4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
45 #include <linux/swapops.h>
50 /* Incremented by the number of inactive pages that were scanned */
51 unsigned long nr_scanned
;
53 /* This context's GFP mask */
58 /* Can pages be swapped as part of reclaim? */
61 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
62 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63 * In this context, it doesn't matter that we scan the
64 * whole list at once. */
69 int all_unreclaimable
;
74 * Pages that have (or should have) IO pending. If we run into
75 * a lot of these, we're better off waiting a little for IO to
76 * finish rather than scanning more pages in the VM.
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup
*mem_cgroup
;
83 /* Pluggable isolate pages callback */
84 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
85 unsigned long *scanned
, int order
, int mode
,
86 struct zone
*z
, struct mem_cgroup
*mem_cont
,
90 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
92 #ifdef ARCH_HAS_PREFETCH
93 #define prefetch_prev_lru_page(_page, _base, _field) \
95 if ((_page)->lru.prev != _base) { \
98 prev = lru_to_page(&(_page->lru)); \
99 prefetch(&prev->_field); \
103 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106 #ifdef ARCH_HAS_PREFETCHW
107 #define prefetchw_prev_lru_page(_page, _base, _field) \
109 if ((_page)->lru.prev != _base) { \
112 prev = lru_to_page(&(_page->lru)); \
113 prefetchw(&prev->_field); \
117 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
121 * From 0 .. 100. Higher means more swappy.
123 int vm_swappiness
= 60;
124 long vm_total_pages
; /* The total number of pages which the VM controls */
126 static LIST_HEAD(shrinker_list
);
127 static DECLARE_RWSEM(shrinker_rwsem
);
129 #ifdef CONFIG_CGROUP_MEM_CONT
130 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
132 #define scan_global_lru(sc) (1)
136 * Add a shrinker callback to be called from the vm
138 void register_shrinker(struct shrinker
*shrinker
)
141 down_write(&shrinker_rwsem
);
142 list_add_tail(&shrinker
->list
, &shrinker_list
);
143 up_write(&shrinker_rwsem
);
145 EXPORT_SYMBOL(register_shrinker
);
150 void unregister_shrinker(struct shrinker
*shrinker
)
152 down_write(&shrinker_rwsem
);
153 list_del(&shrinker
->list
);
154 up_write(&shrinker_rwsem
);
156 EXPORT_SYMBOL(unregister_shrinker
);
158 #define SHRINK_BATCH 128
160 * Call the shrink functions to age shrinkable caches
162 * Here we assume it costs one seek to replace a lru page and that it also
163 * takes a seek to recreate a cache object. With this in mind we age equal
164 * percentages of the lru and ageable caches. This should balance the seeks
165 * generated by these structures.
167 * If the vm encountered mapped pages on the LRU it increase the pressure on
168 * slab to avoid swapping.
170 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
172 * `lru_pages' represents the number of on-LRU pages in all the zones which
173 * are eligible for the caller's allocation attempt. It is used for balancing
174 * slab reclaim versus page reclaim.
176 * Returns the number of slab objects which we shrunk.
178 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
179 unsigned long lru_pages
)
181 struct shrinker
*shrinker
;
182 unsigned long ret
= 0;
185 scanned
= SWAP_CLUSTER_MAX
;
187 if (!down_read_trylock(&shrinker_rwsem
))
188 return 1; /* Assume we'll be able to shrink next time */
190 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
191 unsigned long long delta
;
192 unsigned long total_scan
;
193 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
195 delta
= (4 * scanned
) / shrinker
->seeks
;
197 do_div(delta
, lru_pages
+ 1);
198 shrinker
->nr
+= delta
;
199 if (shrinker
->nr
< 0) {
200 printk(KERN_ERR
"%s: nr=%ld\n",
201 __FUNCTION__
, shrinker
->nr
);
202 shrinker
->nr
= max_pass
;
206 * Avoid risking looping forever due to too large nr value:
207 * never try to free more than twice the estimate number of
210 if (shrinker
->nr
> max_pass
* 2)
211 shrinker
->nr
= max_pass
* 2;
213 total_scan
= shrinker
->nr
;
216 while (total_scan
>= SHRINK_BATCH
) {
217 long this_scan
= SHRINK_BATCH
;
221 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
222 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
223 if (shrink_ret
== -1)
225 if (shrink_ret
< nr_before
)
226 ret
+= nr_before
- shrink_ret
;
227 count_vm_events(SLABS_SCANNED
, this_scan
);
228 total_scan
-= this_scan
;
233 shrinker
->nr
+= total_scan
;
235 up_read(&shrinker_rwsem
);
239 /* Called without lock on whether page is mapped, so answer is unstable */
240 static inline int page_mapping_inuse(struct page
*page
)
242 struct address_space
*mapping
;
244 /* Page is in somebody's page tables. */
245 if (page_mapped(page
))
248 /* Be more reluctant to reclaim swapcache than pagecache */
249 if (PageSwapCache(page
))
252 mapping
= page_mapping(page
);
256 /* File is mmap'd by somebody? */
257 return mapping_mapped(mapping
);
260 static inline int is_page_cache_freeable(struct page
*page
)
262 return page_count(page
) - !!PagePrivate(page
) == 2;
265 static int may_write_to_queue(struct backing_dev_info
*bdi
)
267 if (current
->flags
& PF_SWAPWRITE
)
269 if (!bdi_write_congested(bdi
))
271 if (bdi
== current
->backing_dev_info
)
277 * We detected a synchronous write error writing a page out. Probably
278 * -ENOSPC. We need to propagate that into the address_space for a subsequent
279 * fsync(), msync() or close().
281 * The tricky part is that after writepage we cannot touch the mapping: nothing
282 * prevents it from being freed up. But we have a ref on the page and once
283 * that page is locked, the mapping is pinned.
285 * We're allowed to run sleeping lock_page() here because we know the caller has
288 static void handle_write_error(struct address_space
*mapping
,
289 struct page
*page
, int error
)
292 if (page_mapping(page
) == mapping
)
293 mapping_set_error(mapping
, error
);
297 /* Request for sync pageout. */
303 /* possible outcome of pageout() */
305 /* failed to write page out, page is locked */
307 /* move page to the active list, page is locked */
309 /* page has been sent to the disk successfully, page is unlocked */
311 /* page is clean and locked */
316 * pageout is called by shrink_page_list() for each dirty page.
317 * Calls ->writepage().
319 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
320 enum pageout_io sync_writeback
)
323 * If the page is dirty, only perform writeback if that write
324 * will be non-blocking. To prevent this allocation from being
325 * stalled by pagecache activity. But note that there may be
326 * stalls if we need to run get_block(). We could test
327 * PagePrivate for that.
