libata: fix kernel-doc warnings
[linux-2.6/mini2440.git] / block / blk-core.c
blobca69f3d9410005f69e3fb360858a71f663c7ce41
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
33 #include "blk.h"
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
48 static int __make_request(struct request_queue *q, struct bio *bio);
51 * For the allocated request tables
53 static struct kmem_cache *request_cachep;
56 * For queue allocation
58 struct kmem_cache *blk_requestq_cachep;
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 static void drive_stat_acct(struct request *rq, int new_io)
67 struct gendisk *disk = rq->rq_disk;
68 struct hd_struct *part;
69 int rw = rq_data_dir(rq);
70 int cpu;
72 if (!blk_fs_request(rq) || !disk || !blk_queue_io_stat(disk->queue))
73 return;
75 cpu = part_stat_lock();
76 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
78 if (!new_io)
79 part_stat_inc(cpu, part, merges[rw]);
80 else {
81 part_round_stats(cpu, part);
82 part_inc_in_flight(part);
85 part_stat_unlock();
88 void blk_queue_congestion_threshold(struct request_queue *q)
90 int nr;
92 nr = q->nr_requests - (q->nr_requests / 8) + 1;
93 if (nr > q->nr_requests)
94 nr = q->nr_requests;
95 q->nr_congestion_on = nr;
97 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
98 if (nr < 1)
99 nr = 1;
100 q->nr_congestion_off = nr;
104 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
105 * @bdev: device
107 * Locates the passed device's request queue and returns the address of its
108 * backing_dev_info
110 * Will return NULL if the request queue cannot be located.
112 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
114 struct backing_dev_info *ret = NULL;
115 struct request_queue *q = bdev_get_queue(bdev);
117 if (q)
118 ret = &q->backing_dev_info;
119 return ret;
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
123 void blk_rq_init(struct request_queue *q, struct request *rq)
125 memset(rq, 0, sizeof(*rq));
127 INIT_LIST_HEAD(&rq->queuelist);
128 INIT_LIST_HEAD(&rq->timeout_list);
129 rq->cpu = -1;
130 rq->q = q;
131 rq->sector = rq->hard_sector = (sector_t) -1;
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
134 rq->cmd = rq->__cmd;
135 rq->tag = -1;
136 rq->ref_count = 1;
138 EXPORT_SYMBOL(blk_rq_init);
140 static void req_bio_endio(struct request *rq, struct bio *bio,
141 unsigned int nbytes, int error)
143 struct request_queue *q = rq->q;
145 if (&q->bar_rq != rq) {
146 if (error)
147 clear_bit(BIO_UPTODATE, &bio->bi_flags);
148 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
149 error = -EIO;
151 if (unlikely(nbytes > bio->bi_size)) {
152 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
153 __func__, nbytes, bio->bi_size);
154 nbytes = bio->bi_size;
157 if (unlikely(rq->cmd_flags & REQ_QUIET))
158 set_bit(BIO_QUIET, &bio->bi_flags);
160 bio->bi_size -= nbytes;
161 bio->bi_sector += (nbytes >> 9);
163 if (bio_integrity(bio))
164 bio_integrity_advance(bio, nbytes);
166 if (bio->bi_size == 0)
167 bio_endio(bio, error);
168 } else {
171 * Okay, this is the barrier request in progress, just
172 * record the error;
174 if (error && !q->orderr)
175 q->orderr = error;
179 void blk_dump_rq_flags(struct request *rq, char *msg)
181 int bit;
183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
187 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
188 (unsigned long long)rq->sector,
189 rq->nr_sectors,
190 rq->current_nr_sectors);
191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
192 rq->bio, rq->biotail,
193 rq->buffer, rq->data,
194 rq->data_len);
196 if (blk_pc_request(rq)) {
197 printk(KERN_INFO " cdb: ");
198 for (bit = 0; bit < BLK_MAX_CDB; bit++)
199 printk("%02x ", rq->cmd[bit]);
200 printk("\n");
203 EXPORT_SYMBOL(blk_dump_rq_flags);
206 * "plug" the device if there are no outstanding requests: this will
207 * force the transfer to start only after we have put all the requests
208 * on the list.
210 * This is called with interrupts off and no requests on the queue and
211 * with the queue lock held.
213 void blk_plug_device(struct request_queue *q)
215 WARN_ON(!irqs_disabled());
218 * don't plug a stopped queue, it must be paired with blk_start_queue()
219 * which will restart the queueing
221 if (blk_queue_stopped(q))
222 return;
224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
226 trace_block_plug(q);
229 EXPORT_SYMBOL(blk_plug_device);
232 * blk_plug_device_unlocked - plug a device without queue lock held
233 * @q: The &struct request_queue to plug
235 * Description:
236 * Like @blk_plug_device(), but grabs the queue lock and disables
237 * interrupts.
239 void blk_plug_device_unlocked(struct request_queue *q)
241 unsigned long flags;
243 spin_lock_irqsave(q->queue_lock, flags);
244 blk_plug_device(q);
245 spin_unlock_irqrestore(q->queue_lock, flags);
247 EXPORT_SYMBOL(blk_plug_device_unlocked);
250 * remove the queue from the plugged list, if present. called with
251 * queue lock held and interrupts disabled.
253 int blk_remove_plug(struct request_queue *q)
255 WARN_ON(!irqs_disabled());
257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
258 return 0;
260 del_timer(&q->unplug_timer);
261 return 1;
263 EXPORT_SYMBOL(blk_remove_plug);
266 * remove the plug and let it rip..
268 void __generic_unplug_device(struct request_queue *q)
270 if (unlikely(blk_queue_stopped(q)))
271 return;
272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
273 return;
275 q->request_fn(q);
279 * generic_unplug_device - fire a request queue
280 * @q: The &struct request_queue in question
282 * Description:
283 * Linux uses plugging to build bigger requests queues before letting
284 * the device have at them. If a queue is plugged, the I/O scheduler
285 * is still adding and merging requests on the queue. Once the queue
286 * gets unplugged, the request_fn defined for the queue is invoked and
287 * transfers started.
289 void generic_unplug_device(struct request_queue *q)
291 if (blk_queue_plugged(q)) {
292 spin_lock_irq(q->queue_lock);
293 __generic_unplug_device(q);
294 spin_unlock_irq(q->queue_lock);
297 EXPORT_SYMBOL(generic_unplug_device);
299 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
300 struct page *page)
302 struct request_queue *q = bdi->unplug_io_data;
304 blk_unplug(q);
307 void blk_unplug_work(struct work_struct *work)
309 struct request_queue *q =
310 container_of(work, struct request_queue, unplug_work);
312 trace_block_unplug_io(q);
313 q->unplug_fn(q);
316 void blk_unplug_timeout(unsigned long data)
318 struct request_queue *q = (struct request_queue *)data;
320 trace_block_unplug_timer(q);
321 kblockd_schedule_work(q, &q->unplug_work);
324 void blk_unplug(struct request_queue *q)
327 * devices don't necessarily have an ->unplug_fn defined
329 if (q->unplug_fn) {
330 trace_block_unplug_io(q);
331 q->unplug_fn(q);
334 EXPORT_SYMBOL(blk_unplug);
336 static void blk_invoke_request_fn(struct request_queue *q)
338 if (unlikely(blk_queue_stopped(q)))
339 return;
342 * one level of recursion is ok and is much faster than kicking
343 * the unplug handling
345 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
346 q->request_fn(q);
347 queue_flag_clear(QUEUE_FLAG_REENTER, q);
348 } else {
349 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
350 kblockd_schedule_work(q, &q->unplug_work);
355 * blk_start_queue - restart a previously stopped queue
356 * @q: The &struct request_queue in question
358 * Description:
359 * blk_start_queue() will clear the stop flag on the queue, and call
360 * the request_fn for the queue if it was in a stopped state when
361 * entered. Also see blk_stop_queue(). Queue lock must be held.
