PCI: disable ASPM per ACPI FADT setting
[linux-2.6/mini2440.git] / mm / memory.c
bloba8ca04faaea62c6d28e9dc908a0615e927d73ddb
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #include "internal.h"
66 #ifndef CONFIG_NEED_MULTIPLE_NODES
67 /* use the per-pgdat data instead for discontigmem - mbligh */
68 unsigned long max_mapnr;
69 struct page *mem_map;
71 EXPORT_SYMBOL(max_mapnr);
72 EXPORT_SYMBOL(mem_map);
73 #endif
75 unsigned long num_physpages;
77 * A number of key systems in x86 including ioremap() rely on the assumption
78 * that high_memory defines the upper bound on direct map memory, then end
79 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
80 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
81 * and ZONE_HIGHMEM.
83 void * high_memory;
85 EXPORT_SYMBOL(num_physpages);
86 EXPORT_SYMBOL(high_memory);
89 * Randomize the address space (stacks, mmaps, brk, etc.).
91 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
92 * as ancient (libc5 based) binaries can segfault. )
94 int randomize_va_space __read_mostly =
95 #ifdef CONFIG_COMPAT_BRK
97 #else
99 #endif
101 static int __init disable_randmaps(char *s)
103 randomize_va_space = 0;
104 return 1;
106 __setup("norandmaps", disable_randmaps);
110 * If a p?d_bad entry is found while walking page tables, report
111 * the error, before resetting entry to p?d_none. Usually (but
112 * very seldom) called out from the p?d_none_or_clear_bad macros.
115 void pgd_clear_bad(pgd_t *pgd)
117 pgd_ERROR(*pgd);
118 pgd_clear(pgd);
121 void pud_clear_bad(pud_t *pud)
123 pud_ERROR(*pud);
124 pud_clear(pud);
127 void pmd_clear_bad(pmd_t *pmd)
129 pmd_ERROR(*pmd);
130 pmd_clear(pmd);
134 * Note: this doesn't free the actual pages themselves. That
135 * has been handled earlier when unmapping all the memory regions.
137 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 pgtable_t token = pmd_pgtable(*pmd);
140 pmd_clear(pmd);
141 pte_free_tlb(tlb, token);
142 tlb->mm->nr_ptes--;
145 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
146 unsigned long addr, unsigned long end,
147 unsigned long floor, unsigned long ceiling)
149 pmd_t *pmd;
150 unsigned long next;
151 unsigned long start;
153 start = addr;
154 pmd = pmd_offset(pud, addr);
155 do {
156 next = pmd_addr_end(addr, end);
157 if (pmd_none_or_clear_bad(pmd))
158 continue;
159 free_pte_range(tlb, pmd);
160 } while (pmd++, addr = next, addr != end);
162 start &= PUD_MASK;
163 if (start < floor)
164 return;
165 if (ceiling) {
166 ceiling &= PUD_MASK;
167 if (!ceiling)
168 return;
170 if (end - 1 > ceiling - 1)
171 return;
173 pmd = pmd_offset(pud, start);
174 pud_clear(pud);
175 pmd_free_tlb(tlb, pmd);
178 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
179 unsigned long addr, unsigned long end,
180 unsigned long floor, unsigned long ceiling)
182 pud_t *pud;
183 unsigned long next;
184 unsigned long start;
186 start = addr;
187 pud = pud_offset(pgd, addr);
188 do {
189 next = pud_addr_end(addr, end);
190 if (pud_none_or_clear_bad(pud))
191 continue;
192 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
193 } while (pud++, addr = next, addr != end);
195 start &= PGDIR_MASK;
196 if (start < floor)
197 return;
198 if (ceiling) {
199 ceiling &= PGDIR_MASK;
200 if (!ceiling)
201 return;
203 if (end - 1 > ceiling - 1)
204 return;
206 pud = pud_offset(pgd, start);
207 pgd_clear(pgd);
208 pud_free_tlb(tlb, pud);
212 * This function frees user-level page tables of a process.
214 * Must be called with pagetable lock held.
216 void free_pgd_range(struct mmu_gather *tlb,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
220 pgd_t *pgd;
221 unsigned long next;
222 unsigned long start;
225 * The next few lines have given us lots of grief...
227 * Why are we testing PMD* at this top level? Because often
228 * there will be no work to do at all, and we'd prefer not to
229 * go all the way down to the bottom just to discover that.
231 * Why all these "- 1"s? Because 0 represents both the bottom
232 * of the address space and the top of it (using -1 for the
233 * top wouldn't help much: the masks would do the wrong thing).
234 * The rule is that addr 0 and floor 0 refer to the bottom of
235 * the address space, but end 0 and ceiling 0 refer to the top
236 * Comparisons need to use "end - 1" and "ceiling - 1" (though
237 * that end 0 case should be mythical).
239 * Wherever addr is brought up or ceiling brought down, we must
240 * be careful to reject "the opposite 0" before it confuses the
241 * subsequent tests. But what about where end is brought down
242 * by PMD_SIZE below? no, end can't go down to 0 there.
244 * Whereas we round start (addr) and ceiling down, by different
245 * masks at different levels, in order to test whether a table
246 * now has no other vmas using it, so can be freed, we don't
247 * bother to round floor or end up - the tests don't need that.
250 addr &= PMD_MASK;
251 if (addr < floor) {
252 addr += PMD_SIZE;
253 if (!addr)
254 return;
256 if (ceiling) {
257 ceiling &= PMD_MASK;
258 if (!ceiling)
259 return;
261 if (end - 1 > ceiling - 1)
262 end -= PMD_SIZE;
263 if (addr > end - 1)
264 return;
266 start = addr;
267 pgd = pgd_offset(tlb->mm, addr);
268 do {
269 next = pgd_addr_end(addr, end);
270 if (pgd_none_or_clear_bad(pgd))
271 continue;
272 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
273 } while (pgd++, addr = next, addr != end);
276 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
277 unsigned long floor, unsigned long ceiling)
279 while (vma) {
280 struct vm_area_struct *next = vma->vm_next;
281 unsigned long addr = vma->vm_start;
284 * Hide vma from rmap and vmtruncate before freeing pgtables
286 anon_vma_unlink(vma);
287 unlink_file_vma(vma);
289 if (is_vm_hugetlb_page(vma)) {
290 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
291 floor, next? next->vm_start: ceiling);
292 } else {
294 * Optimization: gather nearby vmas into one call down
296 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
297 && !is_vm_hugetlb_page(next)) {
298 vma = next;
299 next = vma->vm_next;
300 anon_vma_unlink(vma);
301 unlink_file_vma(vma);
303 free_pgd_range(tlb, addr, vma->vm_end,
304 floor, next? next->vm_start: ceiling);
306 vma = next;
310 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 pgtable_t new = pte_alloc_one(mm, address);
313 if (!new)
314 return -ENOMEM;
317 * Ensure all pte setup (eg. pte page lock and page clearing) are
318 * visible before the pte is made visible to other CPUs by being
319 * put into page tables.
321 * The other side of the story is the pointer chasing in the page
322 * table walking code (when walking the page table without locking;
323 * ie. most of the time). Fortunately, these data accesses consist
324 * of a chain of data-dependent loads, meaning most CPUs (alpha
325 * being the notable exception) will already guarantee loads are
326 * seen in-order. See the alpha page table accessors for the
327 * smp_read_barrier_depends() barriers in page table walking code.
329 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 spin_lock(&mm->page_table_lock);
332 if (!pmd_present(*pmd)) { /* Has another populated it ? */
333 mm->nr_ptes++;
334 pmd_populate(mm, pmd, new);
335 new = NULL;
337 spin_unlock(&mm->page_table_lock);
338 if (new)
339 pte_free(mm, new);
340 return 0;
343 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
346 if (!new)
347 return -ENOMEM;
349 smp_wmb(); /* See comment in __pte_alloc */
351 spin_lock(&init_mm.page_table_lock);
352 if (!pmd_present(*pmd)) { /* Has another populated it ? */
353 pmd_populate_kernel(&init_mm, pmd, new);
354 new = NULL;
356 spin_unlock(&init_mm.page_table_lock);
357 if (new)
358 pte_free_kernel(&init_mm, new);
359 return 0;
362 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 if (file_rss)
365 add_mm_counter(mm, file_rss, file_rss);
366 if (anon_rss)
367 add_mm_counter(mm, anon_rss, anon_rss);
371 * This function is called to print an error when a bad pte
372 * is found. For example, we might have a PFN-mapped pte in
373 * a region that doesn't allow it.
375 * The calling function must still handle the error.
377 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
378 unsigned long vaddr)
380 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
381 "vm_flags = %lx, vaddr = %lx\n",
382 (long long)pte_val(pte),
383 (vma->vm_mm == current->mm ? current->comm : "???"),
384 vma->vm_flags, vaddr);
385 dump_stack();
388 static inline int is_cow_mapping(unsigned int flags)
390 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
394 * vm_normal_page -- This function gets the "struct page" associated with a pte.
396 * "Special" mappings do not wish to be associated with a "struct page" (either
397 * it doesn't exist, or it exists but they don't want to touch it). In this
398 * case, NULL is returned here. "Normal" mappings do have a struct page.
400 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
401 * pte bit, in which case this function is trivial. Secondly, an architecture
402 * may not have a spare pte bit, which requires a more complicated scheme,
403 * described below.
405 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
406 * special mapping (even if there are underlying and valid "struct pages").
407 * COWed pages of a VM_PFNMAP are always normal.
409 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
410 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
411 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
412 * mapping will always honor the rule
414 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416 * And for normal mappings this is false.
418 * This restricts such mappings to be a linear translation from virtual address
419 * to pfn. To get around this restriction, we allow arbitrary mappings so long
420 * as the vma is not a COW mapping; in that case, we know that all ptes are
421 * special (because none can have been COWed).
424 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
427 * page" backing, however the difference is that _all_ pages with a struct
428 * page (that is, those where pfn_valid is true) are refcounted and considered
429 * normal pages by the VM. The disadvantage is that pages are refcounted
430 * (which can be slower and simply not an option for some PFNMAP users). The
431 * advantage is that we don't have to follow the strict linearity rule of
432 * PFNMAP mappings in order to support COWable mappings.