329 * If this process is currently in generic_file_write() against
330 * this page's queue, we can perform writeback even if that
333 * If the page is swapcache, write it back even if that would
334 * block, for some throttling. This happens by accident, because
335 * swap_backing_dev_info is bust: it doesn't reflect the
336 * congestion state of the swapdevs. Easy to fix, if needed.
337 * See swapfile.c:page_queue_congested().
339 if (!is_page_cache_freeable(page
))
343 * Some data journaling orphaned pages can have
344 * page->mapping == NULL while being dirty with clean buffers.
346 if (PagePrivate(page
)) {
347 if (try_to_free_buffers(page
)) {
348 ClearPageDirty(page
);
349 printk("%s: orphaned page\n", __FUNCTION__
);
355 if (mapping
->a_ops
->writepage
== NULL
)
356 return PAGE_ACTIVATE
;
357 if (!may_write_to_queue(mapping
->backing_dev_info
))
360 if (clear_page_dirty_for_io(page
)) {
362 struct writeback_control wbc
= {
363 .sync_mode
= WB_SYNC_NONE
,
364 .nr_to_write
= SWAP_CLUSTER_MAX
,
366 .range_end
= LLONG_MAX
,
371 SetPageReclaim(page
);
372 res
= mapping
->a_ops
->writepage(page
, &wbc
);
374 handle_write_error(mapping
, page
, res
);
375 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
376 ClearPageReclaim(page
);
377 return PAGE_ACTIVATE
;
381 * Wait on writeback if requested to. This happens when
382 * direct reclaiming a large contiguous area and the
383 * first attempt to free a range of pages fails.
385 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
386 wait_on_page_writeback(page
);
388 if (!PageWriteback(page
)) {
389 /* synchronous write or broken a_ops? */
390 ClearPageReclaim(page
);
392 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
400 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
401 * someone else has a ref on the page, abort and return 0. If it was
402 * successfully detached, return 1. Assumes the caller has a single ref on
405 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
407 BUG_ON(!PageLocked(page
));
408 BUG_ON(mapping
!= page_mapping(page
));
410 write_lock_irq(&mapping
->tree_lock
);
412 * The non racy check for a busy page.
414 * Must be careful with the order of the tests. When someone has
415 * a ref to the page, it may be possible that they dirty it then
416 * drop the reference. So if PageDirty is tested before page_count
417 * here, then the following race may occur:
419 * get_user_pages(&page);
420 * [user mapping goes away]
422 * !PageDirty(page) [good]
423 * SetPageDirty(page);
425 * !page_count(page) [good, discard it]
427 * [oops, our write_to data is lost]
429 * Reversing the order of the tests ensures such a situation cannot
430 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
431 * load is not satisfied before that of page->_count.
433 * Note that if SetPageDirty is always performed via set_page_dirty,
434 * and thus under tree_lock, then this ordering is not required.
436 if (unlikely(page_count(page
) != 2))
439 if (unlikely(PageDirty(page
)))
442 if (PageSwapCache(page
)) {
443 swp_entry_t swap
= { .val
= page_private(page
) };
444 __delete_from_swap_cache(page
);
445 write_unlock_irq(&mapping
->tree_lock
);
447 __put_page(page
); /* The pagecache ref */
451 __remove_from_page_cache(page
);
452 write_unlock_irq(&mapping
->tree_lock
);
457 write_unlock_irq(&mapping
->tree_lock
);
462 * shrink_page_list() returns the number of reclaimed pages
464 static unsigned long shrink_page_list(struct list_head
*page_list
,
465 struct scan_control
*sc
,
466 enum pageout_io sync_writeback
)
468 LIST_HEAD(ret_pages
);
469 struct pagevec freed_pvec
;
471 unsigned long nr_reclaimed
= 0;
475 pagevec_init(&freed_pvec
, 1);
476 while (!list_empty(page_list
)) {
477 struct address_space
*mapping
;
484 page
= lru_to_page(page_list
);
485 list_del(&page
->lru
);
487 if (TestSetPageLocked(page
))
490 VM_BUG_ON(PageActive(page
));
494 if (!sc
->may_swap
&& page_mapped(page
))
497 /* Double the slab pressure for mapped and swapcache pages */
498 if (page_mapped(page
) || PageSwapCache(page
))
501 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
502 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
504 if (PageWriteback(page
)) {
506 * Synchronous reclaim is performed in two passes,
507 * first an asynchronous pass over the list to
508 * start parallel writeback, and a second synchronous
509 * pass to wait for the IO to complete. Wait here
510 * for any page for which writeback has already
513 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
514 wait_on_page_writeback(page
);
521 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
522 /* In active use or really unfreeable? Activate it. */
523 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
524 referenced
&& page_mapping_inuse(page
))
525 goto activate_locked
;
529 * Anonymous process memory has backing store?
530 * Try to allocate it some swap space here.
532 if (PageAnon(page
) && !PageSwapCache(page
))
533 if (!add_to_swap(page
, GFP_ATOMIC
))
534 goto activate_locked
;
535 #endif /* CONFIG_SWAP */
537 mapping
= page_mapping(page
);
540 * The page is mapped into the page tables of one or more
541 * processes. Try to unmap it here.
543 if (page_mapped(page
) && mapping
) {
544 switch (try_to_unmap(page
, 0)) {
546 goto activate_locked
;
550 ; /* try to free the page below */
554 if (PageDirty(page
)) {
555 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
561 if (!sc
->may_writepage
)
564 /* Page is dirty, try to write it out here */
565 switch (pageout(page
, mapping
, sync_writeback
)) {
569 goto activate_locked
;
571 if (PageWriteback(page
) || PageDirty(page
)) {
576 * A synchronous write - probably a ramdisk. Go
577 * ahead and try to reclaim the page.
579 if (TestSetPageLocked(page
))
581 if (PageDirty(page
) || PageWriteback(page
))
583 mapping
= page_mapping(page
);
585 ; /* try to free the page below */
590 * If the page has buffers, try to free the buffer mappings
591 * associated with this page. If we succeed we try to free
594 * We do this even if the page is PageDirty().
595 * try_to_release_page() does not perform I/O, but it is
596 * possible for a page to have PageDirty set, but it is actually
597 * clean (all its buffers are clean). This happens if the
598 * buffers were written out directly, with submit_bh(). ext3
599 * will do this, as well as the blockdev mapping.
