2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t
*xfs_ifork_zone
;
57 kmem_zone_t
*xfs_inode_zone
;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
66 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
67 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
68 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
72 * Make sure that the extents in the given memory buffer
82 xfs_bmbt_rec_host_t rec
;
85 for (i
= 0; i
< nrecs
; i
++) {
86 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
87 rec
.l0
= get_unaligned(&ep
->l0
);
88 rec
.l1
= get_unaligned(&ep
->l1
);
89 xfs_bmbt_get_all(&rec
, &irec
);
90 if (fmt
== XFS_EXTFMT_NOSTATE
)
91 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
95 #define xfs_validate_extents(ifp, nrecs, fmt)
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
112 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
114 for (i
= 0; i
< j
; i
++) {
115 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
116 i
* mp
->m_sb
.sb_inodesize
);
117 if (!dip
->di_next_unlinked
) {
118 xfs_fs_cmn_err(CE_ALERT
, mp
,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 ASSERT(dip
->di_next_unlinked
);
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
146 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
147 (int)imap
->im_len
, buf_flags
, &bp
);
149 if (error
!= EAGAIN
) {
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error
, mp
->m_fsname
);
155 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
165 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
166 #else /* usual case */
170 for (i
= 0; i
< ni
; i
++) {
174 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
175 (i
<< mp
->m_sb
.sb_inodelog
));
176 di_ok
= be16_to_cpu(dip
->di_core
.di_magic
) == XFS_DINODE_MAGIC
&&
177 XFS_DINODE_GOOD_VERSION(dip
->di_core
.di_version
);
178 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
179 XFS_ERRTAG_ITOBP_INOTOBP
,
180 XFS_RANDOM_ITOBP_INOTOBP
))) {
181 if (imap_flags
& XFS_IMAP_BULKSTAT
) {
182 xfs_trans_brelse(tp
, bp
);
183 return XFS_ERROR(EINVAL
);
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH
, mp
, dip
);
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
192 (unsigned long long)imap
->im_blkno
, i
,
193 be16_to_cpu(dip
->di_core
.di_magic
));
195 xfs_trans_brelse(tp
, bp
);
196 return XFS_ERROR(EFSCORRUPTED
);
200 xfs_inobp_check(mp
, bp
);
203 * Mark the buffer as an inode buffer now that it looks good
205 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
238 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
242 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XFS_BUF_LOCK
, 0);
246 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
248 *offset
= imap
.im_boffset
;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * If the inode is new and has not yet been initialized, use xfs_imap()
264 * to determine the size and location of the buffer to read from disk.
265 * If the inode has already been mapped to its buffer and read in once,
266 * then use the mapping information stored in the inode rather than
267 * calling xfs_imap(). This allows us to avoid the overhead of looking
268 * at the inode btree for small block file systems (see xfs_dilocate()).
269 * We can tell whether the inode has been mapped in before by comparing
270 * its disk block address to 0. Only uninitialized inodes will have
271 * 0 for the disk block address.
288 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
290 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
,
291 XFS_IMAP_LOOKUP
| imap_flags
);
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
299 ip
->i_blkno
= imap
.im_blkno
;
300 ip
->i_len
= imap
.im_len
;
301 ip
->i_boffset
= imap
.im_boffset
;
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
307 imap
.im_blkno
= ip
->i_blkno
;
308 imap
.im_len
= ip
->i_len
;
309 imap
.im_boffset
= ip
->i_boffset
;
311 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
313 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, buf_flags
, imap_flags
);
318 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
324 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
330 * Move inode type and inode format specific information from the
331 * on-disk inode to the in-core inode. For fifos, devs, and sockets
332 * this means set if_rdev to the proper value. For files, directories,
333 * and symlinks this means to bring in the in-line data or extent
334 * pointers. For a file in B-tree format, only the root is immediately
335 * brought in-core. The rest will be in-lined in if_extents when it
336 * is first referenced (see xfs_iread_extents()).
343 xfs_attr_shortform_t
*atp
;
347 ip
->i_df
.if_ext_max
=
348 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
351 if (unlikely(be32_to_cpu(dip
->di_core
.di_nextents
) +
352 be16_to_cpu(dip
->di_core
.di_anextents
) >
353 be64_to_cpu(dip
->di_core
.di_nblocks
))) {
354 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
356 (unsigned long long)ip
->i_ino
,
357 (int)(be32_to_cpu(dip
->di_core
.di_nextents
) +
358 be16_to_cpu(dip
->di_core
.di_anextents
)),
360 be64_to_cpu(dip
->di_core
.di_nblocks
));
361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
363 return XFS_ERROR(EFSCORRUPTED
);
366 if (unlikely(dip
->di_core
.di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
367 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
368 "corrupt dinode %Lu, forkoff = 0x%x.",
369 (unsigned long long)ip
->i_ino
,
370 dip
->di_core
.di_forkoff
);
371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
373 return XFS_ERROR(EFSCORRUPTED
);
376 switch (ip
->i_d
.di_mode
& S_IFMT
) {
381 if (unlikely(dip
->di_core
.di_format
!= XFS_DINODE_FMT_DEV
)) {
382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
384 return XFS_ERROR(EFSCORRUPTED
);
388 ip
->i_df
.if_u2
.if_rdev
= be32_to_cpu(dip
->di_u
.di_dev
);
394 switch (dip
->di_core
.di_format
) {
395 case XFS_DINODE_FMT_LOCAL
:
397 * no local regular files yet
399 if (unlikely((be16_to_cpu(dip
->di_core
.di_mode
) & S_IFMT
) == S_IFREG
)) {
400 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
402 "(local format for regular file).",
403 (unsigned long long) ip
->i_ino
);
404 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
407 return XFS_ERROR(EFSCORRUPTED
);
410 di_size
= be64_to_cpu(dip
->di_core
.di_size
);
411 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
412 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
414 "(bad size %Ld for local inode).",
415 (unsigned long long) ip
->i_ino
,
416 (long long) di_size
);
417 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
420 return XFS_ERROR(EFSCORRUPTED
);
424 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
426 case XFS_DINODE_FMT_EXTENTS
:
427 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
429 case XFS_DINODE_FMT_BTREE
:
430 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
435 return XFS_ERROR(EFSCORRUPTED
);
440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
441 return XFS_ERROR(EFSCORRUPTED
);
446 if (!XFS_DFORK_Q(dip
))
448 ASSERT(ip
->i_afp
== NULL
);
449 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
450 ip
->i_afp
->if_ext_max
=
451 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
452 switch (dip
->di_core
.di_aformat
) {
453 case XFS_DINODE_FMT_LOCAL
:
454 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
455 size
= be16_to_cpu(atp
->hdr
.totsize
);
456 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
458 case XFS_DINODE_FMT_EXTENTS
:
459 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
461 case XFS_DINODE_FMT_BTREE
:
462 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
465 error
= XFS_ERROR(EFSCORRUPTED
);
469 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
471 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
477 * The file is in-lined in the on-disk inode.
478 * If it fits into if_inline_data, then copy
479 * it there, otherwise allocate a buffer for it
480 * and copy the data there. Either way, set
481 * if_data to point at the data.
482 * If we allocate a buffer for the data, make
483 * sure that its size is a multiple of 4 and
484 * record the real size in i_real_bytes.
497 * If the size is unreasonable, then something
498 * is wrong and we just bail out rather than crash in
499 * kmem_alloc() or memcpy() below.
501 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
502 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
504 "(bad size %d for local fork, size = %d).",
505 (unsigned long long) ip
->i_ino
, size
,
506 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
509 return XFS_ERROR(EFSCORRUPTED
);
511 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
514 ifp
->if_u1
.if_data
= NULL
;
515 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
516 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
518 real_size
= roundup(size
, 4);
519 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
521 ifp
->if_bytes
= size
;
522 ifp
->if_real_bytes
= real_size
;
524 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
525 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
526 ifp
->if_flags
|= XFS_IFINLINE
;
531 * The file consists of a set of extents all
532 * of which fit into the on-disk inode.
533 * If there are few enough extents to fit into
534 * the if_inline_ext, then copy them there.
535 * Otherwise allocate a buffer for them and copy
536 * them into it. Either way, set if_extents
537 * to point at the extents.
551 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
552 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
553 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
556 * If the number of extents is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
560 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
561 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
562 "corrupt inode %Lu ((a)extents = %d).",
563 (unsigned long long) ip
->i_ino
, nex
);
564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
566 return XFS_ERROR(EFSCORRUPTED
);
569 ifp
->if_real_bytes
= 0;
571 ifp
->if_u1
.if_extents
= NULL
;
572 else if (nex
<= XFS_INLINE_EXTS
)
573 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
575 xfs_iext_add(ifp
, 0, nex
);
577 ifp
->if_bytes
= size
;
579 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
580 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
581 for (i
= 0; i
< nex
; i
++, dp
++) {
582 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
583 ep
->l0
= get_unaligned_be64(&dp
->l0
);
584 ep
->l1
= get_unaligned_be64(&dp
->l1
);
586 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
587 if (whichfork
!= XFS_DATA_FORK
||
588 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
589 if (unlikely(xfs_check_nostate_extents(
591 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
594 return XFS_ERROR(EFSCORRUPTED
);
597 ifp
->if_flags
|= XFS_IFEXTENTS
;
602 * The file has too many extents to fit into
603 * the inode, so they are in B-tree format.
604 * Allocate a buffer for the root of the B-tree
605 * and copy the root into it. The i_extents
606 * field will remain NULL until all of the
607 * extents are read in (when they are needed).
615 xfs_bmdr_block_t
*dfp
;
621 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
622 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
623 size
= XFS_BMAP_BROOT_SPACE(dfp
);
624 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
627 * blow out if -- fork has less extents than can fit in
628 * fork (fork shouldn't be a btree format), root btree
629 * block has more records than can fit into the fork,
630 * or the number of extents is greater than the number of
633 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
634 || XFS_BMDR_SPACE_CALC(nrecs
) >
635 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
636 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
637 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
638 "corrupt inode %Lu (btree).",
639 (unsigned long long) ip
->i_ino
);
640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
642 return XFS_ERROR(EFSCORRUPTED
);
645 ifp
->if_broot_bytes
= size
;
646 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
647 ASSERT(ifp
->if_broot
!= NULL
);
649 * Copy and convert from the on-disk structure
650 * to the in-memory structure.
652 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
653 ifp
->if_broot
, size
);
654 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
655 ifp
->if_flags
|= XFS_IFBROOT
;
661 xfs_dinode_from_disk(
663 xfs_dinode_core_t
*from
)
665 to
->di_magic
= be16_to_cpu(from
->di_magic
);
666 to
->di_mode
= be16_to_cpu(from
->di_mode
);
667 to
->di_version
= from
->di_version
;
668 to
->di_format
= from
->di_format
;
669 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
670 to
->di_uid
= be32_to_cpu(from
->di_uid
);
671 to
->di_gid
= be32_to_cpu(from
->di_gid
);
672 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
673 to
->di_projid
= be16_to_cpu(from
->di_projid
);
674 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
675 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
676 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
677 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
678 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
679 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
680 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
681 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
682 to
->di_size
= be64_to_cpu(from
->di_size
);
683 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
684 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
685 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
686 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
687 to
->di_forkoff
= from
->di_forkoff
;
688 to
->di_aformat
= from
->di_aformat
;
689 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
690 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
691 to
->di_flags
= be16_to_cpu(from
->di_flags
);
692 to
->di_gen
= be32_to_cpu(from
->di_gen
);
697 xfs_dinode_core_t
*to
,
698 xfs_icdinode_t
*from
)
700 to
->di_magic
= cpu_to_be16(from
->di_magic
);
701 to
->di_mode
= cpu_to_be16(from
->di_mode
);
702 to
->di_version
= from
->di_version
;
703 to
->di_format
= from
->di_format
;
704 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
705 to
->di_uid
= cpu_to_be32(from
->di_uid
);
706 to
->di_gid
= cpu_to_be32(from
->di_gid
);
707 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
708 to
->di_projid
= cpu_to_be16(from
->di_projid
);
709 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
710 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
711 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
712 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
713 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
714 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
715 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
716 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
717 to
->di_size
= cpu_to_be64(from
->di_size
);
718 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
719 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
720 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
721 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
722 to
->di_forkoff
= from
->di_forkoff
;
723 to
->di_aformat
= from
->di_aformat
;
724 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
725 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
726 to
->di_flags
= cpu_to_be16(from
->di_flags
);
727 to
->di_gen
= cpu_to_be32(from
->di_gen
);
736 if (di_flags
& XFS_DIFLAG_ANY
) {
737 if (di_flags
& XFS_DIFLAG_REALTIME
)
738 flags
|= XFS_XFLAG_REALTIME
;
739 if (di_flags
& XFS_DIFLAG_PREALLOC
)
740 flags
|= XFS_XFLAG_PREALLOC
;
741 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
742 flags
|= XFS_XFLAG_IMMUTABLE
;
743 if (di_flags
& XFS_DIFLAG_APPEND
)
744 flags
|= XFS_XFLAG_APPEND
;
745 if (di_flags
& XFS_DIFLAG_SYNC
)
746 flags
|= XFS_XFLAG_SYNC
;
747 if (di_flags
& XFS_DIFLAG_NOATIME
)
748 flags
|= XFS_XFLAG_NOATIME
;
749 if (di_flags
& XFS_DIFLAG_NODUMP
)
750 flags
|= XFS_XFLAG_NODUMP
;
751 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
752 flags
|= XFS_XFLAG_RTINHERIT
;
753 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
754 flags
|= XFS_XFLAG_PROJINHERIT
;
755 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
756 flags
|= XFS_XFLAG_NOSYMLINKS
;
757 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
758 flags
|= XFS_XFLAG_EXTSIZE
;
759 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
760 flags
|= XFS_XFLAG_EXTSZINHERIT
;
761 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
762 flags
|= XFS_XFLAG_NODEFRAG
;
763 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
764 flags
|= XFS_XFLAG_FILESTREAM
;
774 xfs_icdinode_t
*dic
= &ip
->i_d
;
776 return _xfs_dic2xflags(dic
->di_flags
) |
777 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
784 xfs_dinode_core_t
*dic
= &dip
->di_core
;
786 return _xfs_dic2xflags(be16_to_cpu(dic
->di_flags
)) |
787 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
791 * Given a mount structure and an inode number, return a pointer
792 * to a newly allocated in-core inode corresponding to the given
795 * Initialize the inode's attributes and extent pointers if it
796 * already has them (it will not if the inode has no links).