363 void blk_start_queue(struct request_queue *q)
365 WARN_ON(!irqs_disabled());
367 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
368 blk_invoke_request_fn(q);
370 EXPORT_SYMBOL(blk_start_queue);
373 * blk_stop_queue - stop a queue
374 * @q: The &struct request_queue in question
376 * Description:
377 * The Linux block layer assumes that a block driver will consume all
378 * entries on the request queue when the request_fn strategy is called.
379 * Often this will not happen, because of hardware limitations (queue
380 * depth settings). If a device driver gets a 'queue full' response,
381 * or if it simply chooses not to queue more I/O at one point, it can
382 * call this function to prevent the request_fn from being called until
383 * the driver has signalled it's ready to go again. This happens by calling
384 * blk_start_queue() to restart queue operations. Queue lock must be held.
386 void blk_stop_queue(struct request_queue *q)
388 blk_remove_plug(q);
389 queue_flag_set(QUEUE_FLAG_STOPPED, q);
391 EXPORT_SYMBOL(blk_stop_queue);
394 * blk_sync_queue - cancel any pending callbacks on a queue
395 * @q: the queue
397 * Description:
398 * The block layer may perform asynchronous callback activity
399 * on a queue, such as calling the unplug function after a timeout.
400 * A block device may call blk_sync_queue to ensure that any
401 * such activity is cancelled, thus allowing it to release resources
402 * that the callbacks might use. The caller must already have made sure
403 * that its ->make_request_fn will not re-add plugging prior to calling
404 * this function.
407 void blk_sync_queue(struct request_queue *q)
409 del_timer_sync(&q->unplug_timer);
410 del_timer_sync(&q->timeout);
411 cancel_work_sync(&q->unplug_work);
413 EXPORT_SYMBOL(blk_sync_queue);
416 * __blk_run_queue - run a single device queue
417 * @q: The queue to run
419 * Description:
420 * See @blk_run_queue. This variant must be called with the queue lock
421 * held and interrupts disabled.
424 void __blk_run_queue(struct request_queue *q)
426 blk_remove_plug(q);
429 * Only recurse once to avoid overrunning the stack, let the unplug
430 * handling reinvoke the handler shortly if we already got there.
432 if (!elv_queue_empty(q))
433 blk_invoke_request_fn(q);
435 EXPORT_SYMBOL(__blk_run_queue);
438 * blk_run_queue - run a single device queue
439 * @q: The queue to run
441 * Description:
442 * Invoke request handling on this queue, if it has pending work to do.
443 * May be used to restart queueing when a request has completed. Also
444 * See @blk_start_queueing.
447 void blk_run_queue(struct request_queue *q)
449 unsigned long flags;
451 spin_lock_irqsave(q->queue_lock, flags);
452 __blk_run_queue(q);
453 spin_unlock_irqrestore(q->queue_lock, flags);
455 EXPORT_SYMBOL(blk_run_queue);
457 void blk_put_queue(struct request_queue *q)
459 kobject_put(&q->kobj);
462 void blk_cleanup_queue(struct request_queue *q)
465 * We know we have process context here, so we can be a little
466 * cautious and ensure that pending block actions on this device
467 * are done before moving on. Going into this function, we should
468 * not have processes doing IO to this device.
470 blk_sync_queue(q);
472 mutex_lock(&q->sysfs_lock);
473 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
474 mutex_unlock(&q->sysfs_lock);
476 if (q->elevator)
477 elevator_exit(q->elevator);
479 blk_put_queue(q);
481 EXPORT_SYMBOL(blk_cleanup_queue);
483 static int blk_init_free_list(struct request_queue *q)
485 struct request_list *rl = &q->rq;
487 rl->count[READ] = rl->count[WRITE] = 0;
488 rl->starved[READ] = rl->starved[WRITE] = 0;
489 rl->elvpriv = 0;
490 init_waitqueue_head(&rl->wait[READ]);
491 init_waitqueue_head(&rl->wait[WRITE]);
493 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
494 mempool_free_slab, request_cachep, q->node);
496 if (!rl->rq_pool)
497 return -ENOMEM;
499 return 0;
502 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
504 return blk_alloc_queue_node(gfp_mask, -1);
506 EXPORT_SYMBOL(blk_alloc_queue);
508 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
510 struct request_queue *q;
511 int err;
513 q = kmem_cache_alloc_node(blk_requestq_cachep,
514 gfp_mask | __GFP_ZERO, node_id);
515 if (!q)
516 return NULL;
518 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
519 q->backing_dev_info.unplug_io_data = q;
520 err = bdi_init(&q->backing_dev_info);
521 if (err) {
522 kmem_cache_free(blk_requestq_cachep, q);
523 return NULL;
526 init_timer(&q->unplug_timer);
527 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
528 INIT_LIST_HEAD(&q->timeout_list);
529 INIT_WORK(&q->unplug_work, blk_unplug_work);
531 kobject_init(&q->kobj, &blk_queue_ktype);
533 mutex_init(&q->sysfs_lock);
534 spin_lock_init(&q->__queue_lock);
536 return q;
538 EXPORT_SYMBOL(blk_alloc_queue_node);
541 * blk_init_queue - prepare a request queue for use with a block device
542 * @rfn: The function to be called to process requests that have been
543 * placed on the queue.
544 * @lock: Request queue spin lock
546 * Description:
547 * If a block device wishes to use the standard request handling procedures,
548 * which sorts requests and coalesces adjacent requests, then it must
549 * call blk_init_queue(). The function @rfn will be called when there
550 * are requests on the queue that need to be processed. If the device
551 * supports plugging, then @rfn may not be called immediately when requests
552 * are available on the queue, but may be called at some time later instead.
553 * Plugged queues are generally unplugged when a buffer belonging to one
554 * of the requests on the queue is needed, or due to memory pressure.
556 * @rfn is not required, or even expected, to remove all requests off the
557 * queue, but only as many as it can handle at a time. If it does leave
558 * requests on the queue, it is responsible for arranging that the requests
559 * get dealt with eventually.
561 * The queue spin lock must be held while manipulating the requests on the
562 * request queue; this lock will be taken also from interrupt context, so irq
563 * disabling is needed for it.
565 * Function returns a pointer to the initialized request queue, or %NULL if
566 * it didn't succeed.
568 * Note:
569 * blk_init_queue() must be paired with a blk_cleanup_queue() call
570 * when the block device is deactivated (such as at module unload).
