4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/div64.h>
41 #include <asm/timex.h>
44 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
46 EXPORT_SYMBOL(jiffies_64
);
49 * per-CPU timer vector definitions:
51 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
52 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
53 #define TVN_SIZE (1 << TVN_BITS)
54 #define TVR_SIZE (1 << TVR_BITS)
55 #define TVN_MASK (TVN_SIZE - 1)
56 #define TVR_MASK (TVR_SIZE - 1)
58 typedef struct tvec_s
{
59 struct list_head vec
[TVN_SIZE
];
62 typedef struct tvec_root_s
{
63 struct list_head vec
[TVR_SIZE
];
66 struct tvec_t_base_s
{
68 struct timer_list
*running_timer
;
69 unsigned long timer_jiffies
;
75 } ____cacheline_aligned_in_smp
;
77 typedef struct tvec_t_base_s tvec_base_t
;
79 tvec_base_t boot_tvec_bases
;
80 EXPORT_SYMBOL(boot_tvec_bases
);
81 static DEFINE_PER_CPU(tvec_base_t
*, tvec_bases
) = &boot_tvec_bases
;
83 static inline void set_running_timer(tvec_base_t
*base
,
84 struct timer_list
*timer
)
87 base
->running_timer
= timer
;
91 static void internal_add_timer(tvec_base_t
*base
, struct timer_list
*timer
)
93 unsigned long expires
= timer
->expires
;
94 unsigned long idx
= expires
- base
->timer_jiffies
;
95 struct list_head
*vec
;
98 int i
= expires
& TVR_MASK
;
99 vec
= base
->tv1
.vec
+ i
;
100 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
101 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
102 vec
= base
->tv2
.vec
+ i
;
103 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
104 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
105 vec
= base
->tv3
.vec
+ i
;
106 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
107 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
108 vec
= base
->tv4
.vec
+ i
;
109 } else if ((signed long) idx
< 0) {
111 * Can happen if you add a timer with expires == jiffies,
112 * or you set a timer to go off in the past
114 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
117 /* If the timeout is larger than 0xffffffff on 64-bit
118 * architectures then we use the maximum timeout:
120 if (idx
> 0xffffffffUL
) {
122 expires
= idx
+ base
->timer_jiffies
;
124 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
125 vec
= base
->tv5
.vec
+ i
;
130 list_add_tail(&timer
->entry
, vec
);
134 * init_timer - initialize a timer.
135 * @timer: the timer to be initialized
137 * init_timer() must be done to a timer prior calling *any* of the
138 * other timer functions.
140 void fastcall
init_timer(struct timer_list
*timer
)
142 timer
->entry
.next
= NULL
;
143 timer
->base
= __raw_get_cpu_var(tvec_bases
);
145 EXPORT_SYMBOL(init_timer
);
147 static inline void detach_timer(struct timer_list
*timer
,
150 struct list_head
*entry
= &timer
->entry
;
152 __list_del(entry
->prev
, entry
->next
);
155 entry
->prev
= LIST_POISON2
;
159 * We are using hashed locking: holding per_cpu(tvec_bases).lock
160 * means that all timers which are tied to this base via timer->base are
161 * locked, and the base itself is locked too.
163 * So __run_timers/migrate_timers can safely modify all timers which could
164 * be found on ->tvX lists.
166 * When the timer's base is locked, and the timer removed from list, it is
167 * possible to set timer->base = NULL and drop the lock: the timer remains
170 static tvec_base_t
*lock_timer_base(struct timer_list
*timer
,
171 unsigned long *flags
)
172 __acquires(timer
->base
->lock
)
178 if (likely(base
!= NULL
)) {
179 spin_lock_irqsave(&base
->lock
, *flags
);
180 if (likely(base
== timer
->base
))
182 /* The timer has migrated to another CPU */
183 spin_unlock_irqrestore(&base
->lock
, *flags
);
189 int __mod_timer(struct timer_list
*timer
, unsigned long expires
)
191 tvec_base_t
*base
, *new_base
;
195 BUG_ON(!timer
->function
);
197 base
= lock_timer_base(timer
, &flags
);
199 if (timer_pending(timer
)) {
200 detach_timer(timer
, 0);
204 new_base
= __get_cpu_var(tvec_bases
);
206 if (base
!= new_base
) {
208 * We are trying to schedule the timer on the local CPU.
209 * However we can't change timer's base while it is running,
210 * otherwise del_timer_sync() can't detect that the timer's
211 * handler yet has not finished. This also guarantees that
212 * the timer is serialized wrt itself.
214 if (likely(base
->running_timer
!= timer
)) {
215 /* See the comment in lock_timer_base() */
217 spin_unlock(&base
->lock
);
219 spin_lock(&base
->lock
);
224 timer
->expires
= expires
;
225 internal_add_timer(base
, timer
);
226 spin_unlock_irqrestore(&base
->lock
, flags
);
231 EXPORT_SYMBOL(__mod_timer
);
234 * add_timer_on - start a timer on a particular CPU
235 * @timer: the timer to be added
236 * @cpu: the CPU to start it on
238 * This is not very scalable on SMP. Double adds are not possible.