812 ASSERT(xfs_inode_zone
!= NULL
);
814 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
817 atomic_set(&ip
->i_iocount
, 0);
818 spin_lock_init(&ip
->i_flags_lock
);
821 * Get pointer's to the on-disk inode and the buffer containing it.
822 * If the inode number refers to a block outside the file system
823 * then xfs_itobp() will return NULL. In this case we should
824 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
825 * know that this is a new incore inode.
827 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
, imap_flags
, XFS_BUF_LOCK
);
829 kmem_zone_free(xfs_inode_zone
, ip
);
834 * Initialize inode's trace buffers.
835 * Do this before xfs_iformat in case it adds entries.
837 #ifdef XFS_INODE_TRACE
838 ip
->i_trace
= ktrace_alloc(INODE_TRACE_SIZE
, KM_NOFS
);
840 #ifdef XFS_BMAP_TRACE
841 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_NOFS
);
843 #ifdef XFS_BMBT_TRACE
844 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_NOFS
);
847 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_NOFS
);
849 #ifdef XFS_ILOCK_TRACE
850 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_NOFS
);
852 #ifdef XFS_DIR2_TRACE
853 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_NOFS
);
857 * If we got something that isn't an inode it means someone
858 * (nfs or dmi) has a stale handle.
860 if (be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
) {
861 kmem_zone_free(xfs_inode_zone
, ip
);
862 xfs_trans_brelse(tp
, bp
);
864 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
865 "dip->di_core.di_magic (0x%x) != "
866 "XFS_DINODE_MAGIC (0x%x)",
867 be16_to_cpu(dip
->di_core
.di_magic
),
870 return XFS_ERROR(EINVAL
);
874 * If the on-disk inode is already linked to a directory
875 * entry, copy all of the inode into the in-core inode.
876 * xfs_iformat() handles copying in the inode format
877 * specific information.
878 * Otherwise, just get the truly permanent information.
880 if (dip
->di_core
.di_mode
) {
881 xfs_dinode_from_disk(&ip
->i_d
, &dip
->di_core
);
882 error
= xfs_iformat(ip
, dip
);
884 kmem_zone_free(xfs_inode_zone
, ip
);
885 xfs_trans_brelse(tp
, bp
);
887 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
888 "xfs_iformat() returned error %d",
894 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_core
.di_magic
);
895 ip
->i_d
.di_version
= dip
->di_core
.di_version
;
896 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_core
.di_gen
);
897 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_core
.di_flushiter
);
899 * Make sure to pull in the mode here as well in
900 * case the inode is released without being used.
901 * This ensures that xfs_inactive() will see that
902 * the inode is already free and not try to mess
903 * with the uninitialized part of it.
907 * Initialize the per-fork minima and maxima for a new
908 * inode here. xfs_iformat will do it for old inodes.
910 ip
->i_df
.if_ext_max
=
911 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
914 INIT_LIST_HEAD(&ip
->i_reclaim
);
917 * The inode format changed when we moved the link count and
918 * made it 32 bits long. If this is an old format inode,
919 * convert it in memory to look like a new one. If it gets
920 * flushed to disk we will convert back before flushing or
921 * logging it. We zero out the new projid field and the old link
922 * count field. We'll handle clearing the pad field (the remains
923 * of the old uuid field) when we actually convert the inode to
924 * the new format. We don't change the version number so that we
925 * can distinguish this from a real new format inode.
927 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
928 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
929 ip
->i_d
.di_onlink
= 0;
930 ip
->i_d
.di_projid
= 0;
933 ip
->i_delayed_blks
= 0;
934 ip
->i_size
= ip
->i_d
.di_size
;
937 * Mark the buffer containing the inode as something to keep
938 * around for a while. This helps to keep recently accessed
939 * meta-data in-core longer.
941 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
944 * Use xfs_trans_brelse() to release the buffer containing the
945 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 * in xfs_itobp() above. If tp is NULL, this is just a normal
947 * brelse(). If we're within a transaction, then xfs_trans_brelse()
948 * will only release the buffer if it is not dirty within the
949 * transaction. It will be OK to release the buffer in this case,
950 * because inodes on disk are never destroyed and we will be
951 * locking the new in-core inode before putting it in the hash
952 * table where other processes can find it. Thus we don't have
953 * to worry about the inode being changed just because we released
956 xfs_trans_brelse(tp
, bp
);
962 * Read in extents from a btree-format inode.
963 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
973 xfs_extnum_t nextents
;
976 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
977 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
979 return XFS_ERROR(EFSCORRUPTED
);
981 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
982 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
983 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
986 * We know that the size is valid (it's checked in iformat_btree)
988 ifp
->if_lastex
= NULLEXTNUM
;
989 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
990 ifp
->if_flags
|= XFS_IFEXTENTS
;
991 xfs_iext_add(ifp
, 0, nextents
);
992 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
994 xfs_iext_destroy(ifp
);
995 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
998 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
1003 * Allocate an inode on disk and return a copy of its in-core version.
1004 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1005 * appropriately within the inode. The uid and gid for the inode are
1006 * set according to the contents of the given cred structure.
1008 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009 * has a free inode available, call xfs_iget()
1010 * to obtain the in-core version of the allocated inode. Finally,
1011 * fill in the inode and log its initial contents. In this case,
1012 * ialloc_context would be set to NULL and call_again set to false.
1014 * If xfs_dialloc() does not have an available inode,
1015 * it will replenish its supply by doing an allocation. Since we can
1016 * only do one allocation within a transaction without deadlocks, we
1017 * must commit the current transaction before returning the inode itself.
1018 * In this case, therefore, we will set call_again to true and return.
1019 * The caller should then commit the current transaction, start a new
1020 * transaction, and call xfs_ialloc() again to actually get the inode.
1022 * To ensure that some other process does not grab the inode that
1023 * was allocated during the first call to xfs_ialloc(), this routine
1024 * also returns the [locked] bp pointing to the head of the freelist
1025 * as ialloc_context. The caller should hold this buffer across
1026 * the commit and pass it back into this routine on the second call.
1028 * If we are allocating quota inodes, we do not have a parent inode
1029 * to attach to or associate with (i.e. pip == NULL) because they
1030 * are not linked into the directory structure - they are attached
1031 * directly to the superblock - and so have no parent.
1043 xfs_buf_t
**ialloc_context
,
1044 boolean_t
*call_again
,
1054 * Call the space management code to pick
1055 * the on-disk inode to be allocated.
1057 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1058 ialloc_context
, call_again
, &ino
);
1062 if (*call_again
|| ino
== NULLFSINO
) {
1066 ASSERT(*ialloc_context
== NULL
);
1069 * Get the in-core inode with the lock held exclusively.
1070 * This is because we're setting fields here we need
1071 * to prevent others from looking at until we're done.
1073 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1074 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1080 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1081 ip
->i_d
.di_onlink
= 0;
1082 ip
->i_d
.di_nlink
= nlink
;
1083 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1084 ip
->i_d
.di_uid
= current_fsuid();
1085 ip
->i_d
.di_gid
= current_fsgid();
1086 ip
->i_d
.di_projid
= prid
;
1087 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1090 * If the superblock version is up to where we support new format
1091 * inodes and this is currently an old format inode, then change
1092 * the inode version number now. This way we only do the conversion
1093 * here rather than here and in the flush/logging code.
1095 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1096 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1097 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1099 * We've already zeroed the old link count, the projid field,
1100 * and the pad field.
1105 * Project ids won't be stored on disk if we are using a version 1 inode.
1107 if ((prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1108 xfs_bump_ino_vers2(tp
, ip
);
1110 if (pip
&& XFS_INHERIT_GID(pip
)) {
1111 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1112 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1113 ip
->i_d
.di_mode
|= S_ISGID
;
1118 * If the group ID of the new file does not match the effective group
1119 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1120 * (and only if the irix_sgid_inherit compatibility variable is set).
1122 if ((irix_sgid_inherit
) &&
1123 (ip
->i_d
.di_mode
& S_ISGID
) &&
1124 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1125 ip
->i_d
.di_mode
&= ~S_ISGID
;
1128 ip
->i_d
.di_size
= 0;
1130 ip
->i_d
.di_nextents
= 0;
1131 ASSERT(ip
->i_d
.di_nblocks
== 0);
1134 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1135 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1136 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1137 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1140 * di_gen will have been taken care of in xfs_iread.
1142 ip
->i_d
.di_extsize
= 0;
1143 ip
->i_d
.di_dmevmask
= 0;
1144 ip
->i_d
.di_dmstate
= 0;
1145 ip
->i_d
.di_flags
= 0;
1146 flags
= XFS_ILOG_CORE
;
1147 switch (mode
& S_IFMT
) {
1152 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1153 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1154 ip
->i_df
.if_flags
= 0;
1155 flags
|= XFS_ILOG_DEV
;
1158 if (pip
&& xfs_inode_is_filestream(pip
)) {
1159 error
= xfs_filestream_associate(pip
, ip
);
1163 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1167 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1170 if ((mode
& S_IFMT
) == S_IFDIR
) {
1171 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1172 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1173 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1174 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1175 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1177 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1178 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1179 di_flags
|= XFS_DIFLAG_REALTIME
;
1180 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1181 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1182 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1185 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1186 xfs_inherit_noatime
)
1187 di_flags
|= XFS_DIFLAG_NOATIME
;
1188 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1190 di_flags
|= XFS_DIFLAG_NODUMP
;
1191 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1193 di_flags
|= XFS_DIFLAG_SYNC
;
1194 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1195 xfs_inherit_nosymlinks
)
1196 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1197 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1198 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1199 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1200 xfs_inherit_nodefrag
)
1201 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1202 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1203 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1204 ip
->i_d
.di_flags
|= di_flags
;
1208 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1209 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1210 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1211 ip
->i_df
.if_u1
.if_extents
= NULL
;
1217 * Attribute fork settings for new inode.
1219 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1220 ip
->i_d
.di_anextents
= 0;
1223 * Log the new values stuffed into the inode.
1225 xfs_trans_log_inode(tp
, ip
, flags
);
1227 /* now that we have an i_mode we can setup inode ops and unlock */
1228 xfs_setup_inode(ip
);
1235 * Check to make sure that there are no blocks allocated to the
1236 * file beyond the size of the file. We don't check this for
1237 * files with fixed size extents or real time extents, but we
1238 * at least do it for regular files.
1247 xfs_fileoff_t map_first
;
1249 xfs_bmbt_irec_t imaps
[2];
1251 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1254 if (XFS_IS_REALTIME_INODE(ip
))
1257 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1261 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1263 * The filesystem could be shutting down, so bmapi may return
1266 if (xfs_bmapi(NULL
, ip
, map_first
,
1268 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1270 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1273 ASSERT(nimaps
== 1);
1274 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1279 * Calculate the last possible buffered byte in a file. This must
1280 * include data that was buffered beyond the EOF by the write code.
1281 * This also needs to deal with overflowing the xfs_fsize_t type
1282 * which can happen for sizes near the limit.
1284 * We also need to take into account any blocks beyond the EOF. It
1285 * may be the case that they were buffered by a write which failed.
1286 * In that case the pages will still be in memory, but the inode size
1287 * will never have been updated.