435 #ifdef __HAVE_ARCH_PTE_SPECIAL
436 # define HAVE_PTE_SPECIAL 1
437 #else
438 # define HAVE_PTE_SPECIAL 0
439 #endif
440 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
441 pte_t pte)
443 unsigned long pfn;
445 if (HAVE_PTE_SPECIAL) {
446 if (likely(!pte_special(pte))) {
447 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
448 return pte_page(pte);
450 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
451 return NULL;
454 /* !HAVE_PTE_SPECIAL case follows: */
456 pfn = pte_pfn(pte);
458 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
459 if (vma->vm_flags & VM_MIXEDMAP) {
460 if (!pfn_valid(pfn))
461 return NULL;
462 goto out;
463 } else {
464 unsigned long off;
465 off = (addr - vma->vm_start) >> PAGE_SHIFT;
466 if (pfn == vma->vm_pgoff + off)
467 return NULL;
468 if (!is_cow_mapping(vma->vm_flags))
469 return NULL;
473 VM_BUG_ON(!pfn_valid(pfn));
476 * NOTE! We still have PageReserved() pages in the page tables.
478 * eg. VDSO mappings can cause them to exist.
480 out:
481 return pfn_to_page(pfn);
485 * copy one vm_area from one task to the other. Assumes the page tables
486 * already present in the new task to be cleared in the whole range
487 * covered by this vma.
490 static inline void
491 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
492 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
493 unsigned long addr, int *rss)
495 unsigned long vm_flags = vma->vm_flags;
496 pte_t pte = *src_pte;
497 struct page *page;
499 /* pte contains position in swap or file, so copy. */
500 if (unlikely(!pte_present(pte))) {
501 if (!pte_file(pte)) {
502 swp_entry_t entry = pte_to_swp_entry(pte);
504 swap_duplicate(entry);
505 /* make sure dst_mm is on swapoff's mmlist. */
506 if (unlikely(list_empty(&dst_mm->mmlist))) {
507 spin_lock(&mmlist_lock);
508 if (list_empty(&dst_mm->mmlist))
509 list_add(&dst_mm->mmlist,
510 &src_mm->mmlist);
511 spin_unlock(&mmlist_lock);
513 if (is_write_migration_entry(entry) &&
514 is_cow_mapping(vm_flags)) {
516 * COW mappings require pages in both parent
517 * and child to be set to read.
519 make_migration_entry_read(&entry);
520 pte = swp_entry_to_pte(entry);
521 set_pte_at(src_mm, addr, src_pte, pte);
524 goto out_set_pte;
528 * If it's a COW mapping, write protect it both
529 * in the parent and the child
531 if (is_cow_mapping(vm_flags)) {
532 ptep_set_wrprotect(src_mm, addr, src_pte);
533 pte = pte_wrprotect(pte);
537 * If it's a shared mapping, mark it clean in
538 * the child
540 if (vm_flags & VM_SHARED)
541 pte = pte_mkclean(pte);
542 pte = pte_mkold(pte);
544 page = vm_normal_page(vma, addr, pte);
545 if (page) {
546 get_page(page);
547 page_dup_rmap(page, vma, addr);
548 rss[!!PageAnon(page)]++;
551 out_set_pte:
552 set_pte_at(dst_mm, addr, dst_pte, pte);
555 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
556 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
557 unsigned long addr, unsigned long end)
559 pte_t *src_pte, *dst_pte;
560 spinlock_t *src_ptl, *dst_ptl;
561 int progress = 0;
562 int rss[2];
564 again:
565 rss[1] = rss[0] = 0;
566 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
567 if (!dst_pte)
568 return -ENOMEM;
569 src_pte = pte_offset_map_nested(src_pmd, addr);
570 src_ptl = pte_lockptr(src_mm, src_pmd);
571 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
572 arch_enter_lazy_mmu_mode();
574 do {
576 * We are holding two locks at this point - either of them
577 * could generate latencies in another task on another CPU.
579 if (progress >= 32) {
580 progress = 0;
581 if (need_resched() ||
582 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
583 break;
585 if (pte_none(*src_pte)) {
586 progress++;
587 continue;
589 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
590 progress += 8;
591 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593 arch_leave_lazy_mmu_mode();
594 spin_unlock(src_ptl);
595 pte_unmap_nested(src_pte - 1);
596 add_mm_rss(dst_mm, rss[0], rss[1]);
597 pte_unmap_unlock(dst_pte - 1, dst_ptl);
598 cond_resched();
599 if (addr != end)
600 goto again;
601 return 0;
604 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
605 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
606 unsigned long addr, unsigned long end)
608 pmd_t *src_pmd, *dst_pmd;
609 unsigned long next;
611 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
612 if (!dst_pmd)
613 return -ENOMEM;
614 src_pmd = pmd_offset(src_pud, addr);
615 do {
616 next = pmd_addr_end(addr, end);
617 if (pmd_none_or_clear_bad(src_pmd))
618 continue;
619 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
620 vma, addr, next))
621 return -ENOMEM;
622 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
623 return 0;
626 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
627 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
628 unsigned long addr, unsigned long end)
630 pud_t *src_pud, *dst_pud;
631 unsigned long next;
633 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
634 if (!dst_pud)
635 return -ENOMEM;
636 src_pud = pud_offset(src_pgd, addr);
637 do {
638 next = pud_addr_end(addr, end);
639 if (pud_none_or_clear_bad(src_pud))
640 continue;
641 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
642 vma, addr, next))
643 return -ENOMEM;
644 } while (dst_pud++, src_pud++, addr = next, addr != end);
645 return 0;
648 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
649 struct vm_area_struct *vma)
651 pgd_t *src_pgd, *dst_pgd;
652 unsigned long next;
653 unsigned long addr = vma->vm_start;
654 unsigned long end = vma->vm_end;
657 * Don't copy ptes where a page fault will fill them correctly.
658 * Fork becomes much lighter when there are big shared or private
659 * readonly mappings. The tradeoff is that copy_page_range is more
660 * efficient than faulting.
662 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
663 if (!vma->anon_vma)
664 return 0;
667 if (is_vm_hugetlb_page(vma))
668 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
670 dst_pgd = pgd_offset(dst_mm, addr);
671 src_pgd = pgd_offset(src_mm, addr);
672 do {
673 next = pgd_addr_end(addr, end);
674 if (pgd_none_or_clear_bad(src_pgd))
675 continue;
676 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
677 vma, addr, next))
678 return -ENOMEM;
679 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
680 return 0;
683 static unsigned long zap_pte_range(struct mmu_gather *tlb,
684 struct vm_area_struct *vma, pmd_t *pmd,
685 unsigned long addr, unsigned long end,
686 long *zap_work, struct zap_details *details)
688 struct mm_struct *mm = tlb->mm;
689 pte_t *pte;
690 spinlock_t *ptl;
691 int file_rss = 0;
692 int anon_rss = 0;
694 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
695 arch_enter_lazy_mmu_mode();
696 do {
697 pte_t ptent = *pte;
698 if (pte_none(ptent)) {
699 (*zap_work)--;
700 continue;
703 (*zap_work) -= PAGE_SIZE;
705 if (pte_present(ptent)) {
706 struct page *page;
708 page = vm_normal_page(vma, addr, ptent);
709 if (unlikely(details) && page) {
711 * unmap_shared_mapping_pages() wants to
712 * invalidate cache without truncating:
713 * unmap shared but keep private pages.
715 if (details->check_mapping &&
716 details->check_mapping != page->mapping)
717 continue;
719 * Each page->index must be checked when
720 * invalidating or truncating nonlinear.
722 if (details->nonlinear_vma &&
723 (page->index < details->first_index ||
724 page->index > details->last_index))
725 continue;
727 ptent = ptep_get_and_clear_full(mm, addr, pte,
728 tlb->fullmm);
729 tlb_remove_tlb_entry(tlb, pte, addr);
730 if (unlikely(!page))
731 continue;
732 if (unlikely(details) && details->nonlinear_vma
733 && linear_page_index(details->nonlinear_vma,
734 addr) != page->index)
735 set_pte_at(mm, addr, pte,
736 pgoff_to_pte(page->index));
737 if (PageAnon(page))
738 anon_rss--;
739 else {
740 if (pte_dirty(ptent))
741 set_page_dirty(page);
742 if (pte_young(ptent))
743 SetPageReferenced(page);
744 file_rss--;
746 page_remove_rmap(page, vma);
747 tlb_remove_page(tlb, page);
748 continue;
751 * If details->check_mapping, we leave swap entries;
752 * if details->nonlinear_vma, we leave file entries.
754 if (unlikely(details))
755 continue;
756 if (!pte_file(ptent))
757 free_swap_and_cache(pte_to_swp_entry(ptent));
758 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
759 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
761 add_mm_rss(mm, file_rss, anon_rss);
762 arch_leave_lazy_mmu_mode();
763 pte_unmap_unlock(pte - 1, ptl);
765 return addr;
768 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
769 struct vm_area_struct *vma, pud_t *pud,
770 unsigned long addr, unsigned long end,
771 long *zap_work, struct zap_details *details)
773 pmd_t *pmd;
774 unsigned long next;
776 pmd = pmd_offset(pud, addr);
777 do {
778 next = pmd_addr_end(addr, end);
779 if (pmd_none_or_clear_bad(pmd)) {
780 (*zap_work)--;
781 continue;
783 next = zap_pte_range(tlb, vma, pmd, addr, next,
784 zap_work, details);
785 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
787 return addr;
790 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
791 struct vm_area_struct *vma, pgd_t *pgd,
792 unsigned long addr, unsigned long end,
793 long *zap_work, struct zap_details *details)
795 pud_t *pud;
796 unsigned long next;
798 pud = pud_offset(pgd, addr);
799 do {
800 next = pud_addr_end(addr, end);
801 if (pud_none_or_clear_bad(pud)) {
802 (*zap_work)--;
803 continue;
805 next = zap_pmd_range(tlb, vma, pud, addr, next,
806 zap_work, details);
807 } while (pud++, addr = next, (addr != end && *zap_work > 0));
809 return addr;
812 static unsigned long unmap_page_range(struct mmu_gather *tlb,
813 struct vm_area_struct *vma,
814 unsigned long addr, unsigned long end,
815 long *zap_work, struct zap_details *details)
817 pgd_t *pgd;
818 unsigned long next;
820 if (details && !details->check_mapping && !details->nonlinear_vma)
821 details = NULL;
823 BUG_ON(addr >= end);
824 tlb_start_vma(tlb, vma);
825 pgd = pgd_offset(vma->vm_mm, addr);
826 do {
827 next = pgd_addr_end(addr, end);
828 if (pgd_none_or_clear_bad(pgd)) {
829 (*zap_work)--;
830 continue;
832 next = zap_pud_range(tlb, vma, pgd, addr, next,
833 zap_work, details);
834 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
835 tlb_end_vma(tlb, vma);
837 return addr;
840 #ifdef CONFIG_PREEMPT
841 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
842 #else
843 /* No preempt: go for improved straight-line efficiency */
844 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
845 #endif
848 * unmap_vmas - unmap a range of memory covered by a list of vma's
849 * @tlbp: address of the caller's struct mmu_gather
850 * @vma: the starting vma
851 * @start_addr: virtual address at which to start unmapping
852 * @end_addr: virtual address at which to end unmapping
853 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
854 * @details: details of nonlinear truncation or shared cache invalidation
856 * Returns the end address of the unmapping (restart addr if interrupted).