240 void add_timer_on(struct timer_list
*timer
, int cpu
)
242 tvec_base_t
*base
= per_cpu(tvec_bases
, cpu
);
245 BUG_ON(timer_pending(timer
) || !timer
->function
);
246 spin_lock_irqsave(&base
->lock
, flags
);
248 internal_add_timer(base
, timer
);
249 spin_unlock_irqrestore(&base
->lock
, flags
);
254 * mod_timer - modify a timer's timeout
255 * @timer: the timer to be modified
256 * @expires: new timeout in jiffies
258 * mod_timer is a more efficient way to update the expire field of an
259 * active timer (if the timer is inactive it will be activated)
261 * mod_timer(timer, expires) is equivalent to:
263 * del_timer(timer); timer->expires = expires; add_timer(timer);
265 * Note that if there are multiple unserialized concurrent users of the
266 * same timer, then mod_timer() is the only safe way to modify the timeout,
267 * since add_timer() cannot modify an already running timer.
269 * The function returns whether it has modified a pending timer or not.
270 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
271 * active timer returns 1.)
273 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
275 BUG_ON(!timer
->function
);
278 * This is a common optimization triggered by the
279 * networking code - if the timer is re-modified
280 * to be the same thing then just return:
282 if (timer
->expires
== expires
&& timer_pending(timer
))
285 return __mod_timer(timer
, expires
);
288 EXPORT_SYMBOL(mod_timer
);
291 * del_timer - deactive a timer.
292 * @timer: the timer to be deactivated
294 * del_timer() deactivates a timer - this works on both active and inactive
297 * The function returns whether it has deactivated a pending timer or not.
298 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
299 * active timer returns 1.)
301 int del_timer(struct timer_list
*timer
)
307 if (timer_pending(timer
)) {
308 base
= lock_timer_base(timer
, &flags
);
309 if (timer_pending(timer
)) {
310 detach_timer(timer
, 1);
313 spin_unlock_irqrestore(&base
->lock
, flags
);
319 EXPORT_SYMBOL(del_timer
);
323 * try_to_del_timer_sync - Try to deactivate a timer
324 * @timer: timer do del
326 * This function tries to deactivate a timer. Upon successful (ret >= 0)
327 * exit the timer is not queued and the handler is not running on any CPU.
329 * It must not be called from interrupt contexts.
331 int try_to_del_timer_sync(struct timer_list
*timer
)
337 base
= lock_timer_base(timer
, &flags
);
339 if (base
->running_timer
== timer
)
343 if (timer_pending(timer
)) {
344 detach_timer(timer
, 1);
348 spin_unlock_irqrestore(&base
->lock
, flags
);
354 * del_timer_sync - deactivate a timer and wait for the handler to finish.
355 * @timer: the timer to be deactivated
357 * This function only differs from del_timer() on SMP: besides deactivating
358 * the timer it also makes sure the handler has finished executing on other
361 * Synchronization rules: callers must prevent restarting of the timer,
362 * otherwise this function is meaningless. It must not be called from
363 * interrupt contexts. The caller must not hold locks which would prevent
364 * completion of the timer's handler. The timer's handler must not call
365 * add_timer_on(). Upon exit the timer is not queued and the handler is
366 * not running on any CPU.
368 * The function returns whether it has deactivated a pending timer or not.
370 int del_timer_sync(struct timer_list
*timer
)
373 int ret
= try_to_del_timer_sync(timer
);
380 EXPORT_SYMBOL(del_timer_sync
);
383 static int cascade(tvec_base_t
*base
, tvec_t
*tv
, int index
)
385 /* cascade all the timers from tv up one level */
386 struct timer_list
*timer
, *tmp
;
387 struct list_head tv_list
;
389 list_replace_init(tv
->vec
+ index
, &tv_list
);
392 * We are removing _all_ timers from the list, so we
393 * don't have to detach them individually.
395 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
396 BUG_ON(timer
->base
!= base
);
397 internal_add_timer(base
, timer
);
403 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
406 * __run_timers - run all expired timers (if any) on this CPU.
407 * @base: the timer vector to be processed.
409 * This function cascades all vectors and executes all expired timer
412 static inline void __run_timers(tvec_base_t
*base
)
414 struct timer_list
*timer
;
416 spin_lock_irq(&base
->lock
);
417 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
418 struct list_head work_list
;
419 struct list_head
*head
= &work_list
;
420 int index
= base
->timer_jiffies
& TVR_MASK
;
426 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
427 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
428 !cascade(base
, &base
->tv4
, INDEX(2)))
429 cascade(base
, &base
->tv5
, INDEX(3));
430 ++base
->timer_jiffies
;
431 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
432 while (!list_empty(head
)) {
433 void (*fn
)(unsigned long);
436 timer
= list_entry(head
->next
,struct timer_list
,entry
);
437 fn
= timer
->function
;
440 set_running_timer(base
, timer
);
441 detach_timer(timer
, 1);
442 spin_unlock_irq(&base
->lock
);
444 int preempt_count
= preempt_count();
446 if (preempt_count
!= preempt_count()) {
447 printk(KERN_WARNING
"huh, entered %p "
448 "with preempt_count %08x, exited"
455 spin_lock_irq(&base
->lock
);
458 set_running_timer(base
, NULL
);
459 spin_unlock_irq(&base
->lock
);
462 #ifdef CONFIG_NO_IDLE_HZ
464 * Find out when the next timer event is due to happen. This
465 * is used on S/390 to stop all activity when a cpus is idle.
466 * This functions needs to be called disabled.