1294 xfs_fsize_t last_byte
;
1295 xfs_fileoff_t last_block
;
1296 xfs_fileoff_t size_last_block
;
1299 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1303 * Only check for blocks beyond the EOF if the extents have
1304 * been read in. This eliminates the need for the inode lock,
1305 * and it also saves us from looking when it really isn't
1308 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1309 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1317 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1318 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1320 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1321 if (last_byte
< 0) {
1322 return XFS_MAXIOFFSET(mp
);
1324 last_byte
+= (1 << mp
->m_writeio_log
);
1325 if (last_byte
< 0) {
1326 return XFS_MAXIOFFSET(mp
);
1331 #if defined(XFS_RW_TRACE)
1337 xfs_fsize_t new_size
,
1338 xfs_off_t toss_start
,
1339 xfs_off_t toss_finish
)
1341 if (ip
->i_rwtrace
== NULL
) {
1345 ktrace_enter(ip
->i_rwtrace
,
1348 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1349 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1350 (void*)((long)flag
),
1351 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1352 (void*)(unsigned long)(new_size
& 0xffffffff),
1353 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1354 (void*)(unsigned long)(toss_start
& 0xffffffff),
1355 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1356 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1357 (void*)(unsigned long)current_cpu(),
1358 (void*)(unsigned long)current_pid(),
1364 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1368 * Start the truncation of the file to new_size. The new size
1369 * must be smaller than the current size. This routine will
1370 * clear the buffer and page caches of file data in the removed
1371 * range, and xfs_itruncate_finish() will remove the underlying
1374 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1375 * must NOT have the inode lock held at all. This is because we're
1376 * calling into the buffer/page cache code and we can't hold the
1377 * inode lock when we do so.
1379 * We need to wait for any direct I/Os in flight to complete before we
1380 * proceed with the truncate. This is needed to prevent the extents
1381 * being read or written by the direct I/Os from being removed while the
1382 * I/O is in flight as there is no other method of synchronising
1383 * direct I/O with the truncate operation. Also, because we hold
1384 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1385 * started until the truncate completes and drops the lock. Essentially,
1386 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1387 * between direct I/Os and the truncate operation.
1389 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1390 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1391 * in the case that the caller is locking things out of order and
1392 * may not be able to call xfs_itruncate_finish() with the inode lock
1393 * held without dropping the I/O lock. If the caller must drop the
1394 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1395 * must be called again with all the same restrictions as the initial
1399 xfs_itruncate_start(
1402 xfs_fsize_t new_size
)
1404 xfs_fsize_t last_byte
;
1405 xfs_off_t toss_start
;
1409 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1410 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1411 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1412 (flags
== XFS_ITRUNC_MAYBE
));
1416 /* wait for the completion of any pending DIOs */
1417 if (new_size
== 0 || new_size
< ip
->i_size
)
1421 * Call toss_pages or flushinval_pages to get rid of pages
1422 * overlapping the region being removed. We have to use
1423 * the less efficient flushinval_pages in the case that the
1424 * caller may not be able to finish the truncate without
1425 * dropping the inode's I/O lock. Make sure
1426 * to catch any pages brought in by buffers overlapping
1427 * the EOF by searching out beyond the isize by our
1428 * block size. We round new_size up to a block boundary
1429 * so that we don't toss things on the same block as
1430 * new_size but before it.
1432 * Before calling toss_page or flushinval_pages, make sure to
1433 * call remapf() over the same region if the file is mapped.
1434 * This frees up mapped file references to the pages in the
1435 * given range and for the flushinval_pages case it ensures
1436 * that we get the latest mapped changes flushed out.
1438 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1439 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1440 if (toss_start
< 0) {
1442 * The place to start tossing is beyond our maximum
1443 * file size, so there is no way that the data extended
1448 last_byte
= xfs_file_last_byte(ip
);
1449 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1451 if (last_byte
> toss_start
) {
1452 if (flags
& XFS_ITRUNC_DEFINITE
) {
1453 xfs_tosspages(ip
, toss_start
,
1454 -1, FI_REMAPF_LOCKED
);
1456 error
= xfs_flushinval_pages(ip
, toss_start
,
1457 -1, FI_REMAPF_LOCKED
);
1462 if (new_size
== 0) {
1463 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1470 * Shrink the file to the given new_size. The new size must be smaller than
1471 * the current size. This will free up the underlying blocks in the removed
1472 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1474 * The transaction passed to this routine must have made a permanent log
1475 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1476 * given transaction and start new ones, so make sure everything involved in
1477 * the transaction is tidy before calling here. Some transaction will be
1478 * returned to the caller to be committed. The incoming transaction must
1479 * already include the inode, and both inode locks must be held exclusively.
1480 * The inode must also be "held" within the transaction. On return the inode
1481 * will be "held" within the returned transaction. This routine does NOT
1482 * require any disk space to be reserved for it within the transaction.
1484 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1485 * indicates the fork which is to be truncated. For the attribute fork we only
1486 * support truncation to size 0.
1488 * We use the sync parameter to indicate whether or not the first transaction
1489 * we perform might have to be synchronous. For the attr fork, it needs to be
1490 * so if the unlink of the inode is not yet known to be permanent in the log.
1491 * This keeps us from freeing and reusing the blocks of the attribute fork
1492 * before the unlink of the inode becomes permanent.
1494 * For the data fork, we normally have to run synchronously if we're being
1495 * called out of the inactive path or we're being called out of the create path
1496 * where we're truncating an existing file. Either way, the truncate needs to
1497 * be sync so blocks don't reappear in the file with altered data in case of a
1498 * crash. wsync filesystems can run the first case async because anything that
1499 * shrinks the inode has to run sync so by the time we're called here from
1500 * inactive, the inode size is permanently set to 0.
1502 * Calls from the truncate path always need to be sync unless we're in a wsync
1503 * filesystem and the file has already been unlinked.
1505 * The caller is responsible for correctly setting the sync parameter. It gets
1506 * too hard for us to guess here which path we're being called out of just
1507 * based on inode state.
1509 * If we get an error, we must return with the inode locked and linked into the
1510 * current transaction. This keeps things simple for the higher level code,
1511 * because it always knows that the inode is locked and held in the transaction
1512 * that returns to it whether errors occur or not. We don't mark the inode
1513 * dirty on error so that transactions can be easily aborted if possible.
1516 xfs_itruncate_finish(
1519 xfs_fsize_t new_size
,
1523 xfs_fsblock_t first_block
;
1524 xfs_fileoff_t first_unmap_block
;
1525 xfs_fileoff_t last_block
;
1526 xfs_filblks_t unmap_len
=0;
1531 xfs_bmap_free_t free_list
;
1534 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1535 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1536 ASSERT(*tp
!= NULL
);
1537 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1538 ASSERT(ip
->i_transp
== *tp
);
1539 ASSERT(ip
->i_itemp
!= NULL
);
1540 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1544 mp
= (ntp
)->t_mountp
;
1545 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1548 * We only support truncating the entire attribute fork.
1550 if (fork
== XFS_ATTR_FORK
) {
1553 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1554 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1556 * The first thing we do is set the size to new_size permanently
1557 * on disk. This way we don't have to worry about anyone ever
1558 * being able to look at the data being freed even in the face
1559 * of a crash. What we're getting around here is the case where
1560 * we free a block, it is allocated to another file, it is written
1561 * to, and then we crash. If the new data gets written to the
1562 * file but the log buffers containing the free and reallocation
1563 * don't, then we'd end up with garbage in the blocks being freed.
1564 * As long as we make the new_size permanent before actually
1565 * freeing any blocks it doesn't matter if they get writtten to.
1567 * The callers must signal into us whether or not the size
1568 * setting here must be synchronous. There are a few cases
1569 * where it doesn't have to be synchronous. Those cases
1570 * occur if the file is unlinked and we know the unlink is
1571 * permanent or if the blocks being truncated are guaranteed
1572 * to be beyond the inode eof (regardless of the link count)
1573 * and the eof value is permanent. Both of these cases occur
1574 * only on wsync-mounted filesystems. In those cases, we're
1575 * guaranteed that no user will ever see the data in the blocks
1576 * that are being truncated so the truncate can run async.
1577 * In the free beyond eof case, the file may wind up with
1578 * more blocks allocated to it than it needs if we crash
1579 * and that won't get fixed until the next time the file
1580 * is re-opened and closed but that's ok as that shouldn't
1581 * be too many blocks.
1583 * However, we can't just make all wsync xactions run async
1584 * because there's one call out of the create path that needs
1585 * to run sync where it's truncating an existing file to size
1586 * 0 whose size is > 0.
1588 * It's probably possible to come up with a test in this
1589 * routine that would correctly distinguish all the above
1590 * cases from the values of the function parameters and the
1591 * inode state but for sanity's sake, I've decided to let the
1592 * layers above just tell us. It's simpler to correctly figure
1593 * out in the layer above exactly under what conditions we
1594 * can run async and I think it's easier for others read and
1595 * follow the logic in case something has to be changed.
1596 * cscope is your friend -- rcc.
1598 * The attribute fork is much simpler.
1600 * For the attribute fork we allow the caller to tell us whether
1601 * the unlink of the inode that led to this call is yet permanent
1602 * in the on disk log. If it is not and we will be freeing extents
1603 * in this inode then we make the first transaction synchronous
1604 * to make sure that the unlink is permanent by the time we free
1607 if (fork
== XFS_DATA_FORK
) {
1608 if (ip
->i_d
.di_nextents
> 0) {
1610 * If we are not changing the file size then do
1611 * not update the on-disk file size - we may be
1612 * called from xfs_inactive_free_eofblocks(). If we
1613 * update the on-disk file size and then the system
1614 * crashes before the contents of the file are
1615 * flushed to disk then the files may be full of
1616 * holes (ie NULL files bug).
1618 if (ip
->i_size
!= new_size
) {
1619 ip
->i_d
.di_size
= new_size
;
1620 ip
->i_size
= new_size
;
1621 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1625 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1626 if (ip
->i_d
.di_anextents
> 0)
1627 xfs_trans_set_sync(ntp
);
1629 ASSERT(fork
== XFS_DATA_FORK
||
1630 (fork
== XFS_ATTR_FORK
&&
1631 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1632 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1635 * Since it is possible for space to become allocated beyond
1636 * the end of the file (in a crash where the space is allocated
1637 * but the inode size is not yet updated), simply remove any
1638 * blocks which show up between the new EOF and the maximum
1639 * possible file size. If the first block to be removed is
1640 * beyond the maximum file size (ie it is the same as last_block),
1641 * then there is nothing to do.
1643 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1644 ASSERT(first_unmap_block
<= last_block
);
1646 if (last_block
== first_unmap_block
) {
1649 unmap_len
= last_block
- first_unmap_block
+ 1;
1653 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1654 * will tell us whether it freed the entire range or
1655 * not. If this is a synchronous mount (wsync),
1656 * then we can tell bunmapi to keep all the
1657 * transactions asynchronous since the unlink
1658 * transaction that made this inode inactive has
1659 * already hit the disk. There's no danger of
1660 * the freed blocks being reused, there being a
1661 * crash, and the reused blocks suddenly reappearing
1662 * in this file with garbage in them once recovery
1665 XFS_BMAP_INIT(&free_list
, &first_block
);
1666 error
= xfs_bunmapi(ntp
, ip
,
1667 first_unmap_block
, unmap_len
,
1668 XFS_BMAPI_AFLAG(fork
) |
1669 (sync
? 0 : XFS_BMAPI_ASYNC
),
1670 XFS_ITRUNC_MAX_EXTENTS
,
1671 &first_block
, &free_list
,
1675 * If the bunmapi call encounters an error,
1676 * return to the caller where the transaction
1677 * can be properly aborted. We just need to
1678 * make sure we're not holding any resources
1679 * that we were not when we came in.
1681 xfs_bmap_cancel(&free_list
);
1686 * Duplicate the transaction that has the permanent
1687 * reservation and commit the old transaction.
1689 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1692 /* link the inode into the next xact in the chain */
1693 xfs_trans_ijoin(ntp
, ip
,
1694 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1695 xfs_trans_ihold(ntp
, ip
);
1700 * If the bmap finish call encounters an error, return
1701 * to the caller where the transaction can be properly
1702 * aborted. We just need to make sure we're not
1703 * holding any resources that we were not when we came
1706 * Aborting from this point might lose some blocks in
1707 * the file system, but oh well.
1709 xfs_bmap_cancel(&free_list
);
1715 * Mark the inode dirty so it will be logged and
1716 * moved forward in the log as part of every commit.
1718 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1721 ntp
= xfs_trans_dup(ntp
);
1722 error
= xfs_trans_commit(*tp
, 0);
1725 /* link the inode into the next transaction in the chain */
1726 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1727 xfs_trans_ihold(ntp
, ip
);
1730 error
= xfs_trans_reserve(ntp
, 0,
1731 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1732 XFS_TRANS_PERM_LOG_RES
,
1733 XFS_ITRUNCATE_LOG_COUNT
);
1738 * Only update the size in the case of the data fork, but
1739 * always re-log the inode so that our permanent transaction
1740 * can keep on rolling it forward in the log.
