struct pci_dev *pdev)
1598 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1599 return 0;
1600 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1601 rmrr->end_address + 1);
1604 #ifdef CONFIG_DMAR_GFX_WA
1605 extern int arch_get_ram_range(int slot, u64 *addr, u64 *size);
1606 static void __init iommu_prepare_gfx_mapping(void)
1608 struct pci_dev *pdev = NULL;
1609 u64 base, size;
1610 int slot;
1611 int ret;
1613 for_each_pci_dev(pdev) {
1614 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1615 !IS_GFX_DEVICE(pdev))
1616 continue;
1617 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1618 pci_name(pdev));
1619 slot = arch_get_ram_range(0, &base, &size);
1620 while (slot >= 0) {
1621 ret = iommu_prepare_identity_map(pdev,
1622 base, base + size);
1623 if (ret)
1624 goto error;
1625 slot = arch_get_ram_range(slot, &base, &size);
1627 continue;
1628 error:
1629 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1632 #endif
1634 #ifdef CONFIG_DMAR_FLOPPY_WA
1635 static inline void iommu_prepare_isa(void)
1637 struct pci_dev *pdev;
1638 int ret;
1640 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1641 if (!pdev)
1642 return;
1644 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1645 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1647 if (ret)
1648 printk("IOMMU: Failed to create 0-64M identity map, "
1649 "floppy might not work\n");
1652 #else
1653 static inline void iommu_prepare_isa(void)
1655 return;
1657 #endif /* !CONFIG_DMAR_FLPY_WA */
1659 int __init init_dmars(void)
1661 struct dmar_drhd_unit *drhd;
1662 struct dmar_rmrr_unit *rmrr;
1663 struct pci_dev *pdev;
1664 struct intel_iommu *iommu;
1665 int ret, unit = 0;
1668 * for each drhd
1669 * allocate root
1670 * initialize and program root entry to not present
1671 * endfor
1673 for_each_drhd_unit(drhd) {
1674 if (drhd->ignored)
1675 continue;
1676 iommu = alloc_iommu(drhd);
1677 if (!iommu) {
1678 ret = -ENOMEM;
1679 goto error;
1683 * TBD:
1684 * we could share the same root & context tables
1685 * amoung all IOMMU's. Need to Split it later.
1687 ret = iommu_alloc_root_entry(iommu);
1688 if (ret) {
1689 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1690 goto error;
1695 * For each rmrr
1696 * for each dev attached to rmrr
1697 * do
1698 * locate drhd for dev, alloc domain for dev
1699 * allocate free domain
1700 * allocate page table entries for rmrr
1701 * if context not allocated for bus
1702 * allocate and init context
1703 * set present in root table for this bus
1704 * init context with domain, translation etc
1705 * endfor
1706 * endfor
1708 for_each_rmrr_units(rmrr) {
1709 int i;
1710 for (i = 0; i < rmrr->devices_cnt; i++) {
1711 pdev = rmrr->devices[i];
1712 /* some BIOS lists non-exist devices in DMAR table */
1713 if (!pdev)
1714 continue;
1715 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1716 if (ret)
1717 printk(KERN_ERR
1718 "IOMMU: mapping reserved region failed\n");
1722 iommu_prepare_gfx_mapping();
1724 iommu_prepare_isa();
1727 * for each drhd
1728 * enable fault log
1729 * global invalidate context cache
1730 * global invalidate iotlb
1731 * enable translation
1733 for_each_drhd_unit(drhd) {
1734 if (drhd->ignored)
1735 continue;
1736 iommu = drhd->iommu;
1737 sprintf (iommu->name, "dmar%d", unit++);
1739 iommu_flush_write_buffer(iommu);
1741 ret = dmar_set_interrupt(iommu);
1742 if (ret)
1743 goto error;
1745 iommu_set_root_entry(iommu);
1747 iommu_flush_context_global(iommu, 0);
1748 iommu_flush_iotlb_global(iommu, 0);
1750 iommu_disable_protect_mem_regions(iommu);
1752 ret = iommu_enable_translation(iommu);
1753 if (ret)
1754 goto error;
1757 return 0;
1758 error:
1759 for_each_drhd_unit(drhd) {
1760 if (drhd->ignored)
1761 continue;
1762 iommu = drhd->iommu;
1763 free_iommu(iommu);
1765 return ret;
1768 static inline u64 aligned_size(u64 host_addr, size_t size)
1770 u64 addr;
1771 addr = (host_addr & (~PAGE_MASK_4K)) + size;
1772 return PAGE_ALIGN_4K(addr);
