Documentation: add entries to filesystems/00-INDEX for several untracked files
[linux-2.6/mini2440.git] / mm / page-writeback.c
blob7845462064f4c13457528852c09e5db9e770596b
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 akpm@zip.com.au
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation. We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
45 #define MAX_WRITEBACK_PAGES 1024
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
51 static long ratelimit_pages = 32;
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
59 static inline long sync_writeback_pages(void)
61 return ratelimit_pages + ratelimit_pages / 2;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via pdflush) at this percentage
69 int dirty_background_ratio = 5;
72 * The generator of dirty data starts writeback at this percentage
74 int vm_dirty_ratio = 10;
77 * The interval between `kupdate'-style writebacks, in jiffies
79 int dirty_writeback_interval = 5 * HZ;
82 * The longest number of jiffies for which data is allowed to remain dirty
84 int dirty_expire_interval = 30 * HZ;
87 * Flag that makes the machine dump writes/reads and block dirtyings.
89 int block_dump;
92 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93 * a full sync is triggered after this time elapses without any disk activity.
95 int laptop_mode;
97 EXPORT_SYMBOL(laptop_mode);
99 /* End of sysctl-exported parameters */
102 static void background_writeout(unsigned long _min_pages);
105 * Scale the writeback cache size proportional to the relative writeout speeds.
107 * We do this by keeping a floating proportion between BDIs, based on page
108 * writeback completions [end_page_writeback()]. Those devices that write out
109 * pages fastest will get the larger share, while the slower will get a smaller
110 * share.
112 * We use page writeout completions because we are interested in getting rid of
113 * dirty pages. Having them written out is the primary goal.
115 * We introduce a concept of time, a period over which we measure these events,
116 * because demand can/will vary over time. The length of this period itself is
117 * measured in page writeback completions.
120 static struct prop_descriptor vm_completions;
121 static struct prop_descriptor vm_dirties;
123 static unsigned long determine_dirtyable_memory(void);
126 * couple the period to the dirty_ratio:
128 * period/2 ~ roundup_pow_of_two(dirty limit)
130 static int calc_period_shift(void)
132 unsigned long dirty_total;
134 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
135 return 2 + ilog2(dirty_total - 1);
139 * update the period when the dirty ratio changes.
141 int dirty_ratio_handler(struct ctl_table *table, int write,
142 struct file *filp, void __user *buffer, size_t *lenp,
143 loff_t *ppos)
145 int old_ratio = vm_dirty_ratio;
146 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
147 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
148 int shift = calc_period_shift();
149 prop_change_shift(&vm_completions, shift);
150 prop_change_shift(&vm_dirties, shift);
152 return ret;
156 * Increment the BDI's writeout completion count and the global writeout
157 * completion count. Called from test_clear_page_writeback().
159 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
161 __prop_inc_percpu(&vm_completions, &bdi->completions);
164 static inline void task_dirty_inc(struct task_struct *tsk)
166 prop_inc_single(&vm_dirties, &tsk->dirties);
170 * Obtain an accurate fraction of the BDI's portion.
172 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
173 long *numerator, long *denominator)
175 if (bdi_cap_writeback_dirty(bdi)) {
176 prop_fraction_percpu(&vm_completions, &bdi->completions,
177 numerator, denominator);
178 } else {
179 *numerator = 0;
180 *denominator = 1;
185 * Clip the earned share of dirty pages to that which is actually available.
186 * This avoids exceeding the total dirty_limit when the floating averages
187 * fluctuate too quickly.
189 static void
190 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
192 long avail_dirty;
194 avail_dirty = dirty -
195 (global_page_state(NR_FILE_DIRTY) +
196 global_page_state(NR_WRITEBACK) +
197 global_page_state(NR_UNSTABLE_NFS));
199 if (avail_dirty < 0)
200 avail_dirty = 0;
202 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
203 bdi_stat(bdi, BDI_WRITEBACK);
205 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
208 static inline void task_dirties_fraction(struct task_struct *tsk,
209 long *numerator, long *denominator)
211 prop_fraction_single(&vm_dirties, &tsk->dirties,
212 numerator, denominator);
216 * scale the dirty limit
218 * task specific dirty limit:
220 * dirty -= (dirty/8) * p_{t}
222 void task_dirty_limit(struct task_struct *tsk, long *pdirty)
224 long numerator, denominator;
225 long dirty = *pdirty;
226 u64 inv = dirty >> 3;
228 task_dirties_fraction(tsk, &numerator, &denominator);
229 inv *= numerator;
230 do_div(inv, denominator);
232 dirty -= inv;
233 if (dirty < *pdirty/2)
234 dirty = *pdirty/2;
236 *pdirty = dirty;
240 * Work out the current dirty-memory clamping and background writeout
241 * thresholds.
