ixgbe: fix dma mapping unbalance
[linux-2.6/mini2440.git] / net / ipv4 / tcp.c
blob019243408623616680d8d74fb085d278b31f6163
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
268 #include <net/icmp.h>
269 #include <net/tcp.h>
270 #include <net/xfrm.h>
271 #include <net/ip.h>
272 #include <net/netdma.h>
273 #include <net/sock.h>
275 #include <asm/uaccess.h>
276 #include <asm/ioctls.h>
278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
280 struct percpu_counter tcp_orphan_count;
281 EXPORT_SYMBOL_GPL(tcp_orphan_count);
283 int sysctl_tcp_mem[3] __read_mostly;
284 int sysctl_tcp_wmem[3] __read_mostly;
285 int sysctl_tcp_rmem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 EXPORT_SYMBOL(sysctl_tcp_rmem);
289 EXPORT_SYMBOL(sysctl_tcp_wmem);
291 atomic_t tcp_memory_allocated; /* Current allocated memory. */
292 EXPORT_SYMBOL(tcp_memory_allocated);
295 * Current number of TCP sockets.
297 struct percpu_counter tcp_sockets_allocated;
298 EXPORT_SYMBOL(tcp_sockets_allocated);
301 * TCP splice context
303 struct tcp_splice_state {
304 struct pipe_inode_info *pipe;
305 size_t len;
306 unsigned int flags;
310 * Pressure flag: try to collapse.
311 * Technical note: it is used by multiple contexts non atomically.
312 * All the __sk_mem_schedule() is of this nature: accounting
313 * is strict, actions are advisory and have some latency.
315 int tcp_memory_pressure __read_mostly;
317 EXPORT_SYMBOL(tcp_memory_pressure);
319 void tcp_enter_memory_pressure(struct sock *sk)
321 if (!tcp_memory_pressure) {
322 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
323 tcp_memory_pressure = 1;
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330 * Wait for a TCP event.
332 * Note that we don't need to lock the socket, as the upper poll layers
333 * take care of normal races (between the test and the event) and we don't
334 * go look at any of the socket buffers directly.
336 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
338 unsigned int mask;
339 struct sock *sk = sock->sk;
340 struct tcp_sock *tp = tcp_sk(sk);
342 poll_wait(file, sk->sk_sleep, wait);
343 if (sk->sk_state == TCP_LISTEN)
344 return inet_csk_listen_poll(sk);
346 /* Socket is not locked. We are protected from async events
347 * by poll logic and correct handling of state changes
348 * made by other threads is impossible in any case.
351 mask = 0;
352 if (sk->sk_err)
353 mask = POLLERR;
356 * POLLHUP is certainly not done right. But poll() doesn't
357 * have a notion of HUP in just one direction, and for a
358 * socket the read side is more interesting.
360 * Some poll() documentation says that POLLHUP is incompatible
361 * with the POLLOUT/POLLWR flags, so somebody should check this
362 * all. But careful, it tends to be safer to return too many
363 * bits than too few, and you can easily break real applications
364 * if you don't tell them that something has hung up!
366 * Check-me.
368 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
369 * our fs/select.c). It means that after we received EOF,
370 * poll always returns immediately, making impossible poll() on write()
371 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
372 * if and only if shutdown has been made in both directions.
373 * Actually, it is interesting to look how Solaris and DUX
374 * solve this dilemma. I would prefer, if POLLHUP were maskable,
375 * then we could set it on SND_SHUTDOWN. BTW examples given
376 * in Stevens' books assume exactly this behaviour, it explains
377 * why POLLHUP is incompatible with POLLOUT. --ANK
379 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
380 * blocking on fresh not-connected or disconnected socket. --ANK
382 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
383 mask |= POLLHUP;
384 if (sk->sk_shutdown & RCV_SHUTDOWN)
385 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
387 /* Connected? */
388 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
389 int target = sock_rcvlowat(sk, 0, INT_MAX);
391 if (tp->urg_seq == tp->copied_seq &&
392 !sock_flag(sk, SOCK_URGINLINE) &&
393 tp->urg_data)
394 target--;
396 /* Potential race condition. If read of tp below will
397 * escape above sk->sk_state, we can be illegally awaken
398 * in SYN_* states. */
399 if (tp->rcv_nxt - tp->copied_seq >= target)
400 mask |= POLLIN | POLLRDNORM;
402 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
403 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
404 mask |= POLLOUT | POLLWRNORM;
405 } else { /* send SIGIO later */
406 set_bit(SOCK_ASYNC_NOSPACE,
407 &sk->sk_socket->flags);
408 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
410 /* Race breaker. If space is freed after
411 * wspace test but before the flags are set,
412 * IO signal will be lost.
414 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
415 mask |= POLLOUT | POLLWRNORM;
419 if (tp->urg_data & TCP_URG_VALID)
420 mask |= POLLPRI;
422 return mask;
425 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
427 struct tcp_sock *tp = tcp_sk(sk);
428 int answ;
430 switch (cmd) {
431 case SIOCINQ:
432 if (sk->sk_state == TCP_LISTEN)
433 return -EINVAL;
435 lock_sock(sk);
436 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
437 answ = 0;
438 else if (sock_flag(sk, SOCK_URGINLINE) ||
439 !tp->urg_data ||
440 before(tp->urg_seq, tp->copied_seq) ||
441 !before(tp->urg_seq, tp->rcv_nxt)) {
442 answ = tp->rcv_nxt - tp->copied_seq;
444 /* Subtract 1, if FIN is in queue. */
445 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
446 answ -=
447 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
448 } else
449 answ = tp->urg_seq - tp->copied_seq;
450 release_sock(sk);
451 break;
452 case SIOCATMARK:
453 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
454 break;
455 case SIOCOUTQ:
456 if (sk->sk_state == TCP_LISTEN)
457 return -EINVAL;
459 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
460 answ = 0;
461 else
462 answ = tp->write_seq - tp->snd_una;
463 break;
464 default:
465 return -ENOIOCTLCMD;
468 return put_user(answ, (int __user *)arg);
471 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
473 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
474 tp->pushed_seq = tp->write_seq;
477 static inline int forced_push(struct tcp_sock *tp)
479 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
482 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
484 struct tcp_sock *tp = tcp_sk(sk);
485 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
487 skb->csum = 0;
488 tcb->seq = tcb->end_seq = tp->write_seq;
489 tcb->flags = TCPCB_FLAG_ACK;
490 tcb->sacked = 0;
491 skb_header_release(skb);
492 tcp_add_write_queue_tail(sk, skb);
493 sk->sk_wmem_queued += skb->truesize;
494 sk_mem_charge(sk, skb->truesize);
495 if (tp->nonagle & TCP_NAGLE_PUSH)
496 tp->nonagle &= ~TCP_NAGLE_PUSH;
499 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
500 struct sk_buff *skb)
502 if (flags & MSG_OOB)
503 tp->snd_up = tp->write_seq;
506 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
507 int nonagle)
509 struct tcp_sock *tp = tcp_sk(sk);
511 if (tcp_send_head(sk)) {
512 struct sk_buff *skb = tcp_write_queue_tail(sk);
513 if (!(flags & MSG_MORE) || forced_push(tp))
514 tcp_mark_push(tp, skb);
515 tcp_mark_urg(tp, flags, skb);
516 __tcp_push_pending_frames(sk, mss_now,
517 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
521 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
522 unsigned int offset, size_t len)
524 struct tcp_splice_state *tss = rd_desc->arg.data;
526 return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
529 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
531 /* Store TCP splice context information in read_descriptor_t. */
532 read_descriptor_t rd_desc = {
533 .arg.data = tss,
536 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
540 * tcp_splice_read - splice data from TCP socket to a pipe
541 * @sock: socket to splice from
542 * @ppos: position (not valid)
543 * @pipe: pipe to splice to
544 * @len: number of bytes to splice
545 * @flags: splice modifier flags
547 * Description:
548 * Will read pages from given socket and fill them into a pipe.
551 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
552 struct pipe_inode_info *pipe, size_t len,
553 unsigned int flags)
555 struct sock *sk = sock->sk;
556 struct tcp_splice_state tss = {
557 .pipe = pipe,
558 .len = len,
559 .flags = flags,
561 long timeo;
562 ssize_t spliced;
563 int ret;
566 * We can't seek on a socket input
568 if (unlikely(*ppos))
569 return -ESPIPE;
571 ret = spliced = 0;
573 lock_sock(sk);
575 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
576 while (tss.len) {
577 ret = __tcp_splice_read(sk, &tss);
578 if (ret < 0)
579 break;
580 else if (!ret) {
581 if (spliced)
582 break;
583 if (flags & SPLICE_F_NONBLOCK) {
584 ret = -EAGAIN;
585 break;
587 if (sock_flag(sk, SOCK_DONE))
588 break;
589 if (sk->sk_err) {
590 ret = sock_error(sk);
591 break;
593 if (sk->sk_shutdown & RCV_SHUTDOWN)
594 break;
595 if (sk->sk_state == TCP_CLOSE) {
597 * This occurs when user tries to read
598 * from never connected socket.