1775 struct iova *
1776 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
1778 struct iova *piova;
1780 /* Make sure it's in range */
1781 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
1782 if (!size || (IOVA_START_ADDR + size > end))
1783 return NULL;
1785 piova = alloc_iova(&domain->iovad,
1786 size >> PAGE_SHIFT_4K, IOVA_PFN(end), 1);
1787 return piova;
1790 static struct iova *
1791 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
1792 size_t size)
1794 struct pci_dev *pdev = to_pci_dev(dev);
1795 struct iova *iova = NULL;
1797 if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) {
1798 iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
1799 } else {
1801 * First try to allocate an io virtual address in
1802 * DMA_32BIT_MASK and if that fails then try allocating
1803 * from higher range
1805 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
1806 if (!iova)
1807 iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
1810 if (!iova) {
1811 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
1812 return NULL;
1815 return iova;
1818 static struct dmar_domain *
1819 get_valid_domain_for_dev(struct pci_dev *pdev)
1821 struct dmar_domain *domain;
1822 int ret;
1824 domain = get_domain_for_dev(pdev,
1825 DEFAULT_DOMAIN_ADDRESS_WIDTH);
1826 if (!domain) {
1827 printk(KERN_ERR
1828 "Allocating domain for %s failed", pci_name(pdev));
1829 return NULL;
1832 /* make sure context mapping is ok */
1833 if (unlikely(!domain_context_mapped(domain, pdev))) {
1834 ret = domain_context_mapping(domain, pdev);
1835 if (ret) {
1836 printk(KERN_ERR
1837 "Domain context map for %s failed",
1838 pci_name(pdev));
1839 return NULL;
1843 return domain;
1846 static dma_addr_t intel_map_single(struct device *hwdev, void *addr,
1847 size_t size, int dir)
1849 struct pci_dev *pdev = to_pci_dev(hwdev);
1850 int ret;
1851 struct dmar_domain *domain;
1852 unsigned long start_addr;
1853 struct iova *iova;
1854 int prot = 0;
1856 BUG_ON(dir == DMA_NONE);
1857 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1858 return virt_to_bus(addr);
1860 domain = get_valid_domain_for_dev(pdev);
1861 if (!domain)
1862 return 0;
1864 addr = (void *)virt_to_phys(addr);
1865 size = aligned_size((u64)addr, size);
1867 iova = __intel_alloc_iova(hwdev, domain, size);
1868 if (!iova)
1869 goto error;
1871 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
1874 * Check if DMAR supports zero-length reads on write only
1875 * mappings..
1877 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
1878 !cap_zlr(domain->iommu->cap))
1879 prot |= DMA_PTE_READ;
1880 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1881 prot |= DMA_PTE_WRITE;
1883 * addr - (addr + size) might be partial page, we should map the whole
1884 * page. Note: if two part of one page are separately mapped, we
1885 * might have two guest_addr mapping to the same host addr, but this
1886 * is not a big problem
1888 ret = domain_page_mapping(domain, start_addr,
1889 ((u64)addr) & PAGE_MASK_4K, size, prot);
1890 if (ret)
1891 goto error;
1893 pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n",
1894 pci_name(pdev), size, (u64)addr,
1895 size, (u64)start_addr, dir);
1897 /* it's a non-present to present mapping */
1898 ret = iommu_flush_iotlb_psi(domain->iommu, domain->id,
1899 start_addr, size >> PAGE_SHIFT_4K, 1);
1900 if (ret)
1901 iommu_flush_write_buffer(domain->iommu);
1903 return (start_addr + ((u64)addr & (~PAGE_MASK_4K)));
1905 error:
1906 if (iova)
1907 __free_iova(&domain->iovad, iova);
1908 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
1909 pci_name(pdev), size, (u64)addr, dir);
1910 return 0;
1913 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr,
1914 size_t size, int dir)
1916 struct pci_dev *pdev = to_pci_dev(dev);
1917 struct dmar_domain *domain;
1918 unsigned long start_addr;
1919 struct iova *iova;
1921 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1922 return;
1923 domain = find_domain(pdev);