600 * try_to_release_page() will discover that cleanness and will
601 * drop the buffers and mark the page clean - it can be freed.
603 * Rarely, pages can have buffers and no ->mapping. These are
604 * the pages which were not successfully invalidated in
605 * truncate_complete_page(). We try to drop those buffers here
606 * and if that worked, and the page is no longer mapped into
607 * process address space (page_count == 1) it can be freed.
608 * Otherwise, leave the page on the LRU so it is swappable.
610 if (PagePrivate(page
)) {
611 if (!try_to_release_page(page
, sc
->gfp_mask
))
612 goto activate_locked
;
613 if (!mapping
&& page_count(page
) == 1)
617 if (!mapping
|| !remove_mapping(mapping
, page
))
623 if (!pagevec_add(&freed_pvec
, page
))
624 __pagevec_release_nonlru(&freed_pvec
);
633 list_add(&page
->lru
, &ret_pages
);
634 VM_BUG_ON(PageLRU(page
));
636 list_splice(&ret_pages
, page_list
);
637 if (pagevec_count(&freed_pvec
))
638 __pagevec_release_nonlru(&freed_pvec
);
639 count_vm_events(PGACTIVATE
, pgactivate
);
643 /* LRU Isolation modes. */
644 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
645 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
646 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
649 * Attempt to remove the specified page from its LRU. Only take this page
650 * if it is of the appropriate PageActive status. Pages which are being
651 * freed elsewhere are also ignored.
653 * page: page to consider
654 * mode: one of the LRU isolation modes defined above
656 * returns 0 on success, -ve errno on failure.
658 int __isolate_lru_page(struct page
*page
, int mode
)
662 /* Only take pages on the LRU. */
667 * When checking the active state, we need to be sure we are
668 * dealing with comparible boolean values. Take the logical not
671 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
675 if (likely(get_page_unless_zero(page
))) {
677 * Be careful not to clear PageLRU until after we're
678 * sure the page is not being freed elsewhere -- the
679 * page release code relies on it.
689 * zone->lru_lock is heavily contended. Some of the functions that
690 * shrink the lists perform better by taking out a batch of pages
691 * and working on them outside the LRU lock.
693 * For pagecache intensive workloads, this function is the hottest
694 * spot in the kernel (apart from copy_*_user functions).
696 * Appropriate locks must be held before calling this function.
698 * @nr_to_scan: The number of pages to look through on the list.
699 * @src: The LRU list to pull pages off.
700 * @dst: The temp list to put pages on to.
701 * @scanned: The number of pages that were scanned.
702 * @order: The caller's attempted allocation order
703 * @mode: One of the LRU isolation modes
705 * returns how many pages were moved onto *@dst.
707 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
708 struct list_head
*src
, struct list_head
*dst
,
709 unsigned long *scanned
, int order
, int mode
)
711 unsigned long nr_taken
= 0;
714 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
717 unsigned long end_pfn
;
718 unsigned long page_pfn
;
721 page
= lru_to_page(src
);
722 prefetchw_prev_lru_page(page
, src
, flags
);
724 VM_BUG_ON(!PageLRU(page
));
726 switch (__isolate_lru_page(page
, mode
)) {
728 list_move(&page
->lru
, dst
);
733 /* else it is being freed elsewhere */
734 list_move(&page
->lru
, src
);
745 * Attempt to take all pages in the order aligned region
746 * surrounding the tag page. Only take those pages of
747 * the same active state as that tag page. We may safely
748 * round the target page pfn down to the requested order
749 * as the mem_map is guarenteed valid out to MAX_ORDER,
750 * where that page is in a different zone we will detect
751 * it from its zone id and abort this block scan.
753 zone_id
= page_zone_id(page
);
754 page_pfn
= page_to_pfn(page
);
755 pfn
= page_pfn
& ~((1 << order
) - 1);
756 end_pfn
= pfn
+ (1 << order
);
757 for (; pfn
< end_pfn
; pfn
++) {
758 struct page
*cursor_page
;
760 /* The target page is in the block, ignore it. */
761 if (unlikely(pfn
== page_pfn
))
764 /* Avoid holes within the zone. */
765 if (unlikely(!pfn_valid_within(pfn
)))
768 cursor_page
= pfn_to_page(pfn
);
769 /* Check that we have not crossed a zone boundary. */
770 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
772 switch (__isolate_lru_page(cursor_page
, mode
)) {
774 list_move(&cursor_page
->lru
, dst
);
780 /* else it is being freed elsewhere */
781 list_move(&cursor_page
->lru
, src
);
792 static unsigned long isolate_pages_global(unsigned long nr
,
793 struct list_head
*dst
,
794 unsigned long *scanned
, int order
,
795 int mode
, struct zone
*z
,
796 struct mem_cgroup
*mem_cont
,
800 return isolate_lru_pages(nr
, &z
->active_list
, dst
,
801 scanned
, order
, mode
);
803 return isolate_lru_pages(nr
, &z
->inactive_list
, dst
,
804 scanned
, order
, mode
);
808 * clear_active_flags() is a helper for shrink_active_list(), clearing
809 * any active bits from the pages in the list.
811 static unsigned long clear_active_flags(struct list_head
*page_list
)
816 list_for_each_entry(page
, page_list
, lru
)
817 if (PageActive(page
)) {
818 ClearPageActive(page
);
826 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
829 static unsigned long shrink_inactive_list(unsigned long max_scan
,
830 struct zone
*zone
, struct scan_control
*sc
)
832 LIST_HEAD(page_list
);
834 unsigned long nr_scanned
= 0;
835 unsigned long nr_reclaimed
= 0;
837 pagevec_init(&pvec
, 1);
840 spin_lock_irq(&zone
->lru_lock
);
843 unsigned long nr_taken
;
844 unsigned long nr_scan
;
845 unsigned long nr_freed
;
846 unsigned long nr_active
;
848 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
849 &page_list
, &nr_scan
, sc
->order
,
850 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)?
851 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
852 zone
, sc
->mem_cgroup
, 0);
853 nr_active
= clear_active_flags(&page_list
);
854 __count_vm_events(PGDEACTIVATE
, nr_active
);
856 __mod_zone_page_state(zone
, NR_ACTIVE
, -nr_active
);
857 __mod_zone_page_state(zone
, NR_INACTIVE
,
858 -(nr_taken
- nr_active
));
859 if (scan_global_lru(sc
))
860 zone
->pages_scanned
+= nr_scan
;
861 spin_unlock_irq(&zone
->lru_lock
);
863 nr_scanned
+= nr_scan
;
864 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
867 * If we are direct reclaiming for contiguous pages and we do
868 * not reclaim everything in the list, try again and wait
869 * for IO to complete. This will stall high-order allocations
870 * but that should be acceptable to the caller
872 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
873 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
874 congestion_wait(WRITE
, HZ
/10);
877 * The attempt at page out may have made some
878 * of the pages active, mark them inactive again.