858 * Unmap all pages in the vma list.
860 * We aim to not hold locks for too long (for scheduling latency reasons).
861 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
862 * return the ending mmu_gather to the caller.
864 * Only addresses between `start' and `end' will be unmapped.
866 * The VMA list must be sorted in ascending virtual address order.
868 * unmap_vmas() assumes that the caller will flush the whole unmapped address
869 * range after unmap_vmas() returns. So the only responsibility here is to
870 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
871 * drops the lock and schedules.
873 unsigned long unmap_vmas(struct mmu_gather **tlbp,
874 struct vm_area_struct *vma, unsigned long start_addr,
875 unsigned long end_addr, unsigned long *nr_accounted,
876 struct zap_details *details)
878 long zap_work = ZAP_BLOCK_SIZE;
879 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
880 int tlb_start_valid = 0;
881 unsigned long start = start_addr;
882 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
883 int fullmm = (*tlbp)->fullmm;
885 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
886 unsigned long end;
888 start = max(vma->vm_start, start_addr);
889 if (start >= vma->vm_end)
890 continue;
891 end = min(vma->vm_end, end_addr);
892 if (end <= vma->vm_start)
893 continue;
895 if (vma->vm_flags & VM_ACCOUNT)
896 *nr_accounted += (end - start) >> PAGE_SHIFT;
898 while (start != end) {
899 if (!tlb_start_valid) {
900 tlb_start = start;
901 tlb_start_valid = 1;
904 if (unlikely(is_vm_hugetlb_page(vma))) {
906 * It is undesirable to test vma->vm_file as it
907 * should be non-null for valid hugetlb area.
908 * However, vm_file will be NULL in the error
909 * cleanup path of do_mmap_pgoff. When
910 * hugetlbfs ->mmap method fails,
911 * do_mmap_pgoff() nullifies vma->vm_file
912 * before calling this function to clean up.
913 * Since no pte has actually been setup, it is
914 * safe to do nothing in this case.
916 if (vma->vm_file) {
917 unmap_hugepage_range(vma, start, end, NULL);
918 zap_work -= (end - start) /
919 pages_per_huge_page(hstate_vma(vma));
922 start = end;
923 } else
924 start = unmap_page_range(*tlbp, vma,
925 start, end, &zap_work, details);
927 if (zap_work > 0) {
928 BUG_ON(start != end);
929 break;
932 tlb_finish_mmu(*tlbp, tlb_start, start);
934 if (need_resched() ||
935 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
936 if (i_mmap_lock) {
937 *tlbp = NULL;
938 goto out;
940 cond_resched();
943 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
944 tlb_start_valid = 0;
945 zap_work = ZAP_BLOCK_SIZE;
948 out:
949 return start; /* which is now the end (or restart) address */
953 * zap_page_range - remove user pages in a given range
954 * @vma: vm_area_struct holding the applicable pages
955 * @address: starting address of pages to zap
956 * @size: number of bytes to zap
957 * @details: details of nonlinear truncation or shared cache invalidation
959 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
960 unsigned long size, struct zap_details *details)
962 struct mm_struct *mm = vma->vm_mm;
963 struct mmu_gather *tlb;
964 unsigned long end = address + size;
965 unsigned long nr_accounted = 0;
967 lru_add_drain();
968 tlb = tlb_gather_mmu(mm, 0);
969 update_hiwater_rss(mm);
970 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
971 if (tlb)
972 tlb_finish_mmu(tlb, address, end);
973 return end;
977 * Do a quick page-table lookup for a single page.
979 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
980 unsigned int flags)
982 pgd_t *pgd;
983 pud_t *pud;
984 pmd_t *pmd;
985 pte_t *ptep, pte;
986 spinlock_t *ptl;
987 struct page *page;
988 struct mm_struct *mm = vma->vm_mm;
990 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
991 if (!IS_ERR(page)) {
992 BUG_ON(flags & FOLL_GET);
993 goto out;
996 page = NULL;
997 pgd = pgd_offset(mm, address);
998 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
999 goto no_page_table;
1001 pud = pud_offset(pgd, address);
1002 if (pud_none(*pud))
1003 goto no_page_table;
1004 if (pud_huge(*pud)) {
1005 BUG_ON(flags & FOLL_GET);
1006 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1007 goto out;
1009 if (unlikely(pud_bad(*pud)))
1010 goto no_page_table;
1012 pmd = pmd_offset(pud, address);
1013 if (pmd_none(*pmd))
1014 goto no_page_table;
1015 if (pmd_huge(*pmd)) {
1016 BUG_ON(flags & FOLL_GET);
1017 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1018 goto out;
1020 if (unlikely(pmd_bad(*pmd)))
1021 goto no_page_table;
1023 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1025 pte = *ptep;
1026 if (!pte_present(pte))
1027 goto no_page;
1028 if ((flags & FOLL_WRITE) && !pte_write(pte))
1029 goto unlock;
1030 page = vm_normal_page(vma, address, pte);
1031 if (unlikely(!page))
1032 goto bad_page;
1034 if (flags & FOLL_GET)
1035 get_page(page);
1036 if (flags & FOLL_TOUCH) {
1037 if ((flags & FOLL_WRITE) &&
1038 !pte_dirty(pte) && !PageDirty(page))
1039 set_page_dirty(page);
1040 mark_page_accessed(page);
1042 unlock:
1043 pte_unmap_unlock(ptep, ptl);
1044 out:
1045 return page;
1047 bad_page:
1048 pte_unmap_unlock(ptep, ptl);
1049 return ERR_PTR(-EFAULT);
1051 no_page:
1052 pte_unmap_unlock(ptep, ptl);
1053 if (!pte_none(pte))
1054 return page;
1055 /* Fall through to ZERO_PAGE handling */
1056 no_page_table:
1058 * When core dumping an enormous anonymous area that nobody
1059 * has touched so far, we don't want to allocate page tables.
1061 if (flags & FOLL_ANON) {
1062 page = ZERO_PAGE(0);
1063 if (flags & FOLL_GET)
1064 get_page(page);
1065 BUG_ON(flags & FOLL_WRITE);
1067 return page;
1070 /* Can we do the FOLL_ANON optimization? */
1071 static inline int use_zero_page(struct vm_area_struct *vma)
1074 * We don't want to optimize FOLL_ANON for make_pages_present()
1075 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1076 * we want to get the page from the page tables to make sure
1077 * that we serialize and update with any other user of that
1078 * mapping.
1080 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1081 return 0;
1083 * And if we have a fault routine, it's not an anonymous region.
1085 return !vma->vm_ops || !vma->vm_ops->fault;
1088 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1089 unsigned long start, int len, int write, int force,
1090 struct page **pages, struct vm_area_struct **vmas)
1092 int i;
1093 unsigned int vm_flags;
1095 if (len <= 0)
1096 return 0;
1098 * Require read or write permissions.
1099 * If 'force' is set, we only require the "MAY" flags.
1101 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1102 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1103 i = 0;
1105 do {
1106 struct vm_area_struct *vma;
1107 unsigned int foll_flags;
1109 vma = find_extend_vma(mm, start);
1110 if (!vma && in_gate_area(tsk, start)) {
1111 unsigned long pg = start & PAGE_MASK;
1112 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1113 pgd_t *pgd;
1114 pud_t *pud;
1115 pmd_t *pmd;
1116 pte_t *pte;
1117 if (write) /* user gate pages are read-only */
1118 return i ? : -EFAULT;
1119 if (pg > TASK_SIZE)
1120 pgd = pgd_offset_k(pg);
1121 else
1122 pgd = pgd_offset_gate(mm, pg);
1123 BUG_ON(pgd_none(*pgd));
1124 pud = pud_offset(pgd, pg);
1125 BUG_ON(pud_none(*pud));
1126 pmd = pmd_offset(pud, pg);
1127 if (pmd_none(*pmd))
1128 return i ? : -EFAULT;
1129 pte = pte_offset_map(pmd, pg);
1130 if (pte_none(*pte)) {
1131 pte_unmap(pte);
1132 return i ? : -EFAULT;
1134 if (pages) {
1135 struct page *page = vm_normal_page(gate_vma, start, *pte);
1136 pages[i] = page;
1137 if (page)
1138 get_page(page);
1140 pte_unmap(pte);
1141 if (vmas)
1142 vmas[i] = gate_vma;
1143 i++;
1144 start += PAGE_SIZE;
1145 len--;
1146 continue;
1149 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1150 || !(vm_flags & vma->vm_flags))
1151 return i ? : -EFAULT;
1153 if (is_vm_hugetlb_page(vma)) {
1154 i = follow_hugetlb_page(mm, vma, pages, vmas,
1155 &start, &len, i, write);
1156 continue;
1159 foll_flags = FOLL_TOUCH;
1160 if (pages)
1161 foll_flags |= FOLL_GET;
1162 if (!write && use_zero_page(vma))
1163 foll_flags |= FOLL_ANON;
1165 do {
1166 struct page *page;
1169 * If tsk is ooming, cut off its access to large memory
1170 * allocations. It has a pending SIGKILL, but it can't
1171 * be processed until returning to user space.
1173 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1174 return i ? i : -ENOMEM;
1176 if (write)
1177 foll_flags |= FOLL_WRITE;
1179 cond_resched();
1180 while (!(page = follow_page(vma, start, foll_flags))) {
1181 int ret;
1182 ret = handle_mm_fault(mm, vma, start,
1183 foll_flags & FOLL_WRITE);
1184 if (ret & VM_FAULT_ERROR) {
1185 if (ret & VM_FAULT_OOM)
1186 return i ? i : -ENOMEM;
1187 else if (ret & VM_FAULT_SIGBUS)
1188 return i ? i : -EFAULT;
1189 BUG();
1191 if (ret & VM_FAULT_MAJOR)
1192 tsk->maj_flt++;
1193 else
1194 tsk->min_flt++;
1197 * The VM_FAULT_WRITE bit tells us that
1198 * do_wp_page has broken COW when necessary,
1199 * even if maybe_mkwrite decided not to set
1200 * pte_write. We can thus safely do subsequent
1201 * page lookups as if they were reads.