468 unsigned long next_timer_interrupt(void)
471 struct list_head
*list
;
472 struct timer_list
*nte
;
473 unsigned long expires
;
474 unsigned long hr_expires
= MAX_JIFFY_OFFSET
;
479 hr_delta
= hrtimer_get_next_event();
480 if (hr_delta
.tv64
!= KTIME_MAX
) {
481 struct timespec tsdelta
;
482 tsdelta
= ktime_to_timespec(hr_delta
);
483 hr_expires
= timespec_to_jiffies(&tsdelta
);
485 return hr_expires
+ jiffies
;
487 hr_expires
+= jiffies
;
489 base
= __get_cpu_var(tvec_bases
);
490 spin_lock(&base
->lock
);
491 expires
= base
->timer_jiffies
+ (LONG_MAX
>> 1);
494 /* Look for timer events in tv1. */
495 j
= base
->timer_jiffies
& TVR_MASK
;
497 list_for_each_entry(nte
, base
->tv1
.vec
+ j
, entry
) {
498 expires
= nte
->expires
;
499 if (j
< (base
->timer_jiffies
& TVR_MASK
))
500 list
= base
->tv2
.vec
+ (INDEX(0));
503 j
= (j
+ 1) & TVR_MASK
;
504 } while (j
!= (base
->timer_jiffies
& TVR_MASK
));
507 varray
[0] = &base
->tv2
;
508 varray
[1] = &base
->tv3
;
509 varray
[2] = &base
->tv4
;
510 varray
[3] = &base
->tv5
;
511 for (i
= 0; i
< 4; i
++) {
514 if (list_empty(varray
[i
]->vec
+ j
)) {
515 j
= (j
+ 1) & TVN_MASK
;
518 list_for_each_entry(nte
, varray
[i
]->vec
+ j
, entry
)
519 if (time_before(nte
->expires
, expires
))
520 expires
= nte
->expires
;
521 if (j
< (INDEX(i
)) && i
< 3)
522 list
= varray
[i
+ 1]->vec
+ (INDEX(i
+ 1));
524 } while (j
!= (INDEX(i
)));
529 * The search wrapped. We need to look at the next list
530 * from next tv element that would cascade into tv element
531 * where we found the timer element.
533 list_for_each_entry(nte
, list
, entry
) {
534 if (time_before(nte
->expires
, expires
))
535 expires
= nte
->expires
;
538 spin_unlock(&base
->lock
);
541 * It can happen that other CPUs service timer IRQs and increment
542 * jiffies, but we have not yet got a local timer tick to process
543 * the timer wheels. In that case, the expiry time can be before
544 * jiffies, but since the high-resolution timer here is relative to
545 * jiffies, the default expression when high-resolution timers are
548 * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
550 * would falsely evaluate to true. If that is the case, just
551 * return jiffies so that we can immediately fire the local timer
553 if (time_before(expires
, jiffies
))
556 if (time_before(hr_expires
, expires
))
563 /******************************************************************/
567 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
568 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
569 * at zero at system boot time, so wall_to_monotonic will be negative,
570 * however, we will ALWAYS keep the tv_nsec part positive so we can use
571 * the usual normalization.
573 struct timespec xtime
__attribute__ ((aligned (16)));
574 struct timespec wall_to_monotonic
__attribute__ ((aligned (16)));
576 EXPORT_SYMBOL(xtime
);
579 /* XXX - all of this timekeeping code should be later moved to time.c */
580 #include <linux/clocksource.h>
581 static struct clocksource
*clock
; /* pointer to current clocksource */
583 #ifdef CONFIG_GENERIC_TIME
585 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
587 * private function, must hold xtime_lock lock when being
588 * called. Returns the number of nanoseconds since the
589 * last call to update_wall_time() (adjusted by NTP scaling)
591 static inline s64
__get_nsec_offset(void)
593 cycle_t cycle_now
, cycle_delta
;
596 /* read clocksource: */
597 cycle_now
= clocksource_read(clock
);
599 /* calculate the delta since the last update_wall_time: */
600 cycle_delta
= (cycle_now
- clock
->cycle_last
) & clock
->mask
;
602 /* convert to nanoseconds: */
603 ns_offset
= cyc2ns(clock
, cycle_delta
);
609 * __get_realtime_clock_ts - Returns the time of day in a timespec
610 * @ts: pointer to the timespec to be set
612 * Returns the time of day in a timespec. Used by
613 * do_gettimeofday() and get_realtime_clock_ts().
615 static inline void __get_realtime_clock_ts(struct timespec
*ts
)
621 seq
= read_seqbegin(&xtime_lock
);
624 nsecs
= __get_nsec_offset();
626 } while (read_seqretry(&xtime_lock
, seq
));
628 timespec_add_ns(ts
, nsecs
);
632 * getnstimeofday - Returns the time of day in a timespec
633 * @ts: pointer to the timespec to be set
635 * Returns the time of day in a timespec.