1924 BUG_ON(!domain);
1926 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
1927 if (!iova)
1928 return;
1930 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
1931 size = aligned_size((u64)dev_addr, size);
1933 pr_debug("Device %s unmapping: %lx@%llx\n",
1934 pci_name(pdev), size, (u64)start_addr);
1936 /* clear the whole page */
1937 dma_pte_clear_range(domain, start_addr, start_addr + size);
1938 /* free page tables */
1939 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
1941 if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
1942 size >> PAGE_SHIFT_4K, 0))
1943 iommu_flush_write_buffer(domain->iommu);
1945 /* free iova */
1946 __free_iova(&domain->iovad, iova);
1949 static void * intel_alloc_coherent(struct device *hwdev, size_t size,
1950 dma_addr_t *dma_handle, gfp_t flags)
1952 void *vaddr;
1953 int order;
1955 size = PAGE_ALIGN_4K(size);
1956 order = get_order(size);
1957 flags &= ~(GFP_DMA | GFP_DMA32);
1959 vaddr = (void *)__get_free_pages(flags, order);
1960 if (!vaddr)
1961 return NULL;
1962 memset(vaddr, 0, size);
1964 *dma_handle = intel_map_single(hwdev, vaddr, size, DMA_BIDIRECTIONAL);
1965 if (*dma_handle)
1966 return vaddr;
1967 free_pages((unsigned long)vaddr, order);
1968 return NULL;
1971 static void intel_free_coherent(struct device *hwdev, size_t size,
1972 void *vaddr, dma_addr_t dma_handle)
1974 int order;
1976 size = PAGE_ALIGN_4K(size);
1977 order = get_order(size);
1979 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
1980 free_pages((unsigned long)vaddr, order);
1983 #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
1984 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
1985 int nelems, int dir)
1987 int i;
1988 struct pci_dev *pdev = to_pci_dev(hwdev);
1989 struct dmar_domain *domain;
1990 unsigned long start_addr;
1991 struct iova *iova;
1992 size_t size = 0;
1993 void *addr;
1994 struct scatterlist *sg;
1996 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1997 return;
1999 domain = find_domain(pdev);
2001 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2002 if (!iova)
2003 return;
2004 for_each_sg(sglist, sg, nelems, i) {
2005 addr = SG_ENT_VIRT_ADDRESS(sg);
2006 size += aligned_size((u64)addr, sg->length);
2009 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
2011 /* clear the whole page */
2012 dma_pte_clear_range(domain, start_addr, start_addr + size);
2013 /* free page tables */
2014 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2016 if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
2017 size >> PAGE_SHIFT_4K, 0))
2018 iommu_flush_write_buffer(domain->iommu);
2020 /* free iova */
2021 __free_iova(&domain->iovad, iova);
2024 static int intel_nontranslate_map_sg(struct device *hddev,
2025 struct scatterlist *sglist, int nelems, int dir)
2027 int i;
2028 struct scatterlist *sg;
2030 for_each_sg(sglist, sg, nelems, i) {
2031 BUG_ON(!sg_page(sg));
2032 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2033 sg->dma_length = sg->length;
2035 return nelems;
2038 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist,
2039 int nelems, int dir)
2041 void *addr;
2042 int i;
2043 struct pci_dev *pdev = to_pci_dev(hwdev);
2044 struct dmar_domain *domain;
2045 size_t size = 0;
2046 int prot = 0;
2047 size_t offset = 0;
2048 struct iova *iova = NULL;
2049 int ret;
2050 struct scatterlist *sg;
2051 unsigned long start_addr;
2053 BUG_ON(dir == DMA_NONE);
2054 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2055 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2057 domain = get_valid_domain_for_dev(pdev);
2058 if (!domain)
2059 return 0;
2061 for_each_sg(sglist, sg, nelems, i) {
2062 addr = SG_ENT_VIRT_ADDRESS(sg);
2063 addr = (void *)virt_to_phys(addr);
2064 size += aligned_size((u64)addr, sg->length);
2067 iova = __intel_alloc_iova(hwdev, domain, size);
2068 if (!iova) {
2069 sglist->dma_length = 0;
2070 return 0;
2074 * Check if DMAR supports zero-length reads on write only
2075 * mappings..