1203 if (ret & VM_FAULT_WRITE)
1204 foll_flags &= ~FOLL_WRITE;
1206 cond_resched();
1208 if (IS_ERR(page))
1209 return i ? i : PTR_ERR(page);
1210 if (pages) {
1211 pages[i] = page;
1213 flush_anon_page(vma, page, start);
1214 flush_dcache_page(page);
1216 if (vmas)
1217 vmas[i] = vma;
1218 i++;
1219 start += PAGE_SIZE;
1220 len--;
1221 } while (len && start < vma->vm_end);
1222 } while (len);
1223 return i;
1225 EXPORT_SYMBOL(get_user_pages);
1227 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1228 spinlock_t **ptl)
1230 pgd_t * pgd = pgd_offset(mm, addr);
1231 pud_t * pud = pud_alloc(mm, pgd, addr);
1232 if (pud) {
1233 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1234 if (pmd)
1235 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1237 return NULL;
1241 * This is the old fallback for page remapping.
1243 * For historical reasons, it only allows reserved pages. Only
1244 * old drivers should use this, and they needed to mark their
1245 * pages reserved for the old functions anyway.
1247 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1248 struct page *page, pgprot_t prot)
1250 struct mm_struct *mm = vma->vm_mm;
1251 int retval;
1252 pte_t *pte;
1253 spinlock_t *ptl;
1255 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1256 if (retval)
1257 goto out;
1259 retval = -EINVAL;
1260 if (PageAnon(page))
1261 goto out_uncharge;
1262 retval = -ENOMEM;
1263 flush_dcache_page(page);
1264 pte = get_locked_pte(mm, addr, &ptl);
1265 if (!pte)
1266 goto out_uncharge;
1267 retval = -EBUSY;
1268 if (!pte_none(*pte))
1269 goto out_unlock;
1271 /* Ok, finally just insert the thing.. */
1272 get_page(page);
1273 inc_mm_counter(mm, file_rss);
1274 page_add_file_rmap(page);
1275 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1277 retval = 0;
1278 pte_unmap_unlock(pte, ptl);
1279 return retval;
1280 out_unlock:
1281 pte_unmap_unlock(pte, ptl);
1282 out_uncharge:
1283 mem_cgroup_uncharge_page(page);
1284 out:
1285 return retval;
1289 * vm_insert_page - insert single page into user vma
1290 * @vma: user vma to map to
1291 * @addr: target user address of this page
1292 * @page: source kernel page
1294 * This allows drivers to insert individual pages they've allocated
1295 * into a user vma.
1297 * The page has to be a nice clean _individual_ kernel allocation.
1298 * If you allocate a compound page, you need to have marked it as
1299 * such (__GFP_COMP), or manually just split the page up yourself
1300 * (see split_page()).
1302 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1303 * took an arbitrary page protection parameter. This doesn't allow
1304 * that. Your vma protection will have to be set up correctly, which
1305 * means that if you want a shared writable mapping, you'd better
1306 * ask for a shared writable mapping!
1308 * The page does not need to be reserved.
1310 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1311 struct page *page)
1313 if (addr < vma->vm_start || addr >= vma->vm_end)
1314 return -EFAULT;
1315 if (!page_count(page))
1316 return -EINVAL;
1317 vma->vm_flags |= VM_INSERTPAGE;
1318 return insert_page(vma, addr, page, vma->vm_page_prot);
1320 EXPORT_SYMBOL(vm_insert_page);
1322 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1323 unsigned long pfn, pgprot_t prot)
1325 struct mm_struct *mm = vma->vm_mm;
1326 int retval;
1327 pte_t *pte, entry;
1328 spinlock_t *ptl;
1330 retval = -ENOMEM;
1331 pte = get_locked_pte(mm, addr, &ptl);
1332 if (!pte)
1333 goto out;
1334 retval = -EBUSY;
1335 if (!pte_none(*pte))
1336 goto out_unlock;
1338 /* Ok, finally just insert the thing.. */
1339 entry = pte_mkspecial(pfn_pte(pfn, prot));
1340 set_pte_at(mm, addr, pte, entry);
1341 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1343 retval = 0;
1344 out_unlock:
1345 pte_unmap_unlock(pte, ptl);
1346 out:
1347 return retval;
1351 * vm_insert_pfn - insert single pfn into user vma
1352 * @vma: user vma to map to
1353 * @addr: target user address of this page
1354 * @pfn: source kernel pfn
1356 * Similar to vm_inert_page, this allows drivers to insert individual pages
1357 * they've allocated into a user vma. Same comments apply.
1359 * This function should only be called from a vm_ops->fault handler, and
1360 * in that case the handler should return NULL.
1362 * vma cannot be a COW mapping.
1364 * As this is called only for pages that do not currently exist, we
1365 * do not need to flush old virtual caches or the TLB.
1367 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1368 unsigned long pfn)
1371 * Technically, architectures with pte_special can avoid all these
1372 * restrictions (same for remap_pfn_range). However we would like
1373 * consistency in testing and feature parity among all, so we should
1374 * try to keep these invariants in place for everybody.
1376 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1377 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1378 (VM_PFNMAP|VM_MIXEDMAP));
1379 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1380 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1382 if (addr < vma->vm_start || addr >= vma->vm_end)
1383 return -EFAULT;
1384 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1386 EXPORT_SYMBOL(vm_insert_pfn);
1388 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1389 unsigned long pfn)
1391 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1393 if (addr < vma->vm_start || addr >= vma->vm_end)
1394 return -EFAULT;
1397 * If we don't have pte special, then we have to use the pfn_valid()
1398 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1399 * refcount the page if pfn_valid is true (hence insert_page rather
1400 * than insert_pfn).
1402 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1403 struct page *page;
1405 page = pfn_to_page(pfn);
1406 return insert_page(vma, addr, page, vma->vm_page_prot);
1408 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1410 EXPORT_SYMBOL(vm_insert_mixed);
1413 * maps a range of physical memory into the requested pages. the old
1414 * mappings are removed. any references to nonexistent pages results
1415 * in null mappings (currently treated as "copy-on-access")
1417 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1418 unsigned long addr, unsigned long end,
1419 unsigned long pfn, pgprot_t prot)
1421 pte_t *pte;
1422 spinlock_t *ptl;
1424 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1425 if (!pte)
1426 return -ENOMEM;
1427 arch_enter_lazy_mmu_mode();
1428 do {
1429 BUG_ON(!pte_none(*pte));
1430 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1431 pfn++;
1432 } while (pte++, addr += PAGE_SIZE, addr != end);
1433 arch_leave_lazy_mmu_mode();
1434 pte_unmap_unlock(pte - 1, ptl);
1435 return 0;
1438 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1439 unsigned long addr, unsigned long end,
1440 unsigned long pfn, pgprot_t prot)
1442 pmd_t *pmd;
1443 unsigned long next;
1445 pfn -= addr >> PAGE_SHIFT;
1446 pmd = pmd_alloc(mm, pud, addr);
1447 if (!pmd)
1448 return -ENOMEM;
1449 do {
1450 next = pmd_addr_end(addr, end);
1451 if (remap_pte_range(mm, pmd, addr, next,
1452 pfn + (addr >> PAGE_SHIFT), prot))
1453 return -ENOMEM;
1454 } while (pmd++, addr = next, addr != end);
1455 return 0;
1458 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1459 unsigned long addr, unsigned long end,
1460 unsigned long pfn, pgprot_t prot)
1462 pud_t *pud;
1463 unsigned long next;
1465 pfn -= addr >> PAGE_SHIFT;
1466 pud = pud_alloc(mm, pgd, addr);
1467 if (!pud)
1468 return -ENOMEM;
1469 do {
1470 next = pud_addr_end(addr, end);
1471 if (remap_pmd_range(mm, pud, addr, next,
1472 pfn + (addr >> PAGE_SHIFT), prot))
1473 return -ENOMEM;
1474 } while (pud++, addr = next, addr != end);
1475 return 0;
1479 * remap_pfn_range - remap kernel memory to userspace
1480 * @vma: user vma to map to
1481 * @addr: target user address to start at
1482 * @pfn: physical address of kernel memory
1483 * @size: size of map area
1484 * @prot: page protection flags for this mapping
1486 * Note: this is only safe if the mm semaphore is held when called.
1488 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1489 unsigned long pfn, unsigned long size, pgprot_t prot)
1491 pgd_t *pgd;
1492 unsigned long next;
1493 unsigned long end = addr + PAGE_ALIGN(size);
1494 struct mm_struct *mm = vma->vm_mm;
1495 int err;
1498 * Physically remapped pages are special. Tell the
1499 * rest of the world about it:
1500 * VM_IO tells people not to look at these pages
1501 * (accesses can have side effects).
1502 * VM_RESERVED is specified all over the place, because
1503 * in 2.4 it kept swapout's vma scan off this vma; but
1504 * in 2.6 the LRU scan won't even find its pages, so this
1505 * flag means no more than count its pages in reserved_vm,
1506 * and omit it from core dump, even when VM_IO turned off.
1507 * VM_PFNMAP tells the core MM that the base pages are just
1508 * raw PFN mappings, and do not have a "struct page" associated
1509 * with them.
1511 * There's a horrible special case to handle copy-on-write
1512 * behaviour that some programs depend on. We mark the "original"
1513 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1515 if (is_cow_mapping(vma->vm_flags)) {
1516 if (addr != vma->vm_start || end != vma->vm_end)
1517 return -EINVAL;
1518 vma->vm_pgoff = pfn;
1521 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1523 BUG_ON(addr >= end);
1524 pfn -= addr >> PAGE_SHIFT;
1525 pgd = pgd_offset(mm, addr);
1526 flush_cache_range(vma, addr, end);
1527 do {
1528 next = pgd_addr_end(addr, end);
1529 err = remap_pud_range(mm, pgd, addr, next,
1530 pfn + (addr >> PAGE_SHIFT), prot);
1531 if (err)
1532 break;
1533 } while (pgd++, addr = next, addr != end);
1534 return err;
1536 EXPORT_SYMBOL(remap_pfn_range);
1538 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1539 unsigned long addr, unsigned long end,
1540 pte_fn_t fn, void *data)
1542 pte_t *pte;
1543 int err;
1544 pgtable_t token;
1545 spinlock_t *uninitialized_var(ptl);
1547 pte = (mm == &init_mm) ?