1742 if (fork
== XFS_DATA_FORK
) {
1743 xfs_isize_check(mp
, ip
, new_size
);
1745 * If we are not changing the file size then do
1746 * not update the on-disk file size - we may be
1747 * called from xfs_inactive_free_eofblocks(). If we
1748 * update the on-disk file size and then the system
1749 * crashes before the contents of the file are
1750 * flushed to disk then the files may be full of
1751 * holes (ie NULL files bug).
1753 if (ip
->i_size
!= new_size
) {
1754 ip
->i_d
.di_size
= new_size
;
1755 ip
->i_size
= new_size
;
1758 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1759 ASSERT((new_size
!= 0) ||
1760 (fork
== XFS_ATTR_FORK
) ||
1761 (ip
->i_delayed_blks
== 0));
1762 ASSERT((new_size
!= 0) ||
1763 (fork
== XFS_ATTR_FORK
) ||
1764 (ip
->i_d
.di_nextents
== 0));
1765 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1770 * This is called when the inode's link count goes to 0.
1771 * We place the on-disk inode on a list in the AGI. It
1772 * will be pulled from this list when the inode is freed.
1784 xfs_agnumber_t agno
;
1785 xfs_daddr_t agdaddr
;
1792 ASSERT(ip
->i_d
.di_nlink
== 0);
1793 ASSERT(ip
->i_d
.di_mode
!= 0);
1794 ASSERT(ip
->i_transp
== tp
);
1798 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1799 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1802 * Get the agi buffer first. It ensures lock ordering
1805 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1806 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1811 * Validate the magic number of the agi block.
1813 agi
= XFS_BUF_TO_AGI(agibp
);
1815 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1816 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1817 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1818 XFS_RANDOM_IUNLINK
))) {
1819 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1820 xfs_trans_brelse(tp
, agibp
);
1821 return XFS_ERROR(EFSCORRUPTED
);
1824 * Get the index into the agi hash table for the
1825 * list this inode will go on.
1827 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1829 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1830 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1831 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1833 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1835 * There is already another inode in the bucket we need
1836 * to add ourselves to. Add us at the front of the list.
1837 * Here we put the head pointer into our next pointer,
1838 * and then we fall through to point the head at us.
1840 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0, XFS_BUF_LOCK
);
1844 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1845 /* both on-disk, don't endian flip twice */
1846 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1847 offset
= ip
->i_boffset
+
1848 offsetof(xfs_dinode_t
, di_next_unlinked
);
1849 xfs_trans_inode_buf(tp
, ibp
);
1850 xfs_trans_log_buf(tp
, ibp
, offset
,
1851 (offset
+ sizeof(xfs_agino_t
) - 1));
1852 xfs_inobp_check(mp
, ibp
);
1856 * Point the bucket head pointer at the inode being inserted.
1859 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1860 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1861 (sizeof(xfs_agino_t
) * bucket_index
);
1862 xfs_trans_log_buf(tp
, agibp
, offset
,
1863 (offset
+ sizeof(xfs_agino_t
) - 1));
1868 * Pull the on-disk inode from the AGI unlinked list.
1881 xfs_agnumber_t agno
;
1882 xfs_daddr_t agdaddr
;
1884 xfs_agino_t next_agino
;
1885 xfs_buf_t
*last_ibp
;
1886 xfs_dinode_t
*last_dip
= NULL
;
1888 int offset
, last_offset
= 0;
1893 * First pull the on-disk inode from the AGI unlinked list.
1897 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1898 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1901 * Get the agi buffer first. It ensures lock ordering
1904 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1905 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1908 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1909 error
, mp
->m_fsname
);
1913 * Validate the magic number of the agi block.
1915 agi
= XFS_BUF_TO_AGI(agibp
);
1917 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1918 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1919 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
1920 XFS_RANDOM_IUNLINK_REMOVE
))) {
1921 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
1923 xfs_trans_brelse(tp
, agibp
);
1925 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1927 return XFS_ERROR(EFSCORRUPTED
);
1930 * Get the index into the agi hash table for the
1931 * list this inode will go on.
1933 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1935 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1936 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1937 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1939 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1941 * We're at the head of the list. Get the inode's
1942 * on-disk buffer to see if there is anyone after us
1943 * on the list. Only modify our next pointer if it
1944 * is not already NULLAGINO. This saves us the overhead
1945 * of dealing with the buffer when there is no need to
1948 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0, XFS_BUF_LOCK
);
1951 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1952 error
, mp
->m_fsname
);
1955 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1956 ASSERT(next_agino
!= 0);
1957 if (next_agino
!= NULLAGINO
) {
1958 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1959 offset
= ip
->i_boffset
+
1960 offsetof(xfs_dinode_t
, di_next_unlinked
);
1961 xfs_trans_inode_buf(tp
, ibp
);
1962 xfs_trans_log_buf(tp
, ibp
, offset
,
1963 (offset
+ sizeof(xfs_agino_t
) - 1));
1964 xfs_inobp_check(mp
, ibp
);
1966 xfs_trans_brelse(tp
, ibp
);
1969 * Point the bucket head pointer at the next inode.
1971 ASSERT(next_agino
!= 0);
1972 ASSERT(next_agino
!= agino
);
1973 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1974 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1975 (sizeof(xfs_agino_t
) * bucket_index
);
1976 xfs_trans_log_buf(tp
, agibp
, offset
,
1977 (offset
+ sizeof(xfs_agino_t
) - 1));
1980 * We need to search the list for the inode being freed.
1982 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1984 while (next_agino
!= agino
) {
1986 * If the last inode wasn't the one pointing to
1987 * us, then release its buffer since we're not
1988 * going to do anything with it.
1990 if (last_ibp
!= NULL
) {
1991 xfs_trans_brelse(tp
, last_ibp
);
1993 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1994 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1995 &last_ibp
, &last_offset
);
1998 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1999 error
, mp
->m_fsname
);
2002 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2003 ASSERT(next_agino
!= NULLAGINO
);
2004 ASSERT(next_agino
!= 0);
2007 * Now last_ibp points to the buffer previous to us on
2008 * the unlinked list. Pull us from the list.
2010 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0, XFS_BUF_LOCK
);
2013 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2014 error
, mp
->m_fsname
);
2017 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2018 ASSERT(next_agino
!= 0);
2019 ASSERT(next_agino
!= agino
);
2020 if (next_agino
!= NULLAGINO
) {
2021 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2022 offset
= ip
->i_boffset
+
2023 offsetof(xfs_dinode_t
, di_next_unlinked
);
2024 xfs_trans_inode_buf(tp
, ibp
);
2025 xfs_trans_log_buf(tp
, ibp
, offset
,
2026 (offset
+ sizeof(xfs_agino_t
) - 1));
2027 xfs_inobp_check(mp
, ibp
);
2029 xfs_trans_brelse(tp
, ibp
);
2032 * Point the previous inode on the list to the next inode.
2034 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2035 ASSERT(next_agino
!= 0);
2036 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2037 xfs_trans_inode_buf(tp
, last_ibp
);
2038 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2039 (offset
+ sizeof(xfs_agino_t
) - 1));
2040 xfs_inobp_check(mp
, last_ibp
);
2047 xfs_inode_t
*free_ip
,
2051 xfs_mount_t
*mp
= free_ip
->i_mount
;
2052 int blks_per_cluster
;
2055 int i
, j
, found
, pre_flushed
;
2058 xfs_inode_t
*ip
, **ip_found
;
2059 xfs_inode_log_item_t
*iip
;
2060 xfs_log_item_t
*lip
;
2061 xfs_perag_t
*pag
= xfs_get_perag(mp
, inum
);
2063 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2064 blks_per_cluster
= 1;
2065 ninodes
= mp
->m_sb
.sb_inopblock
;
2066 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2068 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2069 mp
->m_sb
.sb_blocksize
;
2070 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2071 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2074 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2076 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2077 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2078 XFS_INO_TO_AGBNO(mp
, inum
));
2082 * Look for each inode in memory and attempt to lock it,
2083 * we can be racing with flush and tail pushing here.
2084 * any inode we get the locks on, add to an array of
2085 * inode items to process later.
2087 * The get the buffer lock, we could beat a flush
2088 * or tail pushing thread to the lock here, in which
2089 * case they will go looking for the inode buffer
2090 * and fail, we need some other form of interlock
2094 for (i
= 0; i
< ninodes
; i
++) {
2095 read_lock(&pag
->pag_ici_lock
);
2096 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2097 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2099 /* Inode not in memory or we found it already,
2102 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2103 read_unlock(&pag
->pag_ici_lock
);
2107 if (xfs_inode_clean(ip
)) {
2108 read_unlock(&pag
->pag_ici_lock
);
2112 /* If we can get the locks then add it to the
2113 * list, otherwise by the time we get the bp lock
2114 * below it will already be attached to the
2118 /* This inode will already be locked - by us, lets
2122 if (ip
== free_ip
) {
2123 if (xfs_iflock_nowait(ip
)) {
2124 xfs_iflags_set(ip
, XFS_ISTALE
);
2125 if (xfs_inode_clean(ip
)) {
2128 ip_found
[found
++] = ip
;
2131 read_unlock(&pag
->pag_ici_lock
);
2135 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2136 if (xfs_iflock_nowait(ip
)) {
2137 xfs_iflags_set(ip
, XFS_ISTALE
);
2139 if (xfs_inode_clean(ip
)) {
2141 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2143 ip_found
[found
++] = ip
;
2146 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2149 read_unlock(&pag
->pag_ici_lock
);
2152 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2153 mp
->m_bsize
* blks_per_cluster
,
2157 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2159 if (lip
->li_type
== XFS_LI_INODE
) {
2160 iip
= (xfs_inode_log_item_t
*)lip
;
2161 ASSERT(iip
->ili_logged
== 1);
2162 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2163 spin_lock(&mp
->m_ail_lock
);
2164 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2165 spin_unlock(&mp
->m_ail_lock
);
2166 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2169 lip
= lip
->li_bio_list
;
2172 for (i
= 0; i
< found
; i
++) {
2177 ip
->i_update_core
= 0;
2179 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2183 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2184 iip
->ili_format
.ilf_fields
= 0;
2185 iip
->ili_logged
= 1;
2186 spin_lock(&mp
->m_ail_lock
);
2187 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2188 spin_unlock(&mp
->m_ail_lock
);
2190 xfs_buf_attach_iodone(bp
,
2191 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2192 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2193 if (ip
!= free_ip
) {
2194 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2198 if (found
|| pre_flushed
)
2199 xfs_trans_stale_inode_buf(tp
, bp
);
2200 xfs_trans_binval(tp
, bp
);
2203 kmem_free(ip_found
);
2204 xfs_put_perag(mp
, pag
);
2208 * This is called to return an inode to the inode free list.
2209 * The inode should already be truncated to 0 length and have
2210 * no pages associated with it. This routine also assumes that
2211 * the inode is already a part of the transaction.
2213 * The on-disk copy of the inode will have been added to the list
2214 * of unlinked inodes in the AGI. We need to remove the inode from
2215 * that list atomically with respect to freeing it here.
2221 xfs_bmap_free_t
*flist
)
2225 xfs_ino_t first_ino
;
2229 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2230 ASSERT(ip
->i_transp
== tp
);
2231 ASSERT(ip
->i_d
.di_nlink
== 0);
2232 ASSERT(ip
->i_d
.di_nextents
== 0);
2233 ASSERT(ip
->i_d
.di_anextents
== 0);
2234 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2235 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2236 ASSERT(ip
->i_d
.di_nblocks
== 0);
2239 * Pull the on-disk inode from the AGI unlinked list.
2241 error
= xfs_iunlink_remove(tp
, ip
);
2246 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2250 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2251 ip
->i_d
.di_flags
= 0;
2252 ip
->i_d
.di_dmevmask
= 0;
2253 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2254 ip
->i_df
.if_ext_max
=
2255 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2256 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2257 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2259 * Bump the generation count so no one will be confused
2260 * by reincarnations of this inode.
2264 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2266 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, 0, 0, XFS_BUF_LOCK
);
2271 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2272 * from picking up this inode when it is reclaimed (its incore state
2273 * initialzed but not flushed to disk yet). The in-core di_mode is
2274 * already cleared and a corresponding transaction logged.
2275 * The hack here just synchronizes the in-core to on-disk
2276 * di_mode value in advance before the actual inode sync to disk.
2277 * This is OK because the inode is already unlinked and would never
2278 * change its di_mode again for this inode generation.