2077 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2078 !cap_zlr(domain->iommu->cap))
2079 prot |= DMA_PTE_READ;
2080 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2081 prot |= DMA_PTE_WRITE;
2083 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
2084 offset = 0;
2085 for_each_sg(sglist, sg, nelems, i) {
2086 addr = SG_ENT_VIRT_ADDRESS(sg);
2087 addr = (void *)virt_to_phys(addr);
2088 size = aligned_size((u64)addr, sg->length);
2089 ret = domain_page_mapping(domain, start_addr + offset,
2090 ((u64)addr) & PAGE_MASK_4K,
2091 size, prot);
2092 if (ret) {
2093 /* clear the page */
2094 dma_pte_clear_range(domain, start_addr,
2095 start_addr + offset);
2096 /* free page tables */
2097 dma_pte_free_pagetable(domain, start_addr,
2098 start_addr + offset);
2099 /* free iova */
2100 __free_iova(&domain->iovad, iova);
2101 return 0;
2103 sg->dma_address = start_addr + offset +
2104 ((u64)addr & (~PAGE_MASK_4K));
2105 sg->dma_length = sg->length;
2106 offset += size;
2109 /* it's a non-present to present mapping */
2110 if (iommu_flush_iotlb_psi(domain->iommu, domain->id,
2111 start_addr, offset >> PAGE_SHIFT_4K, 1))
2112 iommu_flush_write_buffer(domain->iommu);
2113 return nelems;
2116 static struct dma_mapping_ops intel_dma_ops = {
2117 .alloc_coherent = intel_alloc_coherent,
2118 .free_coherent = intel_free_coherent,
2119 .map_single = intel_map_single,
2120 .unmap_single = intel_unmap_single,
2121 .map_sg = intel_map_sg,
2122 .unmap_sg = intel_unmap_sg,
2125 static inline int iommu_domain_cache_init(void)
2127 int ret = 0;
2129 iommu_domain_cache = kmem_cache_create("iommu_domain",
2130 sizeof(struct dmar_domain),
2132 SLAB_HWCACHE_ALIGN,
2134 NULL);
2135 if (!iommu_domain_cache) {
2136 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2137 ret = -ENOMEM;
2140 return ret;
2143 static inline int iommu_devinfo_cache_init(void)
2145 int ret = 0;
2147 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2148 sizeof(struct device_domain_info),
2150 SLAB_HWCACHE_ALIGN,
2152 NULL);
2153 if (!iommu_devinfo_cache) {
2154 printk(KERN_ERR "Couldn't create devinfo cache\n");
2155 ret = -ENOMEM;
2158 return ret;
2161 static inline int iommu_iova_cache_init(void)
2163 int ret = 0;
2165 iommu_iova_cache = kmem_cache_create("iommu_iova",
2166 sizeof(struct iova),
2168 SLAB_HWCACHE_ALIGN,
2170 NULL);
2171 if (!iommu_iova_cache) {
2172 printk(KERN_ERR "Couldn't create iova cache\n");
2173 ret = -ENOMEM;
2176 return ret;
2179 static int __init iommu_init_mempool(void)
2181 int ret;
2182 ret = iommu_iova_cache_init();
2183 if (ret)
2184 return ret;
2186 ret = iommu_domain_cache_init();
2187 if (ret)
2188 goto domain_error;
2190 ret = iommu_devinfo_cache_init();
2191 if (!ret)
2192 return ret;
2194 kmem_cache_destroy(iommu_domain_cache);
2195 domain_error:
2196 kmem_cache_destroy(iommu_iova_cache);
2198 return -ENOMEM;
2201 static void __init iommu_exit_mempool(void)
2203 kmem_cache_destroy(iommu_devinfo_cache);
2204 kmem_cache_destroy(iommu_domain_cache);
2205 kmem_cache_destroy(iommu_iova_cache);
2209 void __init detect_intel_iommu(void)
2211 if (swiotlb || no_iommu || iommu_detected || dmar_disabled)
2212 return;
2213 if (early_dmar_detect()) {
2214 iommu_detected = 1;
2218 static void __init init_no_remapping_devices(void)
2220 struct dmar_drhd_unit *drhd;
2222 for_each_drhd_unit(drhd) {
2223 if (!drhd->include_all) {
2224 int i;
2225 for (i = 0; i < drhd->devices_cnt; i++)
2226 if (drhd->devices[i] != NULL)
2227 break;
2228 /* ignore DMAR unit if no pci devices exist */
2229 if (i == drhd->devices_cnt)
2230 drhd->ignored = 1;
2234 if (dmar_map_gfx)
2235 return;
2237 for_each_drhd_unit(drhd) {
2238 int i;
2239 if (drhd->ignored || drhd->include_all)
2240 continue;
2242 for (i = 0; i < drhd->devices_cnt; i++)
2243 if (drhd->devices[i] &&
2244 !IS_GFX_DEVICE(drhd->devices[i]))
2245 break;
2247 if (i < drhd->devices_cnt)
2248 continue;
2250 /* bypass IOMMU if it is just for gfx devices */
2251 drhd->ignored = 1;
2252 for (i = 0; i < drhd->devices_cnt; i++) {
2253 if (!drhd->devices[i])
2254 continue;
2255 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2260 int __init intel_iommu_init(void)
2262 int ret = 0;
2264 if (no_iommu || swiotlb || dmar_disabled)
2265 return -ENODEV;
2267 if (dmar_table_init())
2268 return -ENODEV;
2270 iommu_init_mempool();
2271 dmar_init_reserved_ranges();
2273 init_no_remapping_devices();
2275 ret = init_dmars();
2276 if (ret) {
2277 printk(KERN_ERR "IOMMU: dmar init failed\n");
2278 put_iova_domain(&reserved_iova_list);
2279 iommu_exit_mempool();
2280 return ret;
2282 printk(KERN_INFO
2283 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2285 force_iommu = 1;
2286 dma_ops = &intel_dma_ops;
2287 return 0;