243 * The main aim here is to lower them aggressively if there is a lot of mapped
244 * memory around. To avoid stressing page reclaim with lots of unreclaimable
245 * pages. It is better to clamp down on writers than to start swapping, and
246 * performing lots of scanning.
248 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
250 * We don't permit the clamping level to fall below 5% - that is getting rather
251 * excessive.
253 * We make sure that the background writeout level is below the adjusted
254 * clamping level.
257 static unsigned long highmem_dirtyable_memory(unsigned long total)
259 #ifdef CONFIG_HIGHMEM
260 int node;
261 unsigned long x = 0;
263 for_each_node_state(node, N_HIGH_MEMORY) {
264 struct zone *z =
265 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
267 x += zone_page_state(z, NR_FREE_PAGES)
268 + zone_page_state(z, NR_INACTIVE)
269 + zone_page_state(z, NR_ACTIVE);
272 * Make sure that the number of highmem pages is never larger
273 * than the number of the total dirtyable memory. This can only
274 * occur in very strange VM situations but we want to make sure
275 * that this does not occur.
277 return min(x, total);
278 #else
279 return 0;
280 #endif
283 static unsigned long determine_dirtyable_memory(void)
285 unsigned long x;
287 x = global_page_state(NR_FREE_PAGES)
288 + global_page_state(NR_INACTIVE)
289 + global_page_state(NR_ACTIVE);
290 x -= highmem_dirtyable_memory(x);
291 return x + 1; /* Ensure that we never return 0 */
294 static void
295 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
296 struct backing_dev_info *bdi)
298 int background_ratio; /* Percentages */
299 int dirty_ratio;
300 int unmapped_ratio;
301 long background;
302 long dirty;
303 unsigned long available_memory = determine_dirtyable_memory();
304 struct task_struct *tsk;
306 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
307 global_page_state(NR_ANON_PAGES)) * 100) /
308 available_memory;
310 dirty_ratio = vm_dirty_ratio;
311 if (dirty_ratio > unmapped_ratio / 2)
312 dirty_ratio = unmapped_ratio / 2;
314 if (dirty_ratio < 5)
315 dirty_ratio = 5;
317 background_ratio = dirty_background_ratio;
318 if (background_ratio >= dirty_ratio)
319 background_ratio = dirty_ratio / 2;
321 background = (background_ratio * available_memory) / 100;
322 dirty = (dirty_ratio * available_memory) / 100;
323 tsk = current;
324 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
325 background += background / 4;
326 dirty += dirty / 4;
328 *pbackground = background;
329 *pdirty = dirty;
331 if (bdi) {
332 u64 bdi_dirty = dirty;
333 long numerator, denominator;
336 * Calculate this BDI's share of the dirty ratio.
338 bdi_writeout_fraction(bdi, &numerator, &denominator);
340 bdi_dirty *= numerator;
341 do_div(bdi_dirty, denominator);
343 *pbdi_dirty = bdi_dirty;
344 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
345 task_dirty_limit(current, pbdi_dirty);
350 * balance_dirty_pages() must be called by processes which are generating dirty
351 * data. It looks at the number of dirty pages in the machine and will force
352 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
353 * If we're over `background_thresh' then pdflush is woken to perform some
354 * writeout.