600 if (!sock_flag(sk, SOCK_DONE))
601 ret = -ENOTCONN;
602 break;
604 if (!timeo) {
605 ret = -EAGAIN;
606 break;
608 sk_wait_data(sk, &timeo);
609 if (signal_pending(current)) {
610 ret = sock_intr_errno(timeo);
611 break;
613 continue;
615 tss.len -= ret;
616 spliced += ret;
618 release_sock(sk);
619 lock_sock(sk);
621 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
622 (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
623 signal_pending(current))
624 break;
627 release_sock(sk);
629 if (spliced)
630 return spliced;
632 return ret;
635 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
637 struct sk_buff *skb;
639 /* The TCP header must be at least 32-bit aligned. */
640 size = ALIGN(size, 4);
642 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
643 if (skb) {
644 if (sk_wmem_schedule(sk, skb->truesize)) {
646 * Make sure that we have exactly size bytes
647 * available to the caller, no more, no less.
649 skb_reserve(skb, skb_tailroom(skb) - size);
650 return skb;
652 __kfree_skb(skb);
653 } else {
654 sk->sk_prot->enter_memory_pressure(sk);
655 sk_stream_moderate_sndbuf(sk);
657 return NULL;
660 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
661 size_t psize, int flags)
663 struct tcp_sock *tp = tcp_sk(sk);
664 int mss_now, size_goal;
665 int err;
666 ssize_t copied;
667 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
669 /* Wait for a connection to finish. */
670 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
671 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
672 goto out_err;
674 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
676 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
677 size_goal = tp->xmit_size_goal;
678 copied = 0;
680 err = -EPIPE;
681 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
682 goto do_error;
684 while (psize > 0) {
685 struct sk_buff *skb = tcp_write_queue_tail(sk);
686 struct page *page = pages[poffset / PAGE_SIZE];
687 int copy, i, can_coalesce;
688 int offset = poffset % PAGE_SIZE;
689 int size = min_t(size_t, psize, PAGE_SIZE - offset);
691 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
692 new_segment:
693 if (!sk_stream_memory_free(sk))
694 goto wait_for_sndbuf;
696 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
697 if (!skb)
698 goto wait_for_memory;
700 skb_entail(sk, skb);
701 copy = size_goal;
704 if (copy > size)
705 copy = size;
707 i = skb_shinfo(skb)->nr_frags;
708 can_coalesce = skb_can_coalesce(skb, i, page, offset);
709 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
710 tcp_mark_push(tp, skb);
711 goto new_segment;
713 if (!sk_wmem_schedule(sk, copy))
714 goto wait_for_memory;
716 if (can_coalesce) {
717 skb_shinfo(skb)->frags[i - 1].size += copy;
718 } else {
719 get_page(page);
720 skb_fill_page_desc(skb, i, page, offset, copy);
723 skb->len += copy;
724 skb->data_len += copy;
725 skb->truesize += copy;
726 sk->sk_wmem_queued += copy;
727 sk_mem_charge(sk, copy);
728 skb->ip_summed = CHECKSUM_PARTIAL;
729 tp->write_seq += copy;
730 TCP_SKB_CB(skb)->end_seq += copy;
731 skb_shinfo(skb)->gso_segs = 0;
733 if (!copied)
734 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
736 copied += copy;
737 poffset += copy;
738 if (!(psize -= copy))
739 goto out;
741 if (skb->len < size_goal || (flags & MSG_OOB))
742 continue;
744 if (forced_push(tp)) {
745 tcp_mark_push(tp, skb);
746 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
747 } else if (skb == tcp_send_head(sk))
748 tcp_push_one(sk, mss_now);
749 continue;
751 wait_for_sndbuf:
752 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
753 wait_for_memory:
754 if (copied)
755 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
757 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
758 goto do_error;
760 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
761 size_goal = tp->xmit_size_goal;
764 out:
765 if (copied)
766 tcp_push(sk, flags, mss_now, tp->nonagle);
767 return copied;
769 do_error:
770 if (copied)
771 goto out;
772 out_err:
773 return sk_stream_error(sk, flags, err);
776 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
777 size_t size, int flags)
779 ssize_t res;
780 struct sock *sk = sock->sk;
782 if (!(sk->sk_route_caps & NETIF_F_SG) ||
783 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
784 return sock_no_sendpage(sock, page, offset, size, flags);
786 lock_sock(sk);
787 TCP_CHECK_TIMER(sk);
788 res = do_tcp_sendpages(sk, &page, offset, size, flags);
789 TCP_CHECK_TIMER(sk);
790 release_sock(sk);
791 return res;
794 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
795 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
797 static inline int select_size(struct sock *sk)
799 struct tcp_sock *tp = tcp_sk(sk);
800 int tmp = tp->mss_cache;
802 if (sk->sk_route_caps & NETIF_F_SG) {
803 if (sk_can_gso(sk))
804 tmp = 0;
805 else {
806 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
808 if (tmp >= pgbreak &&
809 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
810 tmp = pgbreak;
814 return tmp;
817 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
818 size_t size)
820 struct sock *sk = sock->sk;
821 struct iovec *iov;
822 struct tcp_sock *tp = tcp_sk(sk);
823 struct sk_buff *skb;
824 int iovlen, flags;
825 int mss_now, size_goal;
826 int err, copied;
827 long timeo;
829 lock_sock(sk);
830 TCP_CHECK_TIMER(sk);
832 flags = msg->msg_flags;
833 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
835 /* Wait for a connection to finish. */
836 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
837 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
838 goto out_err;
840 /* This should be in poll */
841 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
843 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
844 size_goal = tp->xmit_size_goal;
846 /* Ok commence sending. */
847 iovlen = msg->msg_iovlen;
848 iov = msg->msg_iov;
849 copied = 0;
851 err = -EPIPE;
852 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
853 goto do_error;
855 while (--iovlen >= 0) {
856 int seglen = iov->iov_len;
857 unsigned char __user *from = iov->iov_base;
859 iov++;
861 while (seglen > 0) {
862 int copy;
864 skb = tcp_write_queue_tail(sk);
866 if (!tcp_send_head(sk) ||
867 (copy = size_goal - skb->len) <= 0) {
869 new_segment:
870 /* Allocate new segment. If the interface is SG,
871 * allocate skb fitting to single page.
873 if (!sk_stream_memory_free(sk))
874 goto wait_for_sndbuf;
876 skb = sk_stream_alloc_skb(sk, select_size(sk),
877 sk->sk_allocation);
878 if (!skb)
879 goto wait_for_memory;
882 * Check whether we can use HW checksum.
884 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
885 skb->ip_summed = CHECKSUM_PARTIAL;
887 skb_entail(sk, skb);
888 copy = size_goal;
891 /* Try to append data to the end of skb. */
892 if (copy > seglen)
893 copy = seglen;
895 /* Where to copy to? */
896 if (skb_tailroom(skb) > 0) {
897 /* We have some space in skb head. Superb! */
898 if (copy > skb_tailroom(skb))
899 copy = skb_tailroom(skb);
900 if ((err = skb_add_data(skb, from, copy)) != 0)
901 goto do_fault;
902 } else {
903 int merge = 0;
904 int i = skb_shinfo(skb)->nr_frags;
905 struct page *page = TCP_PAGE(sk);
906 int off = TCP_OFF(sk);
908 if (skb_can_coalesce(skb, i, page, off) &&
909 off != PAGE_SIZE) {
910 /* We can extend the last page
911 * fragment. */
912 merge = 1;
913 } else if (i == MAX_SKB_FRAGS ||
914 (!i &&
915 !(sk->sk_route_caps & NETIF_F_SG))) {
916 /* Need to add new fragment and cannot
917 * do this because interface is non-SG,
918 * or because all the page slots are
919 * busy. */
920 tcp_mark_push(tp, skb);
921 goto new_segment;
922 } else if (page) {
923 if (off == PAGE_SIZE) {
924 put_page(page);
925 TCP_PAGE(sk) = page = NULL;
926 off = 0;
928 } else
929 off = 0;
931 if (copy > PAGE_SIZE - off)
932 copy = PAGE_SIZE - off;
934 if (!sk_wmem_schedule(sk, copy))
935 goto wait_for_memory;
937 if (!page) {
938 /* Allocate new cache page. */
939 if (!(page = sk_stream_alloc_page(sk)))
940 goto wait_for_memory;
943 /* Time to copy data. We are close to
944 * the end! */
945 err = skb_copy_to_page(sk, from, skb, page,
946 off, copy);
947 if (err) {
948 /* If this page was new, give it to the
949 * socket so it does not get leaked.