2279 * This is a temporary hack that would require a proper fix
2282 dip
->di_core
.di_mode
= 0;
2285 xfs_ifree_cluster(ip
, tp
, first_ino
);
2292 * Reallocate the space for if_broot based on the number of records
2293 * being added or deleted as indicated in rec_diff. Move the records
2294 * and pointers in if_broot to fit the new size. When shrinking this
2295 * will eliminate holes between the records and pointers created by
2296 * the caller. When growing this will create holes to be filled in
2299 * The caller must not request to add more records than would fit in
2300 * the on-disk inode root. If the if_broot is currently NULL, then
2301 * if we adding records one will be allocated. The caller must also
2302 * not request that the number of records go below zero, although
2303 * it can go to zero.
2305 * ip -- the inode whose if_broot area is changing
2306 * ext_diff -- the change in the number of records, positive or negative,
2307 * requested for the if_broot array.
2317 xfs_bmbt_block_t
*new_broot
;
2324 * Handle the degenerate case quietly.
2326 if (rec_diff
== 0) {
2330 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2333 * If there wasn't any memory allocated before, just
2334 * allocate it now and get out.
2336 if (ifp
->if_broot_bytes
== 0) {
2337 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2338 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2340 ifp
->if_broot_bytes
= (int)new_size
;
2345 * If there is already an existing if_broot, then we need
2346 * to realloc() it and shift the pointers to their new
2347 * location. The records don't change location because
2348 * they are kept butted up against the btree block header.
2350 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2351 new_max
= cur_max
+ rec_diff
;
2352 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2353 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2354 kmem_realloc(ifp
->if_broot
,
2356 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2358 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2359 ifp
->if_broot_bytes
);
2360 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2362 ifp
->if_broot_bytes
= (int)new_size
;
2363 ASSERT(ifp
->if_broot_bytes
<=
2364 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2365 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2370 * rec_diff is less than 0. In this case, we are shrinking the
2371 * if_broot buffer. It must already exist. If we go to zero
2372 * records, just get rid of the root and clear the status bit.
2374 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2375 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2376 new_max
= cur_max
+ rec_diff
;
2377 ASSERT(new_max
>= 0);
2379 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2383 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2385 * First copy over the btree block header.
2387 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2390 ifp
->if_flags
&= ~XFS_IFBROOT
;
2394 * Only copy the records and pointers if there are any.
2398 * First copy the records.
2400 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2401 ifp
->if_broot_bytes
);
2402 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2404 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2407 * Then copy the pointers.
2409 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2410 ifp
->if_broot_bytes
);
2411 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2413 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2415 kmem_free(ifp
->if_broot
);
2416 ifp
->if_broot
= new_broot
;
2417 ifp
->if_broot_bytes
= (int)new_size
;
2418 ASSERT(ifp
->if_broot_bytes
<=
2419 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2425 * This is called when the amount of space needed for if_data
2426 * is increased or decreased. The change in size is indicated by
2427 * the number of bytes that need to be added or deleted in the
2428 * byte_diff parameter.
2430 * If the amount of space needed has decreased below the size of the
2431 * inline buffer, then switch to using the inline buffer. Otherwise,
2432 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2433 * to what is needed.
2435 * ip -- the inode whose if_data area is changing
2436 * byte_diff -- the change in the number of bytes, positive or negative,
2437 * requested for the if_data array.
2449 if (byte_diff
== 0) {
2453 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2454 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2455 ASSERT(new_size
>= 0);
2457 if (new_size
== 0) {
2458 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2459 kmem_free(ifp
->if_u1
.if_data
);
2461 ifp
->if_u1
.if_data
= NULL
;
2463 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2465 * If the valid extents/data can fit in if_inline_ext/data,
2466 * copy them from the malloc'd vector and free it.
2468 if (ifp
->if_u1
.if_data
== NULL
) {
2469 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2470 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2471 ASSERT(ifp
->if_real_bytes
!= 0);
2472 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2474 kmem_free(ifp
->if_u1
.if_data
);
2475 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2480 * Stuck with malloc/realloc.
2481 * For inline data, the underlying buffer must be
2482 * a multiple of 4 bytes in size so that it can be
2483 * logged and stay on word boundaries. We enforce
2486 real_size
= roundup(new_size
, 4);
2487 if (ifp
->if_u1
.if_data
== NULL
) {
2488 ASSERT(ifp
->if_real_bytes
== 0);
2489 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2490 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2492 * Only do the realloc if the underlying size
2493 * is really changing.
2495 if (ifp
->if_real_bytes
!= real_size
) {
2496 ifp
->if_u1
.if_data
=
2497 kmem_realloc(ifp
->if_u1
.if_data
,
2503 ASSERT(ifp
->if_real_bytes
== 0);
2504 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2505 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2509 ifp
->if_real_bytes
= real_size
;
2510 ifp
->if_bytes
= new_size
;
2511 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2518 * Map inode to disk block and offset.
2520 * mp -- the mount point structure for the current file system
2521 * tp -- the current transaction
2522 * ino -- the inode number of the inode to be located
2523 * imap -- this structure is filled in with the information necessary
2524 * to retrieve the given inode from disk
2525 * flags -- flags to pass to xfs_dilocate indicating whether or not
2526 * lookups in the inode btree were OK or not
2536 xfs_fsblock_t fsbno
;
2541 fsbno
= imap
->im_blkno
?
2542 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2543 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2547 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2548 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2549 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2550 imap
->im_ioffset
= (ushort
)off
;
2551 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2554 * If the inode number maps to a block outside the bounds
2555 * of the file system then return NULL rather than calling
2556 * read_buf and panicing when we get an error from the
2559 if ((imap
->im_blkno
+ imap
->im_len
) >
2560 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
2561 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_imap: "
2562 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2563 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2564 (unsigned long long) imap
->im_blkno
,
2565 (unsigned long long) imap
->im_len
,
2566 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
2579 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2580 if (ifp
->if_broot
!= NULL
) {
2581 kmem_free(ifp
->if_broot
);
2582 ifp
->if_broot
= NULL
;
2586 * If the format is local, then we can't have an extents
2587 * array so just look for an inline data array. If we're
2588 * not local then we may or may not have an extents list,
2589 * so check and free it up if we do.
2591 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2592 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2593 (ifp
->if_u1
.if_data
!= NULL
)) {
2594 ASSERT(ifp
->if_real_bytes
!= 0);
2595 kmem_free(ifp
->if_u1
.if_data
);
2596 ifp
->if_u1
.if_data
= NULL
;
2597 ifp
->if_real_bytes
= 0;
2599 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2600 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2601 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2602 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2603 ASSERT(ifp
->if_real_bytes
!= 0);
2604 xfs_iext_destroy(ifp
);
2606 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2607 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2608 ASSERT(ifp
->if_real_bytes
== 0);
2609 if (whichfork
== XFS_ATTR_FORK
) {
2610 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2616 * This is called free all the memory associated with an inode.
2617 * It must free the inode itself and any buffers allocated for
2618 * if_extents/if_data and if_broot. It must also free the lock
2619 * associated with the inode.
2625 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2629 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2633 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2634 mrfree(&ip
->i_lock
);
2635 mrfree(&ip
->i_iolock
);
2637 #ifdef XFS_INODE_TRACE
2638 ktrace_free(ip
->i_trace
);
2640 #ifdef XFS_BMAP_TRACE
2641 ktrace_free(ip
->i_xtrace
);
2643 #ifdef XFS_BMBT_TRACE
2644 ktrace_free(ip
->i_btrace
);
2647 ktrace_free(ip
->i_rwtrace
);
2649 #ifdef XFS_ILOCK_TRACE
2650 ktrace_free(ip
->i_lock_trace
);
2652 #ifdef XFS_DIR2_TRACE
2653 ktrace_free(ip
->i_dir_trace
);
2657 * Only if we are shutting down the fs will we see an
2658 * inode still in the AIL. If it is there, we should remove
2659 * it to prevent a use-after-free from occurring.
2661 xfs_mount_t
*mp
= ip
->i_mount
;
2662 xfs_log_item_t
*lip
= &ip
->i_itemp
->ili_item
;
2664 ASSERT(((lip
->li_flags
& XFS_LI_IN_AIL
) == 0) ||
2665 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2666 if (lip
->li_flags
& XFS_LI_IN_AIL
) {
2667 spin_lock(&mp
->m_ail_lock
);
2668 if (lip
->li_flags
& XFS_LI_IN_AIL
)
2669 xfs_trans_delete_ail(mp
, lip
);
2671 spin_unlock(&mp
->m_ail_lock
);
2673 xfs_inode_item_destroy(ip
);
2675 kmem_zone_free(xfs_inode_zone
, ip
);
2680 * Increment the pin count of the given buffer.
2681 * This value is protected by ipinlock spinlock in the mount structure.
2687 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2689 atomic_inc(&ip
->i_pincount
);
2693 * Decrement the pin count of the given inode, and wake up
2694 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2695 * inode must have been previously pinned with a call to xfs_ipin().
2701 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2703 if (atomic_dec_and_test(&ip
->i_pincount
))
2704 wake_up(&ip
->i_ipin_wait
);
2708 * This is called to unpin an inode. It can be directed to wait or to return
2709 * immediately without waiting for the inode to be unpinned. The caller must
2710 * have the inode locked in at least shared mode so that the buffer cannot be
2711 * subsequently pinned once someone is waiting for it to be unpinned.
2718 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
2720 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2721 if (atomic_read(&ip
->i_pincount
) == 0)
2724 /* Give the log a push to start the unpinning I/O */
2725 xfs_log_force(ip
->i_mount
, (iip
&& iip
->ili_last_lsn
) ?
2726 iip
->ili_last_lsn
: 0, XFS_LOG_FORCE
);
2728 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2735 __xfs_iunpin_wait(ip
, 1);
2742 __xfs_iunpin_wait(ip
, 0);
2747 * xfs_iextents_copy()
2749 * This is called to copy the REAL extents (as opposed to the delayed
2750 * allocation extents) from the inode into the given buffer. It
2751 * returns the number of bytes copied into the buffer.
2753 * If there are no delayed allocation extents, then we can just
2754 * memcpy() the extents into the buffer. Otherwise, we need to
2755 * examine each extent in turn and skip those which are delayed.
2767 xfs_fsblock_t start_block
;
2769 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2770 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2771 ASSERT(ifp
->if_bytes
> 0);
2773 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2774 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2778 * There are some delayed allocation extents in the
2779 * inode, so copy the extents one at a time and skip
2780 * the delayed ones. There must be at least one
2781 * non-delayed extent.
2784 for (i
= 0; i
< nrecs
; i
++) {
2785 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2786 start_block
= xfs_bmbt_get_startblock(ep
);
2787 if (ISNULLSTARTBLOCK(start_block
)) {
2789 * It's a delayed allocation extent, so skip it.
2794 /* Translate to on disk format */
2795 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2796 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2800 ASSERT(copied
!= 0);
2801 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2803 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2807 * Each of the following cases stores data into the same region
2808 * of the on-disk inode, so only one of them can be valid at
2809 * any given time. While it is possible to have conflicting formats
2810 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2811 * in EXTENTS format, this can only happen when the fork has
2812 * changed formats after being modified but before being flushed.
2813 * In these cases, the format always takes precedence, because the
2814 * format indicates the current state of the fork.
2821 xfs_inode_log_item_t
*iip
,
2828 #ifdef XFS_TRANS_DEBUG
2831 static const short brootflag
[2] =
2832 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2833 static const short dataflag
[2] =
2834 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2835 static const short extflag
[2] =
2836 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2840 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2842 * This can happen if we gave up in iformat in an error path,
2843 * for the attribute fork.
2846 ASSERT(whichfork
== XFS_ATTR_FORK
);
2849 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2851 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2852 case XFS_DINODE_FMT_LOCAL
:
2853 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2854 (ifp
->if_bytes
> 0)) {
2855 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2856 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2857 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2861 case XFS_DINODE_FMT_EXTENTS
:
2862 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2863 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2864 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2865 (ifp
->if_bytes
== 0));
2866 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2867 (ifp
->if_bytes
> 0));
2868 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2869 (ifp
->if_bytes
> 0)) {
2870 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2871 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2876 case XFS_DINODE_FMT_BTREE
:
2877 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2878 (ifp
->if_broot_bytes
> 0)) {
2879 ASSERT(ifp
->if_broot
!= NULL
);
2880 ASSERT(ifp
->if_broot_bytes
<=
2881 (XFS_IFORK_SIZE(ip
, whichfork
) +
2882 XFS_BROOT_SIZE_ADJ
));
2883 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
2884 (xfs_bmdr_block_t
*)cp
,
2885 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2889 case XFS_DINODE_FMT_DEV
:
2890 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2891 ASSERT(whichfork
== XFS_DATA_FORK
);
2892 dip
->di_u
.di_dev
= cpu_to_be32(ip
->i_df
.if_u2
.if_rdev
);
2896 case XFS_DINODE_FMT_UUID
:
2897 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2898 ASSERT(whichfork
== XFS_DATA_FORK
);
2899 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
2915 xfs_mount_t
*mp
= ip
->i_mount
;
2916 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
2917 unsigned long first_index
, mask
;
2918 unsigned long inodes_per_cluster
;
2920 xfs_inode_t
**ilist
;
2927 ASSERT(pag
->pagi_inodeok
);
2928 ASSERT(pag
->pag_ici_init
);
2930 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2931 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2932 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2936 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2937 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2938 read_lock(&pag
->pag_ici_lock
);
2939 /* really need a gang lookup range call here */
2940 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2941 first_index
, inodes_per_cluster
);
2945 for (i
= 0; i
< nr_found
; i
++) {
2949 /* if the inode lies outside this cluster, we're done. */
2950 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
)
2953 * Do an un-protected check to see if the inode is dirty and
2954 * is a candidate for flushing. These checks will be repeated
2955 * later after the appropriate locks are acquired.