880 nr_active
= clear_active_flags(&page_list
);
881 count_vm_events(PGDEACTIVATE
, nr_active
);
883 nr_freed
+= shrink_page_list(&page_list
, sc
,
887 nr_reclaimed
+= nr_freed
;
889 if (current_is_kswapd()) {
890 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
891 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
892 } else if (scan_global_lru(sc
))
893 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
895 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
900 spin_lock(&zone
->lru_lock
);
902 * Put back any unfreeable pages.
904 while (!list_empty(&page_list
)) {
905 page
= lru_to_page(&page_list
);
906 VM_BUG_ON(PageLRU(page
));
908 list_del(&page
->lru
);
909 if (PageActive(page
))
910 add_page_to_active_list(zone
, page
);
912 add_page_to_inactive_list(zone
, page
);
913 if (!pagevec_add(&pvec
, page
)) {
914 spin_unlock_irq(&zone
->lru_lock
);
915 __pagevec_release(&pvec
);
916 spin_lock_irq(&zone
->lru_lock
);
919 } while (nr_scanned
< max_scan
);
920 spin_unlock(&zone
->lru_lock
);
923 pagevec_release(&pvec
);
928 * We are about to scan this zone at a certain priority level. If that priority
929 * level is smaller (ie: more urgent) than the previous priority, then note
930 * that priority level within the zone. This is done so that when the next
931 * process comes in to scan this zone, it will immediately start out at this
932 * priority level rather than having to build up its own scanning priority.
933 * Here, this priority affects only the reclaim-mapped threshold.
935 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
937 if (priority
< zone
->prev_priority
)
938 zone
->prev_priority
= priority
;
941 static inline int zone_is_near_oom(struct zone
*zone
)
943 return zone
->pages_scanned
>= (zone_page_state(zone
, NR_ACTIVE
)
944 + zone_page_state(zone
, NR_INACTIVE
))*3;
948 * Determine we should try to reclaim mapped pages.
949 * This is called only when sc->mem_cgroup is NULL.
951 static int calc_reclaim_mapped(struct scan_control
*sc
, struct zone
*zone
,
958 int reclaim_mapped
= 0;
961 if (scan_global_lru(sc
) && zone_is_near_oom(zone
))
964 * `distress' is a measure of how much trouble we're having
965 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
967 if (scan_global_lru(sc
))
968 prev_priority
= zone
->prev_priority
;
970 prev_priority
= mem_cgroup_get_reclaim_priority(sc
->mem_cgroup
);
972 distress
= 100 >> min(prev_priority
, priority
);
975 * The point of this algorithm is to decide when to start
976 * reclaiming mapped memory instead of just pagecache. Work out
980 if (scan_global_lru(sc
))
981 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
982 global_page_state(NR_ANON_PAGES
)) * 100) /
985 mapped_ratio
= mem_cgroup_calc_mapped_ratio(sc
->mem_cgroup
);
988 * Now decide how much we really want to unmap some pages. The
989 * mapped ratio is downgraded - just because there's a lot of
990 * mapped memory doesn't necessarily mean that page reclaim
993 * The distress ratio is important - we don't want to start
996 * A 100% value of vm_swappiness overrides this algorithm
999 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
1002 * If there's huge imbalance between active and inactive
1003 * (think active 100 times larger than inactive) we should
1004 * become more permissive, or the system will take too much
1005 * cpu before it start swapping during memory pressure.
1006 * Distress is about avoiding early-oom, this is about
1007 * making swappiness graceful despite setting it to low
1010 * Avoid div by zero with nr_inactive+1, and max resulting
1011 * value is vm_total_pages.
1013 if (scan_global_lru(sc
)) {
1014 imbalance
= zone_page_state(zone
, NR_ACTIVE
);
1015 imbalance
/= zone_page_state(zone
, NR_INACTIVE
) + 1;
1017 imbalance
= mem_cgroup_reclaim_imbalance(sc
->mem_cgroup
);
1020 * Reduce the effect of imbalance if swappiness is low,
1021 * this means for a swappiness very low, the imbalance
1022 * must be much higher than 100 for this logic to make
1025 * Max temporary value is vm_total_pages*100.
1027 imbalance
*= (vm_swappiness
+ 1);
1031 * If not much of the ram is mapped, makes the imbalance
1032 * less relevant, it's high priority we refill the inactive
1033 * list with mapped pages only in presence of high ratio of
1036 * Max temporary value is vm_total_pages*100.
1038 imbalance
*= mapped_ratio
;
1041 /* apply imbalance feedback to swap_tendency */
1042 swap_tendency
+= imbalance
;
1045 * Now use this metric to decide whether to start moving mapped
1046 * memory onto the inactive list.
1048 if (swap_tendency
>= 100)
1051 return reclaim_mapped
;
1055 * This moves pages from the active list to the inactive list.
1057 * We move them the other way if the page is referenced by one or more
1058 * processes, from rmap.
1060 * If the pages are mostly unmapped, the processing is fast and it is
1061 * appropriate to hold zone->lru_lock across the whole operation. But if
1062 * the pages are mapped, the processing is slow (page_referenced()) so we
1063 * should drop zone->lru_lock around each page. It's impossible to balance
1064 * this, so instead we remove the pages from the LRU while processing them.
1065 * It is safe to rely on PG_active against the non-LRU pages in here because
1066 * nobody will play with that bit on a non-LRU page.
1068 * The downside is that we have to touch page->_count against each page.
1069 * But we had to alter page->flags anyway.
1073 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1074 struct scan_control
*sc
, int priority
)
1076 unsigned long pgmoved
;
1077 int pgdeactivate
= 0;
1078 unsigned long pgscanned
;
1079 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1080 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
1081 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
1083 struct pagevec pvec
;
1084 int reclaim_mapped
= 0;
1087 reclaim_mapped
= calc_reclaim_mapped(sc
, zone
, priority
);
1090 spin_lock_irq(&zone
->lru_lock
);
1091 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1092 ISOLATE_ACTIVE
, zone
,
1095 * zone->pages_scanned is used for detect zone's oom
1096 * mem_cgroup remembers nr_scan by itself.