951 if (!TCP_PAGE(sk)) {
952 TCP_PAGE(sk) = page;
953 TCP_OFF(sk) = 0;
955 goto do_error;
958 /* Update the skb. */
959 if (merge) {
960 skb_shinfo(skb)->frags[i - 1].size +=
961 copy;
962 } else {
963 skb_fill_page_desc(skb, i, page, off, copy);
964 if (TCP_PAGE(sk)) {
965 get_page(page);
966 } else if (off + copy < PAGE_SIZE) {
967 get_page(page);
968 TCP_PAGE(sk) = page;
972 TCP_OFF(sk) = off + copy;
975 if (!copied)
976 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
978 tp->write_seq += copy;
979 TCP_SKB_CB(skb)->end_seq += copy;
980 skb_shinfo(skb)->gso_segs = 0;
982 from += copy;
983 copied += copy;
984 if ((seglen -= copy) == 0 && iovlen == 0)
985 goto out;
987 if (skb->len < size_goal || (flags & MSG_OOB))
988 continue;
990 if (forced_push(tp)) {
991 tcp_mark_push(tp, skb);
992 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
993 } else if (skb == tcp_send_head(sk))
994 tcp_push_one(sk, mss_now);
995 continue;
997 wait_for_sndbuf:
998 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
999 wait_for_memory:
1000 if (copied)
1001 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1003 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1004 goto do_error;
1006 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1007 size_goal = tp->xmit_size_goal;
1011 out:
1012 if (copied)
1013 tcp_push(sk, flags, mss_now, tp->nonagle);
1014 TCP_CHECK_TIMER(sk);
1015 release_sock(sk);
1016 return copied;
1018 do_fault:
1019 if (!skb->len) {
1020 tcp_unlink_write_queue(skb, sk);
1021 /* It is the one place in all of TCP, except connection
1022 * reset, where we can be unlinking the send_head.
1024 tcp_check_send_head(sk, skb);
1025 sk_wmem_free_skb(sk, skb);
1028 do_error:
1029 if (copied)
1030 goto out;
1031 out_err:
1032 err = sk_stream_error(sk, flags, err);
1033 TCP_CHECK_TIMER(sk);
1034 release_sock(sk);
1035 return err;
1039 * Handle reading urgent data. BSD has very simple semantics for
1040 * this, no blocking and very strange errors 8)
1043 static int tcp_recv_urg(struct sock *sk, long timeo,
1044 struct msghdr *msg, int len, int flags,
1045 int *addr_len)
1047 struct tcp_sock *tp = tcp_sk(sk);
1049 /* No URG data to read. */
1050 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1051 tp->urg_data == TCP_URG_READ)
1052 return -EINVAL; /* Yes this is right ! */
1054 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1055 return -ENOTCONN;
1057 if (tp->urg_data & TCP_URG_VALID) {
1058 int err = 0;
1059 char c = tp->urg_data;
1061 if (!(flags & MSG_PEEK))
1062 tp->urg_data = TCP_URG_READ;
1064 /* Read urgent data. */
1065 msg->msg_flags |= MSG_OOB;
1067 if (len > 0) {
1068 if (!(flags & MSG_TRUNC))
1069 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1070 len = 1;
1071 } else
1072 msg->msg_flags |= MSG_TRUNC;
1074 return err ? -EFAULT : len;
1077 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1078 return 0;
1080 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1081 * the available implementations agree in this case:
1082 * this call should never block, independent of the
1083 * blocking state of the socket.
1084 * Mike <pall@rz.uni-karlsruhe.de>
1086 return -EAGAIN;
1089 /* Clean up the receive buffer for full frames taken by the user,
1090 * then send an ACK if necessary. COPIED is the number of bytes
1091 * tcp_recvmsg has given to the user so far, it speeds up the
1092 * calculation of whether or not we must ACK for the sake of
1093 * a window update.
1095 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1097 struct tcp_sock *tp = tcp_sk(sk);
1098 int time_to_ack = 0;
1100 #if TCP_DEBUG
1101 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1103 WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1104 #endif
1106 if (inet_csk_ack_scheduled(sk)) {
1107 const struct inet_connection_sock *icsk = inet_csk(sk);
1108 /* Delayed ACKs frequently hit locked sockets during bulk
1109 * receive. */
1110 if (icsk->icsk_ack.blocked ||
1111 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1112 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1114 * If this read emptied read buffer, we send ACK, if
1115 * connection is not bidirectional, user drained
1116 * receive buffer and there was a small segment
1117 * in queue.
1119 (copied > 0 &&
1120 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1121 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1122 !icsk->icsk_ack.pingpong)) &&
1123 !atomic_read(&sk->sk_rmem_alloc)))
1124 time_to_ack = 1;
1127 /* We send an ACK if we can now advertise a non-zero window
1128 * which has been raised "significantly".
1130 * Even if window raised up to infinity, do not send window open ACK
1131 * in states, where we will not receive more. It is useless.
1133 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1134 __u32 rcv_window_now = tcp_receive_window(tp);
1136 /* Optimize, __tcp_select_window() is not cheap. */
1137 if (2*rcv_window_now <= tp->window_clamp) {
1138 __u32 new_window = __tcp_select_window(sk);
1140 /* Send ACK now, if this read freed lots of space
1141 * in our buffer. Certainly, new_window is new window.
1142 * We can advertise it now, if it is not less than current one.
1143 * "Lots" means "at least twice" here.
1145 if (new_window && new_window >= 2 * rcv_window_now)
1146 time_to_ack = 1;
1149 if (time_to_ack)
1150 tcp_send_ack(sk);
1153 static void tcp_prequeue_process(struct sock *sk)
1155 struct sk_buff *skb;
1156 struct tcp_sock *tp = tcp_sk(sk);
1158 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1160 /* RX process wants to run with disabled BHs, though it is not
1161 * necessary */
1162 local_bh_disable();
1163 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1164 sk_backlog_rcv(sk, skb);
1165 local_bh_enable();
1167 /* Clear memory counter. */
1168 tp->ucopy.memory = 0;
1171 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1173 struct sk_buff *skb;
1174 u32 offset;
1176 skb_queue_walk(&sk->sk_receive_queue, skb) {
1177 offset = seq - TCP_SKB_CB(skb)->seq;
1178 if (tcp_hdr(skb)->syn)
1179 offset--;
1180 if (offset < skb->len || tcp_hdr(skb)->fin) {
1181 *off = offset;
1182 return skb;
1185 return NULL;
1189 * This routine provides an alternative to tcp_recvmsg() for routines
1190 * that would like to handle copying from skbuffs directly in 'sendfile'
1191 * fashion.
1192 * Note:
1193 * - It is assumed that the socket was locked by the caller.
1194 * - The routine does not block.
1195 * - At present, there is no support for reading OOB data
1196 * or for 'peeking' the socket using this routine
1197 * (although both would be easy to implement).
1199 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1200 sk_read_actor_t recv_actor)
1202 struct sk_buff *skb;
1203 struct tcp_sock *tp = tcp_sk(sk);
1204 u32 seq = tp->copied_seq;
1205 u32 offset;
1206 int copied = 0;
1208 if (sk->sk_state == TCP_LISTEN)
1209 return -ENOTCONN;
1210 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1211 if (offset < skb->len) {
1212 int used;
1213 size_t len;
1215 len = skb->len - offset;
1216 /* Stop reading if we hit a patch of urgent data */
1217 if (tp->urg_data) {
1218 u32 urg_offset = tp->urg_seq - seq;
1219 if (urg_offset < len)
1220 len = urg_offset;
1221 if (!len)
1222 break;
1224 used = recv_actor(desc, skb, offset, len);
1225 if (used < 0) {
1226 if (!copied)
1227 copied = used;
1228 break;
1229 } else if (used <= len) {
1230 seq += used;
1231 copied += used;
1232 offset += used;
1235 * If recv_actor drops the lock (e.g. TCP splice
1236 * receive) the skb pointer might be invalid when
1237 * getting here: tcp_collapse might have deleted it
1238 * while aggregating skbs from the socket queue.
1240 skb = tcp_recv_skb(sk, seq-1, &offset);
1241 if (!skb || (offset+1 != skb->len))
1242 break;
1244 if (tcp_hdr(skb)->fin) {
1245 sk_eat_skb(sk, skb, 0);
1246 ++seq;
1247 break;
1249 sk_eat_skb(sk, skb, 0);
1250 if (!desc->count)
1251 break;
1253 tp->copied_seq = seq;
1255 tcp_rcv_space_adjust(sk);
1257 /* Clean up data we have read: This will do ACK frames. */
1258 if (copied > 0)
1259 tcp_cleanup_rbuf(sk, copied);
1260 return copied;
1264 * This routine copies from a sock struct into the user buffer.
1266 * Technical note: in 2.3 we work on _locked_ socket, so that
1267 * tricks with *seq access order and skb->users are not required.
1268 * Probably, code can be easily improved even more.