2957 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2961 * Try to get locks. If any are unavailable or it is pinned,
2962 * then this inode cannot be flushed and is skipped.
2965 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2967 if (!xfs_iflock_nowait(iq
)) {
2968 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2971 if (xfs_ipincount(iq
)) {
2973 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2978 * arriving here means that this inode can be flushed. First
2979 * re-check that it's dirty before flushing.
2981 if (!xfs_inode_clean(iq
)) {
2983 error
= xfs_iflush_int(iq
, bp
);
2985 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2986 goto cluster_corrupt_out
;
2992 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2996 XFS_STATS_INC(xs_icluster_flushcnt
);
2997 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3001 read_unlock(&pag
->pag_ici_lock
);
3006 cluster_corrupt_out
:
3008 * Corruption detected in the clustering loop. Invalidate the
3009 * inode buffer and shut down the filesystem.
3011 read_unlock(&pag
->pag_ici_lock
);
3013 * Clean up the buffer. If it was B_DELWRI, just release it --
3014 * brelse can handle it with no problems. If not, shut down the
3015 * filesystem before releasing the buffer.
3017 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
3021 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3023 if (!bufwasdelwri
) {
3025 * Just like incore_relse: if we have b_iodone functions,
3026 * mark the buffer as an error and call them. Otherwise
3027 * mark it as stale and brelse.
3029 if (XFS_BUF_IODONE_FUNC(bp
)) {
3030 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3034 XFS_BUF_ERROR(bp
,EIO
);
3043 * Unlocks the flush lock
3045 xfs_iflush_abort(iq
);
3047 return XFS_ERROR(EFSCORRUPTED
);
3051 * xfs_iflush() will write a modified inode's changes out to the
3052 * inode's on disk home. The caller must have the inode lock held
3053 * in at least shared mode and the inode flush completion must be
3054 * active as well. The inode lock will still be held upon return from
3055 * the call and the caller is free to unlock it.
3056 * The inode flush will be completed when the inode reaches the disk.
3057 * The flags indicate how the inode's buffer should be written out.
3064 xfs_inode_log_item_t
*iip
;
3069 int noblock
= (flags
== XFS_IFLUSH_ASYNC_NOBLOCK
);
3070 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3072 XFS_STATS_INC(xs_iflush_count
);
3074 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3075 ASSERT(!completion_done(&ip
->i_flush
));
3076 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3077 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3083 * If the inode isn't dirty, then just release the inode
3084 * flush lock and do nothing.
3086 if (xfs_inode_clean(ip
)) {
3092 * We can't flush the inode until it is unpinned, so wait for it if we
3093 * are allowed to block. We know noone new can pin it, because we are
3094 * holding the inode lock shared and you need to hold it exclusively to
3097 * If we are not allowed to block, force the log out asynchronously so
3098 * that when we come back the inode will be unpinned. If other inodes
3099 * in the same cluster are dirty, they will probably write the inode
3100 * out for us if they occur after the log force completes.
3102 if (noblock
&& xfs_ipincount(ip
)) {
3103 xfs_iunpin_nowait(ip
);
3107 xfs_iunpin_wait(ip
);
3110 * This may have been unpinned because the filesystem is shutting
3111 * down forcibly. If that's the case we must not write this inode
3112 * to disk, because the log record didn't make it to disk!
3114 if (XFS_FORCED_SHUTDOWN(mp
)) {
3115 ip
->i_update_core
= 0;
3117 iip
->ili_format
.ilf_fields
= 0;
3119 return XFS_ERROR(EIO
);
3123 * Decide how buffer will be flushed out. This is done before
3124 * the call to xfs_iflush_int because this field is zeroed by it.
3126 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3128 * Flush out the inode buffer according to the directions
3129 * of the caller. In the cases where the caller has given
3130 * us a choice choose the non-delwri case. This is because
3131 * the inode is in the AIL and we need to get it out soon.
3134 case XFS_IFLUSH_SYNC
:
3135 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3138 case XFS_IFLUSH_ASYNC_NOBLOCK
:
3139 case XFS_IFLUSH_ASYNC
:
3140 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3143 case XFS_IFLUSH_DELWRI
:
3153 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3154 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3155 case XFS_IFLUSH_DELWRI
:
3158 case XFS_IFLUSH_ASYNC_NOBLOCK
:
3159 case XFS_IFLUSH_ASYNC
:
3162 case XFS_IFLUSH_SYNC
:
3173 * Get the buffer containing the on-disk inode.
3175 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0, 0,
3176 noblock
? XFS_BUF_TRYLOCK
: XFS_BUF_LOCK
);
3183 * First flush out the inode that xfs_iflush was called with.
3185 error
= xfs_iflush_int(ip
, bp
);
3190 * If the buffer is pinned then push on the log now so we won't
3191 * get stuck waiting in the write for too long.
3193 if (XFS_BUF_ISPINNED(bp
))
3194 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3198 * see if other inodes can be gathered into this write
3200 error
= xfs_iflush_cluster(ip
, bp
);
3202 goto cluster_corrupt_out
;
3204 if (flags
& INT_DELWRI
) {
3205 xfs_bdwrite(mp
, bp
);
3206 } else if (flags
& INT_ASYNC
) {
3207 error
= xfs_bawrite(mp
, bp
);
3209 error
= xfs_bwrite(mp
, bp
);
3215 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3216 cluster_corrupt_out
:
3218 * Unlocks the flush lock
3220 xfs_iflush_abort(ip
);
3221 return XFS_ERROR(EFSCORRUPTED
);
3230 xfs_inode_log_item_t
*iip
;
3233 #ifdef XFS_TRANS_DEBUG
3237 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3238 ASSERT(!completion_done(&ip
->i_flush
));
3239 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3240 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3247 * If the inode isn't dirty, then just release the inode
3248 * flush lock and do nothing.
3250 if (xfs_inode_clean(ip
)) {
3255 /* set *dip = inode's place in the buffer */
3256 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3259 * Clear i_update_core before copying out the data.
3260 * This is for coordination with our timestamp updates
3261 * that don't hold the inode lock. They will always
3262 * update the timestamps BEFORE setting i_update_core,
3263 * so if we clear i_update_core after they set it we
3264 * are guaranteed to see their updates to the timestamps.
3265 * I believe that this depends on strongly ordered memory
3266 * semantics, but we have that. We use the SYNCHRONIZE
3267 * macro to make sure that the compiler does not reorder
3268 * the i_update_core access below the data copy below.
3270 ip
->i_update_core
= 0;
3274 * Make sure to get the latest atime from the Linux inode.
3276 xfs_synchronize_atime(ip
);
3278 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
,
3279 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3280 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3281 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3282 ip
->i_ino
, be16_to_cpu(dip
->di_core
.di_magic
), dip
);
3285 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3286 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3287 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3288 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3289 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3292 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3294 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3295 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3296 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3297 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3298 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3302 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3304 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3305 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3306 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3307 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3308 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3309 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3314 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3315 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3316 XFS_RANDOM_IFLUSH_5
)) {
3317 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3318 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3320 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3325 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3326 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3327 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3328 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3329 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3333 * bump the flush iteration count, used to detect flushes which
3334 * postdate a log record during recovery.
3337 ip
->i_d
.di_flushiter
++;
3340 * Copy the dirty parts of the inode into the on-disk
3341 * inode. We always copy out the core of the inode,
3342 * because if the inode is dirty at all the core must
3345 xfs_dinode_to_disk(&dip
->di_core
, &ip
->i_d
);
3347 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3348 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3349 ip
->i_d
.di_flushiter
= 0;
3352 * If this is really an old format inode and the superblock version
3353 * has not been updated to support only new format inodes, then
3354 * convert back to the old inode format. If the superblock version
3355 * has been updated, then make the conversion permanent.
3357 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3358 xfs_sb_version_hasnlink(&mp
->m_sb
));
3359 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3360 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3364 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3365 dip
->di_core
.di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3368 * The superblock version has already been bumped,
3369 * so just make the conversion to the new inode
3372 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3373 dip
->di_core
.di_version
= XFS_DINODE_VERSION_2
;
3374 ip
->i_d
.di_onlink
= 0;
3375 dip
->di_core
.di_onlink
= 0;
3376 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3377 memset(&(dip
->di_core
.di_pad
[0]), 0,
3378 sizeof(dip
->di_core
.di_pad
));
3379 ASSERT(ip
->i_d
.di_projid
== 0);
3383 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3384 if (XFS_IFORK_Q(ip
))
3385 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3386 xfs_inobp_check(mp
, bp
);
3389 * We've recorded everything logged in the inode, so we'd
3390 * like to clear the ilf_fields bits so we don't log and
3391 * flush things unnecessarily. However, we can't stop
3392 * logging all this information until the data we've copied
3393 * into the disk buffer is written to disk. If we did we might
3394 * overwrite the copy of the inode in the log with all the
3395 * data after re-logging only part of it, and in the face of
3396 * a crash we wouldn't have all the data we need to recover.
3398 * What we do is move the bits to the ili_last_fields field.
3399 * When logging the inode, these bits are moved back to the
3400 * ilf_fields field. In the xfs_iflush_done() routine we
3401 * clear ili_last_fields, since we know that the information
3402 * those bits represent is permanently on disk. As long as
3403 * the flush completes before the inode is logged again, then
3404 * both ilf_fields and ili_last_fields will be cleared.
3406 * We can play with the ilf_fields bits here, because the inode
3407 * lock must be held exclusively in order to set bits there
3408 * and the flush lock protects the ili_last_fields bits.
3409 * Set ili_logged so the flush done
3410 * routine can tell whether or not to look in the AIL.
3411 * Also, store the current LSN of the inode so that we can tell
3412 * whether the item has moved in the AIL from xfs_iflush_done().
3413 * In order to read the lsn we need the AIL lock, because
3414 * it is a 64 bit value that cannot be read atomically.
3416 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3417 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3418 iip
->ili_format
.ilf_fields
= 0;
3419 iip
->ili_logged
= 1;
3421 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3422 spin_lock(&mp
->m_ail_lock
);
3423 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3424 spin_unlock(&mp
->m_ail_lock
);
3427 * Attach the function xfs_iflush_done to the inode's
3428 * buffer. This will remove the inode from the AIL
3429 * and unlock the inode's flush lock when the inode is
3430 * completely written to disk.
3432 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3433 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3435 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3436 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3439 * We're flushing an inode which is not in the AIL and has
3440 * not been logged but has i_update_core set. For this
3441 * case we can use a B_DELWRI flush and immediately drop
3442 * the inode flush lock because we can avoid the whole
3443 * AIL state thing. It's OK to drop the flush lock now,
3444 * because we've already locked the buffer and to do anything
3445 * you really need both.
3448 ASSERT(iip
->ili_logged
== 0);
3449 ASSERT(iip
->ili_last_fields
== 0);
3450 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3458 return XFS_ERROR(EFSCORRUPTED
);
3463 * Flush all inactive inodes in mp.
3472 XFS_MOUNT_ILOCK(mp
);
3478 /* Make sure we skip markers inserted by sync */
3479 if (ip
->i_mount
== NULL
) {
3485 XFS_MOUNT_IUNLOCK(mp
);
3486 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3490 ASSERT(vn_count(VFS_I(ip
)) == 0);
3493 } while (ip
!= mp
->m_inodes
);
3495 XFS_MOUNT_IUNLOCK(mp
);
3498 #ifdef XFS_ILOCK_TRACE
3499 ktrace_t
*xfs_ilock_trace_buf
;
3502 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3504 ktrace_enter(ip
->i_lock_trace
,
3506 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3507 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3508 (void *)ra
, /* caller of ilock */
3509 (void *)(unsigned long)current_cpu(),
3510 (void *)(unsigned long)current_pid(),
3511 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3516 * Return a pointer to the extent record at file index idx.