1548 pte_alloc_kernel(pmd, addr) :
1549 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1550 if (!pte)
1551 return -ENOMEM;
1553 BUG_ON(pmd_huge(*pmd));
1555 token = pmd_pgtable(*pmd);
1557 do {
1558 err = fn(pte, token, addr, data);
1559 if (err)
1560 break;
1561 } while (pte++, addr += PAGE_SIZE, addr != end);
1563 if (mm != &init_mm)
1564 pte_unmap_unlock(pte-1, ptl);
1565 return err;
1568 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1569 unsigned long addr, unsigned long end,
1570 pte_fn_t fn, void *data)
1572 pmd_t *pmd;
1573 unsigned long next;
1574 int err;
1576 BUG_ON(pud_huge(*pud));
1578 pmd = pmd_alloc(mm, pud, addr);
1579 if (!pmd)
1580 return -ENOMEM;
1581 do {
1582 next = pmd_addr_end(addr, end);
1583 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1584 if (err)
1585 break;
1586 } while (pmd++, addr = next, addr != end);
1587 return err;
1590 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1591 unsigned long addr, unsigned long end,
1592 pte_fn_t fn, void *data)
1594 pud_t *pud;
1595 unsigned long next;
1596 int err;
1598 pud = pud_alloc(mm, pgd, addr);
1599 if (!pud)
1600 return -ENOMEM;
1601 do {
1602 next = pud_addr_end(addr, end);
1603 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1604 if (err)
1605 break;
1606 } while (pud++, addr = next, addr != end);
1607 return err;
1611 * Scan a region of virtual memory, filling in page tables as necessary
1612 * and calling a provided function on each leaf page table.
1614 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1615 unsigned long size, pte_fn_t fn, void *data)
1617 pgd_t *pgd;
1618 unsigned long next;
1619 unsigned long end = addr + size;
1620 int err;
1622 BUG_ON(addr >= end);
1623 pgd = pgd_offset(mm, addr);
1624 do {
1625 next = pgd_addr_end(addr, end);
1626 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1627 if (err)
1628 break;
1629 } while (pgd++, addr = next, addr != end);
1630 return err;
1632 EXPORT_SYMBOL_GPL(apply_to_page_range);
1635 * handle_pte_fault chooses page fault handler according to an entry
1636 * which was read non-atomically. Before making any commitment, on
1637 * those architectures or configurations (e.g. i386 with PAE) which
1638 * might give a mix of unmatched parts, do_swap_page and do_file_page
1639 * must check under lock before unmapping the pte and proceeding
1640 * (but do_wp_page is only called after already making such a check;
1641 * and do_anonymous_page and do_no_page can safely check later on).
1643 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1644 pte_t *page_table, pte_t orig_pte)
1646 int same = 1;
1647 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1648 if (sizeof(pte_t) > sizeof(unsigned long)) {
1649 spinlock_t *ptl = pte_lockptr(mm, pmd);
1650 spin_lock(ptl);
1651 same = pte_same(*page_table, orig_pte);
1652 spin_unlock(ptl);
1654 #endif
1655 pte_unmap(page_table);
1656 return same;
1660 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1661 * servicing faults for write access. In the normal case, do always want
1662 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1663 * that do not have writing enabled, when used by access_process_vm.
1665 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1667 if (likely(vma->vm_flags & VM_WRITE))
1668 pte = pte_mkwrite(pte);
1669 return pte;
1672 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1675 * If the source page was a PFN mapping, we don't have
1676 * a "struct page" for it. We do a best-effort copy by
1677 * just copying from the original user address. If that
1678 * fails, we just zero-fill it. Live with it.
1680 if (unlikely(!src)) {
1681 void *kaddr = kmap_atomic(dst, KM_USER0);
1682 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1685 * This really shouldn't fail, because the page is there
1686 * in the page tables. But it might just be unreadable,
1687 * in which case we just give up and fill the result with
1688 * zeroes.
1690 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1691 memset(kaddr, 0, PAGE_SIZE);
1692 kunmap_atomic(kaddr, KM_USER0);
1693 flush_dcache_page(dst);
1694 } else
1695 copy_user_highpage(dst, src, va, vma);
1699 * This routine handles present pages, when users try to write
1700 * to a shared page. It is done by copying the page to a new address
1701 * and decrementing the shared-page counter for the old page.
1703 * Note that this routine assumes that the protection checks have been
1704 * done by the caller (the low-level page fault routine in most cases).
1705 * Thus we can safely just mark it writable once we've done any necessary
1706 * COW.
1708 * We also mark the page dirty at this point even though the page will
1709 * change only once the write actually happens. This avoids a few races,
1710 * and potentially makes it more efficient.
1712 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1713 * but allow concurrent faults), with pte both mapped and locked.
1714 * We return with mmap_sem still held, but pte unmapped and unlocked.
1716 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1717 unsigned long address, pte_t *page_table, pmd_t *pmd,
1718 spinlock_t *ptl, pte_t orig_pte)
1720 struct page *old_page, *new_page;
1721 pte_t entry;
1722 int reuse = 0, ret = 0;
1723 int page_mkwrite = 0;
1724 struct page *dirty_page = NULL;
1726 old_page = vm_normal_page(vma, address, orig_pte);
1727 if (!old_page) {
1729 * VM_MIXEDMAP !pfn_valid() case
1731 * We should not cow pages in a shared writeable mapping.
1732 * Just mark the pages writable as we can't do any dirty
1733 * accounting on raw pfn maps.
1735 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1736 (VM_WRITE|VM_SHARED))
1737 goto reuse;
1738 goto gotten;
1742 * Take out anonymous pages first, anonymous shared vmas are
1743 * not dirty accountable.
1745 if (PageAnon(old_page)) {
1746 if (!TestSetPageLocked(old_page)) {
1747 reuse = can_share_swap_page(old_page);
1748 unlock_page(old_page);
1750 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1751 (VM_WRITE|VM_SHARED))) {
1753 * Only catch write-faults on shared writable pages,
1754 * read-only shared pages can get COWed by
1755 * get_user_pages(.write=1, .force=1).
1757 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1759 * Notify the address space that the page is about to
1760 * become writable so that it can prohibit this or wait
1761 * for the page to get into an appropriate state.
1763 * We do this without the lock held, so that it can
1764 * sleep if it needs to.
1766 page_cache_get(old_page);
1767 pte_unmap_unlock(page_table, ptl);
1769 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1770 goto unwritable_page;
1773 * Since we dropped the lock we need to revalidate
1774 * the PTE as someone else may have changed it. If
1775 * they did, we just return, as we can count on the
1776 * MMU to tell us if they didn't also make it writable.
1778 page_table = pte_offset_map_lock(mm, pmd, address,
1779 &ptl);
1780 page_cache_release(old_page);
1781 if (!pte_same(*page_table, orig_pte))
1782 goto unlock;
1784 page_mkwrite = 1;
1786 dirty_page = old_page;
1787 get_page(dirty_page);
1788 reuse = 1;
1791 if (reuse) {
1792 reuse:
1793 flush_cache_page(vma, address, pte_pfn(orig_pte));
1794 entry = pte_mkyoung(orig_pte);
1795 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1796 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1797 update_mmu_cache(vma, address, entry);
1798 ret |= VM_FAULT_WRITE;
1799 goto unlock;
1803 * Ok, we need to copy. Oh, well..
1805 page_cache_get(old_page);
1806 gotten:
1807 pte_unmap_unlock(page_table, ptl);
1809 if (unlikely(anon_vma_prepare(vma)))
1810 goto oom;
1811 VM_BUG_ON(old_page == ZERO_PAGE(0));
1812 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1813 if (!new_page)
1814 goto oom;
1815 cow_user_page(new_page, old_page, address, vma);
1816 __SetPageUptodate(new_page);
1818 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1819 goto oom_free_new;
1822 * Re-check the pte - we dropped the lock
1824 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1825 if (likely(pte_same(*page_table, orig_pte))) {
1826 if (old_page) {
1827 if (!PageAnon(old_page)) {
1828 dec_mm_counter(mm, file_rss);
1829 inc_mm_counter(mm, anon_rss);
1831 } else
1832 inc_mm_counter(mm, anon_rss);
1833 flush_cache_page(vma, address, pte_pfn(orig_pte));
1834 entry = mk_pte(new_page, vma->vm_page_prot);
1835 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1837 * Clear the pte entry and flush it first, before updating the
1838 * pte with the new entry. This will avoid a race condition
1839 * seen in the presence of one thread doing SMC and another
1840 * thread doing COW.
1842 ptep_clear_flush(vma, address, page_table);
1843 set_pte_at(mm, address, page_table, entry);
1844 update_mmu_cache(vma, address, entry);
1845 lru_cache_add_active(new_page);
1846 page_add_new_anon_rmap(new_page, vma, address);
1848 if (old_page) {
1850 * Only after switching the pte to the new page may
1851 * we remove the mapcount here. Otherwise another
1852 * process may come and find the rmap count decremented
1853 * before the pte is switched to the new page, and
1854 * "reuse" the old page writing into it while our pte
1855 * here still points into it and can be read by other
1856 * threads.
1858 * The critical issue is to order this
1859 * page_remove_rmap with the ptp_clear_flush above.
1860 * Those stores are ordered by (if nothing else,)
1861 * the barrier present in the atomic_add_negative
1862 * in page_remove_rmap.
1864 * Then the TLB flush in ptep_clear_flush ensures that
1865 * no process can access the old page before the
1866 * decremented mapcount is visible. And the old page
1867 * cannot be reused until after the decremented
1868 * mapcount is visible. So transitively, TLBs to
1869 * old page will be flushed before it can be reused.
1871 page_remove_rmap(old_page, vma);
1874 /* Free the old page.. */
1875 new_page = old_page;
1876 ret |= VM_FAULT_WRITE;
1877 } else
1878 mem_cgroup_uncharge_page(new_page);
1880 if (new_page)
1881 page_cache_release(new_page);
1882 if (old_page)
1883 page_cache_release(old_page);
1884 unlock:
1885 pte_unmap_unlock(page_table, ptl);
1886 if (dirty_page) {
1887 if (vma->vm_file)
1888 file_update_time(vma->vm_file);
1891 * Yes, Virginia, this is actually required to prevent a race
1892 * with clear_page_dirty_for_io() from clearing the page dirty
1893 * bit after it clear all dirty ptes, but before a racing
1894 * do_wp_page installs a dirty pte.