1271 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1272 size_t len, int nonblock, int flags, int *addr_len)
1274 struct tcp_sock *tp = tcp_sk(sk);
1275 int copied = 0;
1276 u32 peek_seq;
1277 u32 *seq;
1278 unsigned long used;
1279 int err;
1280 int target; /* Read at least this many bytes */
1281 long timeo;
1282 struct task_struct *user_recv = NULL;
1283 int copied_early = 0;
1284 struct sk_buff *skb;
1286 lock_sock(sk);
1288 TCP_CHECK_TIMER(sk);
1290 err = -ENOTCONN;
1291 if (sk->sk_state == TCP_LISTEN)
1292 goto out;
1294 timeo = sock_rcvtimeo(sk, nonblock);
1296 /* Urgent data needs to be handled specially. */
1297 if (flags & MSG_OOB)
1298 goto recv_urg;
1300 seq = &tp->copied_seq;
1301 if (flags & MSG_PEEK) {
1302 peek_seq = tp->copied_seq;
1303 seq = &peek_seq;
1306 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1308 #ifdef CONFIG_NET_DMA
1309 tp->ucopy.dma_chan = NULL;
1310 preempt_disable();
1311 skb = skb_peek_tail(&sk->sk_receive_queue);
1313 int available = 0;
1315 if (skb)
1316 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1317 if ((available < target) &&
1318 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1319 !sysctl_tcp_low_latency &&
1320 __get_cpu_var(softnet_data).net_dma) {
1321 preempt_enable_no_resched();
1322 tp->ucopy.pinned_list =
1323 dma_pin_iovec_pages(msg->msg_iov, len);
1324 } else {
1325 preempt_enable_no_resched();
1328 #endif
1330 do {
1331 u32 offset;
1333 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1334 if (tp->urg_data && tp->urg_seq == *seq) {
1335 if (copied)
1336 break;
1337 if (signal_pending(current)) {
1338 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1339 break;
1343 /* Next get a buffer. */
1345 skb = skb_peek(&sk->sk_receive_queue);
1346 do {
1347 if (!skb)
1348 break;
1350 /* Now that we have two receive queues this
1351 * shouldn't happen.
1353 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1354 printk(KERN_INFO "recvmsg bug: copied %X "
1355 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1356 break;
1358 offset = *seq - TCP_SKB_CB(skb)->seq;
1359 if (tcp_hdr(skb)->syn)
1360 offset--;
1361 if (offset < skb->len)
1362 goto found_ok_skb;
1363 if (tcp_hdr(skb)->fin)
1364 goto found_fin_ok;
1365 WARN_ON(!(flags & MSG_PEEK));
1366 skb = skb->next;
1367 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1369 /* Well, if we have backlog, try to process it now yet. */
1371 if (copied >= target && !sk->sk_backlog.tail)
1372 break;
1374 if (copied) {
1375 if (sk->sk_err ||
1376 sk->sk_state == TCP_CLOSE ||
1377 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1378 !timeo ||
1379 signal_pending(current))
1380 break;
1381 } else {
1382 if (sock_flag(sk, SOCK_DONE))
1383 break;
1385 if (sk->sk_err) {
1386 copied = sock_error(sk);
1387 break;
1390 if (sk->sk_shutdown & RCV_SHUTDOWN)
1391 break;
1393 if (sk->sk_state == TCP_CLOSE) {
1394 if (!sock_flag(sk, SOCK_DONE)) {
1395 /* This occurs when user tries to read
1396 * from never connected socket.
1398 copied = -ENOTCONN;
1399 break;
1401 break;
1404 if (!timeo) {
1405 copied = -EAGAIN;
1406 break;
1409 if (signal_pending(current)) {
1410 copied = sock_intr_errno(timeo);
1411 break;
1415 tcp_cleanup_rbuf(sk, copied);
1417 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1418 /* Install new reader */
1419 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1420 user_recv = current;
1421 tp->ucopy.task = user_recv;
1422 tp->ucopy.iov = msg->msg_iov;
1425 tp->ucopy.len = len;
1427 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1428 !(flags & (MSG_PEEK | MSG_TRUNC)));
1430 /* Ugly... If prequeue is not empty, we have to
1431 * process it before releasing socket, otherwise
1432 * order will be broken at second iteration.
1433 * More elegant solution is required!!!
1435 * Look: we have the following (pseudo)queues:
1437 * 1. packets in flight
1438 * 2. backlog
1439 * 3. prequeue
1440 * 4. receive_queue
1442 * Each queue can be processed only if the next ones
1443 * are empty. At this point we have empty receive_queue.
1444 * But prequeue _can_ be not empty after 2nd iteration,
1445 * when we jumped to start of loop because backlog
1446 * processing added something to receive_queue.
1447 * We cannot release_sock(), because backlog contains
1448 * packets arrived _after_ prequeued ones.
1450 * Shortly, algorithm is clear --- to process all
1451 * the queues in order. We could make it more directly,
1452 * requeueing packets from backlog to prequeue, if
1453 * is not empty. It is more elegant, but eats cycles,
1454 * unfortunately.
1456 if (!skb_queue_empty(&tp->ucopy.prequeue))
1457 goto do_prequeue;
1459 /* __ Set realtime policy in scheduler __ */
1462 if (copied >= target) {
1463 /* Do not sleep, just process backlog. */
1464 release_sock(sk);
1465 lock_sock(sk);
1466 } else
1467 sk_wait_data(sk, &timeo);
1469 #ifdef CONFIG_NET_DMA
1470 tp->ucopy.wakeup = 0;
1471 #endif
1473 if (user_recv) {
1474 int chunk;
1476 /* __ Restore normal policy in scheduler __ */
1478 if ((chunk = len - tp->ucopy.len) != 0) {
1479 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1480 len -= chunk;
1481 copied += chunk;
1484 if (tp->rcv_nxt == tp->copied_seq &&
1485 !skb_queue_empty(&tp->ucopy.prequeue)) {
1486 do_prequeue:
1487 tcp_prequeue_process(sk);
1489 if ((chunk = len - tp->ucopy.len) != 0) {
1490 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1491 len -= chunk;
1492 copied += chunk;
1496 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1497 if (net_ratelimit())
1498 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1499 current->comm, task_pid_nr(current));
1500 peek_seq = tp->copied_seq;
1502 continue;
1504 found_ok_skb:
1505 /* Ok so how much can we use? */
1506 used = skb->len - offset;
1507 if (len < used)
1508 used = len;
1510 /* Do we have urgent data here? */
1511 if (tp->urg_data) {
1512 u32 urg_offset = tp->urg_seq - *seq;
1513 if (urg_offset < used) {
1514 if (!urg_offset) {
1515 if (!sock_flag(sk, SOCK_URGINLINE)) {
1516 ++*seq;
1517 offset++;
1518 used--;
1519 if (!used)
1520 goto skip_copy;
1522 } else
1523 used = urg_offset;
1527 if (!(flags & MSG_TRUNC)) {
1528 #ifdef CONFIG_NET_DMA
1529 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1530 tp->ucopy.dma_chan = get_softnet_dma();
1532 if (tp->ucopy.dma_chan) {
1533 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1534 tp->ucopy.dma_chan, skb, offset,
1535 msg->msg_iov, used,
1536 tp->ucopy.pinned_list);
1538 if (tp->ucopy.dma_cookie < 0) {
1540 printk(KERN_ALERT "dma_cookie < 0\n");
1542 /* Exception. Bailout! */
1543 if (!copied)
1544 copied = -EFAULT;
1545 break;
1547 if ((offset + used) == skb->len)
1548 copied_early = 1;
1550 } else
1551 #endif
1553 err = skb_copy_datagram_iovec(skb, offset,
1554 msg->msg_iov, used);
1555 if (err) {
1556 /* Exception. Bailout! */
1557 if (!copied)
1558 copied = -EFAULT;
1559 break;
1564 *seq += used;
1565 copied += used;
1566 len -= used;
1568 tcp_rcv_space_adjust(sk);
1570 skip_copy:
1571 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1572 tp->urg_data = 0;
1573 tcp_fast_path_check(sk);
1575 if (used + offset < skb->len)
1576 continue;
1578 if (tcp_hdr(skb)->fin)
1579 goto found_fin_ok;
1580 if (!(flags & MSG_PEEK)) {
1581 sk_eat_skb(sk, skb, copied_early);
1582 copied_early = 0;
1584 continue;
1586 found_fin_ok:
1587 /* Process the FIN. */
1588 ++*seq;
1589 if (!(flags & MSG_PEEK)) {
1590 sk_eat_skb(sk, skb, copied_early);
1591 copied_early = 0;
1593 break;
1594 } while (len > 0);
1596 if (user_recv) {
1597 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1598 int chunk;
1600 tp->ucopy.len = copied > 0 ? len : 0;
1602 tcp_prequeue_process(sk);
1604 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1605 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1606 len -= chunk;
1607 copied += chunk;
1611 tp->ucopy.task = NULL;
1612 tp->ucopy.len = 0;
1615 #ifdef CONFIG_NET_DMA
1616 if (tp->ucopy.dma_chan) {
1617 dma_cookie_t done, used;
1619 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1621 while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1622 tp->ucopy.dma_cookie, &done,
1623 &used) == DMA_IN_PROGRESS) {
1624 /* do partial cleanup of sk_async_wait_queue */
1625 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1626 (dma_async_is_complete(skb->dma_cookie, done,
1627 used) == DMA_SUCCESS)) {
1628 __skb_dequeue(&sk->sk_async_wait_queue);
1629 kfree_skb(skb);
1633 /* Safe to free early-copied skbs now */
1634 __skb_queue_purge(&sk->sk_async_wait_queue);
1635 dma_chan_put(tp->ucopy.dma_chan);
1636 tp->ucopy.dma_chan = NULL;
1638 if (tp->ucopy.pinned_list) {
1639 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1640 tp->ucopy.pinned_list = NULL;
1642 #endif
1644 /* According to UNIX98, msg_name/msg_namelen are ignored
1645 * on connected socket. I was just happy when found this 8) --ANK
1648 /* Clean up data we have read: This will do ACK frames. */
1649 tcp_cleanup_rbuf(sk, copied);
1651 TCP_CHECK_TIMER(sk);
1652 release_sock(sk);
1653 return copied;
1655 out:
1656 TCP_CHECK_TIMER(sk);
1657 release_sock(sk);
1658 return err;
1660 recv_urg:
1661 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1662 goto out;
1665 void tcp_set_state(struct sock *sk, int state)
1667 int oldstate = sk->sk_state;
1669 switch (state) {
1670 case TCP_ESTABLISHED:
1671 if (oldstate != TCP_ESTABLISHED)
1672 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1673 break;
1675 case TCP_CLOSE:
1676 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1677 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1679 sk->sk_prot->unhash(sk);
1680 if (inet_csk(sk)->icsk_bind_hash &&
1681 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1682 inet_put_port(sk);
1683 /* fall through */
1684 default:
1685 if (oldstate == TCP_ESTABLISHED)
1686 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1689 /* Change state AFTER socket is unhashed to avoid closed
1690 * socket sitting in hash tables.