637 void getnstimeofday(struct timespec
*ts
)
639 __get_realtime_clock_ts(ts
);
642 EXPORT_SYMBOL(getnstimeofday
);
645 * do_gettimeofday - Returns the time of day in a timeval
646 * @tv: pointer to the timeval to be set
648 * NOTE: Users should be converted to using get_realtime_clock_ts()
650 void do_gettimeofday(struct timeval
*tv
)
654 __get_realtime_clock_ts(&now
);
655 tv
->tv_sec
= now
.tv_sec
;
656 tv
->tv_usec
= now
.tv_nsec
/1000;
659 EXPORT_SYMBOL(do_gettimeofday
);
661 * do_settimeofday - Sets the time of day
662 * @tv: pointer to the timespec variable containing the new time
664 * Sets the time of day to the new time and update NTP and notify hrtimers
666 int do_settimeofday(struct timespec
*tv
)
669 time_t wtm_sec
, sec
= tv
->tv_sec
;
670 long wtm_nsec
, nsec
= tv
->tv_nsec
;
672 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
675 write_seqlock_irqsave(&xtime_lock
, flags
);
677 nsec
-= __get_nsec_offset();
679 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
680 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
682 set_normalized_timespec(&xtime
, sec
, nsec
);
683 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
688 write_sequnlock_irqrestore(&xtime_lock
, flags
);
690 /* signal hrtimers about time change */
696 EXPORT_SYMBOL(do_settimeofday
);
699 * change_clocksource - Swaps clocksources if a new one is available
701 * Accumulates current time interval and initializes new clocksource
703 static int change_clocksource(void)
705 struct clocksource
*new;
708 new = clocksource_get_next();
710 now
= clocksource_read(new);
711 nsec
= __get_nsec_offset();
712 timespec_add_ns(&xtime
, nsec
);
715 clock
->cycle_last
= now
;
716 printk(KERN_INFO
"Time: %s clocksource has been installed.\n",
719 } else if (clock
->update_callback
) {
720 return clock
->update_callback();
725 #define change_clocksource() (0)
729 * timeofday_is_continuous - check to see if timekeeping is free running
731 int timekeeping_is_continuous(void)
737 seq
= read_seqbegin(&xtime_lock
);
739 ret
= clock
->is_continuous
;
741 } while (read_seqretry(&xtime_lock
, seq
));
747 * timekeeping_init - Initializes the clocksource and common timekeeping values
749 void __init
timekeeping_init(void)
753 write_seqlock_irqsave(&xtime_lock
, flags
);
757 clock
= clocksource_get_next();
758 clocksource_calculate_interval(clock
, tick_nsec
);
759 clock
->cycle_last
= clocksource_read(clock
);
761 write_sequnlock_irqrestore(&xtime_lock
, flags
);
765 static int timekeeping_suspended
;
767 * timekeeping_resume - Resumes the generic timekeeping subsystem.
770 * This is for the generic clocksource timekeeping.
771 * xtime/wall_to_monotonic/jiffies/etc are
772 * still managed by arch specific suspend/resume code.
774 static int timekeeping_resume(struct sys_device
*dev
)
778 write_seqlock_irqsave(&xtime_lock
, flags
);
779 /* restart the last cycle value */
780 clock
->cycle_last
= clocksource_read(clock
);
782 timekeeping_suspended
= 0;
783 write_sequnlock_irqrestore(&xtime_lock
, flags
);
787 static int timekeeping_suspend(struct sys_device
*dev
, pm_message_t state
)
791 write_seqlock_irqsave(&xtime_lock
, flags
);
792 timekeeping_suspended
= 1;
793 write_sequnlock_irqrestore(&xtime_lock
, flags
);
797 /* sysfs resume/suspend bits for timekeeping */
798 static struct sysdev_class timekeeping_sysclass
= {
799 .resume
= timekeeping_resume
,
800 .suspend
= timekeeping_suspend
,
801 set_kset_name("timekeeping"),
804 static struct sys_device device_timer
= {
806 .cls
= &timekeeping_sysclass
,
809 static int __init
timekeeping_init_device(void)
811 int error
= sysdev_class_register(&timekeeping_sysclass
);
813 error
= sysdev_register(&device_timer
);
817 device_initcall(timekeeping_init_device
);
820 * If the error is already larger, we look ahead even further
821 * to compensate for late or lost adjustments.
823 static __always_inline
int clocksource_bigadjust(s64 error
, s64
*interval
, s64
*offset
)
830 * Use the current error value to determine how much to look ahead.
831 * The larger the error the slower we adjust for it to avoid problems
832 * with losing too many ticks, otherwise we would overadjust and
833 * produce an even larger error. The smaller the adjustment the
834 * faster we try to adjust for it, as lost ticks can do less harm
835 * here. This is tuned so that an error of about 1 msec is adusted
836 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
838 error2
= clock
->error
>> (TICK_LENGTH_SHIFT
+ 22 - 2 * SHIFT_HZ
);
839 error2
= abs(error2
);
840 for (look_ahead
= 0; error2
> 0; look_ahead
++)
844 * Now calculate the error in (1 << look_ahead) ticks, but first
845 * remove the single look ahead already included in the error.
847 tick_error
= current_tick_length() >> (TICK_LENGTH_SHIFT
- clock
->shift
+ 1);
848 tick_error
-= clock
->xtime_interval
>> 1;
849 error
= ((error
- tick_error
) >> look_ahead
) + tick_error
;
851 /* Finally calculate the adjustment shift value. */
856 *interval
= -*interval
;
860 for (adj
= 0; error
> i
; adj
++)
869 * Adjust the multiplier to reduce the error value,
870 * this is optimized for the most common adjustments of -1,0,1,
871 * for other values we can do a bit more work.
873 static void clocksource_adjust(struct clocksource
*clock
, s64 offset
)
875 s64 error
, interval
= clock
->cycle_interval
;
878 error
= clock
->error
>> (TICK_LENGTH_SHIFT
- clock
->shift
- 1);
879 if (error
> interval
) {
881 if (likely(error
<= interval
))
884 adj
= clocksource_bigadjust(error
, &interval
, &offset
);
885 } else if (error
< -interval
) {
887 if (likely(error
>= -interval
)) {
889 interval
= -interval
;
892 adj
= clocksource_bigadjust(error
, &interval
, &offset
);
897 clock
->xtime_interval
+= interval
;
898 clock
->xtime_nsec
-= offset
;
899 clock
->error
-= (interval
- offset
) << (TICK_LENGTH_SHIFT
- clock
->shift
);
903 * update_wall_time - Uses the current clocksource to increment the wall time
905 * Called from the timer interrupt, must hold a write on xtime_lock.