573 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
575 return blk_init_queue_node(rfn, lock, -1);
577 EXPORT_SYMBOL(blk_init_queue);
579 struct request_queue *
580 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
582 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
584 if (!q)
585 return NULL;
587 q->node = node_id;
588 if (blk_init_free_list(q)) {
589 kmem_cache_free(blk_requestq_cachep, q);
590 return NULL;
594 * if caller didn't supply a lock, they get per-queue locking with
595 * our embedded lock
597 if (!lock)
598 lock = &q->__queue_lock;
600 q->request_fn = rfn;
601 q->prep_rq_fn = NULL;
602 q->unplug_fn = generic_unplug_device;
603 q->queue_flags = QUEUE_FLAG_DEFAULT;
604 q->queue_lock = lock;
606 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
608 blk_queue_make_request(q, __make_request);
609 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
611 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
612 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
614 q->sg_reserved_size = INT_MAX;
616 blk_set_cmd_filter_defaults(&q->cmd_filter);
619 * all done
621 if (!elevator_init(q, NULL)) {
622 blk_queue_congestion_threshold(q);
623 return q;
626 blk_put_queue(q);
627 return NULL;
629 EXPORT_SYMBOL(blk_init_queue_node);
631 int blk_get_queue(struct request_queue *q)
633 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
634 kobject_get(&q->kobj);
635 return 0;
638 return 1;
641 static inline void blk_free_request(struct request_queue *q, struct request *rq)
643 if (rq->cmd_flags & REQ_ELVPRIV)
644 elv_put_request(q, rq);
645 mempool_free(rq, q->rq.rq_pool);
648 static struct request *
649 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
651 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
653 if (!rq)
654 return NULL;
656 blk_rq_init(q, rq);
658 rq->cmd_flags = rw | REQ_ALLOCED;
660 if (priv) {
661 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
662 mempool_free(rq, q->rq.rq_pool);
663 return NULL;
665 rq->cmd_flags |= REQ_ELVPRIV;
668 return rq;
672 * ioc_batching returns true if the ioc is a valid batching request and
673 * should be given priority access to a request.
675 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
677 if (!ioc)
678 return 0;
681 * Make sure the process is able to allocate at least 1 request
682 * even if the batch times out, otherwise we could theoretically
683 * lose wakeups.
685 return ioc->nr_batch_requests == q->nr_batching ||
686 (ioc->nr_batch_requests > 0
687 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
691 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
692 * will cause the process to be a "batcher" on all queues in the system. This
693 * is the behaviour we want though - once it gets a wakeup it should be given
694 * a nice run.
696 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
698 if (!ioc || ioc_batching(q, ioc))
699 return;
701 ioc->nr_batch_requests = q->nr_batching;
702 ioc->last_waited = jiffies;
705 static void __freed_request(struct request_queue *q, int rw)
707 struct request_list *rl = &q->rq;
709 if (rl->count[rw] < queue_congestion_off_threshold(q))
710 blk_clear_queue_congested(q, rw);
712 if (rl->count[rw] + 1 <= q->nr_requests) {
713 if (waitqueue_active(&rl->wait[rw]))
714 wake_up(&rl->wait[rw]);
716 blk_clear_queue_full(q, rw);
721 * A request has just been released. Account for it, update the full and
722 * congestion status, wake up any waiters. Called under q->queue_lock.
724 static void freed_request(struct request_queue *q, int rw, int priv)
726 struct request_list *rl = &q->rq;
728 rl->count[rw]--;
729 if (priv)
730 rl->elvpriv--;
732 __freed_request(q, rw);
734 if (unlikely(rl->starved[rw ^ 1]))
735 __freed_request(q, rw ^ 1);
738 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
740 * Get a free request, queue_lock must be held.
741 * Returns NULL on failure, with queue_lock held.
742 * Returns !NULL on success, with queue_lock *not held*.
744 static struct request *get_request(struct request_queue *q, int rw_flags,
745 struct bio *bio, gfp_t gfp_mask)
747 struct request *rq = NULL;
748 struct request_list *rl = &q->rq;
749 struct io_context *ioc = NULL;
750 const int rw = rw_flags & 0x01;
751 int may_queue, priv;
753 may_queue = elv_may_queue(q, rw_flags);
754 if (may_queue == ELV_MQUEUE_NO)
755 goto rq_starved;
757 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
758 if (rl->count[rw]+1 >= q->nr_requests) {
759 ioc = current_io_context(GFP_ATOMIC, q->node);
761 * The queue will fill after this allocation, so set
762 * it as full, and mark this process as "batching".
763 * This process will be allowed to complete a batch of
764 * requests, others will be blocked.
766 if (!blk_queue_full(q, rw)) {
767 ioc_set_batching(q, ioc);
768 blk_set_queue_full(q, rw);
769 } else {
770 if (may_queue != ELV_MQUEUE_MUST
771 && !ioc_batching(q, ioc)) {
773 * The queue is full and the allocating
774 * process is not a "batcher", and not
775 * exempted by the IO scheduler
777 goto out;
781 blk_set_queue_congested(q, rw);
785 * Only allow batching queuers to allocate up to 50% over the defined
786 * limit of requests, otherwise we could have thousands of requests
787 * allocated with any setting of ->nr_requests
789 if (rl->count[rw] >= (3 * q->nr_requests / 2))
790 goto out;
792 rl->count[rw]++;
793 rl->starved[rw] = 0;
795 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
796 if (priv)
797 rl->elvpriv++;
799 spin_unlock_irq(q->queue_lock);
801 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
802 if (unlikely(!rq)) {
804 * Allocation failed presumably due to memory. Undo anything
805 * we might have messed up.
807 * Allocating task should really be put onto the front of the
808 * wait queue, but this is pretty rare.
810 spin_lock_irq(q->queue_lock);
811 freed_request(q, rw, priv);
814 * in the very unlikely event that allocation failed and no
815 * requests for this direction was pending, mark us starved
816 * so that freeing of a request in the other direction will
817 * notice us. another possible fix would be to split the
818 * rq mempool into READ and WRITE
820 rq_starved:
821 if (unlikely(rl->count[rw] == 0))
822 rl->starved[rw] = 1;
824 goto out;
828 * ioc may be NULL here, and ioc_batching will be false. That's
829 * OK, if the queue is under the request limit then requests need
830 * not count toward the nr_batch_requests limit. There will always
831 * be some limit enforced by BLK_BATCH_TIME.
833 if (ioc_batching(q, ioc))
834 ioc->nr_batch_requests--;
836 trace_block_getrq(q, bio, rw);
837 out:
838 return rq;
842 * No available requests for this queue, unplug the device and wait for some
843 * requests to become available.
845 * Called with q->queue_lock held, and returns with it unlocked.
847 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
848 struct bio *bio)
850 const int rw = rw_flags & 0x01;
851 struct request *rq;
853 rq = get_request(q, rw_flags, bio, GFP_NOIO);
854 while (!rq) {
855 DEFINE_WAIT(wait);
856 struct io_context *ioc;
857 struct request_list *rl = &q->rq;
859 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
860 TASK_UNINTERRUPTIBLE);
862 trace_block_sleeprq(q, bio, rw);
864 __generic_unplug_device(q);
865 spin_unlock_irq(q->queue_lock);
866 io_schedule();
869 * After sleeping, we become a "batching" process and
870 * will be able to allocate at least one request, and
871 * up to a big batch of them for a small period time.