1692 sk->sk_state = state;
1694 #ifdef STATE_TRACE
1695 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1696 #endif
1698 EXPORT_SYMBOL_GPL(tcp_set_state);
1701 * State processing on a close. This implements the state shift for
1702 * sending our FIN frame. Note that we only send a FIN for some
1703 * states. A shutdown() may have already sent the FIN, or we may be
1704 * closed.
1707 static const unsigned char new_state[16] = {
1708 /* current state: new state: action: */
1709 /* (Invalid) */ TCP_CLOSE,
1710 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1711 /* TCP_SYN_SENT */ TCP_CLOSE,
1712 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1713 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1714 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1715 /* TCP_TIME_WAIT */ TCP_CLOSE,
1716 /* TCP_CLOSE */ TCP_CLOSE,
1717 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1718 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1719 /* TCP_LISTEN */ TCP_CLOSE,
1720 /* TCP_CLOSING */ TCP_CLOSING,
1723 static int tcp_close_state(struct sock *sk)
1725 int next = (int)new_state[sk->sk_state];
1726 int ns = next & TCP_STATE_MASK;
1728 tcp_set_state(sk, ns);
1730 return next & TCP_ACTION_FIN;
1734 * Shutdown the sending side of a connection. Much like close except
1735 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1738 void tcp_shutdown(struct sock *sk, int how)
1740 /* We need to grab some memory, and put together a FIN,
1741 * and then put it into the queue to be sent.
1742 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1744 if (!(how & SEND_SHUTDOWN))
1745 return;
1747 /* If we've already sent a FIN, or it's a closed state, skip this. */
1748 if ((1 << sk->sk_state) &
1749 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1750 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1751 /* Clear out any half completed packets. FIN if needed. */
1752 if (tcp_close_state(sk))
1753 tcp_send_fin(sk);
1757 void tcp_close(struct sock *sk, long timeout)
1759 struct sk_buff *skb;
1760 int data_was_unread = 0;
1761 int state;
1763 lock_sock(sk);
1764 sk->sk_shutdown = SHUTDOWN_MASK;
1766 if (sk->sk_state == TCP_LISTEN) {
1767 tcp_set_state(sk, TCP_CLOSE);
1769 /* Special case. */
1770 inet_csk_listen_stop(sk);
1772 goto adjudge_to_death;
1775 /* We need to flush the recv. buffs. We do this only on the
1776 * descriptor close, not protocol-sourced closes, because the
1777 * reader process may not have drained the data yet!
1779 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1780 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1781 tcp_hdr(skb)->fin;
1782 data_was_unread += len;
1783 __kfree_skb(skb);
1786 sk_mem_reclaim(sk);
1788 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1789 * data was lost. To witness the awful effects of the old behavior of
1790 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1791 * GET in an FTP client, suspend the process, wait for the client to
1792 * advertise a zero window, then kill -9 the FTP client, wheee...
1793 * Note: timeout is always zero in such a case.
1795 if (data_was_unread) {
1796 /* Unread data was tossed, zap the connection. */
1797 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1798 tcp_set_state(sk, TCP_CLOSE);
1799 tcp_send_active_reset(sk, GFP_KERNEL);
1800 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1801 /* Check zero linger _after_ checking for unread data. */
1802 sk->sk_prot->disconnect(sk, 0);
1803 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1804 } else if (tcp_close_state(sk)) {
1805 /* We FIN if the application ate all the data before
1806 * zapping the connection.
1809 /* RED-PEN. Formally speaking, we have broken TCP state
1810 * machine. State transitions:
1812 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1813 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1814 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1816 * are legal only when FIN has been sent (i.e. in window),
1817 * rather than queued out of window. Purists blame.
1819 * F.e. "RFC state" is ESTABLISHED,
1820 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1822 * The visible declinations are that sometimes
1823 * we enter time-wait state, when it is not required really
1824 * (harmless), do not send active resets, when they are
1825 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1826 * they look as CLOSING or LAST_ACK for Linux)
1827 * Probably, I missed some more holelets.
1828 * --ANK
1830 tcp_send_fin(sk);
1833 sk_stream_wait_close(sk, timeout);
1835 adjudge_to_death:
1836 state = sk->sk_state;
1837 sock_hold(sk);
1838 sock_orphan(sk);
1839 percpu_counter_inc(sk->sk_prot->orphan_count);
1841 /* It is the last release_sock in its life. It will remove backlog. */
1842 release_sock(sk);
1845 /* Now socket is owned by kernel and we acquire BH lock
1846 to finish close. No need to check for user refs.
1848 local_bh_disable();
1849 bh_lock_sock(sk);
1850 WARN_ON(sock_owned_by_user(sk));
1852 /* Have we already been destroyed by a softirq or backlog? */
1853 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1854 goto out;
1856 /* This is a (useful) BSD violating of the RFC. There is a
1857 * problem with TCP as specified in that the other end could
1858 * keep a socket open forever with no application left this end.
1859 * We use a 3 minute timeout (about the same as BSD) then kill
1860 * our end. If they send after that then tough - BUT: long enough
1861 * that we won't make the old 4*rto = almost no time - whoops
1862 * reset mistake.