907 static void update_wall_time(void)
911 /* Make sure we're fully resumed: */
912 if (unlikely(timekeeping_suspended
))
915 #ifdef CONFIG_GENERIC_TIME
916 offset
= (clocksource_read(clock
) - clock
->cycle_last
) & clock
->mask
;
918 offset
= clock
->cycle_interval
;
920 clock
->xtime_nsec
+= (s64
)xtime
.tv_nsec
<< clock
->shift
;
922 /* normally this loop will run just once, however in the
923 * case of lost or late ticks, it will accumulate correctly.
925 while (offset
>= clock
->cycle_interval
) {
926 /* accumulate one interval */
927 clock
->xtime_nsec
+= clock
->xtime_interval
;
928 clock
->cycle_last
+= clock
->cycle_interval
;
929 offset
-= clock
->cycle_interval
;
931 if (clock
->xtime_nsec
>= (u64
)NSEC_PER_SEC
<< clock
->shift
) {
932 clock
->xtime_nsec
-= (u64
)NSEC_PER_SEC
<< clock
->shift
;
937 /* interpolator bits */
938 time_interpolator_update(clock
->xtime_interval
941 /* accumulate error between NTP and clock interval */
942 clock
->error
+= current_tick_length();
943 clock
->error
-= clock
->xtime_interval
<< (TICK_LENGTH_SHIFT
- clock
->shift
);
946 /* correct the clock when NTP error is too big */
947 clocksource_adjust(clock
, offset
);
949 /* store full nanoseconds into xtime */
950 xtime
.tv_nsec
= (s64
)clock
->xtime_nsec
>> clock
->shift
;
951 clock
->xtime_nsec
-= (s64
)xtime
.tv_nsec
<< clock
->shift
;
953 /* check to see if there is a new clocksource to use */
954 if (change_clocksource()) {
956 clock
->xtime_nsec
= 0;
957 clocksource_calculate_interval(clock
, tick_nsec
);
962 * Called from the timer interrupt handler to charge one tick to the current
963 * process. user_tick is 1 if the tick is user time, 0 for system.
965 void update_process_times(int user_tick
)
967 struct task_struct
*p
= current
;
968 int cpu
= smp_processor_id();
970 /* Note: this timer irq context must be accounted for as well. */
972 account_user_time(p
, jiffies_to_cputime(1));
974 account_system_time(p
, HARDIRQ_OFFSET
, jiffies_to_cputime(1));
976 if (rcu_pending(cpu
))
977 rcu_check_callbacks(cpu
, user_tick
);
979 run_posix_cpu_timers(p
);
983 * Nr of active tasks - counted in fixed-point numbers
985 static unsigned long count_active_tasks(void)
987 return nr_active() * FIXED_1
;
991 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
992 * imply that avenrun[] is the standard name for this kind of thing.
993 * Nothing else seems to be standardized: the fractional size etc
994 * all seem to differ on different machines.
996 * Requires xtime_lock to access.
998 unsigned long avenrun
[3];
1000 EXPORT_SYMBOL(avenrun
);
1003 * calc_load - given tick count, update the avenrun load estimates.
1004 * This is called while holding a write_lock on xtime_lock.
1006 static inline void calc_load(unsigned long ticks
)
1008 unsigned long active_tasks
; /* fixed-point */
1009 static int count
= LOAD_FREQ
;
1011 active_tasks
= count_active_tasks();
1012 for (count
-= ticks
; count
< 0; count
+= LOAD_FREQ
) {
1013 CALC_LOAD(avenrun
[0], EXP_1
, active_tasks
);
1014 CALC_LOAD(avenrun
[1], EXP_5
, active_tasks
);
1015 CALC_LOAD(avenrun
[2], EXP_15
, active_tasks
);
1020 * This read-write spinlock protects us from races in SMP while
1021 * playing with xtime and avenrun.
1023 #ifndef ARCH_HAVE_XTIME_LOCK
1024 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(xtime_lock
);
1026 EXPORT_SYMBOL(xtime_lock
);
1030 * This function runs timers and the timer-tq in bottom half context.
1032 static void run_timer_softirq(struct softirq_action
*h
)
1034 tvec_base_t
*base
= __get_cpu_var(tvec_bases
);
1036 hrtimer_run_queues();
1037 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1042 * Called by the local, per-CPU timer interrupt on SMP.
1044 void run_local_timers(void)
1046 raise_softirq(TIMER_SOFTIRQ
);
1051 * Called by the timer interrupt. xtime_lock must already be taken
1054 static inline void update_times(unsigned long ticks
)
1061 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1062 * without sampling the sequence number in xtime_lock.
1063 * jiffies is defined in the linker script...
1066 void do_timer(unsigned long ticks
)
1068 jiffies_64
+= ticks
;
1069 update_times(ticks
);
1072 #ifdef __ARCH_WANT_SYS_ALARM
1075 * For backwards compatibility? This can be done in libc so Alpha
1076 * and all newer ports shouldn't need it.
1078 asmlinkage
unsigned long sys_alarm(unsigned int seconds
)
1080 return alarm_setitimer(seconds
);
1088 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1089 * should be moved into arch/i386 instead?
1093 * sys_getpid - return the thread group id of the current process
1095 * Note, despite the name, this returns the tgid not the pid. The tgid and
1096 * the pid are identical unless CLONE_THREAD was specified on clone() in
1097 * which case the tgid is the same in all threads of the same group.