1896 * do_no_page is protected similarly.
1898 wait_on_page_locked(dirty_page);
1899 set_page_dirty_balance(dirty_page, page_mkwrite);
1900 put_page(dirty_page);
1902 return ret;
1903 oom_free_new:
1904 page_cache_release(new_page);
1905 oom:
1906 if (old_page)
1907 page_cache_release(old_page);
1908 return VM_FAULT_OOM;
1910 unwritable_page:
1911 page_cache_release(old_page);
1912 return VM_FAULT_SIGBUS;
1916 * Helper functions for unmap_mapping_range().
1918 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1920 * We have to restart searching the prio_tree whenever we drop the lock,
1921 * since the iterator is only valid while the lock is held, and anyway
1922 * a later vma might be split and reinserted earlier while lock dropped.
1924 * The list of nonlinear vmas could be handled more efficiently, using
1925 * a placeholder, but handle it in the same way until a need is shown.
1926 * It is important to search the prio_tree before nonlinear list: a vma
1927 * may become nonlinear and be shifted from prio_tree to nonlinear list
1928 * while the lock is dropped; but never shifted from list to prio_tree.
1930 * In order to make forward progress despite restarting the search,
1931 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1932 * quickly skip it next time around. Since the prio_tree search only
1933 * shows us those vmas affected by unmapping the range in question, we
1934 * can't efficiently keep all vmas in step with mapping->truncate_count:
1935 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1936 * mapping->truncate_count and vma->vm_truncate_count are protected by
1937 * i_mmap_lock.
1939 * In order to make forward progress despite repeatedly restarting some
1940 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1941 * and restart from that address when we reach that vma again. It might
1942 * have been split or merged, shrunk or extended, but never shifted: so
1943 * restart_addr remains valid so long as it remains in the vma's range.
1944 * unmap_mapping_range forces truncate_count to leap over page-aligned
1945 * values so we can save vma's restart_addr in its truncate_count field.
1947 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1949 static void reset_vma_truncate_counts(struct address_space *mapping)
1951 struct vm_area_struct *vma;
1952 struct prio_tree_iter iter;
1954 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1955 vma->vm_truncate_count = 0;
1956 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1957 vma->vm_truncate_count = 0;
1960 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1961 unsigned long start_addr, unsigned long end_addr,
1962 struct zap_details *details)
1964 unsigned long restart_addr;
1965 int need_break;
1968 * files that support invalidating or truncating portions of the
1969 * file from under mmaped areas must have their ->fault function
1970 * return a locked page (and set VM_FAULT_LOCKED in the return).
1971 * This provides synchronisation against concurrent unmapping here.
1974 again:
1975 restart_addr = vma->vm_truncate_count;
1976 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1977 start_addr = restart_addr;
1978 if (start_addr >= end_addr) {
1979 /* Top of vma has been split off since last time */
1980 vma->vm_truncate_count = details->truncate_count;
1981 return 0;
1985 restart_addr = zap_page_range(vma, start_addr,
1986 end_addr - start_addr, details);
1987 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1989 if (restart_addr >= end_addr) {
1990 /* We have now completed this vma: mark it so */
1991 vma->vm_truncate_count = details->truncate_count;
1992 if (!need_break)
1993 return 0;
1994 } else {
1995 /* Note restart_addr in vma's truncate_count field */
1996 vma->vm_truncate_count = restart_addr;
1997 if (!need_break)
1998 goto again;
2001 spin_unlock(details->i_mmap_lock);
2002 cond_resched();
2003 spin_lock(details->i_mmap_lock);
2004 return -EINTR;
2007 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2008 struct zap_details *details)
2010 struct vm_area_struct *vma;
2011 struct prio_tree_iter iter;
2012 pgoff_t vba, vea, zba, zea;
2014 restart:
2015 vma_prio_tree_foreach(vma, &iter, root,
2016 details->first_index, details->last_index) {
2017 /* Skip quickly over those we have already dealt with */
2018 if (vma->vm_truncate_count == details->truncate_count)
2019 continue;
2021 vba = vma->vm_pgoff;
2022 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2023 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2024 zba = details->first_index;
2025 if (zba < vba)
2026 zba = vba;
2027 zea = details->last_index;
2028 if (zea > vea)
2029 zea = vea;
2031 if (unmap_mapping_range_vma(vma,
2032 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2033 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2034 details) < 0)
2035 goto restart;
2039 static inline void unmap_mapping_range_list(struct list_head *head,
2040 struct zap_details *details)
2042 struct vm_area_struct *vma;
2045 * In nonlinear VMAs there is no correspondence between virtual address
2046 * offset and file offset. So we must perform an exhaustive search
2047 * across *all* the pages in each nonlinear VMA, not just the pages
2048 * whose virtual address lies outside the file truncation point.
2050 restart:
2051 list_for_each_entry(vma, head, shared.vm_set.list) {
2052 /* Skip quickly over those we have already dealt with */
2053 if (vma->vm_truncate_count == details->truncate_count)
2054 continue;
2055 details->nonlinear_vma = vma;
2056 if (unmap_mapping_range_vma(vma, vma->vm_start,
2057 vma->vm_end, details) < 0)
2058 goto restart;
2063 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2064 * @mapping: the address space containing mmaps to be unmapped.
2065 * @holebegin: byte in first page to unmap, relative to the start of
2066 * the underlying file. This will be rounded down to a PAGE_SIZE
2067 * boundary. Note that this is different from vmtruncate(), which
2068 * must keep the partial page. In contrast, we must get rid of
2069 * partial pages.
2070 * @holelen: size of prospective hole in bytes. This will be rounded
2071 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2072 * end of the file.
2073 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2074 * but 0 when invalidating pagecache, don't throw away private data.
2076 void unmap_mapping_range(struct address_space *mapping,
2077 loff_t const holebegin, loff_t const holelen, int even_cows)
2079 struct zap_details details;
2080 pgoff_t hba = holebegin >> PAGE_SHIFT;
2081 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2083 /* Check for overflow. */
2084 if (sizeof(holelen) > sizeof(hlen)) {
2085 long long holeend =
2086 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2087 if (holeend & ~(long long)ULONG_MAX)
2088 hlen = ULONG_MAX - hba + 1;
2091 details.check_mapping = even_cows? NULL: mapping;
2092 details.nonlinear_vma = NULL;
2093 details.first_index = hba;
2094 details.last_index = hba + hlen - 1;
2095 if (details.last_index < details.first_index)
2096 details.last_index = ULONG_MAX;
2097 details.i_mmap_lock = &mapping->i_mmap_lock;
2099 spin_lock(&mapping->i_mmap_lock);
2101 /* Protect against endless unmapping loops */
2102 mapping->truncate_count++;
2103 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2104 if (mapping->truncate_count == 0)
2105 reset_vma_truncate_counts(mapping);
2106 mapping->truncate_count++;
2108 details.truncate_count = mapping->truncate_count;
2110 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2111 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2112 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2113 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2114 spin_unlock(&mapping->i_mmap_lock);
2116 EXPORT_SYMBOL(unmap_mapping_range);
2119 * vmtruncate - unmap mappings "freed" by truncate() syscall
2120 * @inode: inode of the file used
2121 * @offset: file offset to start truncating
2123 * NOTE! We have to be ready to update the memory sharing
2124 * between the file and the memory map for a potential last
2125 * incomplete page. Ugly, but necessary.
2127 int vmtruncate(struct inode * inode, loff_t offset)
2129 if (inode->i_size < offset) {
2130 unsigned long limit;
2132 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2133 if (limit != RLIM_INFINITY && offset > limit)
2134 goto out_sig;
2135 if (offset > inode->i_sb->s_maxbytes)
2136 goto out_big;
2137 i_size_write(inode, offset);
2138 } else {
2139 struct address_space *mapping = inode->i_mapping;
2142 * truncation of in-use swapfiles is disallowed - it would
2143 * cause subsequent swapout to scribble on the now-freed
2144 * blocks.
2146 if (IS_SWAPFILE(inode))
2147 return -ETXTBSY;
2148 i_size_write(inode, offset);
2151 * unmap_mapping_range is called twice, first simply for
2152 * efficiency so that truncate_inode_pages does fewer
2153 * single-page unmaps. However after this first call, and
2154 * before truncate_inode_pages finishes, it is possible for
2155 * private pages to be COWed, which remain after
2156 * truncate_inode_pages finishes, hence the second
2157 * unmap_mapping_range call must be made for correctness.
2159 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2160 truncate_inode_pages(mapping, offset);
2161 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2164 if (inode->i_op && inode->i_op->truncate)
2165 inode->i_op->truncate(inode);
2166 return 0;
2168 out_sig:
2169 send_sig(SIGXFSZ, current, 0);
2170 out_big:
2171 return -EFBIG;
2173 EXPORT_SYMBOL(vmtruncate);
2175 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2177 struct address_space *mapping = inode->i_mapping;
2180 * If the underlying filesystem is not going to provide
2181 * a way to truncate a range of blocks (punch a hole) -
2182 * we should return failure right now.
2184 if (!inode->i_op || !inode->i_op->truncate_range)
2185 return -ENOSYS;
2187 mutex_lock(&inode->i_mutex);
2188 down_write(&inode->i_alloc_sem);
2189 unmap_mapping_range(mapping, offset, (end - offset), 1);
2190 truncate_inode_pages_range(mapping, offset, end);
2191 unmap_mapping_range(mapping, offset, (end - offset), 1);
2192 inode->i_op->truncate_range(inode, offset, end);
2193 up_write(&inode->i_alloc_sem);
2194 mutex_unlock(&inode->i_mutex);
2196 return 0;
2200 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2201 * but allow concurrent faults), and pte mapped but not yet locked.
2202 * We return with mmap_sem still held, but pte unmapped and unlocked.
2204 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2205 unsigned long address, pte_t *page_table, pmd_t *pmd,
2206 int write_access, pte_t orig_pte)
2208 spinlock_t *ptl;
2209 struct page *page;
2210 swp_entry_t entry;
2211 pte_t pte;
2212 int ret = 0;
2214 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2215 goto out;
2217 entry = pte_to_swp_entry(orig_pte);
2218 if (is_migration_entry(entry)) {
2219 migration_entry_wait(mm, pmd, address);
2220 goto out;
2222 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2223 page = lookup_swap_cache(entry);
2224 if (!page) {
2225 grab_swap_token(); /* Contend for token _before_ read-in */
2226 page = swapin_readahead(entry,
2227 GFP_HIGHUSER_MOVABLE, vma, address);
2228 if (!page) {
2230 * Back out if somebody else faulted in this pte
2231 * while we released the pte lock.