1864 * Nope, it was not mistake. It is really desired behaviour
1865 * f.e. on http servers, when such sockets are useless, but
1866 * consume significant resources. Let's do it with special
1867 * linger2 option. --ANK
1870 if (sk->sk_state == TCP_FIN_WAIT2) {
1871 struct tcp_sock *tp = tcp_sk(sk);
1872 if (tp->linger2 < 0) {
1873 tcp_set_state(sk, TCP_CLOSE);
1874 tcp_send_active_reset(sk, GFP_ATOMIC);
1875 NET_INC_STATS_BH(sock_net(sk),
1876 LINUX_MIB_TCPABORTONLINGER);
1877 } else {
1878 const int tmo = tcp_fin_time(sk);
1880 if (tmo > TCP_TIMEWAIT_LEN) {
1881 inet_csk_reset_keepalive_timer(sk,
1882 tmo - TCP_TIMEWAIT_LEN);
1883 } else {
1884 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1885 goto out;
1889 if (sk->sk_state != TCP_CLOSE) {
1890 int orphan_count = percpu_counter_read_positive(
1891 sk->sk_prot->orphan_count);
1893 sk_mem_reclaim(sk);
1894 if (tcp_too_many_orphans(sk, orphan_count)) {
1895 if (net_ratelimit())
1896 printk(KERN_INFO "TCP: too many of orphaned "
1897 "sockets\n");
1898 tcp_set_state(sk, TCP_CLOSE);
1899 tcp_send_active_reset(sk, GFP_ATOMIC);
1900 NET_INC_STATS_BH(sock_net(sk),
1901 LINUX_MIB_TCPABORTONMEMORY);
1905 if (sk->sk_state == TCP_CLOSE)
1906 inet_csk_destroy_sock(sk);
1907 /* Otherwise, socket is reprieved until protocol close. */
1909 out:
1910 bh_unlock_sock(sk);
1911 local_bh_enable();
1912 sock_put(sk);
1915 /* These states need RST on ABORT according to RFC793 */
1917 static inline int tcp_need_reset(int state)
1919 return (1 << state) &
1920 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1921 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1924 int tcp_disconnect(struct sock *sk, int flags)
1926 struct inet_sock *inet = inet_sk(sk);
1927 struct inet_connection_sock *icsk = inet_csk(sk);
1928 struct tcp_sock *tp = tcp_sk(sk);
1929 int err = 0;
1930 int old_state = sk->sk_state;
1932 if (old_state != TCP_CLOSE)
1933 tcp_set_state(sk, TCP_CLOSE);
1935 /* ABORT function of RFC793 */
1936 if (old_state == TCP_LISTEN) {
1937 inet_csk_listen_stop(sk);
1938 } else if (tcp_need_reset(old_state) ||
1939 (tp->snd_nxt != tp->write_seq &&
1940 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1941 /* The last check adjusts for discrepancy of Linux wrt. RFC
1942 * states
1944 tcp_send_active_reset(sk, gfp_any());
1945 sk->sk_err = ECONNRESET;
1946 } else if (old_state == TCP_SYN_SENT)
1947 sk->sk_err = ECONNRESET;
1949 tcp_clear_xmit_timers(sk);
1950 __skb_queue_purge(&sk->sk_receive_queue);
1951 tcp_write_queue_purge(sk);
1952 __skb_queue_purge(&tp->out_of_order_queue);
1953 #ifdef CONFIG_NET_DMA
1954 __skb_queue_purge(&sk->sk_async_wait_queue);
1955 #endif
1957 inet->dport = 0;
1959 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1960 inet_reset_saddr(sk);
1962 sk->sk_shutdown = 0;
1963 sock_reset_flag(sk, SOCK_DONE);
1964 tp->srtt = 0;
1965 if ((tp->write_seq += tp->max_window + 2) == 0)
1966 tp->write_seq = 1;
1967 icsk->icsk_backoff = 0;
1968 tp->snd_cwnd = 2;
1969 icsk->icsk_probes_out = 0;
1970 tp->packets_out = 0;
1971 tp->snd_ssthresh = 0x7fffffff;
1972 tp->snd_cwnd_cnt = 0;
1973 tp->bytes_acked = 0;
1974 tcp_set_ca_state(sk, TCP_CA_Open);
1975 tcp_clear_retrans(tp);
1976 inet_csk_delack_init(sk);
1977 tcp_init_send_head(sk);
1978 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1979 __sk_dst_reset(sk);
1981 WARN_ON(inet->num && !icsk->icsk_bind_hash);
1983 sk->sk_error_report(sk);
1984 return err;
1988 * Socket option code for TCP.
1990 static int do_tcp_setsockopt(struct sock *sk, int level,
1991 int optname, char __user *optval, int optlen)
1993 struct tcp_sock *tp = tcp_sk(sk);
1994 struct inet_connection_sock *icsk = inet_csk(sk);
1995 int val;
1996 int err = 0;
1998 /* This is a string value all the others are int's */
1999 if (optname == TCP_CONGESTION) {
2000 char name[TCP_CA_NAME_MAX];
2002 if (optlen < 1)
2003 return -EINVAL;
2005 val = strncpy_from_user(name, optval,
2006 min(TCP_CA_NAME_MAX-1, optlen));
2007 if (val < 0)
2008 return -EFAULT;
2009 name[val] = 0;
2011 lock_sock(sk);
2012 err = tcp_set_congestion_control(sk, name);
2013 release_sock(sk);
2014 return err;
2017 if (optlen < sizeof(int))
2018 return -EINVAL;
2020 if (get_user(val, (int __user *)optval))
2021 return -EFAULT;
2023 lock_sock(sk);
2025 switch (optname) {
2026 case TCP_MAXSEG:
2027 /* Values greater than interface MTU won't take effect. However
2028 * at the point when this call is done we typically don't yet
2029 * know which interface is going to be used */
2030 if (val < 8 || val > MAX_TCP_WINDOW) {
2031 err = -EINVAL;
2032 break;
2034 tp->rx_opt.user_mss = val;
2035 break;
2037 case TCP_NODELAY:
2038 if (val) {
2039 /* TCP_NODELAY is weaker than TCP_CORK, so that
2040 * this option on corked socket is remembered, but
2041 * it is not activated until cork is cleared.
2043 * However, when TCP_NODELAY is set we make
2044 * an explicit push, which overrides even TCP_CORK
2045 * for currently queued segments.
2047 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2048 tcp_push_pending_frames(sk);
2049 } else {
2050 tp->nonagle &= ~TCP_NAGLE_OFF;
2052 break;
2054 case TCP_CORK:
2055 /* When set indicates to always queue non-full frames.
2056 * Later the user clears this option and we transmit
2057 * any pending partial frames in the queue. This is
2058 * meant to be used alongside sendfile() to get properly
2059 * filled frames when the user (for example) must write
2060 * out headers with a write() call first and then use
2061 * sendfile to send out the data parts.
2063 * TCP_CORK can be set together with TCP_NODELAY and it is
2064 * stronger than TCP_NODELAY.
2066 if (val) {
2067 tp->nonagle |= TCP_NAGLE_CORK;
2068 } else {
2069 tp->nonagle &= ~TCP_NAGLE_CORK;
2070 if (tp->nonagle&TCP_NAGLE_OFF)
2071 tp->nonagle |= TCP_NAGLE_PUSH;
2072 tcp_push_pending_frames(sk);
2074 break;
2076 case TCP_KEEPIDLE:
2077 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2078 err = -EINVAL;
2079 else {
2080 tp->keepalive_time = val * HZ;
2081 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2082 !((1 << sk->sk_state) &
2083 (TCPF_CLOSE | TCPF_LISTEN))) {
2084 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2085 if (tp->keepalive_time > elapsed)
2086 elapsed = tp->keepalive_time - elapsed;
2087 else
2088 elapsed = 0;
2089 inet_csk_reset_keepalive_timer(sk, elapsed);
2092 break;
2093 case TCP_KEEPINTVL:
2094 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2095 err = -EINVAL;
2096 else
2097 tp->keepalive_intvl = val * HZ;
2098 break;
2099 case TCP_KEEPCNT:
2100 if (val < 1 || val > MAX_TCP_KEEPCNT)
2101 err = -EINVAL;
2102 else
2103 tp->keepalive_probes = val;
2104 break;
2105 case TCP_SYNCNT:
2106 if (val < 1 || val > MAX_TCP_SYNCNT)
2107 err = -EINVAL;
2108 else
2109 icsk->icsk_syn_retries = val;
2110 break;
2112 case TCP_LINGER2:
2113 if (val < 0)
2114 tp->linger2 = -1;
2115 else if (val > sysctl_tcp_fin_timeout / HZ)
2116 tp->linger2 = 0;
2117 else
2118 tp->linger2 = val * HZ;
2119 break;
2121 case TCP_DEFER_ACCEPT:
2122 icsk->icsk_accept_queue.rskq_defer_accept = 0;
2123 if (val > 0) {
2124 /* Translate value in seconds to number of
2125 * retransmits */
2126 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2127 val > ((TCP_TIMEOUT_INIT / HZ) <<
2128 icsk->icsk_accept_queue.rskq_defer_accept))
2129 icsk->icsk_accept_queue.rskq_defer_accept++;
2130 icsk->icsk_accept_queue.rskq_defer_accept++;
2132 break;
2134 case TCP_WINDOW_CLAMP:
2135 if (!val) {
2136 if (sk->sk_state != TCP_CLOSE) {
2137 err = -EINVAL;
2138 break;
2140 tp->window_clamp = 0;
2141 } else
2142 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2143 SOCK_MIN_RCVBUF / 2 : val;
2144 break;
2146 case TCP_QUICKACK:
2147 if (!val) {
2148 icsk->icsk_ack.pingpong = 1;
2149 } else {
2150 icsk->icsk_ack.pingpong = 0;
2151 if ((1 << sk->sk_state) &
2152 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2153 inet_csk_ack_scheduled(sk)) {
2154 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2155 tcp_cleanup_rbuf(sk, 1);
2156 if (!(val & 1))
2157 icsk->icsk_ack.pingpong = 1;
2160 break;
2162 #ifdef CONFIG_TCP_MD5SIG
2163 case TCP_MD5SIG:
2164 /* Read the IP->Key mappings from userspace */
2165 err = tp->af_specific->md5_parse(sk, optval, optlen);
2166 break;
2167 #endif
2169 default:
2170 err = -ENOPROTOOPT;
2171 break;
2174 release_sock(sk);
2175 return err;
2178 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2179 int optlen)