872 * See ioc_batching, ioc_set_batching
874 ioc = current_io_context(GFP_NOIO, q->node);
875 ioc_set_batching(q, ioc);
877 spin_lock_irq(q->queue_lock);
878 finish_wait(&rl->wait[rw], &wait);
880 rq = get_request(q, rw_flags, bio, GFP_NOIO);
883 return rq;
886 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
888 struct request *rq;
890 BUG_ON(rw != READ && rw != WRITE);
892 spin_lock_irq(q->queue_lock);
893 if (gfp_mask & __GFP_WAIT) {
894 rq = get_request_wait(q, rw, NULL);
895 } else {
896 rq = get_request(q, rw, NULL, gfp_mask);
897 if (!rq)
898 spin_unlock_irq(q->queue_lock);
900 /* q->queue_lock is unlocked at this point */
902 return rq;
904 EXPORT_SYMBOL(blk_get_request);
907 * blk_start_queueing - initiate dispatch of requests to device
908 * @q: request queue to kick into gear
910 * This is basically a helper to remove the need to know whether a queue
911 * is plugged or not if someone just wants to initiate dispatch of requests
912 * for this queue. Should be used to start queueing on a device outside
913 * of ->request_fn() context. Also see @blk_run_queue.
915 * The queue lock must be held with interrupts disabled.
917 void blk_start_queueing(struct request_queue *q)
919 if (!blk_queue_plugged(q)) {
920 if (unlikely(blk_queue_stopped(q)))
921 return;
922 q->request_fn(q);
923 } else
924 __generic_unplug_device(q);
926 EXPORT_SYMBOL(blk_start_queueing);
929 * blk_requeue_request - put a request back on queue
930 * @q: request queue where request should be inserted
931 * @rq: request to be inserted
933 * Description:
934 * Drivers often keep queueing requests until the hardware cannot accept
935 * more, when that condition happens we need to put the request back
936 * on the queue. Must be called with queue lock held.
938 void blk_requeue_request(struct request_queue *q, struct request *rq)
940 blk_delete_timer(rq);
941 blk_clear_rq_complete(rq);
942 trace_block_rq_requeue(q, rq);
944 if (blk_rq_tagged(rq))
945 blk_queue_end_tag(q, rq);
947 elv_requeue_request(q, rq);
949 EXPORT_SYMBOL(blk_requeue_request);
952 * blk_insert_request - insert a special request into a request queue
953 * @q: request queue where request should be inserted
954 * @rq: request to be inserted
955 * @at_head: insert request at head or tail of queue
956 * @data: private data
958 * Description:
959 * Many block devices need to execute commands asynchronously, so they don't
960 * block the whole kernel from preemption during request execution. This is
961 * accomplished normally by inserting aritficial requests tagged as
962 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
963 * be scheduled for actual execution by the request queue.
965 * We have the option of inserting the head or the tail of the queue.
966 * Typically we use the tail for new ioctls and so forth. We use the head
967 * of the queue for things like a QUEUE_FULL message from a device, or a
968 * host that is unable to accept a particular command.
970 void blk_insert_request(struct request_queue *q, struct request *rq,
971 int at_head, void *data)
973 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
974 unsigned long flags;
977 * tell I/O scheduler that this isn't a regular read/write (ie it
978 * must not attempt merges on this) and that it acts as a soft
979 * barrier
981 rq->cmd_type = REQ_TYPE_SPECIAL;
982 rq->cmd_flags |= REQ_SOFTBARRIER;
984 rq->special = data;
986 spin_lock_irqsave(q->queue_lock, flags);
989 * If command is tagged, release the tag
991 if (blk_rq_tagged(rq))
992 blk_queue_end_tag(q, rq);
994 drive_stat_acct(rq, 1);
995 __elv_add_request(q, rq, where, 0);
996 blk_start_queueing(q);
997 spin_unlock_irqrestore(q->queue_lock, flags);
999 EXPORT_SYMBOL(blk_insert_request);
1002 * add-request adds a request to the linked list.
1003 * queue lock is held and interrupts disabled, as we muck with the
1004 * request queue list.
1006 static inline void add_request(struct request_queue *q, struct request *req)
1008 drive_stat_acct(req, 1);
1011 * elevator indicated where it wants this request to be
1012 * inserted at elevator_merge time
1014 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1017 static void part_round_stats_single(int cpu, struct hd_struct *part,
1018 unsigned long now)
1020 if (now == part->stamp)
1021 return;
1023 if (part->in_flight) {
1024 __part_stat_add(cpu, part, time_in_queue,
1025 part->in_flight * (now - part->stamp));
1026 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1028 part->stamp = now;
1032 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1033 * @cpu: cpu number for stats access
1034 * @part: target partition
1036 * The average IO queue length and utilisation statistics are maintained
1037 * by observing the current state of the queue length and the amount of
1038 * time it has been in this state for.
1040 * Normally, that accounting is done on IO completion, but that can result
1041 * in more than a second's worth of IO being accounted for within any one
1042 * second, leading to >100% utilisation. To deal with that, we call this
1043 * function to do a round-off before returning the results when reading
1044 * /proc/diskstats. This accounts immediately for all queue usage up to
1045 * the current jiffies and restarts the counters again.
1047 void part_round_stats(int cpu, struct hd_struct *part)
1049 unsigned long now = jiffies;
1051 if (part->partno)
1052 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1053 part_round_stats_single(cpu, part, now);
1055 EXPORT_SYMBOL_GPL(part_round_stats);
1058 * queue lock must be held
1060 void __blk_put_request(struct request_queue *q, struct request *req)
1062 if (unlikely(!q))
1063 return;
1064 if (unlikely(--req->ref_count))
1065 return;
1067 elv_completed_request(q, req);
1070 * Request may not have originated from ll_rw_blk. if not,
1071 * it didn't come out of our reserved rq pools
1073 if (req->cmd_flags & REQ_ALLOCED) {
1074 int rw = rq_data_dir(req);
1075 int priv = req->cmd_flags & REQ_ELVPRIV;
1077 BUG_ON(!list_empty(&req->queuelist));
1078 BUG_ON(!hlist_unhashed(&req->hash));
1080 blk_free_request(q, req);
1081 freed_request(q, rw, priv);
1084 EXPORT_SYMBOL_GPL(__blk_put_request);
1086 void blk_put_request(struct request *req)
1088 unsigned long flags;
1089 struct request_queue *q = req->q;
1091 spin_lock_irqsave(q->queue_lock, flags);
1092 __blk_put_request(q, req);
1093 spin_unlock_irqrestore(q->queue_lock, flags);
1095 EXPORT_SYMBOL(blk_put_request);
1097 void init_request_from_bio(struct request *req, struct bio *bio)
1099 req->cpu = bio->bi_comp_cpu;
1100 req->cmd_type = REQ_TYPE_FS;
1103 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1105 if (bio_rw_ahead(bio))
1106 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1107 REQ_FAILFAST_DRIVER);
1108 if (bio_failfast_dev(bio))
1109 req->cmd_flags |= REQ_FAILFAST_DEV;
1110 if (bio_failfast_transport(bio))
1111 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1112 if (bio_failfast_driver(bio))
1113 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1116 * REQ_BARRIER implies no merging, but lets make it explicit
1118 if (unlikely(bio_discard(bio))) {
1119 req->cmd_flags |= REQ_DISCARD;
1120 if (bio_barrier(bio))
1121 req->cmd_flags |= REQ_SOFTBARRIER;
1122 req->q->prepare_discard_fn(req->q, req);