356 static void balance_dirty_pages(struct address_space *mapping)
358 long bdi_nr_reclaimable;
359 long bdi_nr_writeback;
360 long background_thresh;
361 long dirty_thresh;
362 long bdi_thresh;
363 unsigned long pages_written = 0;
364 unsigned long write_chunk = sync_writeback_pages();
366 struct backing_dev_info *bdi = mapping->backing_dev_info;
368 for (;;) {
369 struct writeback_control wbc = {
370 .bdi = bdi,
371 .sync_mode = WB_SYNC_NONE,
372 .older_than_this = NULL,
373 .nr_to_write = write_chunk,
374 .range_cyclic = 1,
377 get_dirty_limits(&background_thresh, &dirty_thresh,
378 &bdi_thresh, bdi);
379 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
380 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
381 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
382 break;
384 if (!bdi->dirty_exceeded)
385 bdi->dirty_exceeded = 1;
387 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
388 * Unstable writes are a feature of certain networked
389 * filesystems (i.e. NFS) in which data may have been
390 * written to the server's write cache, but has not yet
391 * been flushed to permanent storage.
393 if (bdi_nr_reclaimable) {
394 writeback_inodes(&wbc);
395 pages_written += write_chunk - wbc.nr_to_write;
396 get_dirty_limits(&background_thresh, &dirty_thresh,
397 &bdi_thresh, bdi);
401 * In order to avoid the stacked BDI deadlock we need
402 * to ensure we accurately count the 'dirty' pages when
403 * the threshold is low.
405 * Otherwise it would be possible to get thresh+n pages
406 * reported dirty, even though there are thresh-m pages
407 * actually dirty; with m+n sitting in the percpu
408 * deltas.
410 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
411 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
412 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
413 } else if (bdi_nr_reclaimable) {
414 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
415 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
418 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
419 break;
420 if (pages_written >= write_chunk)
421 break; /* We've done our duty */
423 congestion_wait(WRITE, HZ/10);
426 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
427 bdi->dirty_exceeded)
428 bdi->dirty_exceeded = 0;
430 if (writeback_in_progress(bdi))
431 return; /* pdflush is already working this queue */
434 * In laptop mode, we wait until hitting the higher threshold before
435 * starting background writeout, and then write out all the way down
436 * to the lower threshold. So slow writers cause minimal disk activity.
438 * In normal mode, we start background writeout at the lower
439 * background_thresh, to keep the amount of dirty memory low.
441 if ((laptop_mode && pages_written) ||
442 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
443 + global_page_state(NR_UNSTABLE_NFS)
444 > background_thresh)))
445 pdflush_operation(background_writeout, 0);
448 void set_page_dirty_balance(struct page *page, int page_mkwrite)
450 if (set_page_dirty(page) || page_mkwrite) {
451 struct address_space *mapping = page_mapping(page);
453 if (mapping)
454 balance_dirty_pages_ratelimited(mapping);
459 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
460 * @mapping: address_space which was dirtied
461 * @nr_pages_dirtied: number of pages which the caller has just dirtied
463 * Processes which are dirtying memory should call in here once for each page
464 * which was newly dirtied. The function will periodically check the system's
465 * dirty state and will initiate writeback if needed.
467 * On really big machines, get_writeback_state is expensive, so try to avoid
468 * calling it too often (ratelimiting). But once we're over the dirty memory
469 * limit we decrease the ratelimiting by a lot, to prevent individual processes
470 * from overshooting the limit by (ratelimit_pages) each.
472 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
473 unsigned long nr_pages_dirtied)
475 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
476 unsigned long ratelimit;
477 unsigned long *p;
479 ratelimit = ratelimit_pages;
480 if (mapping->backing_dev_info->dirty_exceeded)
481 ratelimit = 8;
484 * Check the rate limiting. Also, we do not want to throttle real-time
485 * tasks in balance_dirty_pages(). Period.
487 preempt_disable();
488 p = &__get_cpu_var(ratelimits);
489 *p += nr_pages_dirtied;
490 if (unlikely(*p >= ratelimit)) {
491 *p = 0;
492 preempt_enable();
493 balance_dirty_pages(mapping);
494 return;
496 preempt_enable();
498 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
500 void throttle_vm_writeout(gfp_t gfp_mask)
502 long background_thresh;
503 long dirty_thresh;
505 for ( ; ; ) {
506 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
509 * Boost the allowable dirty threshold a bit for page
510 * allocators so they don't get DoS'ed by heavy writers
512 dirty_thresh += dirty_thresh / 10; /* wheeee... */
514 if (global_page_state(NR_UNSTABLE_NFS) +
515 global_page_state(NR_WRITEBACK) <= dirty_thresh)
516 break;
517 congestion_wait(WRITE, HZ/10);
520 * The caller might hold locks which can prevent IO completion
521 * or progress in the filesystem. So we cannot just sit here
522 * waiting for IO to complete.