1099 * This is SMP safe as current->tgid does not change.
1101 asmlinkage
long sys_getpid(void)
1103 return current
->tgid
;
1107 * Accessing ->real_parent is not SMP-safe, it could
1108 * change from under us. However, we can use a stale
1109 * value of ->real_parent under rcu_read_lock(), see
1110 * release_task()->call_rcu(delayed_put_task_struct).
1112 asmlinkage
long sys_getppid(void)
1117 pid
= rcu_dereference(current
->real_parent
)->tgid
;
1123 asmlinkage
long sys_getuid(void)
1125 /* Only we change this so SMP safe */
1126 return current
->uid
;
1129 asmlinkage
long sys_geteuid(void)
1131 /* Only we change this so SMP safe */
1132 return current
->euid
;
1135 asmlinkage
long sys_getgid(void)
1137 /* Only we change this so SMP safe */
1138 return current
->gid
;
1141 asmlinkage
long sys_getegid(void)
1143 /* Only we change this so SMP safe */
1144 return current
->egid
;
1149 static void process_timeout(unsigned long __data
)
1151 wake_up_process((struct task_struct
*)__data
);
1155 * schedule_timeout - sleep until timeout
1156 * @timeout: timeout value in jiffies
1158 * Make the current task sleep until @timeout jiffies have
1159 * elapsed. The routine will return immediately unless
1160 * the current task state has been set (see set_current_state()).
1162 * You can set the task state as follows -
1164 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1165 * pass before the routine returns. The routine will return 0
1167 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1168 * delivered to the current task. In this case the remaining time
1169 * in jiffies will be returned, or 0 if the timer expired in time
1171 * The current task state is guaranteed to be TASK_RUNNING when this
1174 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1175 * the CPU away without a bound on the timeout. In this case the return
1176 * value will be %MAX_SCHEDULE_TIMEOUT.
1178 * In all cases the return value is guaranteed to be non-negative.
1180 fastcall
signed long __sched
schedule_timeout(signed long timeout
)
1182 struct timer_list timer
;
1183 unsigned long expire
;
1187 case MAX_SCHEDULE_TIMEOUT
:
1189 * These two special cases are useful to be comfortable
1190 * in the caller. Nothing more. We could take
1191 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1192 * but I' d like to return a valid offset (>=0) to allow
1193 * the caller to do everything it want with the retval.
1199 * Another bit of PARANOID. Note that the retval will be
1200 * 0 since no piece of kernel is supposed to do a check
1201 * for a negative retval of schedule_timeout() (since it
1202 * should never happens anyway). You just have the printk()
1203 * that will tell you if something is gone wrong and where.
1207 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1208 "value %lx from %p\n", timeout
,
1209 __builtin_return_address(0));
1210 current
->state
= TASK_RUNNING
;
1215 expire
= timeout
+ jiffies
;
1217 setup_timer(&timer
, process_timeout
, (unsigned long)current
);
1218 __mod_timer(&timer
, expire
);
1220 del_singleshot_timer_sync(&timer
);
1222 timeout
= expire
- jiffies
;
1225 return timeout
< 0 ? 0 : timeout
;
1227 EXPORT_SYMBOL(schedule_timeout
);
1230 * We can use __set_current_state() here because schedule_timeout() calls
1231 * schedule() unconditionally.
1233 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1235 __set_current_state(TASK_INTERRUPTIBLE
);
1236 return schedule_timeout(timeout
);
1238 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1240 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1242 __set_current_state(TASK_UNINTERRUPTIBLE
);
1243 return schedule_timeout(timeout
);
1245 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1247 /* Thread ID - the internal kernel "pid" */
1248 asmlinkage
long sys_gettid(void)
1250 return current
->pid
;
1254 * sys_sysinfo - fill in sysinfo struct
1255 * @info: pointer to buffer to fill
1257 asmlinkage
long sys_sysinfo(struct sysinfo __user
*info
)
1260 unsigned long mem_total
, sav_total
;
1261 unsigned int mem_unit
, bitcount
;
1264 memset((char *)&val
, 0, sizeof(struct sysinfo
));
1268 seq
= read_seqbegin(&xtime_lock
);
1271 * This is annoying. The below is the same thing
1272 * posix_get_clock_monotonic() does, but it wants to
1273 * take the lock which we want to cover the loads stuff
1277 getnstimeofday(&tp
);
1278 tp
.tv_sec
+= wall_to_monotonic
.tv_sec
;
1279 tp
.tv_nsec
+= wall_to_monotonic
.tv_nsec
;
1280 if (tp
.tv_nsec
- NSEC_PER_SEC
>= 0) {
1281 tp
.tv_nsec
= tp
.tv_nsec
- NSEC_PER_SEC
;
1284 val
.uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1286 val
.loads
[0] = avenrun
[0] << (SI_LOAD_SHIFT
- FSHIFT
);
1287 val
.loads
[1] = avenrun
[1] << (SI_LOAD_SHIFT
- FSHIFT
);
1288 val
.loads
[2] = avenrun
[2] << (SI_LOAD_SHIFT
- FSHIFT
);
1290 val
.procs
= nr_threads
;
1291 } while (read_seqretry(&xtime_lock
, seq
));
1297 * If the sum of all the available memory (i.e. ram + swap)
1298 * is less than can be stored in a 32 bit unsigned long then
1299 * we can be binary compatible with 2.2.x kernels. If not,
1300 * well, in that case 2.2.x was broken anyways...