1123 } else if (unlikely(bio_barrier(bio)))
1124 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1126 if (bio_sync(bio))
1127 req->cmd_flags |= REQ_RW_SYNC;
1128 if (bio_unplug(bio))
1129 req->cmd_flags |= REQ_UNPLUG;
1130 if (bio_rw_meta(bio))
1131 req->cmd_flags |= REQ_RW_META;
1133 req->errors = 0;
1134 req->hard_sector = req->sector = bio->bi_sector;
1135 req->ioprio = bio_prio(bio);
1136 req->start_time = jiffies;
1137 blk_rq_bio_prep(req->q, req, bio);
1140 static int __make_request(struct request_queue *q, struct bio *bio)
1142 struct request *req;
1143 int el_ret, nr_sectors;
1144 const unsigned short prio = bio_prio(bio);
1145 const int sync = bio_sync(bio);
1146 const int unplug = bio_unplug(bio);
1147 int rw_flags;
1149 nr_sectors = bio_sectors(bio);
1152 * low level driver can indicate that it wants pages above a
1153 * certain limit bounced to low memory (ie for highmem, or even
1154 * ISA dma in theory)
1156 blk_queue_bounce(q, &bio);
1158 spin_lock_irq(q->queue_lock);
1160 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1161 goto get_rq;
1163 el_ret = elv_merge(q, &req, bio);
1164 switch (el_ret) {
1165 case ELEVATOR_BACK_MERGE:
1166 BUG_ON(!rq_mergeable(req));
1168 if (!ll_back_merge_fn(q, req, bio))
1169 break;
1171 trace_block_bio_backmerge(q, bio);
1173 req->biotail->bi_next = bio;
1174 req->biotail = bio;
1175 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1176 req->ioprio = ioprio_best(req->ioprio, prio);
1177 if (!blk_rq_cpu_valid(req))
1178 req->cpu = bio->bi_comp_cpu;
1179 drive_stat_acct(req, 0);
1180 if (!attempt_back_merge(q, req))
1181 elv_merged_request(q, req, el_ret);
1182 goto out;
1184 case ELEVATOR_FRONT_MERGE:
1185 BUG_ON(!rq_mergeable(req));
1187 if (!ll_front_merge_fn(q, req, bio))
1188 break;
1190 trace_block_bio_frontmerge(q, bio);
1192 bio->bi_next = req->bio;
1193 req->bio = bio;
1196 * may not be valid. if the low level driver said
1197 * it didn't need a bounce buffer then it better
1198 * not touch req->buffer either...
1200 req->buffer = bio_data(bio);
1201 req->current_nr_sectors = bio_cur_sectors(bio);
1202 req->hard_cur_sectors = req->current_nr_sectors;
1203 req->sector = req->hard_sector = bio->bi_sector;
1204 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1205 req->ioprio = ioprio_best(req->ioprio, prio);
1206 if (!blk_rq_cpu_valid(req))
1207 req->cpu = bio->bi_comp_cpu;
1208 drive_stat_acct(req, 0);
1209 if (!attempt_front_merge(q, req))
1210 elv_merged_request(q, req, el_ret);
1211 goto out;
1213 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1214 default:
1218 get_rq:
1220 * This sync check and mask will be re-done in init_request_from_bio(),
1221 * but we need to set it earlier to expose the sync flag to the
1222 * rq allocator and io schedulers.
1224 rw_flags = bio_data_dir(bio);
1225 if (sync)
1226 rw_flags |= REQ_RW_SYNC;
1229 * Grab a free request. This is might sleep but can not fail.
1230 * Returns with the queue unlocked.
1232 req = get_request_wait(q, rw_flags, bio);
1235 * After dropping the lock and possibly sleeping here, our request
1236 * may now be mergeable after it had proven unmergeable (above).
1237 * We don't worry about that case for efficiency. It won't happen
1238 * often, and the elevators are able to handle it.
1240 init_request_from_bio(req, bio);
1242 spin_lock_irq(q->queue_lock);
1243 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1244 bio_flagged(bio, BIO_CPU_AFFINE))
1245 req->cpu = blk_cpu_to_group(smp_processor_id());
1246 if (!blk_queue_nonrot(q) && elv_queue_empty(q))
1247 blk_plug_device(q);
1248 add_request(q, req);
1249 out:
1250 if (unplug || blk_queue_nonrot(q))
1251 __generic_unplug_device(q);
1252 spin_unlock_irq(q->queue_lock);
1253 return 0;
1257 * If bio->bi_dev is a partition, remap the location
1259 static inline void blk_partition_remap(struct bio *bio)
1261 struct block_device *bdev = bio->bi_bdev;
1263 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1264 struct hd_struct *p = bdev->bd_part;
1266 bio->bi_sector += p->start_sect;
1267 bio->bi_bdev = bdev->bd_contains;
1269 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1270 bdev->bd_dev, bio->bi_sector,
1271 bio->bi_sector - p->start_sect);
1275 static void handle_bad_sector(struct bio *bio)
1277 char b[BDEVNAME_SIZE];
1279 printk(KERN_INFO "attempt to access beyond end of device\n");
1280 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1281 bdevname(bio->bi_bdev, b),
1282 bio->bi_rw,
1283 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1284 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1286 set_bit(BIO_EOF, &bio->bi_flags);
1289 #ifdef CONFIG_FAIL_MAKE_REQUEST
1291 static DECLARE_FAULT_ATTR(fail_make_request);
1293 static int __init setup_fail_make_request(char *str)
1295 return setup_fault_attr(&fail_make_request, str);
1297 __setup("fail_make_request=", setup_fail_make_request);
1299 static int should_fail_request(struct bio *bio)
1301 struct hd_struct *part = bio->bi_bdev->bd_part;
1303 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1304 return should_fail(&fail_make_request, bio->bi_size);
1306 return 0;
1309 static int __init fail_make_request_debugfs(void)
1311 return init_fault_attr_dentries(&fail_make_request,
1312 "fail_make_request");
1315 late_initcall(fail_make_request_debugfs);
1317 #else /* CONFIG_FAIL_MAKE_REQUEST */
1319 static inline int should_fail_request(struct bio *bio)
1321 return 0;
1324 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1327 * Check whether this bio extends beyond the end of the device.
1329 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1331 sector_t maxsector;
1333 if (!nr_sectors)
1334 return 0;
1336 /* Test device or partition size, when known. */
1337 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1338 if (maxsector) {
1339 sector_t sector = bio->bi_sector;
1341 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1343 * This may well happen - the kernel calls bread()
1344 * without checking the size of the device, e.g., when
1345 * mounting a device.
1347 handle_bad_sector(bio);
1348 return 1;
1352 return 0;
1356 * generic_make_request - hand a buffer to its device driver for I/O
1357 * @bio: The bio describing the location in memory and on the device.
1359 * generic_make_request() is used to make I/O requests of block
1360 * devices. It is passed a &struct bio, which describes the I/O that needs
1361 * to be done.
1363 * generic_make_request() does not return any status. The
1364 * success/failure status of the request, along with notification of
1365 * completion, is delivered asynchronously through the bio->bi_end_io
1366 * function described (one day) else where.
1368 * The caller of generic_make_request must make sure that bi_io_vec
1369 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1370 * set to describe the device address, and the
1371 * bi_end_io and optionally bi_private are set to describe how
1372 * completion notification should be signaled.
1374 * generic_make_request and the drivers it calls may use bi_next if this
1375 * bio happens to be merged with someone else, and may change bi_dev and
1376 * bi_sector for remaps as it sees fit. So the values of these fields
1377 * should NOT be depended on after the call to generic_make_request.