524 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
525 break;
530 * writeback at least _min_pages, and keep writing until the amount of dirty
531 * memory is less than the background threshold, or until we're all clean.
533 static void background_writeout(unsigned long _min_pages)
535 long min_pages = _min_pages;
536 struct writeback_control wbc = {
537 .bdi = NULL,
538 .sync_mode = WB_SYNC_NONE,
539 .older_than_this = NULL,
540 .nr_to_write = 0,
541 .nonblocking = 1,
542 .range_cyclic = 1,
545 for ( ; ; ) {
546 long background_thresh;
547 long dirty_thresh;
549 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
550 if (global_page_state(NR_FILE_DIRTY) +
551 global_page_state(NR_UNSTABLE_NFS) < background_thresh
552 && min_pages <= 0)
553 break;
554 wbc.more_io = 0;
555 wbc.encountered_congestion = 0;
556 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
557 wbc.pages_skipped = 0;
558 writeback_inodes(&wbc);
559 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
560 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
561 /* Wrote less than expected */
562 if (wbc.encountered_congestion || wbc.more_io)
563 congestion_wait(WRITE, HZ/10);
564 else
565 break;
571 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
572 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
573 * -1 if all pdflush threads were busy.
575 int wakeup_pdflush(long nr_pages)
577 if (nr_pages == 0)
578 nr_pages = global_page_state(NR_FILE_DIRTY) +
579 global_page_state(NR_UNSTABLE_NFS);
580 return pdflush_operation(background_writeout, nr_pages);
583 static void wb_timer_fn(unsigned long unused);
584 static void laptop_timer_fn(unsigned long unused);
586 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
587 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
590 * Periodic writeback of "old" data.
592 * Define "old": the first time one of an inode's pages is dirtied, we mark the
593 * dirtying-time in the inode's address_space. So this periodic writeback code
594 * just walks the superblock inode list, writing back any inodes which are
595 * older than a specific point in time.
597 * Try to run once per dirty_writeback_interval. But if a writeback event
598 * takes longer than a dirty_writeback_interval interval, then leave a
599 * one-second gap.
601 * older_than_this takes precedence over nr_to_write. So we'll only write back
602 * all dirty pages if they are all attached to "old" mappings.
604 static void wb_kupdate(unsigned long arg)
606 unsigned long oldest_jif;
607 unsigned long start_jif;
608 unsigned long next_jif;
609 long nr_to_write;
610 struct writeback_control wbc = {
611 .bdi = NULL,
612 .sync_mode = WB_SYNC_NONE,
613 .older_than_this = &oldest_jif,
614 .nr_to_write = 0,
615 .nonblocking = 1,
616 .for_kupdate = 1,
617 .range_cyclic = 1,
620 sync_supers();
622 oldest_jif = jiffies - dirty_expire_interval;
623 start_jif = jiffies;
624 next_jif = start_jif + dirty_writeback_interval;
625 nr_to_write = global_page_state(NR_FILE_DIRTY) +
626 global_page_state(NR_UNSTABLE_NFS) +
627 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
628 while (nr_to_write > 0) {
629 wbc.more_io = 0;
630 wbc.encountered_congestion = 0;
631 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
632 writeback_inodes(&wbc);
633 if (wbc.nr_to_write > 0) {
634 if (wbc.encountered_congestion || wbc.more_io)
635 congestion_wait(WRITE, HZ/10);
636 else
637 break; /* All the old data is written */
639 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
641 if (time_before(next_jif, jiffies + HZ))
642 next_jif = jiffies + HZ;
643 if (dirty_writeback_interval)
644 mod_timer(&wb_timer, next_jif);
648 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
650 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
651 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
653 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
654 if (dirty_writeback_interval)
655 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
656 else
657 del_timer(&wb_timer);
658 return 0;
661 static void wb_timer_fn(unsigned long unused)
663 if (pdflush_operation(wb_kupdate, 0) < 0)
664 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
667 static void laptop_flush(unsigned long unused)
669 sys_sync();
672 static void laptop_timer_fn(unsigned long unused)
674 pdflush_operation(laptop_flush, 0);
678 * We've spun up the disk and we're in laptop mode: schedule writeback
679 * of all dirty data a few seconds from now. If the flush is already scheduled
680 * then push it back - the user is still using the disk.