1302 * -Erik Andersen <andersee@debian.org>
1305 mem_total
= val
.totalram
+ val
.totalswap
;
1306 if (mem_total
< val
.totalram
|| mem_total
< val
.totalswap
)
1309 mem_unit
= val
.mem_unit
;
1310 while (mem_unit
> 1) {
1313 sav_total
= mem_total
;
1315 if (mem_total
< sav_total
)
1320 * If mem_total did not overflow, multiply all memory values by
1321 * val.mem_unit and set it to 1. This leaves things compatible
1322 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1327 val
.totalram
<<= bitcount
;
1328 val
.freeram
<<= bitcount
;
1329 val
.sharedram
<<= bitcount
;
1330 val
.bufferram
<<= bitcount
;
1331 val
.totalswap
<<= bitcount
;
1332 val
.freeswap
<<= bitcount
;
1333 val
.totalhigh
<<= bitcount
;
1334 val
.freehigh
<<= bitcount
;
1337 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1344 * lockdep: we want to track each per-CPU base as a separate lock-class,
1345 * but timer-bases are kmalloc()-ed, so we need to attach separate
1348 static struct lock_class_key base_lock_keys
[NR_CPUS
];
1350 static int __devinit
init_timers_cpu(int cpu
)
1354 static char __devinitdata tvec_base_done
[NR_CPUS
];
1356 if (!tvec_base_done
[cpu
]) {
1357 static char boot_done
;
1361 * The APs use this path later in boot
1363 base
= kmalloc_node(sizeof(*base
), GFP_KERNEL
,
1367 memset(base
, 0, sizeof(*base
));
1368 per_cpu(tvec_bases
, cpu
) = base
;
1371 * This is for the boot CPU - we use compile-time
1372 * static initialisation because per-cpu memory isn't
1373 * ready yet and because the memory allocators are not
1374 * initialised either.
1377 base
= &boot_tvec_bases
;
1379 tvec_base_done
[cpu
] = 1;
1381 base
= per_cpu(tvec_bases
, cpu
);
1384 spin_lock_init(&base
->lock
);
1385 lockdep_set_class(&base
->lock
, base_lock_keys
+ cpu
);
1387 for (j
= 0; j
< TVN_SIZE
; j
++) {
1388 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1389 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1390 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1391 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1393 for (j
= 0; j
< TVR_SIZE
; j
++)
1394 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1396 base
->timer_jiffies
= jiffies
;
1400 #ifdef CONFIG_HOTPLUG_CPU
1401 static void migrate_timer_list(tvec_base_t
*new_base
, struct list_head
*head
)
1403 struct timer_list
*timer
;
1405 while (!list_empty(head
)) {
1406 timer
= list_entry(head
->next
, struct timer_list
, entry
);
1407 detach_timer(timer
, 0);
1408 timer
->base
= new_base
;
1409 internal_add_timer(new_base
, timer
);
1413 static void __devinit
migrate_timers(int cpu
)
1415 tvec_base_t
*old_base
;
1416 tvec_base_t
*new_base
;
1419 BUG_ON(cpu_online(cpu
));
1420 old_base
= per_cpu(tvec_bases
, cpu
);
1421 new_base
= get_cpu_var(tvec_bases
);
1423 local_irq_disable();
1424 spin_lock(&new_base
->lock
);
1425 spin_lock(&old_base
->lock
);
1427 BUG_ON(old_base
->running_timer
);
1429 for (i
= 0; i
< TVR_SIZE
; i
++)
1430 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1431 for (i
= 0; i
< TVN_SIZE
; i
++) {
1432 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1433 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1434 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1435 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1438 spin_unlock(&old_base
->lock
);
1439 spin_unlock(&new_base
->lock
);
1441 put_cpu_var(tvec_bases
);
1443 #endif /* CONFIG_HOTPLUG_CPU */
1445 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1446 unsigned long action
, void *hcpu
)
1448 long cpu
= (long)hcpu
;
1450 case CPU_UP_PREPARE
:
1451 if (init_timers_cpu(cpu
) < 0)
1454 #ifdef CONFIG_HOTPLUG_CPU
1456 migrate_timers(cpu
);
1465 static struct notifier_block __cpuinitdata timers_nb
= {
1466 .notifier_call
= timer_cpu_notify
,
1470 void __init
init_timers(void)
1472 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1473 (void *)(long)smp_processor_id());
1475 BUG_ON(err
== NOTIFY_BAD
);
1476 register_cpu_notifier(&timers_nb
);
1477 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
, NULL
);
1480 #ifdef CONFIG_TIME_INTERPOLATION
1482 struct time_interpolator
*time_interpolator __read_mostly
;
1483 static struct time_interpolator
*time_interpolator_list __read_mostly
;
1484 static DEFINE_SPINLOCK(time_interpolator_lock
);
1486 static inline u64
time_interpolator_get_cycles(unsigned int src
)
1488 unsigned long (*x
)(void);
1492 case TIME_SOURCE_FUNCTION
:
1493 x
= time_interpolator
->addr
;
1496 case TIME_SOURCE_MMIO64
:
1497 return readq_relaxed((void __iomem
*)time_interpolator
->addr
);
1499 case TIME_SOURCE_MMIO32
:
1500 return readl_relaxed((void __iomem
*)time_interpolator
->addr
);
1502 default: return get_cycles();
1506 static inline u64
time_interpolator_get_counter(int writelock
)
1508 unsigned int src
= time_interpolator
->source
;
1510 if (time_interpolator
->jitter
)
1516 lcycle
= time_interpolator
->last_cycle
;
1517 now
= time_interpolator_get_cycles(src
);
1518 if (lcycle
&& time_after(lcycle
, now
))
1521 /* When holding the xtime write lock, there's no need
1522 * to add the overhead of the cmpxchg. Readers are
1523 * force to retry until the write lock is released.