2233 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2234 if (likely(pte_same(*page_table, orig_pte)))
2235 ret = VM_FAULT_OOM;
2236 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2237 goto unlock;
2240 /* Had to read the page from swap area: Major fault */
2241 ret = VM_FAULT_MAJOR;
2242 count_vm_event(PGMAJFAULT);
2245 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2246 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2247 ret = VM_FAULT_OOM;
2248 goto out;
2251 mark_page_accessed(page);
2252 lock_page(page);
2253 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2256 * Back out if somebody else already faulted in this pte.
2258 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2259 if (unlikely(!pte_same(*page_table, orig_pte)))
2260 goto out_nomap;
2262 if (unlikely(!PageUptodate(page))) {
2263 ret = VM_FAULT_SIGBUS;
2264 goto out_nomap;
2267 /* The page isn't present yet, go ahead with the fault. */
2269 inc_mm_counter(mm, anon_rss);
2270 pte = mk_pte(page, vma->vm_page_prot);
2271 if (write_access && can_share_swap_page(page)) {
2272 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2273 write_access = 0;
2276 flush_icache_page(vma, page);
2277 set_pte_at(mm, address, page_table, pte);
2278 page_add_anon_rmap(page, vma, address);
2280 swap_free(entry);
2281 if (vm_swap_full())
2282 remove_exclusive_swap_page(page);
2283 unlock_page(page);
2285 if (write_access) {
2286 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2287 if (ret & VM_FAULT_ERROR)
2288 ret &= VM_FAULT_ERROR;
2289 goto out;
2292 /* No need to invalidate - it was non-present before */
2293 update_mmu_cache(vma, address, pte);
2294 unlock:
2295 pte_unmap_unlock(page_table, ptl);
2296 out:
2297 return ret;
2298 out_nomap:
2299 mem_cgroup_uncharge_page(page);
2300 pte_unmap_unlock(page_table, ptl);
2301 unlock_page(page);
2302 page_cache_release(page);
2303 return ret;
2307 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2308 * but allow concurrent faults), and pte mapped but not yet locked.
2309 * We return with mmap_sem still held, but pte unmapped and unlocked.
2311 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2312 unsigned long address, pte_t *page_table, pmd_t *pmd,
2313 int write_access)
2315 struct page *page;
2316 spinlock_t *ptl;
2317 pte_t entry;
2319 /* Allocate our own private page. */
2320 pte_unmap(page_table);
2322 if (unlikely(anon_vma_prepare(vma)))
2323 goto oom;
2324 page = alloc_zeroed_user_highpage_movable(vma, address);
2325 if (!page)
2326 goto oom;
2327 __SetPageUptodate(page);
2329 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2330 goto oom_free_page;
2332 entry = mk_pte(page, vma->vm_page_prot);
2333 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2335 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2336 if (!pte_none(*page_table))
2337 goto release;
2338 inc_mm_counter(mm, anon_rss);
2339 lru_cache_add_active(page);
2340 page_add_new_anon_rmap(page, vma, address);
2341 set_pte_at(mm, address, page_table, entry);
2343 /* No need to invalidate - it was non-present before */
2344 update_mmu_cache(vma, address, entry);
2345 unlock:
2346 pte_unmap_unlock(page_table, ptl);
2347 return 0;
2348 release:
2349 mem_cgroup_uncharge_page(page);
2350 page_cache_release(page);
2351 goto unlock;
2352 oom_free_page:
2353 page_cache_release(page);
2354 oom:
2355 return VM_FAULT_OOM;
2359 * __do_fault() tries to create a new page mapping. It aggressively
2360 * tries to share with existing pages, but makes a separate copy if
2361 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2362 * the next page fault.
2364 * As this is called only for pages that do not currently exist, we
2365 * do not need to flush old virtual caches or the TLB.
2367 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2368 * but allow concurrent faults), and pte neither mapped nor locked.
2369 * We return with mmap_sem still held, but pte unmapped and unlocked.
2371 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2372 unsigned long address, pmd_t *pmd,
2373 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2375 pte_t *page_table;
2376 spinlock_t *ptl;
2377 struct page *page;
2378 pte_t entry;
2379 int anon = 0;
2380 struct page *dirty_page = NULL;
2381 struct vm_fault vmf;
2382 int ret;
2383 int page_mkwrite = 0;
2385 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2386 vmf.pgoff = pgoff;
2387 vmf.flags = flags;
2388 vmf.page = NULL;
2390 ret = vma->vm_ops->fault(vma, &vmf);
2391 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2392 return ret;
2395 * For consistency in subsequent calls, make the faulted page always
2396 * locked.
2398 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2399 lock_page(vmf.page);
2400 else
2401 VM_BUG_ON(!PageLocked(vmf.page));
2404 * Should we do an early C-O-W break?
2406 page = vmf.page;
2407 if (flags & FAULT_FLAG_WRITE) {
2408 if (!(vma->vm_flags & VM_SHARED)) {
2409 anon = 1;
2410 if (unlikely(anon_vma_prepare(vma))) {
2411 ret = VM_FAULT_OOM;
2412 goto out;
2414 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2415 vma, address);
2416 if (!page) {
2417 ret = VM_FAULT_OOM;
2418 goto out;
2420 copy_user_highpage(page, vmf.page, address, vma);
2421 __SetPageUptodate(page);
2422 } else {
2424 * If the page will be shareable, see if the backing
2425 * address space wants to know that the page is about
2426 * to become writable
2428 if (vma->vm_ops->page_mkwrite) {
2429 unlock_page(page);
2430 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2431 ret = VM_FAULT_SIGBUS;
2432 anon = 1; /* no anon but release vmf.page */
2433 goto out_unlocked;
2435 lock_page(page);
2437 * XXX: this is not quite right (racy vs
2438 * invalidate) to unlock and relock the page
2439 * like this, however a better fix requires
2440 * reworking page_mkwrite locking API, which
2441 * is better done later.
2443 if (!page->mapping) {
2444 ret = 0;
2445 anon = 1; /* no anon but release vmf.page */
2446 goto out;
2448 page_mkwrite = 1;
2454 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2455 ret = VM_FAULT_OOM;
2456 goto out;
2459 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2462 * This silly early PAGE_DIRTY setting removes a race
2463 * due to the bad i386 page protection. But it's valid
2464 * for other architectures too.
2466 * Note that if write_access is true, we either now have
2467 * an exclusive copy of the page, or this is a shared mapping,
2468 * so we can make it writable and dirty to avoid having to
2469 * handle that later.
2471 /* Only go through if we didn't race with anybody else... */
2472 if (likely(pte_same(*page_table, orig_pte))) {
2473 flush_icache_page(vma, page);
2474 entry = mk_pte(page, vma->vm_page_prot);
2475 if (flags & FAULT_FLAG_WRITE)
2476 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2477 set_pte_at(mm, address, page_table, entry);
2478 if (anon) {
2479 inc_mm_counter(mm, anon_rss);
2480 lru_cache_add_active(page);
2481 page_add_new_anon_rmap(page, vma, address);
2482 } else {
2483 inc_mm_counter(mm, file_rss);
2484 page_add_file_rmap(page);
2485 if (flags & FAULT_FLAG_WRITE) {
2486 dirty_page = page;
2487 get_page(dirty_page);
2491 /* no need to invalidate: a not-present page won't be cached */
2492 update_mmu_cache(vma, address, entry);
2493 } else {
2494 mem_cgroup_uncharge_page(page);
2495 if (anon)
2496 page_cache_release(page);
2497 else
2498 anon = 1; /* no anon but release faulted_page */
2501 pte_unmap_unlock(page_table, ptl);
2503 out:
2504 unlock_page(vmf.page);
2505 out_unlocked:
2506 if (anon)
2507 page_cache_release(vmf.page);
2508 else if (dirty_page) {
2509 if (vma->vm_file)
2510 file_update_time(vma->vm_file);
2512 set_page_dirty_balance(dirty_page, page_mkwrite);
2513 put_page(dirty_page);
2516 return ret;
2519 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2520 unsigned long address, pte_t *page_table, pmd_t *pmd,
2521 int write_access, pte_t orig_pte)
2523 pgoff_t pgoff = (((address & PAGE_MASK)
2524 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2525 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2527 pte_unmap(page_table);
2528 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2532 * Fault of a previously existing named mapping. Repopulate the pte
2533 * from the encoded file_pte if possible. This enables swappable
2534 * nonlinear vmas.
2536 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2537 * but allow concurrent faults), and pte mapped but not yet locked.
2538 * We return with mmap_sem still held, but pte unmapped and unlocked.
2540 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2541 unsigned long address, pte_t *page_table, pmd_t *pmd,
2542 int write_access, pte_t orig_pte)
2544 unsigned int flags = FAULT_FLAG_NONLINEAR |
2545 (write_access ? FAULT_FLAG_WRITE : 0);
2546 pgoff_t pgoff;
2548 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2549 return 0;
2551 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2552 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2554 * Page table corrupted: show pte and kill process.
2556 print_bad_pte(vma, orig_pte, address);
2557 return VM_FAULT_OOM;
2560 pgoff = pte_to_pgoff(orig_pte);
2561 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2565 * These routines also need to handle stuff like marking pages dirty
2566 * and/or accessed for architectures that don't do it in hardware (most
2567 * RISC architectures). The early dirtying is also good on the i386.
2569 * There is also a hook called "update_mmu_cache()" that architectures
2570 * with external mmu caches can use to update those (ie the Sparc or
2571 * PowerPC hashed page tables that act as extended TLBs).
2573 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2574 * but allow concurrent faults), and pte mapped but not yet locked.
2575 * We return with mmap_sem still held, but pte unmapped and unlocked.