682 void laptop_io_completion(void)
684 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
688 * We're in laptop mode and we've just synced. The sync's writes will have
689 * caused another writeback to be scheduled by laptop_io_completion.
690 * Nothing needs to be written back anymore, so we unschedule the writeback.
692 void laptop_sync_completion(void)
694 del_timer(&laptop_mode_wb_timer);
698 * If ratelimit_pages is too high then we can get into dirty-data overload
699 * if a large number of processes all perform writes at the same time.
700 * If it is too low then SMP machines will call the (expensive)
701 * get_writeback_state too often.
703 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
704 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
705 * thresholds before writeback cuts in.
707 * But the limit should not be set too high. Because it also controls the
708 * amount of memory which the balance_dirty_pages() caller has to write back.
709 * If this is too large then the caller will block on the IO queue all the
710 * time. So limit it to four megabytes - the balance_dirty_pages() caller
711 * will write six megabyte chunks, max.
714 void writeback_set_ratelimit(void)
716 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
717 if (ratelimit_pages < 16)
718 ratelimit_pages = 16;
719 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
720 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
723 static int __cpuinit
724 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
726 writeback_set_ratelimit();
727 return NOTIFY_DONE;
730 static struct notifier_block __cpuinitdata ratelimit_nb = {
731 .notifier_call = ratelimit_handler,
732 .next = NULL,
736 * Called early on to tune the page writeback dirty limits.
738 * We used to scale dirty pages according to how total memory
739 * related to pages that could be allocated for buffers (by
740 * comparing nr_free_buffer_pages() to vm_total_pages.
742 * However, that was when we used "dirty_ratio" to scale with
743 * all memory, and we don't do that any more. "dirty_ratio"
744 * is now applied to total non-HIGHPAGE memory (by subtracting
745 * totalhigh_pages from vm_total_pages), and as such we can't
746 * get into the old insane situation any more where we had
747 * large amounts of dirty pages compared to a small amount of
748 * non-HIGHMEM memory.
750 * But we might still want to scale the dirty_ratio by how
751 * much memory the box has..
753 void __init page_writeback_init(void)
755 int shift;
757 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
758 writeback_set_ratelimit();
759 register_cpu_notifier(&ratelimit_nb);
761 shift = calc_period_shift();
762 prop_descriptor_init(&vm_completions, shift);
763 prop_descriptor_init(&vm_dirties, shift);
767 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
768 * @mapping: address space structure to write
769 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
770 * @writepage: function called for each page
771 * @data: data passed to writepage function
773 * If a page is already under I/O, write_cache_pages() skips it, even
774 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
775 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
776 * and msync() need to guarantee that all the data which was dirty at the time
777 * the call was made get new I/O started against them. If wbc->sync_mode is
778 * WB_SYNC_ALL then we were called for data integrity and we must wait for
779 * existing IO to complete.