2181 struct inet_connection_sock *icsk = inet_csk(sk);
2183 if (level != SOL_TCP)
2184 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2185 optval, optlen);
2186 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2189 #ifdef CONFIG_COMPAT
2190 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2191 char __user *optval, int optlen)
2193 if (level != SOL_TCP)
2194 return inet_csk_compat_setsockopt(sk, level, optname,
2195 optval, optlen);
2196 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2199 EXPORT_SYMBOL(compat_tcp_setsockopt);
2200 #endif
2202 /* Return information about state of tcp endpoint in API format. */
2203 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2205 struct tcp_sock *tp = tcp_sk(sk);
2206 const struct inet_connection_sock *icsk = inet_csk(sk);
2207 u32 now = tcp_time_stamp;
2209 memset(info, 0, sizeof(*info));
2211 info->tcpi_state = sk->sk_state;
2212 info->tcpi_ca_state = icsk->icsk_ca_state;
2213 info->tcpi_retransmits = icsk->icsk_retransmits;
2214 info->tcpi_probes = icsk->icsk_probes_out;
2215 info->tcpi_backoff = icsk->icsk_backoff;
2217 if (tp->rx_opt.tstamp_ok)
2218 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2219 if (tcp_is_sack(tp))
2220 info->tcpi_options |= TCPI_OPT_SACK;
2221 if (tp->rx_opt.wscale_ok) {
2222 info->tcpi_options |= TCPI_OPT_WSCALE;
2223 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2224 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2227 if (tp->ecn_flags&TCP_ECN_OK)
2228 info->tcpi_options |= TCPI_OPT_ECN;
2230 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2231 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2232 info->tcpi_snd_mss = tp->mss_cache;
2233 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2235 if (sk->sk_state == TCP_LISTEN) {
2236 info->tcpi_unacked = sk->sk_ack_backlog;
2237 info->tcpi_sacked = sk->sk_max_ack_backlog;
2238 } else {
2239 info->tcpi_unacked = tp->packets_out;
2240 info->tcpi_sacked = tp->sacked_out;
2242 info->tcpi_lost = tp->lost_out;
2243 info->tcpi_retrans = tp->retrans_out;
2244 info->tcpi_fackets = tp->fackets_out;
2246 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2247 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2248 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2250 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2251 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2252 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2253 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2254 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2255 info->tcpi_snd_cwnd = tp->snd_cwnd;
2256 info->tcpi_advmss = tp->advmss;
2257 info->tcpi_reordering = tp->reordering;
2259 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2260 info->tcpi_rcv_space = tp->rcvq_space.space;
2262 info->tcpi_total_retrans = tp->total_retrans;
2265 EXPORT_SYMBOL_GPL(tcp_get_info);
2267 static int do_tcp_getsockopt(struct sock *sk, int level,
2268 int optname, char __user *optval, int __user *optlen)
2270 struct inet_connection_sock *icsk = inet_csk(sk);
2271 struct tcp_sock *tp = tcp_sk(sk);
2272 int val, len;
2274 if (get_user(len, optlen))
2275 return -EFAULT;
2277 len = min_t(unsigned int, len, sizeof(int));
2279 if (len < 0)
2280 return -EINVAL;
2282 switch (optname) {
2283 case TCP_MAXSEG:
2284 val = tp->mss_cache;
2285 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2286 val = tp->rx_opt.user_mss;
2287 break;
2288 case TCP_NODELAY:
2289 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2290 break;
2291 case TCP_CORK:
2292 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2293 break;
2294 case TCP_KEEPIDLE:
2295 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2296 break;
2297 case TCP_KEEPINTVL:
2298 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2299 break;
2300 case TCP_KEEPCNT:
2301 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2302 break;
2303 case TCP_SYNCNT:
2304 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2305 break;
2306 case TCP_LINGER2:
2307 val = tp->linger2;
2308 if (val >= 0)
2309 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2310 break;
2311 case TCP_DEFER_ACCEPT:
2312 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2313 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2314 break;
2315 case TCP_WINDOW_CLAMP:
2316 val = tp->window_clamp;
2317 break;
2318 case TCP_INFO: {
2319 struct tcp_info info;
2321 if (get_user(len, optlen))
2322 return -EFAULT;
2324 tcp_get_info(sk, &info);
2326 len = min_t(unsigned int, len, sizeof(info));
2327 if (put_user(len, optlen))
2328 return -EFAULT;
2329 if (copy_to_user(optval, &info, len))
2330 return -EFAULT;
2331 return 0;
2333 case TCP_QUICKACK:
2334 val = !icsk->icsk_ack.pingpong;
2335 break;
2337 case TCP_CONGESTION:
2338 if (get_user(len, optlen))
2339 return -EFAULT;
2340 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2341 if (put_user(len, optlen))
2342 return -EFAULT;
2343 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2344 return -EFAULT;
2345 return 0;
2346 default:
2347 return -ENOPROTOOPT;
2350 if (put_user(len, optlen))
2351 return -EFAULT;
2352 if (copy_to_user(optval, &val, len))
2353 return -EFAULT;
2354 return 0;
2357 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2358 int __user *optlen)
2360 struct inet_connection_sock *icsk = inet_csk(sk);
2362 if (level != SOL_TCP)
2363 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2364 optval, optlen);
2365 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2368 #ifdef CONFIG_COMPAT
2369 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2370 char __user *optval, int __user *optlen)
2372 if (level != SOL_TCP)
2373 return inet_csk_compat_getsockopt(sk, level, optname,
2374 optval, optlen);
2375 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2378 EXPORT_SYMBOL(compat_tcp_getsockopt);
2379 #endif
2381 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2383 struct sk_buff *segs = ERR_PTR(-EINVAL);
2384 struct tcphdr *th;
2385 unsigned thlen;
2386 unsigned int seq;
2387 __be32 delta;
2388 unsigned int oldlen;
2389 unsigned int len;
2391 if (!pskb_may_pull(skb, sizeof(*th)))
2392 goto out;
2394 th = tcp_hdr(skb);
2395 thlen = th->doff * 4;
2396 if (thlen < sizeof(*th))
2397 goto out;
2399 if (!pskb_may_pull(skb, thlen))
2400 goto out;
2402 oldlen = (u16)~skb->len;
2403 __skb_pull(skb, thlen);
2405 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2406 /* Packet is from an untrusted source, reset gso_segs. */
2407 int type = skb_shinfo(skb)->gso_type;
2408 int mss;
2410 if (unlikely(type &
2411 ~(SKB_GSO_TCPV4 |
2412 SKB_GSO_DODGY |
2413 SKB_GSO_TCP_ECN |
2414 SKB_GSO_TCPV6 |
2415 0) ||
2416 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2417 goto out;
2419 mss = skb_shinfo(skb)->gso_size;
2420 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2422 segs = NULL;
2423 goto out;
2426 segs = skb_segment(skb, features);
2427 if (IS_ERR(segs))
2428 goto out;
2430 len = skb_shinfo(skb)->gso_size;
2431 delta = htonl(oldlen + (thlen + len));
2433 skb = segs;
2434 th = tcp_hdr(skb);
2435 seq = ntohl(th->seq);
2437 do {
2438 th->fin = th->psh = 0;
2440 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2441 (__force u32)delta));
2442 if (skb->ip_summed != CHECKSUM_PARTIAL)
2443 th->check =
2444 csum_fold(csum_partial(skb_transport_header(skb),
2445 thlen, skb->csum));
2447 seq += len;
2448 skb = skb->next;
2449 th = tcp_hdr(skb);
2451 th->seq = htonl(seq);
2452 th->cwr = 0;
2453 } while (skb->next);
2455 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2456 skb->data_len);
2457 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2458 (__force u32)delta));
2459 if (skb->ip_summed != CHECKSUM_PARTIAL)
2460 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2461 thlen, skb->csum));
2463 out:
2464 return segs;
2466 EXPORT_SYMBOL(tcp_tso_segment);
2468 #ifdef CONFIG_TCP_MD5SIG
2469 static unsigned long tcp_md5sig_users;
2470 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2471 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2473 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2475 int cpu;
2476 for_each_possible_cpu(cpu) {
2477 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2478 if (p) {
2479 if (p->md5_desc.tfm)
2480 crypto_free_hash(p->md5_desc.tfm);
2481 kfree(p);
2482 p = NULL;
2485 free_percpu(pool);
2488 void tcp_free_md5sig_pool(void)
2490 struct tcp_md5sig_pool **pool = NULL;
2492 spin_lock_bh(&tcp_md5sig_pool_lock);
2493 if (--tcp_md5sig_users == 0) {