3518 xfs_bmbt_rec_host_t
*
3520 xfs_ifork_t
*ifp
, /* inode fork pointer */
3521 xfs_extnum_t idx
) /* index of target extent */
3524 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3525 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3526 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3527 xfs_ext_irec_t
*erp
; /* irec pointer */
3528 int erp_idx
= 0; /* irec index */
3529 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3531 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3532 return &erp
->er_extbuf
[page_idx
];
3533 } else if (ifp
->if_bytes
) {
3534 return &ifp
->if_u1
.if_extents
[idx
];
3541 * Insert new item(s) into the extent records for incore inode
3542 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3546 xfs_ifork_t
*ifp
, /* inode fork pointer */
3547 xfs_extnum_t idx
, /* starting index of new items */
3548 xfs_extnum_t count
, /* number of inserted items */
3549 xfs_bmbt_irec_t
*new) /* items to insert */
3551 xfs_extnum_t i
; /* extent record index */
3553 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3554 xfs_iext_add(ifp
, idx
, count
);
3555 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3556 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3560 * This is called when the amount of space required for incore file
3561 * extents needs to be increased. The ext_diff parameter stores the
3562 * number of new extents being added and the idx parameter contains
3563 * the extent index where the new extents will be added. If the new
3564 * extents are being appended, then we just need to (re)allocate and
3565 * initialize the space. Otherwise, if the new extents are being
3566 * inserted into the middle of the existing entries, a bit more work
3567 * is required to make room for the new extents to be inserted. The
3568 * caller is responsible for filling in the new extent entries upon
3573 xfs_ifork_t
*ifp
, /* inode fork pointer */
3574 xfs_extnum_t idx
, /* index to begin adding exts */
3575 int ext_diff
) /* number of extents to add */
3577 int byte_diff
; /* new bytes being added */
3578 int new_size
; /* size of extents after adding */
3579 xfs_extnum_t nextents
; /* number of extents in file */
3581 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3582 ASSERT((idx
>= 0) && (idx
<= nextents
));
3583 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3584 new_size
= ifp
->if_bytes
+ byte_diff
;
3586 * If the new number of extents (nextents + ext_diff)
3587 * fits inside the inode, then continue to use the inline
3590 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3591 if (idx
< nextents
) {
3592 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3593 &ifp
->if_u2
.if_inline_ext
[idx
],
3594 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3595 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3597 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3598 ifp
->if_real_bytes
= 0;
3599 ifp
->if_lastex
= nextents
+ ext_diff
;
3602 * Otherwise use a linear (direct) extent list.
3603 * If the extents are currently inside the inode,
3604 * xfs_iext_realloc_direct will switch us from
3605 * inline to direct extent allocation mode.
3607 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3608 xfs_iext_realloc_direct(ifp
, new_size
);
3609 if (idx
< nextents
) {
3610 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3611 &ifp
->if_u1
.if_extents
[idx
],
3612 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3613 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3616 /* Indirection array */
3618 xfs_ext_irec_t
*erp
;
3622 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3623 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3624 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3626 xfs_iext_irec_init(ifp
);
3627 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3628 erp
= ifp
->if_u1
.if_ext_irec
;
3630 /* Extents fit in target extent page */
3631 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3632 if (page_idx
< erp
->er_extcount
) {
3633 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3634 &erp
->er_extbuf
[page_idx
],
3635 (erp
->er_extcount
- page_idx
) *
3636 sizeof(xfs_bmbt_rec_t
));
3637 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3639 erp
->er_extcount
+= ext_diff
;
3640 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3642 /* Insert a new extent page */
3644 xfs_iext_add_indirect_multi(ifp
,
3645 erp_idx
, page_idx
, ext_diff
);
3648 * If extent(s) are being appended to the last page in
3649 * the indirection array and the new extent(s) don't fit
3650 * in the page, then erp is NULL and erp_idx is set to
3651 * the next index needed in the indirection array.
3654 int count
= ext_diff
;
3657 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3658 erp
->er_extcount
= count
;
3659 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3666 ifp
->if_bytes
= new_size
;
3670 * This is called when incore extents are being added to the indirection
3671 * array and the new extents do not fit in the target extent list. The
3672 * erp_idx parameter contains the irec index for the target extent list
3673 * in the indirection array, and the idx parameter contains the extent
3674 * index within the list. The number of extents being added is stored
3675 * in the count parameter.
3677 * |-------| |-------|
3678 * | | | | idx - number of extents before idx
3680 * | | | | count - number of extents being inserted at idx
3681 * |-------| |-------|
3682 * | count | | nex2 | nex2 - number of extents after idx + count
3683 * |-------| |-------|
3686 xfs_iext_add_indirect_multi(
3687 xfs_ifork_t
*ifp
, /* inode fork pointer */
3688 int erp_idx
, /* target extent irec index */
3689 xfs_extnum_t idx
, /* index within target list */
3690 int count
) /* new extents being added */
3692 int byte_diff
; /* new bytes being added */
3693 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3694 xfs_extnum_t ext_diff
; /* number of extents to add */
3695 xfs_extnum_t ext_cnt
; /* new extents still needed */
3696 xfs_extnum_t nex2
; /* extents after idx + count */
3697 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3698 int nlists
; /* number of irec's (lists) */
3700 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3701 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3702 nex2
= erp
->er_extcount
- idx
;
3703 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3706 * Save second part of target extent list
3707 * (all extents past */
3709 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3710 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3711 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3712 erp
->er_extcount
-= nex2
;
3713 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3714 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3718 * Add the new extents to the end of the target
3719 * list, then allocate new irec record(s) and
3720 * extent buffer(s) as needed to store the rest
3721 * of the new extents.
3724 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3726 erp
->er_extcount
+= ext_diff
;
3727 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3728 ext_cnt
-= ext_diff
;
3732 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3733 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3734 erp
->er_extcount
= ext_diff
;
3735 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3736 ext_cnt
-= ext_diff
;
3739 /* Add nex2 extents back to indirection array */
3741 xfs_extnum_t ext_avail
;
3744 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3745 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3748 * If nex2 extents fit in the current page, append
3749 * nex2_ep after the new extents.
3751 if (nex2
<= ext_avail
) {
3752 i
= erp
->er_extcount
;
3755 * Otherwise, check if space is available in the
3758 else if ((erp_idx
< nlists
- 1) &&
3759 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3760 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3763 /* Create a hole for nex2 extents */
3764 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3765 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3768 * Final choice, create a new extent page for
3773 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3775 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3777 erp
->er_extcount
+= nex2
;
3778 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3783 * This is called when the amount of space required for incore file
3784 * extents needs to be decreased. The ext_diff parameter stores the
3785 * number of extents to be removed and the idx parameter contains
3786 * the extent index where the extents will be removed from.
3788 * If the amount of space needed has decreased below the linear
3789 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3790 * extent array. Otherwise, use kmem_realloc() to adjust the
3791 * size to what is needed.
3795 xfs_ifork_t
*ifp
, /* inode fork pointer */
3796 xfs_extnum_t idx
, /* index to begin removing exts */
3797 int ext_diff
) /* number of extents to remove */
3799 xfs_extnum_t nextents
; /* number of extents in file */
3800 int new_size
; /* size of extents after removal */
3802 ASSERT(ext_diff
> 0);
3803 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3804 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3806 if (new_size
== 0) {
3807 xfs_iext_destroy(ifp
);
3808 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3809 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3810 } else if (ifp
->if_real_bytes
) {
3811 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3813 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3815 ifp
->if_bytes
= new_size
;
3819 * This removes ext_diff extents from the inline buffer, beginning
3820 * at extent index idx.
3823 xfs_iext_remove_inline(
3824 xfs_ifork_t
*ifp
, /* inode fork pointer */
3825 xfs_extnum_t idx
, /* index to begin removing exts */
3826 int ext_diff
) /* number of extents to remove */
3828 int nextents
; /* number of extents in file */
3830 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3831 ASSERT(idx
< XFS_INLINE_EXTS
);
3832 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3833 ASSERT(((nextents
- ext_diff
) > 0) &&
3834 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3836 if (idx
+ ext_diff
< nextents
) {
3837 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3838 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3839 (nextents
- (idx
+ ext_diff
)) *
3840 sizeof(xfs_bmbt_rec_t
));
3841 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3842 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3844 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3845 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3850 * This removes ext_diff extents from a linear (direct) extent list,
3851 * beginning at extent index idx. If the extents are being removed
3852 * from the end of the list (ie. truncate) then we just need to re-
3853 * allocate the list to remove the extra space. Otherwise, if the
3854 * extents are being removed from the middle of the existing extent
3855 * entries, then we first need to move the extent records beginning
3856 * at idx + ext_diff up in the list to overwrite the records being
3857 * removed, then remove the extra space via kmem_realloc.
3860 xfs_iext_remove_direct(
3861 xfs_ifork_t
*ifp
, /* inode fork pointer */
3862 xfs_extnum_t idx
, /* index to begin removing exts */
3863 int ext_diff
) /* number of extents to remove */
3865 xfs_extnum_t nextents
; /* number of extents in file */
3866 int new_size
; /* size of extents after removal */
3868 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3869 new_size
= ifp
->if_bytes
-
3870 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3871 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3873 if (new_size
== 0) {
3874 xfs_iext_destroy(ifp
);
3877 /* Move extents up in the list (if needed) */
3878 if (idx
+ ext_diff
< nextents
) {
3879 memmove(&ifp
->if_u1
.if_extents
[idx
],
3880 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3881 (nextents
- (idx
+ ext_diff
)) *
3882 sizeof(xfs_bmbt_rec_t
));
3884 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3885 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3887 * Reallocate the direct extent list. If the extents
3888 * will fit inside the inode then xfs_iext_realloc_direct
3889 * will switch from direct to inline extent allocation
3892 xfs_iext_realloc_direct(ifp
, new_size
);
3893 ifp
->if_bytes
= new_size
;
3897 * This is called when incore extents are being removed from the
3898 * indirection array and the extents being removed span multiple extent
3899 * buffers. The idx parameter contains the file extent index where we
3900 * want to begin removing extents, and the count parameter contains
3901 * how many extents need to be removed.
3903 * |-------| |-------|
3904 * | nex1 | | | nex1 - number of extents before idx
3905 * |-------| | count |
3906 * | | | | count - number of extents being removed at idx
3907 * | count | |-------|
3908 * | | | nex2 | nex2 - number of extents after idx + count
3909 * |-------| |-------|
3912 xfs_iext_remove_indirect(
3913 xfs_ifork_t
*ifp
, /* inode fork pointer */
3914 xfs_extnum_t idx
, /* index to begin removing extents */
3915 int count
) /* number of extents to remove */
3917 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3918 int erp_idx
= 0; /* indirection array index */
3919 xfs_extnum_t ext_cnt
; /* extents left to remove */
3920 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3921 xfs_extnum_t nex1
; /* number of extents before idx */
3922 xfs_extnum_t nex2
; /* extents after idx + count */
3923 int nlists
; /* entries in indirection array */
3924 int page_idx
= idx
; /* index in target extent list */
3926 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3927 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3928 ASSERT(erp
!= NULL
);
3929 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3933 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3934 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3936 * Check for deletion of entire list;
3937 * xfs_iext_irec_remove() updates extent offsets.
3939 if (ext_diff
== erp
->er_extcount
) {
3940 xfs_iext_irec_remove(ifp
, erp_idx
);
3941 ext_cnt
-= ext_diff
;
3944 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3946 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3953 /* Move extents up (if needed) */
3955 memmove(&erp
->er_extbuf
[nex1
],
3956 &erp
->er_extbuf
[nex1
+ ext_diff
],
3957 nex2
* sizeof(xfs_bmbt_rec_t
));
3959 /* Zero out rest of page */
3960 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3961 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3962 /* Update remaining counters */
3963 erp
->er_extcount
-= ext_diff
;
3964 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3965 ext_cnt
-= ext_diff
;
3970 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3971 xfs_iext_irec_compact(ifp
);
3975 * Create, destroy, or resize a linear (direct) block of extents.
3978 xfs_iext_realloc_direct(
3979 xfs_ifork_t
*ifp
, /* inode fork pointer */
3980 int new_size
) /* new size of extents */
3982 int rnew_size
; /* real new size of extents */
3984 rnew_size
= new_size
;
3986 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3987 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3988 (new_size
!= ifp
->if_real_bytes
)));
3990 /* Free extent records */
3991 if (new_size
== 0) {
3992 xfs_iext_destroy(ifp
);
3994 /* Resize direct extent list and zero any new bytes */
3995 else if (ifp
->if_real_bytes
) {
3996 /* Check if extents will fit inside the inode */
3997 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3998 xfs_iext_direct_to_inline(ifp
, new_size
/
3999 (uint
)sizeof(xfs_bmbt_rec_t
));
4000 ifp
->if_bytes
= new_size
;
4003 if (!is_power_of_2(new_size
)){
4004 rnew_size
= roundup_pow_of_two(new_size
);
4006 if (rnew_size
!= ifp
->if_real_bytes
) {
4007 ifp
->if_u1
.if_extents
=
4008 kmem_realloc(ifp
->if_u1
.if_extents
,
4010 ifp
->if_real_bytes
, KM_NOFS
);
4012 if (rnew_size
> ifp
->if_real_bytes
) {
4013 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
4014 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
4015 rnew_size
- ifp
->if_real_bytes
);
4019 * Switch from the inline extent buffer to a direct
4020 * extent list. Be sure to include the inline extent
4021 * bytes in new_size.