1098 if (scan_global_lru(sc
))
1099 zone
->pages_scanned
+= pgscanned
;
1101 __mod_zone_page_state(zone
, NR_ACTIVE
, -pgmoved
);
1102 spin_unlock_irq(&zone
->lru_lock
);
1104 while (!list_empty(&l_hold
)) {
1106 page
= lru_to_page(&l_hold
);
1107 list_del(&page
->lru
);
1108 if (page_mapped(page
)) {
1109 if (!reclaim_mapped
||
1110 (total_swap_pages
== 0 && PageAnon(page
)) ||
1111 page_referenced(page
, 0, sc
->mem_cgroup
)) {
1112 list_add(&page
->lru
, &l_active
);
1116 list_add(&page
->lru
, &l_inactive
);
1119 pagevec_init(&pvec
, 1);
1121 spin_lock_irq(&zone
->lru_lock
);
1122 while (!list_empty(&l_inactive
)) {
1123 page
= lru_to_page(&l_inactive
);
1124 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1125 VM_BUG_ON(PageLRU(page
));
1127 VM_BUG_ON(!PageActive(page
));
1128 ClearPageActive(page
);
1130 list_move(&page
->lru
, &zone
->inactive_list
);
1131 mem_cgroup_move_lists(page_get_page_cgroup(page
), false);
1133 if (!pagevec_add(&pvec
, page
)) {
1134 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1135 spin_unlock_irq(&zone
->lru_lock
);
1136 pgdeactivate
+= pgmoved
;
1138 if (buffer_heads_over_limit
)
1139 pagevec_strip(&pvec
);
1140 __pagevec_release(&pvec
);
1141 spin_lock_irq(&zone
->lru_lock
);
1144 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1145 pgdeactivate
+= pgmoved
;
1146 if (buffer_heads_over_limit
) {
1147 spin_unlock_irq(&zone
->lru_lock
);
1148 pagevec_strip(&pvec
);
1149 spin_lock_irq(&zone
->lru_lock
);
1153 while (!list_empty(&l_active
)) {
1154 page
= lru_to_page(&l_active
);
1155 prefetchw_prev_lru_page(page
, &l_active
, flags
);
1156 VM_BUG_ON(PageLRU(page
));
1158 VM_BUG_ON(!PageActive(page
));
1159 list_move(&page
->lru
, &zone
->active_list
);
1160 mem_cgroup_move_lists(page_get_page_cgroup(page
), true);
1162 if (!pagevec_add(&pvec
, page
)) {
1163 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1165 spin_unlock_irq(&zone
->lru_lock
);
1166 __pagevec_release(&pvec
);
1167 spin_lock_irq(&zone
->lru_lock
);
1170 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1172 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1173 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1174 spin_unlock_irq(&zone
->lru_lock
);
1176 pagevec_release(&pvec
);
1180 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1182 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
1183 struct scan_control
*sc
)
1185 unsigned long nr_active
;
1186 unsigned long nr_inactive
;
1187 unsigned long nr_to_scan
;
1188 unsigned long nr_reclaimed
= 0;
1190 if (scan_global_lru(sc
)) {
1192 * Add one to nr_to_scan just to make sure that the kernel
1193 * will slowly sift through the active list.
1195 zone
->nr_scan_active
+=
1196 (zone_page_state(zone
, NR_ACTIVE
) >> priority
) + 1;
1197 nr_active
= zone
->nr_scan_active
;
1198 zone
->nr_scan_inactive
+=
1199 (zone_page_state(zone
, NR_INACTIVE
) >> priority
) + 1;
1200 nr_inactive
= zone
->nr_scan_inactive
;
1201 if (nr_inactive
>= sc
->swap_cluster_max
)
1202 zone
->nr_scan_inactive
= 0;
1206 if (nr_active
>= sc
->swap_cluster_max
)
1207 zone
->nr_scan_active
= 0;
1212 * This reclaim occurs not because zone memory shortage but
1213 * because memory controller hits its limit.
1214 * Then, don't modify zone reclaim related data.
1216 nr_active
= mem_cgroup_calc_reclaim_active(sc
->mem_cgroup
,
1219 nr_inactive
= mem_cgroup_calc_reclaim_inactive(sc
->mem_cgroup
,
1224 while (nr_active
|| nr_inactive
) {
1226 nr_to_scan
= min(nr_active
,
1227 (unsigned long)sc
->swap_cluster_max
);
1228 nr_active
-= nr_to_scan
;
1229 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
1233 nr_to_scan
= min(nr_inactive
,
1234 (unsigned long)sc
->swap_cluster_max
);
1235 nr_inactive
-= nr_to_scan
;
1236 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
1241 throttle_vm_writeout(sc
->gfp_mask
);
1242 return nr_reclaimed
;
1246 * This is the direct reclaim path, for page-allocating processes. We only
1247 * try to reclaim pages from zones which will satisfy the caller's allocation
1250 * We reclaim from a zone even if that zone is over pages_high. Because:
1251 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1253 * b) The zones may be over pages_high but they must go *over* pages_high to
1254 * satisfy the `incremental min' zone defense algorithm.
1256 * Returns the number of reclaimed pages.
1258 * If a zone is deemed to be full of pinned pages then just give it a light
1259 * scan then give up on it.
1261 static unsigned long shrink_zones(int priority
, struct zone
**zones
,
1262 struct scan_control
*sc
)
1264 unsigned long nr_reclaimed
= 0;
1268 sc
->all_unreclaimable
= 1;
1269 for (i
= 0; zones
[i
] != NULL
; i
++) {
1270 struct zone
*zone
= zones
[i
];
1272 if (!populated_zone(zone
))
1275 * Take care memory controller reclaiming has small influence
1278 if (scan_global_lru(sc
)) {
1279 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1281 note_zone_scanning_priority(zone
, priority
);
1283 if (zone_is_all_unreclaimable(zone
) &&
1284 priority
!= DEF_PRIORITY
)
1285 continue; /* Let kswapd poll it */
1286 sc
->all_unreclaimable
= 0;
1289 * Ignore cpuset limitation here. We just want to reduce
1290 * # of used pages by us regardless of memory shortage.
1292 sc
->all_unreclaimable
= 0;
1293 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1297 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1300 return nr_reclaimed
;
1304 * This is the main entry point to direct page reclaim.
1306 * If a full scan of the inactive list fails to free enough memory then we
1307 * are "out of memory" and something needs to be killed.
1309 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1310 * high - the zone may be full of dirty or under-writeback pages, which this
1311 * caller can't do much about. We kick pdflush and take explicit naps in the
1312 * hope that some of these pages can be written. But if the allocating task
1313 * holds filesystem locks which prevent writeout this might not work, and the
1314 * allocation attempt will fail.