781 int write_cache_pages(struct address_space *mapping,
782 struct writeback_control *wbc, writepage_t writepage,
783 void *data)
785 struct backing_dev_info *bdi = mapping->backing_dev_info;
786 int ret = 0;
787 int done = 0;
788 struct pagevec pvec;
789 int nr_pages;
790 pgoff_t index;
791 pgoff_t end; /* Inclusive */
792 int scanned = 0;
793 int range_whole = 0;
795 if (wbc->nonblocking && bdi_write_congested(bdi)) {
796 wbc->encountered_congestion = 1;
797 return 0;
800 pagevec_init(&pvec, 0);
801 if (wbc->range_cyclic) {
802 index = mapping->writeback_index; /* Start from prev offset */
803 end = -1;
804 } else {
805 index = wbc->range_start >> PAGE_CACHE_SHIFT;
806 end = wbc->range_end >> PAGE_CACHE_SHIFT;
807 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
808 range_whole = 1;
809 scanned = 1;
811 retry:
812 while (!done && (index <= end) &&
813 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
814 PAGECACHE_TAG_DIRTY,
815 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
816 unsigned i;
818 scanned = 1;
819 for (i = 0; i < nr_pages; i++) {
820 struct page *page = pvec.pages[i];
823 * At this point we hold neither mapping->tree_lock nor
824 * lock on the page itself: the page may be truncated or
825 * invalidated (changing page->mapping to NULL), or even
826 * swizzled back from swapper_space to tmpfs file
827 * mapping
829 lock_page(page);
831 if (unlikely(page->mapping != mapping)) {
832 unlock_page(page);
833 continue;
836 if (!wbc->range_cyclic && page->index > end) {
837 done = 1;
838 unlock_page(page);
839 continue;
842 if (wbc->sync_mode != WB_SYNC_NONE)
843 wait_on_page_writeback(page);
845 if (PageWriteback(page) ||
846 !clear_page_dirty_for_io(page)) {
847 unlock_page(page);
848 continue;
851 ret = (*writepage)(page, wbc, data);
853 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
854 unlock_page(page);
855 ret = 0;
857 if (ret || (--(wbc->nr_to_write) <= 0))
858 done = 1;
859 if (wbc->nonblocking && bdi_write_congested(bdi)) {
860 wbc->encountered_congestion = 1;
861 done = 1;
864 pagevec_release(&pvec);
865 cond_resched();
867 if (!scanned && !done) {
869 * We hit the last page and there is more work to be done: wrap
870 * back to the start of the file
872 scanned = 1;
873 index = 0;
874 goto retry;
876 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
877 mapping->writeback_index = index;
878 return ret;
880 EXPORT_SYMBOL(write_cache_pages);
883 * Function used by generic_writepages to call the real writepage
884 * function and set the mapping flags on error
886 static int __writepage(struct page *page, struct writeback_control *wbc,
887 void *data)
889 struct address_space *mapping = data;
890 int ret = mapping->a_ops->writepage(page, wbc);
891 mapping_set_error(mapping, ret);
892 return ret;
896 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
897 * @mapping: address space structure to write
898 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
900 * This is a library function, which implements the writepages()
901 * address_space_operation.
903 int generic_writepages(struct address_space *mapping,
904 struct writeback_control *wbc)
906 /* deal with chardevs and other special file */
907 if (!mapping->a_ops->writepage)
908 return 0;
910 return write_cache_pages(mapping, wbc, __writepage, mapping);
913 EXPORT_SYMBOL(generic_writepages);
915 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
917 int ret;
919 if (wbc->nr_to_write <= 0)
920 return 0;
921 wbc->for_writepages = 1;
922 if (mapping->a_ops->writepages)
923 ret = mapping->a_ops->writepages(mapping, wbc);
924 else
925 ret = generic_writepages(mapping, wbc);
926 wbc->for_writepages = 0;
927 return ret;
931 * write_one_page - write out a single page and optionally wait on I/O
932 * @page: the page to write
933 * @wait: if true, wait on writeout
935 * The page must be locked by the caller and will be unlocked upon return.
937 * write_one_page() returns a negative error code if I/O failed.
939 int write_one_page(struct page *page, int wait)
941 struct address_space *mapping = page->mapping;
942 int ret = 0;
943 struct writeback_control wbc = {
944 .sync_mode = WB_SYNC_ALL,
945 .nr_to_write = 1,
948 BUG_ON(!PageLocked(page));
950 if (wait)
951 wait_on_page_writeback(page);
953 if (clear_page_dirty_for_io(page)) {
954 page_cache_get(page);
955 ret = mapping->a_ops->writepage(page, &wbc);
956 if (ret == 0 && wait) {
957 wait_on_page_writeback(page);
958 if (PageError(page))
959 ret = -EIO;
961 page_cache_release(page);
962 } else {
963 unlock_page(page);
965 return ret;
967 EXPORT_SYMBOL(write_one_page);
970 * For address_spaces which do not use buffers nor write back.
972 int __set_page_dirty_no_writeback(struct page *page)
974 if (!PageDirty(page))
975 SetPageDirty(page);
976 return 0;
980 * For address_spaces which do not use buffers. Just tag the page as dirty in
981 * its radix tree.