1379 static inline void __generic_make_request(struct bio *bio)
1381 struct request_queue *q;
1382 sector_t old_sector;
1383 int ret, nr_sectors = bio_sectors(bio);
1384 dev_t old_dev;
1385 int err = -EIO;
1387 might_sleep();
1389 if (bio_check_eod(bio, nr_sectors))
1390 goto end_io;
1393 * Resolve the mapping until finished. (drivers are
1394 * still free to implement/resolve their own stacking
1395 * by explicitly returning 0)
1397 * NOTE: we don't repeat the blk_size check for each new device.
1398 * Stacking drivers are expected to know what they are doing.
1400 old_sector = -1;
1401 old_dev = 0;
1402 do {
1403 char b[BDEVNAME_SIZE];
1405 q = bdev_get_queue(bio->bi_bdev);
1406 if (unlikely(!q)) {
1407 printk(KERN_ERR
1408 "generic_make_request: Trying to access "
1409 "nonexistent block-device %s (%Lu)\n",
1410 bdevname(bio->bi_bdev, b),
1411 (long long) bio->bi_sector);
1412 goto end_io;
1415 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1416 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1417 bdevname(bio->bi_bdev, b),
1418 bio_sectors(bio),
1419 q->max_hw_sectors);
1420 goto end_io;
1423 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1424 goto end_io;
1426 if (should_fail_request(bio))
1427 goto end_io;
1430 * If this device has partitions, remap block n
1431 * of partition p to block n+start(p) of the disk.
1433 blk_partition_remap(bio);
1435 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1436 goto end_io;
1438 if (old_sector != -1)
1439 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1440 old_sector);
1442 trace_block_bio_queue(q, bio);
1444 old_sector = bio->bi_sector;
1445 old_dev = bio->bi_bdev->bd_dev;
1447 if (bio_check_eod(bio, nr_sectors))
1448 goto end_io;
1450 if (bio_discard(bio) && !q->prepare_discard_fn) {
1451 err = -EOPNOTSUPP;
1452 goto end_io;
1454 if (bio_barrier(bio) && bio_has_data(bio) &&
1455 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1456 err = -EOPNOTSUPP;
1457 goto end_io;
1460 ret = q->make_request_fn(q, bio);
1461 } while (ret);
1463 return;
1465 end_io:
1466 bio_endio(bio, err);
1470 * We only want one ->make_request_fn to be active at a time,
1471 * else stack usage with stacked devices could be a problem.
1472 * So use current->bio_{list,tail} to keep a list of requests
1473 * submited by a make_request_fn function.
1474 * current->bio_tail is also used as a flag to say if
1475 * generic_make_request is currently active in this task or not.
1476 * If it is NULL, then no make_request is active. If it is non-NULL,
1477 * then a make_request is active, and new requests should be added
1478 * at the tail
1480 void generic_make_request(struct bio *bio)
1482 if (current->bio_tail) {
1483 /* make_request is active */
1484 *(current->bio_tail) = bio;
1485 bio->bi_next = NULL;
1486 current->bio_tail = &bio->bi_next;
1487 return;
1489 /* following loop may be a bit non-obvious, and so deserves some
1490 * explanation.
1491 * Before entering the loop, bio->bi_next is NULL (as all callers
1492 * ensure that) so we have a list with a single bio.
1493 * We pretend that we have just taken it off a longer list, so
1494 * we assign bio_list to the next (which is NULL) and bio_tail
1495 * to &bio_list, thus initialising the bio_list of new bios to be
1496 * added. __generic_make_request may indeed add some more bios
1497 * through a recursive call to generic_make_request. If it
1498 * did, we find a non-NULL value in bio_list and re-enter the loop
1499 * from the top. In this case we really did just take the bio
1500 * of the top of the list (no pretending) and so fixup bio_list and
1501 * bio_tail or bi_next, and call into __generic_make_request again.
1503 * The loop was structured like this to make only one call to
1504 * __generic_make_request (which is important as it is large and
1505 * inlined) and to keep the structure simple.
1507 BUG_ON(bio->bi_next);
1508 do {
1509 current->bio_list = bio->bi_next;
1510 if (bio->bi_next == NULL)
1511 current->bio_tail = &current->bio_list;
1512 else
1513 bio->bi_next = NULL;
1514 __generic_make_request(bio);
1515 bio = current->bio_list;
1516 } while (bio);
1517 current->bio_tail = NULL; /* deactivate */
1519 EXPORT_SYMBOL(generic_make_request);
1522 * submit_bio - submit a bio to the block device layer for I/O
1523 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1524 * @bio: The &struct bio which describes the I/O
1526 * submit_bio() is very similar in purpose to generic_make_request(), and
1527 * uses that function to do most of the work. Both are fairly rough
1528 * interfaces; @bio must be presetup and ready for I/O.
1531 void submit_bio(int rw, struct bio *bio)
1533 int count = bio_sectors(bio);
1535 bio->bi_rw |= rw;
1538 * If it's a regular read/write or a barrier with data attached,
1539 * go through the normal accounting stuff before submission.
1541 if (bio_has_data(bio)) {
1542 if (rw & WRITE) {
1543 count_vm_events(PGPGOUT, count);
1544 } else {
1545 task_io_account_read(bio->bi_size);
1546 count_vm_events(PGPGIN, count);
1549 if (unlikely(block_dump)) {
1550 char b[BDEVNAME_SIZE];
1551 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1552 current->comm, task_pid_nr(current),
1553 (rw & WRITE) ? "WRITE" : "READ",
1554 (unsigned long long)bio->bi_sector,
1555 bdevname(bio->bi_bdev, b));
1559 generic_make_request(bio);
1561 EXPORT_SYMBOL(submit_bio);
1564 * blk_rq_check_limits - Helper function to check a request for the queue limit
1565 * @q: the queue
1566 * @rq: the request being checked
1568 * Description:
1569 * @rq may have been made based on weaker limitations of upper-level queues
1570 * in request stacking drivers, and it may violate the limitation of @q.
1571 * Since the block layer and the underlying device driver trust @rq
1572 * after it is inserted to @q, it should be checked against @q before
1573 * the insertion using this generic function.
1575 * This function should also be useful for request stacking drivers
1576 * in some cases below, so export this fuction.
1577 * Request stacking drivers like request-based dm may change the queue
1578 * limits while requests are in the queue (e.g. dm's table swapping).
1579 * Such request stacking drivers should check those requests agaist
1580 * the new queue limits again when they dispatch those requests,
1581 * although such checkings are also done against the old queue limits
1582 * when submitting requests.
1584 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1586 if (rq->nr_sectors > q->max_sectors ||
1587 rq->data_len > q->max_hw_sectors << 9) {
1588 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1589 return -EIO;
1593 * queue's settings related to segment counting like q->bounce_pfn
1594 * may differ from that of other stacking queues.
1595 * Recalculate it to check the request correctly on this queue's
1596 * limitation.