1316 static unsigned long do_try_to_free_pages(struct zone
**zones
, gfp_t gfp_mask
,
1317 struct scan_control
*sc
)
1321 unsigned long total_scanned
= 0;
1322 unsigned long nr_reclaimed
= 0;
1323 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1324 unsigned long lru_pages
= 0;
1327 if (scan_global_lru(sc
))
1328 count_vm_event(ALLOCSTALL
);
1330 * mem_cgroup will not do shrink_slab.
1332 if (scan_global_lru(sc
)) {
1333 for (i
= 0; zones
[i
] != NULL
; i
++) {
1334 struct zone
*zone
= zones
[i
];
1336 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1339 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1340 + zone_page_state(zone
, NR_INACTIVE
);
1344 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1346 sc
->nr_io_pages
= 0;
1348 disable_swap_token();
1349 nr_reclaimed
+= shrink_zones(priority
, zones
, sc
);
1351 * Don't shrink slabs when reclaiming memory from
1352 * over limit cgroups
1354 if (scan_global_lru(sc
)) {
1355 shrink_slab(sc
->nr_scanned
, gfp_mask
, lru_pages
);
1356 if (reclaim_state
) {
1357 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1358 reclaim_state
->reclaimed_slab
= 0;
1361 total_scanned
+= sc
->nr_scanned
;
1362 if (nr_reclaimed
>= sc
->swap_cluster_max
) {
1368 * Try to write back as many pages as we just scanned. This
1369 * tends to cause slow streaming writers to write data to the
1370 * disk smoothly, at the dirtying rate, which is nice. But
1371 * that's undesirable in laptop mode, where we *want* lumpy
1372 * writeout. So in laptop mode, write out the whole world.
1374 if (total_scanned
> sc
->swap_cluster_max
+
1375 sc
->swap_cluster_max
/ 2) {
1376 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1377 sc
->may_writepage
= 1;
1380 /* Take a nap, wait for some writeback to complete */
1381 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2 &&
1382 sc
->nr_io_pages
> sc
->swap_cluster_max
)
1383 congestion_wait(WRITE
, HZ
/10);
1385 /* top priority shrink_caches still had more to do? don't OOM, then */
1386 if (!sc
->all_unreclaimable
&& scan_global_lru(sc
))
1390 * Now that we've scanned all the zones at this priority level, note
1391 * that level within the zone so that the next thread which performs
1392 * scanning of this zone will immediately start out at this priority
1393 * level. This affects only the decision whether or not to bring
1394 * mapped pages onto the inactive list.
1399 if (scan_global_lru(sc
)) {
1400 for (i
= 0; zones
[i
] != NULL
; i
++) {
1401 struct zone
*zone
= zones
[i
];
1403 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1406 zone
->prev_priority
= priority
;
1409 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1414 unsigned long try_to_free_pages(struct zone
**zones
, int order
, gfp_t gfp_mask
)
1416 struct scan_control sc
= {
1417 .gfp_mask
= gfp_mask
,
1418 .may_writepage
= !laptop_mode
,
1419 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1421 .swappiness
= vm_swappiness
,
1424 .isolate_pages
= isolate_pages_global
,
1427 return do_try_to_free_pages(zones
, gfp_mask
, &sc
);
1430 #ifdef CONFIG_CGROUP_MEM_CONT
1432 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1435 struct scan_control sc
= {
1436 .gfp_mask
= gfp_mask
,
1437 .may_writepage
= !laptop_mode
,
1439 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1440 .swappiness
= vm_swappiness
,
1442 .mem_cgroup
= mem_cont
,
1443 .isolate_pages
= mem_cgroup_isolate_pages
,
1445 struct zone
**zones
;
1446 int target_zone
= gfp_zone(GFP_HIGHUSER_MOVABLE
);
1448 zones
= NODE_DATA(numa_node_id())->node_zonelists
[target_zone
].zones
;
1449 if (do_try_to_free_pages(zones
, sc
.gfp_mask
, &sc
))
1456 * For kswapd, balance_pgdat() will work across all this node's zones until
1457 * they are all at pages_high.
1459 * Returns the number of pages which were actually freed.
1461 * There is special handling here for zones which are full of pinned pages.
1462 * This can happen if the pages are all mlocked, or if they are all used by
1463 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1464 * What we do is to detect the case where all pages in the zone have been
1465 * scanned twice and there has been zero successful reclaim. Mark the zone as
1466 * dead and from now on, only perform a short scan. Basically we're polling
1467 * the zone for when the problem goes away.
1469 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1470 * zones which have free_pages > pages_high, but once a zone is found to have
1471 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1472 * of the number of free pages in the lower zones. This interoperates with
1473 * the page allocator fallback scheme to ensure that aging of pages is balanced
1476 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1481 unsigned long total_scanned
;
1482 unsigned long nr_reclaimed
;
1483 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1484 struct scan_control sc
= {
1485 .gfp_mask
= GFP_KERNEL
,
1487 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1488 .swappiness
= vm_swappiness
,
1491 .isolate_pages
= isolate_pages_global
,
1494 * temp_priority is used to remember the scanning priority at which
1495 * this zone was successfully refilled to free_pages == pages_high.
1497 int temp_priority
[MAX_NR_ZONES
];
1502 sc
.may_writepage
= !laptop_mode
;
1503 count_vm_event(PAGEOUTRUN
);
1505 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1506 temp_priority
[i
] = DEF_PRIORITY
;
1508 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1509 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1510 unsigned long lru_pages
= 0;
1512 /* The swap token gets in the way of swapout... */
1514 disable_swap_token();
1520 * Scan in the highmem->dma direction for the highest
1521 * zone which needs scanning
1523 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1524 struct zone
*zone
= pgdat
->node_zones
+ i
;
1526 if (!populated_zone(zone
))
1529 if (zone_is_all_unreclaimable(zone
) &&
1530 priority
!= DEF_PRIORITY
)
1533 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1542 for (i
= 0; i
<= end_zone
; i
++) {
1543 struct zone
*zone
= pgdat
->node_zones
+ i
;
1545 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1546 + zone_page_state(zone
, NR_INACTIVE
);
1550 * Now scan the zone in the dma->highmem direction, stopping
1551 * at the last zone which needs scanning.
1553 * We do this because the page allocator works in the opposite
1554 * direction. This prevents the page allocator from allocating
1555 * pages behind kswapd's direction of progress, which would
1556 * cause too much scanning of the lower zones.