2577 static inline int handle_pte_fault(struct mm_struct *mm,
2578 struct vm_area_struct *vma, unsigned long address,
2579 pte_t *pte, pmd_t *pmd, int write_access)
2581 pte_t entry;
2582 spinlock_t *ptl;
2584 entry = *pte;
2585 if (!pte_present(entry)) {
2586 if (pte_none(entry)) {
2587 if (vma->vm_ops) {
2588 if (likely(vma->vm_ops->fault))
2589 return do_linear_fault(mm, vma, address,
2590 pte, pmd, write_access, entry);
2592 return do_anonymous_page(mm, vma, address,
2593 pte, pmd, write_access);
2595 if (pte_file(entry))
2596 return do_nonlinear_fault(mm, vma, address,
2597 pte, pmd, write_access, entry);
2598 return do_swap_page(mm, vma, address,
2599 pte, pmd, write_access, entry);
2602 ptl = pte_lockptr(mm, pmd);
2603 spin_lock(ptl);
2604 if (unlikely(!pte_same(*pte, entry)))
2605 goto unlock;
2606 if (write_access) {
2607 if (!pte_write(entry))
2608 return do_wp_page(mm, vma, address,
2609 pte, pmd, ptl, entry);
2610 entry = pte_mkdirty(entry);
2612 entry = pte_mkyoung(entry);
2613 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2614 update_mmu_cache(vma, address, entry);
2615 } else {
2617 * This is needed only for protection faults but the arch code
2618 * is not yet telling us if this is a protection fault or not.
2619 * This still avoids useless tlb flushes for .text page faults
2620 * with threads.
2622 if (write_access)
2623 flush_tlb_page(vma, address);
2625 unlock:
2626 pte_unmap_unlock(pte, ptl);
2627 return 0;
2631 * By the time we get here, we already hold the mm semaphore
2633 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2634 unsigned long address, int write_access)
2636 pgd_t *pgd;
2637 pud_t *pud;
2638 pmd_t *pmd;
2639 pte_t *pte;
2641 __set_current_state(TASK_RUNNING);
2643 count_vm_event(PGFAULT);
2645 if (unlikely(is_vm_hugetlb_page(vma)))
2646 return hugetlb_fault(mm, vma, address, write_access);
2648 pgd = pgd_offset(mm, address);
2649 pud = pud_alloc(mm, pgd, address);
2650 if (!pud)
2651 return VM_FAULT_OOM;
2652 pmd = pmd_alloc(mm, pud, address);
2653 if (!pmd)
2654 return VM_FAULT_OOM;
2655 pte = pte_alloc_map(mm, pmd, address);
2656 if (!pte)
2657 return VM_FAULT_OOM;
2659 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2662 #ifndef __PAGETABLE_PUD_FOLDED
2664 * Allocate page upper directory.
2665 * We've already handled the fast-path in-line.
2667 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2669 pud_t *new = pud_alloc_one(mm, address);
2670 if (!new)
2671 return -ENOMEM;
2673 smp_wmb(); /* See comment in __pte_alloc */
2675 spin_lock(&mm->page_table_lock);
2676 if (pgd_present(*pgd)) /* Another has populated it */
2677 pud_free(mm, new);
2678 else
2679 pgd_populate(mm, pgd, new);
2680 spin_unlock(&mm->page_table_lock);
2681 return 0;
2683 #endif /* __PAGETABLE_PUD_FOLDED */
2685 #ifndef __PAGETABLE_PMD_FOLDED
2687 * Allocate page middle directory.
2688 * We've already handled the fast-path in-line.
2690 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2692 pmd_t *new = pmd_alloc_one(mm, address);
2693 if (!new)
2694 return -ENOMEM;
2696 smp_wmb(); /* See comment in __pte_alloc */
2698 spin_lock(&mm->page_table_lock);
2699 #ifndef __ARCH_HAS_4LEVEL_HACK
2700 if (pud_present(*pud)) /* Another has populated it */
2701 pmd_free(mm, new);
2702 else
2703 pud_populate(mm, pud, new);
2704 #else
2705 if (pgd_present(*pud)) /* Another has populated it */
2706 pmd_free(mm, new);
2707 else
2708 pgd_populate(mm, pud, new);
2709 #endif /* __ARCH_HAS_4LEVEL_HACK */
2710 spin_unlock(&mm->page_table_lock);
2711 return 0;
2713 #endif /* __PAGETABLE_PMD_FOLDED */
2715 int make_pages_present(unsigned long addr, unsigned long end)
2717 int ret, len, write;
2718 struct vm_area_struct * vma;
2720 vma = find_vma(current->mm, addr);
2721 if (!vma)
2722 return -1;
2723 write = (vma->vm_flags & VM_WRITE) != 0;
2724 BUG_ON(addr >= end);
2725 BUG_ON(end > vma->vm_end);
2726 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2727 ret = get_user_pages(current, current->mm, addr,
2728 len, write, 0, NULL, NULL);
2729 if (ret < 0)
2730 return ret;
2731 return ret == len ? 0 : -1;
2734 #if !defined(__HAVE_ARCH_GATE_AREA)
2736 #if defined(AT_SYSINFO_EHDR)
2737 static struct vm_area_struct gate_vma;
2739 static int __init gate_vma_init(void)
2741 gate_vma.vm_mm = NULL;
2742 gate_vma.vm_start = FIXADDR_USER_START;
2743 gate_vma.vm_end = FIXADDR_USER_END;
2744 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2745 gate_vma.vm_page_prot = __P101;
2747 * Make sure the vDSO gets into every core dump.
2748 * Dumping its contents makes post-mortem fully interpretable later
2749 * without matching up the same kernel and hardware config to see
2750 * what PC values meant.
2752 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2753 return 0;
2755 __initcall(gate_vma_init);
2756 #endif
2758 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2760 #ifdef AT_SYSINFO_EHDR
2761 return &gate_vma;
2762 #else
2763 return NULL;
2764 #endif
2767 int in_gate_area_no_task(unsigned long addr)
2769 #ifdef AT_SYSINFO_EHDR
2770 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2771 return 1;
2772 #endif
2773 return 0;
2776 #endif /* __HAVE_ARCH_GATE_AREA */
2778 #ifdef CONFIG_HAVE_IOREMAP_PROT
2779 static resource_size_t follow_phys(struct vm_area_struct *vma,
2780 unsigned long address, unsigned int flags,
2781 unsigned long *prot)
2783 pgd_t *pgd;
2784 pud_t *pud;
2785 pmd_t *pmd;
2786 pte_t *ptep, pte;
2787 spinlock_t *ptl;
2788 resource_size_t phys_addr = 0;
2789 struct mm_struct *mm = vma->vm_mm;
2791 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2793 pgd = pgd_offset(mm, address);
2794 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2795 goto no_page_table;
2797 pud = pud_offset(pgd, address);
2798 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2799 goto no_page_table;
2801 pmd = pmd_offset(pud, address);
2802 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2803 goto no_page_table;
2805 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2806 if (pmd_huge(*pmd))
2807 goto no_page_table;
2809 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2810 if (!ptep)
2811 goto out;
2813 pte = *ptep;
2814 if (!pte_present(pte))
2815 goto unlock;
2816 if ((flags & FOLL_WRITE) && !pte_write(pte))
2817 goto unlock;
2818 phys_addr = pte_pfn(pte);
2819 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2821 *prot = pgprot_val(pte_pgprot(pte));
2823 unlock:
2824 pte_unmap_unlock(ptep, ptl);
2825 out:
2826 return phys_addr;
2827 no_page_table:
2828 return 0;
2831 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2832 void *buf, int len, int write)
2834 resource_size_t phys_addr;
2835 unsigned long prot = 0;
2836 void *maddr;
2837 int offset = addr & (PAGE_SIZE-1);
2839 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2840 return -EINVAL;
2842 phys_addr = follow_phys(vma, addr, write, &prot);
2844 if (!phys_addr)
2845 return -EINVAL;
2847 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2848 if (write)
2849 memcpy_toio(maddr + offset, buf, len);
2850 else
2851 memcpy_fromio(buf, maddr + offset, len);
2852 iounmap(maddr);
2854 return len;
2856 #endif
2859 * Access another process' address space.
2860 * Source/target buffer must be kernel space,
2861 * Do not walk the page table directly, use get_user_pages
2863 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2865 struct mm_struct *mm;
2866 struct vm_area_struct *vma;
2867 void *old_buf = buf;
2869 mm = get_task_mm(tsk);
2870 if (!mm)
2871 return 0;
2873 down_read(&mm->mmap_sem);
2874 /* ignore errors, just check how much was successfully transferred */
2875 while (len) {
2876 int bytes, ret, offset;
2877 void *maddr;
2878 struct page *page = NULL;
2880 ret = get_user_pages(tsk, mm, addr, 1,
2881 write, 1, &page, &vma);
2882 if (ret <= 0) {
2884 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2885 * we can access using slightly different code.
2887 #ifdef CONFIG_HAVE_IOREMAP_PROT
2888 vma = find_vma(mm, addr);
2889 if (!vma)
2890 break;
2891 if (vma->vm_ops && vma->vm_ops->access)
2892 ret = vma->vm_ops->access(vma, addr, buf,
2893 len, write);
2894 if (ret <= 0)
2895 #endif
2896 break;
2897 bytes = ret;
2898 } else {
2899 bytes = len;
2900 offset = addr & (PAGE_SIZE-1);
2901 if (bytes > PAGE_SIZE-offset)
2902 bytes = PAGE_SIZE-offset;
2904 maddr = kmap(page);
2905 if (write) {
2906 copy_to_user_page(vma, page, addr,
2907 maddr + offset, buf, bytes);
2908 set_page_dirty_lock(page);
2909 } else {
2910 copy_from_user_page(vma, page, addr,
2911 buf, maddr + offset, bytes);
2913 kunmap(page);
2914 page_cache_release(page);
2916 len -= bytes;
2917 buf += bytes;
2918 addr += bytes;
2920 up_read(&mm->mmap_sem);
2921 mmput(mm);
2923 return buf - old_buf;
2927 * Print the name of a VMA.
2929 void print_vma_addr(char *prefix, unsigned long ip)
2931 struct mm_struct *mm = current->mm;
2932 struct vm_area_struct *vma;
2935 * Do not print if we are in atomic
2936 * contexts (in exception stacks, etc.):
2938 if (preempt_count())
2939 return;
2941 down_read(&mm->mmap_sem);
2942 vma = find_vma(mm, ip);
2943 if (vma && vma->vm_file) {
2944 struct file *f = vma->vm_file;
2945 char *buf = (char *)__get_free_page(GFP_KERNEL);
2946 if (buf) {
2947 char *p, *s;
2949 p = d_path(&f->f_path, buf, PAGE_SIZE);
2950 if (IS_ERR(p))
2951 p = "?";
2952 s = strrchr(p, '/');
2953 if (s)
2954 p = s+1;
2955 printk("%s%s[%lx+%lx]", prefix, p,
2956 vma->vm_start,
2957 vma->vm_end - vma->vm_start);
2958 free_page((unsigned long)buf);
2961 up_read(&current->mm->mmap_sem);