1598 blk_recalc_rq_segments(rq);
1599 if (rq->nr_phys_segments > q->max_phys_segments ||
1600 rq->nr_phys_segments > q->max_hw_segments) {
1601 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1602 return -EIO;
1605 return 0;
1607 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1610 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1611 * @q: the queue to submit the request
1612 * @rq: the request being queued
1614 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1616 unsigned long flags;
1618 if (blk_rq_check_limits(q, rq))
1619 return -EIO;
1621 #ifdef CONFIG_FAIL_MAKE_REQUEST
1622 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1623 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1624 return -EIO;
1625 #endif
1627 spin_lock_irqsave(q->queue_lock, flags);
1630 * Submitting request must be dequeued before calling this function
1631 * because it will be linked to another request_queue
1633 BUG_ON(blk_queued_rq(rq));
1635 drive_stat_acct(rq, 1);
1636 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1638 spin_unlock_irqrestore(q->queue_lock, flags);
1640 return 0;
1642 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1645 * blkdev_dequeue_request - dequeue request and start timeout timer
1646 * @req: request to dequeue
1648 * Dequeue @req and start timeout timer on it. This hands off the
1649 * request to the driver.
1651 * Block internal functions which don't want to start timer should
1652 * call elv_dequeue_request().
1654 void blkdev_dequeue_request(struct request *req)
1656 elv_dequeue_request(req->q, req);
1659 * We are now handing the request to the hardware, add the
1660 * timeout handler.
1662 blk_add_timer(req);
1664 EXPORT_SYMBOL(blkdev_dequeue_request);
1666 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1668 struct gendisk *disk = req->rq_disk;
1670 if (!disk || !blk_queue_io_stat(disk->queue))
1671 return;
1673 if (blk_fs_request(req)) {
1674 const int rw = rq_data_dir(req);
1675 struct hd_struct *part;
1676 int cpu;
1678 cpu = part_stat_lock();
1679 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1680 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1681 part_stat_unlock();
1685 static void blk_account_io_done(struct request *req)
1687 struct gendisk *disk = req->rq_disk;
1689 if (!disk || !blk_queue_io_stat(disk->queue))
1690 return;
1693 * Account IO completion. bar_rq isn't accounted as a normal
1694 * IO on queueing nor completion. Accounting the containing
1695 * request is enough.
1697 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1698 unsigned long duration = jiffies - req->start_time;
1699 const int rw = rq_data_dir(req);
1700 struct hd_struct *part;
1701 int cpu;
1703 cpu = part_stat_lock();
1704 part = disk_map_sector_rcu(disk, req->sector);
1706 part_stat_inc(cpu, part, ios[rw]);
1707 part_stat_add(cpu, part, ticks[rw], duration);
1708 part_round_stats(cpu, part);
1709 part_dec_in_flight(part);
1711 part_stat_unlock();
1716 * __end_that_request_first - end I/O on a request
1717 * @req: the request being processed
1718 * @error: %0 for success, < %0 for error
1719 * @nr_bytes: number of bytes to complete
1721 * Description:
1722 * Ends I/O on a number of bytes attached to @req, and sets it up
1723 * for the next range of segments (if any) in the cluster.
1725 * Return:
1726 * %0 - we are done with this request, call end_that_request_last()
1727 * %1 - still buffers pending for this request
1729 static int __end_that_request_first(struct request *req, int error,
1730 int nr_bytes)
1732 int total_bytes, bio_nbytes, next_idx = 0;
1733 struct bio *bio;
1735 trace_block_rq_complete(req->q, req);
1738 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1739 * sense key with us all the way through
1741 if (!blk_pc_request(req))
1742 req->errors = 0;
1744 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1745 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1746 req->rq_disk ? req->rq_disk->disk_name : "?",
1747 (unsigned long long)req->sector);
1750 blk_account_io_completion(req, nr_bytes);
1752 total_bytes = bio_nbytes = 0;
1753 while ((bio = req->bio) != NULL) {
1754 int nbytes;
1756 if (nr_bytes >= bio->bi_size) {
1757 req->bio = bio->bi_next;
1758 nbytes = bio->bi_size;
1759 req_bio_endio(req, bio, nbytes, error);
1760 next_idx = 0;
1761 bio_nbytes = 0;
1762 } else {
1763 int idx = bio->bi_idx + next_idx;
1765 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1766 blk_dump_rq_flags(req, "__end_that");
1767 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1768 __func__, bio->bi_idx, bio->bi_vcnt);
1769 break;
1772 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1773 BIO_BUG_ON(nbytes > bio->bi_size);
1776 * not a complete bvec done
1778 if (unlikely(nbytes > nr_bytes)) {
1779 bio_nbytes += nr_bytes;
1780 total_bytes += nr_bytes;
1781 break;
1785 * advance to the next vector
1787 next_idx++;
1788 bio_nbytes += nbytes;
1791 total_bytes += nbytes;
1792 nr_bytes -= nbytes;
1794 bio = req->bio;
1795 if (bio) {
1797 * end more in this run, or just return 'not-done'
1799 if (unlikely(nr_bytes <= 0))
1800 break;
1805 * completely done
1807 if (!req->bio)
1808 return 0;
1811 * if the request wasn't completed, update state
1813 if (bio_nbytes) {
1814 req_bio_endio(req, bio, bio_nbytes, error);
1815 bio->bi_idx += next_idx;
1816 bio_iovec(bio)->bv_offset += nr_bytes;
1817 bio_iovec(bio)->bv_len -= nr_bytes;
1820 blk_recalc_rq_sectors(req, total_bytes >> 9);
1821 blk_recalc_rq_segments(req);
1822 return 1;
1826 * queue lock must be held
1828 static void end_that_request_last(struct request *req, int error)
1830 if (blk_rq_tagged(req))
1831 blk_queue_end_tag(req->q, req);
1833 if (blk_queued_rq(req))
1834 elv_dequeue_request(req->q, req);
1836 if (unlikely(laptop_mode) && blk_fs_request(req))
1837 laptop_io_completion();
1839 blk_delete_timer(req);
1841 blk_account_io_done(req);
1843 if (req->end_io)
1844 req->end_io(req, error);
1845 else {
1846 if (blk_bidi_rq(req))
1847 __blk_put_request(req->next_rq->q, req->next_rq);
1849 __blk_put_request(req->q, req);
1854 * blk_rq_bytes - Returns bytes left to complete in the entire request
1855 * @rq: the request being processed
1857 unsigned int blk_rq_bytes(struct request *rq)
1859 if (blk_fs_request(rq))
1860 return rq->hard_nr_sectors << 9;
1862 return rq->data_len;
1864 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1867 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1868 * @rq: the request being processed
1870 unsigned int blk_rq_cur_bytes(struct request *rq)
1872 if (blk_fs_request(rq))
1873 return rq->current_nr_sectors << 9;
1875 if (rq->bio)
1876 return rq->bio->bi_size;
1878 return rq->data_len;
1880 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1883 * end_request - end I/O on the current segment of the request
1884 * @req: the request being processed
1885 * @uptodate: error value or %0/%1 uptodate flag
1887 * Description:
1888 * Ends I/O on the current segment of a request. If that is the only
1889 * remaining segment, the request is also completed and freed.
1891 * This is a remnant of how older block drivers handled I/O completions.
1892 * Modern drivers typically end I/O on the full request in one go, unless
1893 * they have a residual value to account for. For that case this function
1894 * isn't really useful, unless the residual just happens to be the
1895 * full current segment. In other words, don't use this function in new
1896 * code. Use blk_end_request() or __blk_end_request() to end a request.