1558 for (i
= 0; i
<= end_zone
; i
++) {
1559 struct zone
*zone
= pgdat
->node_zones
+ i
;
1562 if (!populated_zone(zone
))
1565 if (zone_is_all_unreclaimable(zone
) &&
1566 priority
!= DEF_PRIORITY
)
1569 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1572 temp_priority
[i
] = priority
;
1574 note_zone_scanning_priority(zone
, priority
);
1576 * We put equal pressure on every zone, unless one
1577 * zone has way too many pages free already.
1579 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1581 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1582 reclaim_state
->reclaimed_slab
= 0;
1583 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1585 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1586 total_scanned
+= sc
.nr_scanned
;
1587 if (zone_is_all_unreclaimable(zone
))
1589 if (nr_slab
== 0 && zone
->pages_scanned
>=
1590 (zone_page_state(zone
, NR_ACTIVE
)
1591 + zone_page_state(zone
, NR_INACTIVE
)) * 6)
1593 ZONE_ALL_UNRECLAIMABLE
);
1595 * If we've done a decent amount of scanning and
1596 * the reclaim ratio is low, start doing writepage
1597 * even in laptop mode
1599 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1600 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1601 sc
.may_writepage
= 1;
1604 break; /* kswapd: all done */
1606 * OK, kswapd is getting into trouble. Take a nap, then take
1607 * another pass across the zones.
1609 if (total_scanned
&& priority
< DEF_PRIORITY
- 2 &&
1610 sc
.nr_io_pages
> sc
.swap_cluster_max
)
1611 congestion_wait(WRITE
, HZ
/10);
1614 * We do this so kswapd doesn't build up large priorities for
1615 * example when it is freeing in parallel with allocators. It
1616 * matches the direct reclaim path behaviour in terms of impact
1617 * on zone->*_priority.
1619 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1624 * Note within each zone the priority level at which this zone was
1625 * brought into a happy state. So that the next thread which scans this
1626 * zone will start out at that priority level.
1628 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1629 struct zone
*zone
= pgdat
->node_zones
+ i
;
1631 zone
->prev_priority
= temp_priority
[i
];
1633 if (!all_zones_ok
) {
1641 return nr_reclaimed
;
1645 * The background pageout daemon, started as a kernel thread
1646 * from the init process.
1648 * This basically trickles out pages so that we have _some_
1649 * free memory available even if there is no other activity
1650 * that frees anything up. This is needed for things like routing
1651 * etc, where we otherwise might have all activity going on in
1652 * asynchronous contexts that cannot page things out.
1654 * If there are applications that are active memory-allocators
1655 * (most normal use), this basically shouldn't matter.
1657 static int kswapd(void *p
)
1659 unsigned long order
;
1660 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1661 struct task_struct
*tsk
= current
;
1663 struct reclaim_state reclaim_state
= {
1664 .reclaimed_slab
= 0,
1668 cpumask
= node_to_cpumask(pgdat
->node_id
);
1669 if (!cpus_empty(cpumask
))
1670 set_cpus_allowed(tsk
, cpumask
);
1671 current
->reclaim_state
= &reclaim_state
;
1674 * Tell the memory management that we're a "memory allocator",
1675 * and that if we need more memory we should get access to it
1676 * regardless (see "__alloc_pages()"). "kswapd" should
1677 * never get caught in the normal page freeing logic.
1679 * (Kswapd normally doesn't need memory anyway, but sometimes
1680 * you need a small amount of memory in order to be able to
1681 * page out something else, and this flag essentially protects
1682 * us from recursively trying to free more memory as we're
1683 * trying to free the first piece of memory in the first place).
1685 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1690 unsigned long new_order
;
1692 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1693 new_order
= pgdat
->kswapd_max_order
;
1694 pgdat
->kswapd_max_order
= 0;
1695 if (order
< new_order
) {
1697 * Don't sleep if someone wants a larger 'order'
1702 if (!freezing(current
))
1705 order
= pgdat
->kswapd_max_order
;
1707 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1709 if (!try_to_freeze()) {
1710 /* We can speed up thawing tasks if we don't call
1711 * balance_pgdat after returning from the refrigerator
1713 balance_pgdat(pgdat
, order
);
1720 * A zone is low on free memory, so wake its kswapd task to service it.
1722 void wakeup_kswapd(struct zone
*zone
, int order
)
1726 if (!populated_zone(zone
))
1729 pgdat
= zone
->zone_pgdat
;
1730 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1732 if (pgdat
->kswapd_max_order
< order
)
1733 pgdat
->kswapd_max_order
= order
;
1734 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1736 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1738 wake_up_interruptible(&pgdat
->kswapd_wait
);
1743 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1744 * from LRU lists system-wide, for given pass and priority, and returns the
1745 * number of reclaimed pages
1747 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1749 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1750 int pass
, struct scan_control
*sc
)
1753 unsigned long nr_to_scan
, ret
= 0;
1755 for_each_zone(zone
) {
1757 if (!populated_zone(zone
))
1760 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
1763 /* For pass = 0 we don't shrink the active list */
1765 zone
->nr_scan_active
+=
1766 (zone_page_state(zone
, NR_ACTIVE
) >> prio
) + 1;
1767 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1768 zone
->nr_scan_active
= 0;
1769 nr_to_scan
= min(nr_pages
,
1770 zone_page_state(zone
, NR_ACTIVE
));
1771 shrink_active_list(nr_to_scan
, zone
, sc
, prio
);
1775 zone
->nr_scan_inactive
+=
1776 (zone_page_state(zone
, NR_INACTIVE
) >> prio
) + 1;
1777 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1778 zone
->nr_scan_inactive
= 0;
1779 nr_to_scan
= min(nr_pages
,
1780 zone_page_state(zone
, NR_INACTIVE
));
1781 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1782 if (ret
>= nr_pages
)
1790 static unsigned long count_lru_pages(void)
1792 return global_page_state(NR_ACTIVE
) + global_page_state(NR_INACTIVE
);
1796 * Try to free `nr_pages' of memory, system-wide, and return the number of
1799 * Rather than trying to age LRUs the aim is to preserve the overall
1800 * LRU order by reclaiming preferentially
1801 * inactive > active > active referenced > active mapped
1803 unsigned long shrink_all_memory(unsigned long nr_pages
)
1805 unsigned long lru_pages
, nr_slab
;
1806 unsigned long ret
= 0;
1808 struct reclaim_state reclaim_state
;
1809 struct scan_control sc
= {
1810 .gfp_mask
= GFP_KERNEL
,
1812 .swap_cluster_max
= nr_pages
,
1814 .swappiness
= vm_swappiness
,
1815 .isolate_pages
= isolate_pages_global
,
1818 current
->reclaim_state
= &reclaim_state
;
1820 lru_pages
= count_lru_pages();
1821 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1822 /* If slab caches are huge, it's better to hit them first */
1823 while (nr_slab
>= lru_pages
) {
1824 reclaim_state
.reclaimed_slab