983 * This is also used when a single buffer is being dirtied: we want to set the
984 * page dirty in that case, but not all the buffers. This is a "bottom-up"
985 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
987 * Most callers have locked the page, which pins the address_space in memory.
988 * But zap_pte_range() does not lock the page, however in that case the
989 * mapping is pinned by the vma's ->vm_file reference.
991 * We take care to handle the case where the page was truncated from the
992 * mapping by re-checking page_mapping() insode tree_lock.
994 int __set_page_dirty_nobuffers(struct page *page)
996 if (!TestSetPageDirty(page)) {
997 struct address_space *mapping = page_mapping(page);
998 struct address_space *mapping2;
1000 if (!mapping)
1001 return 1;
1003 write_lock_irq(&mapping->tree_lock);
1004 mapping2 = page_mapping(page);
1005 if (mapping2) { /* Race with truncate? */
1006 BUG_ON(mapping2 != mapping);
1007 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1008 if (mapping_cap_account_dirty(mapping)) {
1009 __inc_zone_page_state(page, NR_FILE_DIRTY);
1010 __inc_bdi_stat(mapping->backing_dev_info,
1011 BDI_RECLAIMABLE);
1012 task_io_account_write(PAGE_CACHE_SIZE);
1014 radix_tree_tag_set(&mapping->page_tree,
1015 page_index(page), PAGECACHE_TAG_DIRTY);
1017 write_unlock_irq(&mapping->tree_lock);
1018 if (mapping->host) {
1019 /* !PageAnon && !swapper_space */
1020 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1022 return 1;
1024 return 0;
1026 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1029 * When a writepage implementation decides that it doesn't want to write this
1030 * page for some reason, it should redirty the locked page via
1031 * redirty_page_for_writepage() and it should then unlock the page and return 0
1033 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1035 wbc->pages_skipped++;
1036 return __set_page_dirty_nobuffers(page);
1038 EXPORT_SYMBOL(redirty_page_for_writepage);
1041 * If the mapping doesn't provide a set_page_dirty a_op, then
1042 * just fall through and assume that it wants buffer_heads.
1044 static int __set_page_dirty(struct page *page)
1046 struct address_space *mapping = page_mapping(page);
1048 if (likely(mapping)) {
1049 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1050 #ifdef CONFIG_BLOCK
1051 if (!spd)
1052 spd = __set_page_dirty_buffers;
1053 #endif
1054 return (*spd)(page);
1056 if (!PageDirty(page)) {
1057 if (!TestSetPageDirty(page))
1058 return 1;
1060 return 0;
1063 int fastcall set_page_dirty(struct page *page)
1065 int ret = __set_page_dirty(page);
1066 if (ret)
1067 task_dirty_inc(current);
1068 return ret;
1070 EXPORT_SYMBOL(set_page_dirty);
1073 * set_page_dirty() is racy if the caller has no reference against
1074 * page->mapping->host, and if the page is unlocked. This is because another
1075 * CPU could truncate the page off the mapping and then free the mapping.
1077 * Usually, the page _is_ locked, or the caller is a user-space process which
1078 * holds a reference on the inode by having an open file.
1080 * In other cases, the page should be locked before running set_page_dirty().
1082 int set_page_dirty_lock(struct page *page)
1084 int ret;
1086 lock_page_nosync(page);
1087 ret = set_page_dirty(page);
1088 unlock_page(page);
1089 return ret;
1091 EXPORT_SYMBOL(set_page_dirty_lock);
1094 * Clear a page's dirty flag, while caring for dirty memory accounting.
1095 * Returns true if the page was previously dirty.
1097 * This is for preparing to put the page under writeout. We leave the page
1098 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1099 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1100 * implementation will run either set_page_writeback() or set_page_dirty(),
1101 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1102 * back into sync.
1104 * This incoherency between the page's dirty flag and radix-tree tag is
1105 * unfortunate, but it only exists while the page is locked.
1107 int clear_page_dirty_for_io(struct page *page)
1109 struct address_space *mapping = page_mapping(page);
1111 BUG_ON(!PageLocked(page));
1113 ClearPageReclaim(page);
1114 if (mapping && mapping_cap_account_dirty(mapping)) {
1116 * Yes, Virginia, this is indeed insane.