1898 void end_request(struct request *req, int uptodate)
1900 int error = 0;
1902 if (uptodate <= 0)
1903 error = uptodate ? uptodate : -EIO;
1905 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1907 EXPORT_SYMBOL(end_request);
1909 static int end_that_request_data(struct request *rq, int error,
1910 unsigned int nr_bytes, unsigned int bidi_bytes)
1912 if (rq->bio) {
1913 if (__end_that_request_first(rq, error, nr_bytes))
1914 return 1;
1916 /* Bidi request must be completed as a whole */
1917 if (blk_bidi_rq(rq) &&
1918 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1919 return 1;
1922 return 0;
1926 * blk_end_io - Generic end_io function to complete a request.
1927 * @rq: the request being processed
1928 * @error: %0 for success, < %0 for error
1929 * @nr_bytes: number of bytes to complete @rq
1930 * @bidi_bytes: number of bytes to complete @rq->next_rq
1931 * @drv_callback: function called between completion of bios in the request
1932 * and completion of the request.
1933 * If the callback returns non %0, this helper returns without
1934 * completion of the request.
1936 * Description:
1937 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1938 * If @rq has leftover, sets it up for the next range of segments.
1940 * Return:
1941 * %0 - we are done with this request
1942 * %1 - this request is not freed yet, it still has pending buffers.
1944 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1945 unsigned int bidi_bytes,
1946 int (drv_callback)(struct request *))
1948 struct request_queue *q = rq->q;
1949 unsigned long flags = 0UL;
1951 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1952 return 1;
1954 /* Special feature for tricky drivers */
1955 if (drv_callback && drv_callback(rq))
1956 return 1;
1958 add_disk_randomness(rq->rq_disk);
1960 spin_lock_irqsave(q->queue_lock, flags);
1961 end_that_request_last(rq, error);
1962 spin_unlock_irqrestore(q->queue_lock, flags);
1964 return 0;
1968 * blk_end_request - Helper function for drivers to complete the request.
1969 * @rq: the request being processed
1970 * @error: %0 for success, < %0 for error
1971 * @nr_bytes: number of bytes to complete
1973 * Description:
1974 * Ends I/O on a number of bytes attached to @rq.
1975 * If @rq has leftover, sets it up for the next range of segments.
1977 * Return:
1978 * %0 - we are done with this request
1979 * %1 - still buffers pending for this request
1981 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1983 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1985 EXPORT_SYMBOL_GPL(blk_end_request);
1988 * __blk_end_request - Helper function for drivers to complete the request.
1989 * @rq: the request being processed
1990 * @error: %0 for success, < %0 for error
1991 * @nr_bytes: number of bytes to complete
1993 * Description:
1994 * Must be called with queue lock held unlike blk_end_request().
1996 * Return:
1997 * %0 - we are done with this request
1998 * %1 - still buffers pending for this request
2000 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2002 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
2003 return 1;
2005 add_disk_randomness(rq->rq_disk);
2007 end_that_request_last(rq, error);
2009 return 0;
2011 EXPORT_SYMBOL_GPL(__blk_end_request);
2014 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2015 * @rq: the bidi request being processed
2016 * @error: %0 for success, < %0 for error
2017 * @nr_bytes: number of bytes to complete @rq
2018 * @bidi_bytes: number of bytes to complete @rq->next_rq
2020 * Description:
2021 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2023 * Return:
2024 * %0 - we are done with this request
2025 * %1 - still buffers pending for this request
2027 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2028 unsigned int bidi_bytes)
2030 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2032 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2035 * blk_update_request - Special helper function for request stacking drivers
2036 * @rq: the request being processed
2037 * @error: %0 for success, < %0 for error
2038 * @nr_bytes: number of bytes to complete @rq
2040 * Description:
2041 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2042 * the request structure even if @rq doesn't have leftover.
2043 * If @rq has leftover, sets it up for the next range of segments.
2045 * This special helper function is only for request stacking drivers
2046 * (e.g. request-based dm) so that they can handle partial completion.
2047 * Actual device drivers should use blk_end_request instead.
2049 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2051 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2053 * These members are not updated in end_that_request_data()
2054 * when all bios are completed.
2055 * Update them so that the request stacking driver can find
2056 * how many bytes remain in the request later.
2058 rq->nr_sectors = rq->hard_nr_sectors = 0;
2059 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2062 EXPORT_SYMBOL_GPL(blk_update_request);
2065 * blk_end_request_callback - Special helper function for tricky drivers
2066 * @rq: the request being processed
2067 * @error: %0 for success, < %0 for error
2068 * @nr_bytes: number of bytes to complete
2069 * @drv_callback: function called between completion of bios in the request
2070 * and completion of the request.
2071 * If the callback returns non %0, this helper returns without
2072 * completion of the request.
2074 * Description:
2075 * Ends I/O on a number of bytes attached to @rq.
2076 * If @rq has leftover, sets it up for the next range of segments.
2078 * This special helper function is used only for existing tricky drivers.
2079 * (e.g. cdrom_newpc_intr() of ide-cd)
2080 * This interface will be removed when such drivers are rewritten.
2081 * Don't use this interface in other places anymore.
2083 * Return:
2084 * %0 - we are done with this request
2085 * %1 - this request is not freed yet.
2086 * this request still has pending buffers or
2087 * the driver doesn't want to finish this request yet.
2089 int blk_end_request_callback(struct request *rq, int error,
2090 unsigned int nr_bytes,
2091 int (drv_callback)(struct request *))
2093 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2095 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2097 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2098 struct bio *bio)
2100 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2101 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2102 rq->cmd_flags |= (bio->bi_rw & 3);
2104 if (bio_has_data(bio)) {
2105 rq->nr_phys_segments = bio_phys_segments(q, bio);
2106 rq->buffer = bio_data(bio);
2108 rq->current_nr_sectors = bio_cur_sectors(bio);
2109 rq->hard_cur_sectors = rq->current_nr_sectors;
2110 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2111 rq->data_len = bio->bi_size;
2113 rq->bio = rq->biotail = bio;
2115 if (bio->bi_bdev)
2116 rq->rq_disk = bio->bi_bdev->bd_disk;
2120 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2121 * @q : the queue of the device being checked
2123 * Description:
2124 * Check if underlying low-level drivers of a device are busy.
2125 * If the drivers want to export their busy state, they must set own
2126 * exporting function using blk_queue_lld_busy() first.
2128 * Basically, this function is used only by request stacking drivers
2129 * to stop dispatching requests to underlying devices when underlying
2130 * devices are busy. This behavior helps more I/O merging on the queue
2131 * of the request stacking driver and prevents I/O throughput regression
2132 * on burst I/O load.
2134 * Return:
2135 * 0 - Not busy (The request stacking driver should dispatch request)
2136 * 1 - Busy (The request stacking driver should stop dispatching request)
2138 int blk_lld_busy(struct request_queue *q)
2140 if (q->lld_busy_fn)
2141 return q->lld_busy_fn(q);
2143 return 0;
2145 EXPORT_SYMBOL_GPL(blk_lld_busy);
2147 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2149 return queue_work(kblockd_workqueue, work);
2151 EXPORT_SYMBOL(kblockd_schedule_work);
2153 int __init blk_dev_init(void)
2155 kblockd_workqueue = create_workqueue("kblockd");
2156 if (!kblockd_workqueue)
2157 panic("Failed to create kblockd\n");
2159 request_cachep = kmem_cache_create("blkdev_requests",
2160 sizeof(struct request), 0, SLAB_PANIC, NULL);
2162 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2163 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2165 return 0;