1526 time_interpolator
->last_cycle
= now
;
1529 /* Keep track of the last timer value returned. The use of cmpxchg here
1530 * will cause contention in an SMP environment.
1532 } while (unlikely(cmpxchg(&time_interpolator
->last_cycle
, lcycle
, now
) != lcycle
));
1536 return time_interpolator_get_cycles(src
);
1539 void time_interpolator_reset(void)
1541 time_interpolator
->offset
= 0;
1542 time_interpolator
->last_counter
= time_interpolator_get_counter(1);
1545 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1547 unsigned long time_interpolator_get_offset(void)
1549 /* If we do not have a time interpolator set up then just return zero */
1550 if (!time_interpolator
)
1553 return time_interpolator
->offset
+
1554 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator
);
1557 #define INTERPOLATOR_ADJUST 65536
1558 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1560 void time_interpolator_update(long delta_nsec
)
1563 unsigned long offset
;
1565 /* If there is no time interpolator set up then do nothing */
1566 if (!time_interpolator
)
1570 * The interpolator compensates for late ticks by accumulating the late
1571 * time in time_interpolator->offset. A tick earlier than expected will
1572 * lead to a reset of the offset and a corresponding jump of the clock
1573 * forward. Again this only works if the interpolator clock is running
1574 * slightly slower than the regular clock and the tuning logic insures
1578 counter
= time_interpolator_get_counter(1);
1579 offset
= time_interpolator
->offset
+
1580 GET_TI_NSECS(counter
, time_interpolator
);
1582 if (delta_nsec
< 0 || (unsigned long) delta_nsec
< offset
)
1583 time_interpolator
->offset
= offset
- delta_nsec
;
1585 time_interpolator
->skips
++;
1586 time_interpolator
->ns_skipped
+= delta_nsec
- offset
;
1587 time_interpolator
->offset
= 0;
1589 time_interpolator
->last_counter
= counter
;
1591 /* Tuning logic for time interpolator invoked every minute or so.
1592 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1593 * Increase interpolator clock speed if we skip too much time.
1595 if (jiffies
% INTERPOLATOR_ADJUST
== 0)
1597 if (time_interpolator
->skips
== 0 && time_interpolator
->offset
> tick_nsec
)
1598 time_interpolator
->nsec_per_cyc
--;
1599 if (time_interpolator
->ns_skipped
> INTERPOLATOR_MAX_SKIP
&& time_interpolator
->offset
== 0)
1600 time_interpolator
->nsec_per_cyc
++;
1601 time_interpolator
->skips
= 0;
1602 time_interpolator
->ns_skipped
= 0;
1607 is_better_time_interpolator(struct time_interpolator
*new)
1609 if (!time_interpolator
)
1611 return new->frequency
> 2*time_interpolator
->frequency
||
1612 (unsigned long)new->drift
< (unsigned long)time_interpolator
->drift
;
1616 register_time_interpolator(struct time_interpolator
*ti
)
1618 unsigned long flags
;
1621 BUG_ON(ti
->frequency
== 0 || ti
->mask
== 0);
1623 ti
->nsec_per_cyc
= ((u64
)NSEC_PER_SEC
<< ti
->shift
) / ti
->frequency
;
1624 spin_lock(&time_interpolator_lock
);
1625 write_seqlock_irqsave(&xtime_lock
, flags
);
1626 if (is_better_time_interpolator(ti
)) {
1627 time_interpolator
= ti
;
1628 time_interpolator_reset();
1630 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1632 ti
->next
= time_interpolator_list
;
1633 time_interpolator_list
= ti
;
1634 spin_unlock(&time_interpolator_lock
);
1638 unregister_time_interpolator(struct time_interpolator
*ti
)
1640 struct time_interpolator
*curr
, **prev
;
1641 unsigned long flags
;
1643 spin_lock(&time_interpolator_lock
);
1644 prev
= &time_interpolator_list
;
1645 for (curr
= *prev
; curr
; curr
= curr
->next
) {
1653 write_seqlock_irqsave(&xtime_lock
, flags
);
1654 if (ti
== time_interpolator
) {
1655 /* we lost the best time-interpolator: */
1656 time_interpolator
= NULL
;
1657 /* find the next-best interpolator */
1658 for (curr
= time_interpolator_list
; curr
; curr
= curr
->next
)
1659 if (is_better_time_interpolator(curr
))
1660 time_interpolator
= curr
;
1661 time_interpolator_reset();
1663 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1664 spin_unlock(&time_interpolator_lock
);
1666 #endif /* CONFIG_TIME_INTERPOLATION */
1669 * msleep - sleep safely even with waitqueue interruptions
1670 * @msecs: Time in milliseconds to sleep for
1672 void msleep(unsigned int msecs
)
1674 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1677 timeout
= schedule_timeout_uninterruptible(timeout
);
1680 EXPORT_SYMBOL(msleep
);
1683 * msleep_interruptible - sleep waiting for signals
1684 * @msecs: Time in milliseconds to sleep for
1686 unsigned long msleep_interruptible(unsigned int msecs
)
1688 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1690 while (timeout
&& !signal_pending(current
))
1691 timeout
= schedule_timeout_interruptible(timeout
);
1692 return jiffies_to_msecs(timeout
);
1695 EXPORT_SYMBOL(msleep_interruptible
);