4024 new_size
+= ifp
->if_bytes
;
4025 if (!is_power_of_2(new_size
)) {
4026 rnew_size
= roundup_pow_of_two(new_size
);
4028 xfs_iext_inline_to_direct(ifp
, rnew_size
);
4030 ifp
->if_real_bytes
= rnew_size
;
4031 ifp
->if_bytes
= new_size
;
4035 * Switch from linear (direct) extent records to inline buffer.
4038 xfs_iext_direct_to_inline(
4039 xfs_ifork_t
*ifp
, /* inode fork pointer */
4040 xfs_extnum_t nextents
) /* number of extents in file */
4042 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
4043 ASSERT(nextents
<= XFS_INLINE_EXTS
);
4045 * The inline buffer was zeroed when we switched
4046 * from inline to direct extent allocation mode,
4047 * so we don't need to clear it here.
4049 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
4050 nextents
* sizeof(xfs_bmbt_rec_t
));
4051 kmem_free(ifp
->if_u1
.if_extents
);
4052 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
4053 ifp
->if_real_bytes
= 0;
4057 * Switch from inline buffer to linear (direct) extent records.
4058 * new_size should already be rounded up to the next power of 2
4059 * by the caller (when appropriate), so use new_size as it is.
4060 * However, since new_size may be rounded up, we can't update
4061 * if_bytes here. It is the caller's responsibility to update
4062 * if_bytes upon return.
4065 xfs_iext_inline_to_direct(
4066 xfs_ifork_t
*ifp
, /* inode fork pointer */
4067 int new_size
) /* number of extents in file */
4069 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
4070 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
4071 if (ifp
->if_bytes
) {
4072 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
4074 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4075 sizeof(xfs_bmbt_rec_t
));
4077 ifp
->if_real_bytes
= new_size
;
4081 * Resize an extent indirection array to new_size bytes.
4084 xfs_iext_realloc_indirect(
4085 xfs_ifork_t
*ifp
, /* inode fork pointer */
4086 int new_size
) /* new indirection array size */
4088 int nlists
; /* number of irec's (ex lists) */
4089 int size
; /* current indirection array size */
4091 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4092 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4093 size
= nlists
* sizeof(xfs_ext_irec_t
);
4094 ASSERT(ifp
->if_real_bytes
);
4095 ASSERT((new_size
>= 0) && (new_size
!= size
));
4096 if (new_size
== 0) {
4097 xfs_iext_destroy(ifp
);
4099 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
4100 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
4101 new_size
, size
, KM_NOFS
);
4106 * Switch from indirection array to linear (direct) extent allocations.
4109 xfs_iext_indirect_to_direct(
4110 xfs_ifork_t
*ifp
) /* inode fork pointer */
4112 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
4113 xfs_extnum_t nextents
; /* number of extents in file */
4114 int size
; /* size of file extents */
4116 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4117 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4118 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4119 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
4121 xfs_iext_irec_compact_pages(ifp
);
4122 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
4124 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
4125 kmem_free(ifp
->if_u1
.if_ext_irec
);
4126 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4127 ifp
->if_u1
.if_extents
= ep
;
4128 ifp
->if_bytes
= size
;
4129 if (nextents
< XFS_LINEAR_EXTS
) {
4130 xfs_iext_realloc_direct(ifp
, size
);
4135 * Free incore file extents.
4139 xfs_ifork_t
*ifp
) /* inode fork pointer */
4141 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4145 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4146 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
4147 xfs_iext_irec_remove(ifp
, erp_idx
);
4149 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4150 } else if (ifp
->if_real_bytes
) {
4151 kmem_free(ifp
->if_u1
.if_extents
);
4152 } else if (ifp
->if_bytes
) {
4153 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4154 sizeof(xfs_bmbt_rec_t
));
4156 ifp
->if_u1
.if_extents
= NULL
;
4157 ifp
->if_real_bytes
= 0;
4162 * Return a pointer to the extent record for file system block bno.
4164 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
4165 xfs_iext_bno_to_ext(
4166 xfs_ifork_t
*ifp
, /* inode fork pointer */
4167 xfs_fileoff_t bno
, /* block number to search for */
4168 xfs_extnum_t
*idxp
) /* index of target extent */
4170 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
4171 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
4172 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
4173 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4174 int high
; /* upper boundary in search */
4175 xfs_extnum_t idx
= 0; /* index of target extent */
4176 int low
; /* lower boundary in search */
4177 xfs_extnum_t nextents
; /* number of file extents */
4178 xfs_fileoff_t startoff
= 0; /* start offset of extent */
4180 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4181 if (nextents
== 0) {
4186 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4187 /* Find target extent list */
4189 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
4190 base
= erp
->er_extbuf
;
4191 high
= erp
->er_extcount
- 1;
4193 base
= ifp
->if_u1
.if_extents
;
4194 high
= nextents
- 1;
4196 /* Binary search extent records */
4197 while (low
<= high
) {
4198 idx
= (low
+ high
) >> 1;
4200 startoff
= xfs_bmbt_get_startoff(ep
);
4201 blockcount
= xfs_bmbt_get_blockcount(ep
);
4202 if (bno
< startoff
) {
4204 } else if (bno
>= startoff
+ blockcount
) {
4207 /* Convert back to file-based extent index */
4208 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4209 idx
+= erp
->er_extoff
;
4215 /* Convert back to file-based extent index */
4216 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4217 idx
+= erp
->er_extoff
;
4219 if (bno
>= startoff
+ blockcount
) {
4220 if (++idx
== nextents
) {
4223 ep
= xfs_iext_get_ext(ifp
, idx
);
4231 * Return a pointer to the indirection array entry containing the
4232 * extent record for filesystem block bno. Store the index of the
4233 * target irec in *erp_idxp.
4235 xfs_ext_irec_t
* /* pointer to found extent record */
4236 xfs_iext_bno_to_irec(
4237 xfs_ifork_t
*ifp
, /* inode fork pointer */
4238 xfs_fileoff_t bno
, /* block number to search for */
4239 int *erp_idxp
) /* irec index of target ext list */
4241 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4242 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4243 int erp_idx
; /* indirection array index */
4244 int nlists
; /* number of extent irec's (lists) */
4245 int high
; /* binary search upper limit */
4246 int low
; /* binary search lower limit */
4248 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4249 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4253 while (low
<= high
) {
4254 erp_idx
= (low
+ high
) >> 1;
4255 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4256 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4257 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4259 } else if (erp_next
&& bno
>=
4260 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4266 *erp_idxp
= erp_idx
;
4271 * Return a pointer to the indirection array entry containing the
4272 * extent record at file extent index *idxp. Store the index of the
4273 * target irec in *erp_idxp and store the page index of the target
4274 * extent record in *idxp.
4277 xfs_iext_idx_to_irec(
4278 xfs_ifork_t
*ifp
, /* inode fork pointer */
4279 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4280 int *erp_idxp
, /* pointer to target irec */
4281 int realloc
) /* new bytes were just added */
4283 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4284 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4285 int erp_idx
; /* indirection array index */
4286 int nlists
; /* number of irec's (ex lists) */
4287 int high
; /* binary search upper limit */
4288 int low
; /* binary search lower limit */
4289 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4291 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4292 ASSERT(page_idx
>= 0 && page_idx
<=
4293 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4294 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4299 /* Binary search extent irec's */
4300 while (low
<= high
) {
4301 erp_idx
= (low
+ high
) >> 1;
4302 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4303 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4304 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4305 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4307 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4308 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4311 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4312 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4316 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4319 page_idx
-= erp
->er_extoff
;
4324 *erp_idxp
= erp_idx
;
4329 * Allocate and initialize an indirection array once the space needed
4330 * for incore extents increases above XFS_IEXT_BUFSZ.
4334 xfs_ifork_t
*ifp
) /* inode fork pointer */
4336 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4337 xfs_extnum_t nextents
; /* number of extents in file */
4339 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4340 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4341 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4343 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
4345 if (nextents
== 0) {
4346 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4347 } else if (!ifp
->if_real_bytes
) {
4348 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4349 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4350 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4352 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4353 erp
->er_extcount
= nextents
;
4356 ifp
->if_flags
|= XFS_IFEXTIREC
;
4357 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4358 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4359 ifp
->if_u1
.if_ext_irec
= erp
;
4365 * Allocate and initialize a new entry in the indirection array.
4369 xfs_ifork_t
*ifp
, /* inode fork pointer */
4370 int erp_idx
) /* index for new irec */
4372 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4373 int i
; /* loop counter */
4374 int nlists
; /* number of irec's (ex lists) */
4376 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4377 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4379 /* Resize indirection array */
4380 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4381 sizeof(xfs_ext_irec_t
));
4383 * Move records down in the array so the
4384 * new page can use erp_idx.
4386 erp
= ifp
->if_u1
.if_ext_irec
;
4387 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4388 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4390 ASSERT(i
== erp_idx
);
4392 /* Initialize new extent record */
4393 erp
= ifp
->if_u1
.if_ext_irec
;
4394 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4395 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4396 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4397 erp
[erp_idx
].er_extcount
= 0;
4398 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4399 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4400 return (&erp
[erp_idx
]);
4404 * Remove a record from the indirection array.
4407 xfs_iext_irec_remove(
4408 xfs_ifork_t
*ifp
, /* inode fork pointer */
4409 int erp_idx
) /* irec index to remove */
4411 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4412 int i
; /* loop counter */
4413 int nlists
; /* number of irec's (ex lists) */
4415 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4416 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4417 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4418 if (erp
->er_extbuf
) {
4419 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4421 kmem_free(erp
->er_extbuf
);
4423 /* Compact extent records */
4424 erp
= ifp
->if_u1
.if_ext_irec
;
4425 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4426 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4429 * Manually free the last extent record from the indirection
4430 * array. A call to xfs_iext_realloc_indirect() with a size
4431 * of zero would result in a call to xfs_iext_destroy() which
4432 * would in turn call this function again, creating a nasty
4436 xfs_iext_realloc_indirect(ifp
,
4437 nlists
* sizeof(xfs_ext_irec_t
));
4439 kmem_free(ifp
->if_u1
.if_ext_irec
);
4441 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4445 * This is called to clean up large amounts of unused memory allocated
4446 * by the indirection array. Before compacting anything though, verify
4447 * that the indirection array is still needed and switch back to the
4448 * linear extent list (or even the inline buffer) if possible. The
4449 * compaction policy is as follows:
4451 * Full Compaction: Extents fit into a single page (or inline buffer)
4452 * Partial Compaction: Extents occupy less than 50% of allocated space
4453 * No Compaction: Extents occupy at least 50% of allocated space
4456 xfs_iext_irec_compact(
4457 xfs_ifork_t
*ifp
) /* inode fork pointer */
4459 xfs_extnum_t nextents
; /* number of extents in file */
4460 int nlists
; /* number of irec's (ex lists) */
4462 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4463 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4464 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4466 if (nextents
== 0) {
4467 xfs_iext_destroy(ifp
);
4468 } else if (nextents
<= XFS_INLINE_EXTS
) {
4469 xfs_iext_indirect_to_direct(ifp
);
4470 xfs_iext_direct_to_inline(ifp
, nextents
);
4471 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4472 xfs_iext_indirect_to_direct(ifp
);
4473 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4474 xfs_iext_irec_compact_pages(ifp
);
4479 * Combine extents from neighboring extent pages.
4482 xfs_iext_irec_compact_pages(
4483 xfs_ifork_t
*ifp
) /* inode fork pointer */
4485 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4486 int erp_idx
= 0; /* indirection array index */
4487 int nlists
; /* number of irec's (ex lists) */
4489 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4490 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4491 while (erp_idx
< nlists
- 1) {
4492 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4494 if (erp_next
->er_extcount
<=
4495 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4496 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4497 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4498 sizeof(xfs_bmbt_rec_t
));
4499 erp
->er_extcount
+= erp_next
->er_extcount
;
4501 * Free page before removing extent record
4502 * so er_extoffs don't get modified in
4503 * xfs_iext_irec_remove.
4505 kmem_free(erp_next
->er_extbuf
);
4506 erp_next
->er_extbuf
= NULL
;
4507 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4508 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4516 * This is called to update the er_extoff field in the indirection
4517 * array when extents have been added or removed from one of the
4518 * extent lists. erp_idx contains the irec index to begin updating
4519 * at and ext_diff contains the number of extents that were added
4523 xfs_iext_irec_update_extoffs(
4524 xfs_ifork_t
*ifp
, /* inode fork pointer */
4525 int erp_idx
, /* irec index to update */
4526 int ext_diff
) /* number of new extents */
4528 int i
; /* loop counter */
4529 int nlists
; /* number of irec's (ex lists */
4531 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4532 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4533 for (i
= erp_idx
; i
< nlists
; i
++) {
4534 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;