1118 * We use this sequence to make sure that
1119 * (a) we account for dirty stats properly
1120 * (b) we tell the low-level filesystem to
1121 * mark the whole page dirty if it was
1122 * dirty in a pagetable. Only to then
1123 * (c) clean the page again and return 1 to
1124 * cause the writeback.
1126 * This way we avoid all nasty races with the
1127 * dirty bit in multiple places and clearing
1128 * them concurrently from different threads.
1130 * Note! Normally the "set_page_dirty(page)"
1131 * has no effect on the actual dirty bit - since
1132 * that will already usually be set. But we
1133 * need the side effects, and it can help us
1134 * avoid races.
1136 * We basically use the page "master dirty bit"
1137 * as a serialization point for all the different
1138 * threads doing their things.
1140 if (page_mkclean(page))
1141 set_page_dirty(page);
1143 * We carefully synchronise fault handlers against
1144 * installing a dirty pte and marking the page dirty
1145 * at this point. We do this by having them hold the
1146 * page lock at some point after installing their
1147 * pte, but before marking the page dirty.
1148 * Pages are always locked coming in here, so we get
1149 * the desired exclusion. See mm/memory.c:do_wp_page()
1150 * for more comments.
1152 if (TestClearPageDirty(page)) {
1153 dec_zone_page_state(page, NR_FILE_DIRTY);
1154 dec_bdi_stat(mapping->backing_dev_info,
1155 BDI_RECLAIMABLE);
1156 return 1;
1158 return 0;
1160 return TestClearPageDirty(page);
1162 EXPORT_SYMBOL(clear_page_dirty_for_io);
1164 int test_clear_page_writeback(struct page *page)
1166 struct address_space *mapping = page_mapping(page);
1167 int ret;
1169 if (mapping) {
1170 struct backing_dev_info *bdi = mapping->backing_dev_info;
1171 unsigned long flags;
1173 write_lock_irqsave(&mapping->tree_lock, flags);
1174 ret = TestClearPageWriteback(page);
1175 if (ret) {
1176 radix_tree_tag_clear(&mapping->page_tree,
1177 page_index(page),
1178 PAGECACHE_TAG_WRITEBACK);
1179 if (bdi_cap_writeback_dirty(bdi)) {
1180 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1181 __bdi_writeout_inc(bdi);
1184 write_unlock_irqrestore(&mapping->tree_lock, flags);
1185 } else {
1186 ret = TestClearPageWriteback(page);
1188 if (ret)
1189 dec_zone_page_state(page, NR_WRITEBACK);
1190 return ret;
1193 int test_set_page_writeback(struct page *page)
1195 struct address_space *mapping = page_mapping(page);
1196 int ret;
1198 if (mapping) {
1199 struct backing_dev_info *bdi = mapping->backing_dev_info;
1200 unsigned long flags;
1202 write_lock_irqsave(&mapping->tree_lock, flags);
1203 ret = TestSetPageWriteback(page);
1204 if (!ret) {
1205 radix_tree_tag_set(&mapping->page_tree,
1206 page_index(page),
1207 PAGECACHE_TAG_WRITEBACK);
1208 if (bdi_cap_writeback_dirty(bdi))
1209 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1211 if (!PageDirty(page))
1212 radix_tree_tag_clear(&mapping->page_tree,
1213 page_index(page),
1214 PAGECACHE_TAG_DIRTY);
1215 write_unlock_irqrestore(&mapping->tree_lock, flags);
1216 } else {
1217 ret = TestSetPageWriteback(page);
1219 if (!ret)
1220 inc_zone_page_state(page, NR_WRITEBACK);
1221 return ret;
1224 EXPORT_SYMBOL(test_set_page_writeback);
1227 * Return true if any of the pages in the mapping are marked with the
1228 * passed tag.
1230 int mapping_tagged(struct address_space *mapping, int tag)
1232 int ret;
1233 rcu_read_lock();
1234 ret = radix_tree_tagged(&mapping->page_tree, tag);
1235 rcu_read_unlock();
1236 return ret;
1238 EXPORT_SYMBOL(mapping_tagged);