2494 pool = tcp_md5sig_pool;
2495 tcp_md5sig_pool = NULL;
2497 spin_unlock_bh(&tcp_md5sig_pool_lock);
2498 if (pool)
2499 __tcp_free_md5sig_pool(pool);
2502 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2504 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2506 int cpu;
2507 struct tcp_md5sig_pool **pool;
2509 pool = alloc_percpu(struct tcp_md5sig_pool *);
2510 if (!pool)
2511 return NULL;
2513 for_each_possible_cpu(cpu) {
2514 struct tcp_md5sig_pool *p;
2515 struct crypto_hash *hash;
2517 p = kzalloc(sizeof(*p), GFP_KERNEL);
2518 if (!p)
2519 goto out_free;
2520 *per_cpu_ptr(pool, cpu) = p;
2522 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2523 if (!hash || IS_ERR(hash))
2524 goto out_free;
2526 p->md5_desc.tfm = hash;
2528 return pool;
2529 out_free:
2530 __tcp_free_md5sig_pool(pool);
2531 return NULL;
2534 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2536 struct tcp_md5sig_pool **pool;
2537 int alloc = 0;
2539 retry:
2540 spin_lock_bh(&tcp_md5sig_pool_lock);
2541 pool = tcp_md5sig_pool;
2542 if (tcp_md5sig_users++ == 0) {
2543 alloc = 1;
2544 spin_unlock_bh(&tcp_md5sig_pool_lock);
2545 } else if (!pool) {
2546 tcp_md5sig_users--;
2547 spin_unlock_bh(&tcp_md5sig_pool_lock);
2548 cpu_relax();
2549 goto retry;
2550 } else
2551 spin_unlock_bh(&tcp_md5sig_pool_lock);
2553 if (alloc) {
2554 /* we cannot hold spinlock here because this may sleep. */
2555 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2556 spin_lock_bh(&tcp_md5sig_pool_lock);
2557 if (!p) {
2558 tcp_md5sig_users--;
2559 spin_unlock_bh(&tcp_md5sig_pool_lock);
2560 return NULL;
2562 pool = tcp_md5sig_pool;
2563 if (pool) {
2564 /* oops, it has already been assigned. */
2565 spin_unlock_bh(&tcp_md5sig_pool_lock);
2566 __tcp_free_md5sig_pool(p);
2567 } else {
2568 tcp_md5sig_pool = pool = p;
2569 spin_unlock_bh(&tcp_md5sig_pool_lock);
2572 return pool;
2575 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2577 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2579 struct tcp_md5sig_pool **p;
2580 spin_lock_bh(&tcp_md5sig_pool_lock);
2581 p = tcp_md5sig_pool;
2582 if (p)
2583 tcp_md5sig_users++;
2584 spin_unlock_bh(&tcp_md5sig_pool_lock);
2585 return (p ? *per_cpu_ptr(p, cpu) : NULL);
2588 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2590 void __tcp_put_md5sig_pool(void)
2592 tcp_free_md5sig_pool();
2595 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2597 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2598 struct tcphdr *th)
2600 struct scatterlist sg;
2601 int err;
2603 __sum16 old_checksum = th->check;
2604 th->check = 0;
2605 /* options aren't included in the hash */
2606 sg_init_one(&sg, th, sizeof(struct tcphdr));
2607 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2608 th->check = old_checksum;
2609 return err;
2612 EXPORT_SYMBOL(tcp_md5_hash_header);
2614 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2615 struct sk_buff *skb, unsigned header_len)
2617 struct scatterlist sg;
2618 const struct tcphdr *tp = tcp_hdr(skb);
2619 struct hash_desc *desc = &hp->md5_desc;
2620 unsigned i;
2621 const unsigned head_data_len = skb_headlen(skb) > header_len ?
2622 skb_headlen(skb) - header_len : 0;
2623 const struct skb_shared_info *shi = skb_shinfo(skb);
2625 sg_init_table(&sg, 1);
2627 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2628 if (crypto_hash_update(desc, &sg, head_data_len))
2629 return 1;
2631 for (i = 0; i < shi->nr_frags; ++i) {
2632 const struct skb_frag_struct *f = &shi->frags[i];
2633 sg_set_page(&sg, f->page, f->size, f->page_offset);
2634 if (crypto_hash_update(desc, &sg, f->size))
2635 return 1;
2638 return 0;
2641 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2643 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2645 struct scatterlist sg;
2647 sg_init_one(&sg, key->key, key->keylen);
2648 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2651 EXPORT_SYMBOL(tcp_md5_hash_key);
2653 #endif
2655 void tcp_done(struct sock *sk)
2657 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2658 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2660 tcp_set_state(sk, TCP_CLOSE);
2661 tcp_clear_xmit_timers(sk);
2663 sk->sk_shutdown = SHUTDOWN_MASK;
2665 if (!sock_flag(sk, SOCK_DEAD))
2666 sk->sk_state_change(sk);
2667 else
2668 inet_csk_destroy_sock(sk);
2670 EXPORT_SYMBOL_GPL(tcp_done);
2672 extern struct tcp_congestion_ops tcp_reno;
2674 static __initdata unsigned long thash_entries;
2675 static int __init set_thash_entries(char *str)
2677 if (!str)
2678 return 0;
2679 thash_entries = simple_strtoul(str, &str, 0);
2680 return 1;
2682 __setup("thash_entries=", set_thash_entries);
2684 void __init tcp_init(void)
2686 struct sk_buff *skb = NULL;
2687 unsigned long nr_pages, limit;
2688 int order, i, max_share;
2690 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2692 percpu_counter_init(&tcp_sockets_allocated, 0);
2693 percpu_counter_init(&tcp_orphan_count, 0);
2694 tcp_hashinfo.bind_bucket_cachep =
2695 kmem_cache_create("tcp_bind_bucket",
2696 sizeof(struct inet_bind_bucket), 0,
2697 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2699 /* Size and allocate the main established and bind bucket
2700 * hash tables.
2702 * The methodology is similar to that of the buffer cache.
2704 tcp_hashinfo.ehash =
2705 alloc_large_system_hash("TCP established",
2706 sizeof(struct inet_ehash_bucket),
2707 thash_entries,
2708 (num_physpages >= 128 * 1024) ?
2709 13 : 15,
2711 &tcp_hashinfo.ehash_size,
2712 NULL,
2713 thash_entries ? 0 : 512 * 1024);
2714 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2715 for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2716 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
2717 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
2719 if (inet_ehash_locks_alloc(&tcp_hashinfo))
2720 panic("TCP: failed to alloc ehash_locks");
2721 tcp_hashinfo.bhash =
2722 alloc_large_system_hash("TCP bind",
2723 sizeof(struct inet_bind_hashbucket),
2724 tcp_hashinfo.ehash_size,
2725 (num_physpages >= 128 * 1024) ?
2726 13 : 15,
2728 &tcp_hashinfo.bhash_size,
2729 NULL,
2730 64 * 1024);
2731 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2732 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2733 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2734 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2737 /* Try to be a bit smarter and adjust defaults depending
2738 * on available memory.
2740 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2741 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2742 order++)
2744 if (order >= 4) {
2745 tcp_death_row.sysctl_max_tw_buckets = 180000;
2746 sysctl_tcp_max_orphans = 4096 << (order - 4);
2747 sysctl_max_syn_backlog = 1024;
2748 } else if (order < 3) {
2749 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2750 sysctl_tcp_max_orphans >>= (3 - order);
2751 sysctl_max_syn_backlog = 128;
2754 /* Set the pressure threshold to be a fraction of global memory that
2755 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2756 * memory, with a floor of 128 pages.
2758 nr_pages = totalram_pages - totalhigh_pages;
2759 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2760 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2761 limit = max(limit, 128UL);
2762 sysctl_tcp_mem[0] = limit / 4 * 3;
2763 sysctl_tcp_mem[1] = limit;
2764 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2766 /* Set per-socket limits to no more than 1/128 the pressure threshold */
2767 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2768 max_share = min(4UL*1024*1024, limit);
2770 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2771 sysctl_tcp_wmem[1] = 16*1024;
2772 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2774 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2775 sysctl_tcp_rmem[1] = 87380;
2776 sysctl_tcp_rmem[2] = max(87380, max_share);
2778 printk(KERN_INFO "TCP: Hash tables configured "
2779 "(established %d bind %d)\n",
2780 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2782 tcp_register_congestion_control(&tcp_reno);
2785 EXPORT_SYMBOL(tcp_close);
2786 EXPORT_SYMBOL(tcp_disconnect);
2787 EXPORT_SYMBOL(tcp_getsockopt);
2788 EXPORT_SYMBOL(tcp_ioctl);
2789 EXPORT_SYMBOL(tcp_poll);
2790 EXPORT_SYMBOL(tcp_read_sock);
2791 EXPORT_SYMBOL(tcp_recvmsg);
2792 EXPORT_SYMBOL(tcp_sendmsg);
2793 EXPORT_SYMBOL(tcp_splice_read);
2794 EXPORT_SYMBOL(tcp_sendpage);
2795 EXPORT_SYMBOL(tcp_setsockopt);
2796 EXPORT_SYMBOL(tcp_shutdown);