= 0;
1825 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1826 if (!reclaim_state
.reclaimed_slab
)
1829 ret
+= reclaim_state
.reclaimed_slab
;
1830 if (ret
>= nr_pages
)
1833 nr_slab
-= reclaim_state
.reclaimed_slab
;
1837 * We try to shrink LRUs in 5 passes:
1838 * 0 = Reclaim from inactive_list only
1839 * 1 = Reclaim from active list but don't reclaim mapped
1840 * 2 = 2nd pass of type 1
1841 * 3 = Reclaim mapped (normal reclaim)
1842 * 4 = 2nd pass of type 3
1844 for (pass
= 0; pass
< 5; pass
++) {
1847 /* Force reclaiming mapped pages in the passes #3 and #4 */
1850 sc
.swappiness
= 100;
1853 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1854 unsigned long nr_to_scan
= nr_pages
- ret
;
1857 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1858 if (ret
>= nr_pages
)
1861 reclaim_state
.reclaimed_slab
= 0;
1862 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
1864 ret
+= reclaim_state
.reclaimed_slab
;
1865 if (ret
>= nr_pages
)
1868 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1869 congestion_wait(WRITE
, HZ
/ 10);
1874 * If ret = 0, we could not shrink LRUs, but there may be something
1879 reclaim_state
.reclaimed_slab
= 0;
1880 shrink_slab(nr_pages
, sc
.gfp_mask
, count_lru_pages());
1881 ret
+= reclaim_state
.reclaimed_slab
;
1882 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1886 current
->reclaim_state
= NULL
;
1892 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1893 not required for correctness. So if the last cpu in a node goes
1894 away, we get changed to run anywhere: as the first one comes back,
1895 restore their cpu bindings. */
1896 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1897 unsigned long action
, void *hcpu
)
1903 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
1904 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1905 pgdat
= NODE_DATA(nid
);
1906 mask
= node_to_cpumask(pgdat
->node_id
);
1907 if (any_online_cpu(mask
) != NR_CPUS
)
1908 /* One of our CPUs online: restore mask */
1909 set_cpus_allowed(pgdat
->kswapd
, mask
);
1916 * This kswapd start function will be called by init and node-hot-add.
1917 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1919 int kswapd_run(int nid
)
1921 pg_data_t
*pgdat
= NODE_DATA(nid
);
1927 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1928 if (IS_ERR(pgdat
->kswapd
)) {
1929 /* failure at boot is fatal */
1930 BUG_ON(system_state
== SYSTEM_BOOTING
);
1931 printk("Failed to start kswapd on node %d\n",nid
);
1937 static int __init
kswapd_init(void)
1942 for_each_node_state(nid
, N_HIGH_MEMORY
)
1944 hotcpu_notifier(cpu_callback
, 0);
1948 module_init(kswapd_init
)
1954 * If non-zero call zone_reclaim when the number of free pages falls below
1957 int zone_reclaim_mode __read_mostly
;
1959 #define RECLAIM_OFF 0
1960 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1961 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1962 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1965 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1966 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1969 #define ZONE_RECLAIM_PRIORITY 4
1972 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1975 int sysctl_min_unmapped_ratio
= 1;
1978 * If the number of slab pages in a zone grows beyond this percentage then
1979 * slab reclaim needs to occur.
1981 int sysctl_min_slab_ratio
= 5;
1984 * Try to free up some pages from this zone through reclaim.
1986 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1988 /* Minimum pages needed in order to stay on node */
1989 const unsigned long nr_pages
= 1 << order
;
1990 struct task_struct
*p
= current
;
1991 struct reclaim_state reclaim_state
;
1993 unsigned long nr_reclaimed
= 0;
1994 struct scan_control sc
= {
1995 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
1996 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
1997 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
1999 .gfp_mask
= gfp_mask
,
2000 .swappiness
= vm_swappiness
,
2001 .isolate_pages
= isolate_pages_global
,
2003 unsigned long slab_reclaimable
;
2005 disable_swap_token();
2008 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2009 * and we also need to be able to write out pages for RECLAIM_WRITE
2012 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2013 reclaim_state
.reclaimed_slab
= 0;
2014 p
->reclaim_state
= &reclaim_state
;
2016 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2017 zone_page_state(zone
, NR_FILE_MAPPED
) >
2018 zone
->min_unmapped_pages
) {
2020 * Free memory by calling shrink zone with increasing
2021 * priorities until we have enough memory freed.
2023 priority
= ZONE_RECLAIM_PRIORITY
;
2025 note_zone_scanning_priority(zone
, priority
);
2026 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
2028 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
2031 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2032 if (slab_reclaimable
> zone
->min_slab_pages
) {
2034 * shrink_slab() does not currently allow us to determine how
2035 * many pages were freed in this zone. So we take the current
2036 * number of slab pages and shake the slab until it is reduced
2037 * by the same nr_pages that we used for reclaiming unmapped
2040 * Note that shrink_slab will free memory on all zones and may
2043 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2044 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2045 slab_reclaimable
- nr_pages
)
2049 * Update nr_reclaimed by the number of slab pages we
2050 * reclaimed from this zone.
2052 nr_reclaimed
+= slab_reclaimable
-
2053 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2056 p
->reclaim_state
= NULL
;
2057 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2058 return nr_reclaimed
>= nr_pages
;
2061 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2067 * Zone reclaim reclaims unmapped file backed pages and
2068 * slab pages if we are over the defined limits.
2070 * A small portion of unmapped file backed pages is needed for
2071 * file I/O otherwise pages read by file I/O will be immediately
2072 * thrown out if the zone is overallocated. So we do not reclaim
2073 * if less than a specified percentage of the zone is used by
2074 * unmapped file backed pages.
2076 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2077 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2078 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2079 <= zone
->min_slab_pages
)
2082 if (zone_is_all_unreclaimable(zone
))
2086 * Do not scan if the allocation should not be delayed.
2088 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2092 * Only run zone reclaim on the local zone or on zones that do not
2093 * have associated processors. This will favor the local processor
2094 * over remote processors and spread off node memory allocations
2095 * as wide as possible.
2097 node_id
= zone_to_nid(zone
);
2098 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2101 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2103 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2104 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);