sched: domain sysctl fixes: use kcalloc()
[linux-2.6/mini2440.git] / kernel / sched.c
blobd29950a60411a252223c20d7d8f8fbcc278efcf4
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
113 #ifdef CONFIG_SMP
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 #endif
134 static inline int rt_policy(int policy)
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
141 static inline int task_has_rt_policy(struct task_struct *p)
143 return rt_policy(p->policy);
147 * This is the priority-queue data structure of the RT scheduling class:
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
154 #ifdef CONFIG_FAIR_GROUP_SCHED
156 struct cfs_rq;
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
196 struct task_group *tg;
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
204 return tg;
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
214 #else
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
225 u64 exec_clock;
226 u64 min_vruntime;
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
234 struct sched_entity *curr;
236 unsigned long nr_spread_over;
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
262 * This is the main, per-CPU runqueue data structure.
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
268 struct rq {
269 spinlock_t lock; /* runqueue lock */
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
275 unsigned long nr_running;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278 unsigned char idle_at_tick;
279 #ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281 #endif
282 struct load_weight load; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates;
284 u64 nr_switches;
286 struct cfs_rq cfs;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
289 #endif
290 struct rt_rq rt;
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
298 unsigned long nr_uninterruptible;
300 struct task_struct *curr, *idle;
301 unsigned long next_balance;
302 struct mm_struct *prev_mm;
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
307 unsigned int clock_warps, clock_overflows;
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
310 u64 tick_timestamp;
312 atomic_t nr_iowait;
314 #ifdef CONFIG_SMP
315 struct sched_domain *sd;
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
320 int cpu; /* cpu of this runqueue */
322 struct task_struct *migration_thread;
323 struct list_head migration_queue;
324 #endif
326 #ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
334 unsigned long yld_count;
336 /* schedule() stats */
337 unsigned long sched_switch;
338 unsigned long sched_count;
339 unsigned long sched_goidle;
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count;
343 unsigned long ttwu_local;
345 /* BKL stats */
346 unsigned long bkl_count;
347 #endif
348 struct lock_class_key rq_lock_key;
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352 static DEFINE_MUTEX(sched_hotcpu_mutex);
354 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
356 rq->curr->sched_class->check_preempt_curr(rq, p);
359 static inline int cpu_of(struct rq *rq)
361 #ifdef CONFIG_SMP
362 return rq->cpu;
363 #else
364 return 0;
365 #endif
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
372 static void __update_rq_clock(struct rq *rq)
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
379 #ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381 #endif
383 * Protect against sched_clock() occasionally going backwards:
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
390 * Catch too large forward jumps too:
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
409 static void update_rq_clock(struct rq *rq)
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417 * See detach_destroy_domains: synchronize_sched for details.
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
422 #define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
425 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426 #define this_rq() (&__get_cpu_var(runqueues))
427 #define task_rq(p) cpu_rq(task_cpu(p))
428 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
433 #ifdef CONFIG_SCHED_DEBUG
434 # define const_debug __read_mostly
435 #else
436 # define const_debug static const
437 #endif
440 * Debugging: various feature bits
442 enum {
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
445 SCHED_FEAT_TREE_AVG = 4,
446 SCHED_FEAT_APPROX_AVG = 8,
447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
451 const_debug unsigned int sysctl_sched_features =
452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
453 SCHED_FEAT_START_DEBIT *1 |
454 SCHED_FEAT_TREE_AVG *0 |
455 SCHED_FEAT_APPROX_AVG *0 |
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
459 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
465 unsigned long long cpu_clock(int cpu)
467 unsigned long long now;
468 unsigned long flags;
469 struct rq *rq;
471 local_irq_save(flags);
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
475 local_irq_restore(flags);
477 return now;
479 EXPORT_SYMBOL_GPL(cpu_clock);
481 #ifndef prepare_arch_switch
482 # define prepare_arch_switch(next) do { } while (0)
483 #endif
484 #ifndef finish_arch_switch
485 # define finish_arch_switch(prev) do { } while (0)
486 #endif
488 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
489 static inline int task_running(struct rq *rq, struct task_struct *p)
491 return rq->curr == p;
494 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
498 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
500 #ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503 #endif
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
511 spin_unlock_irq(&rq->lock);
514 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
515 static inline int task_running(struct rq *rq, struct task_struct *p)
517 #ifdef CONFIG_SMP
518 return p->oncpu;
519 #else
520 return rq->curr == p;
521 #endif
524 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
526 #ifdef CONFIG_SMP
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
532 next->oncpu = 1;
533 #endif
534 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536 #else
537 spin_unlock(&rq->lock);
538 #endif
541 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
543 #ifdef CONFIG_SMP
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
549 smp_wmb();
550 prev->oncpu = 0;
551 #endif
552 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
554 #endif
556 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
562 static inline struct rq *__task_rq_lock(struct task_struct *p)
563 __acquires(rq->lock)
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
570 spin_unlock(&rq->lock);
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
579 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
580 __acquires(rq->lock)
582 struct rq *rq;
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
590 spin_unlock_irqrestore(&rq->lock, *flags);
594 static void __task_rq_unlock(struct rq *rq)
595 __releases(rq->lock)
597 spin_unlock(&rq->lock);
600 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
601 __releases(rq->lock)
603 spin_unlock_irqrestore(&rq->lock, *flags);
607 * this_rq_lock - lock this runqueue and disable interrupts.
609 static struct rq *this_rq_lock(void)
610 __acquires(rq->lock)
612 struct rq *rq;
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
618 return rq;
622 * We are going deep-idle (irqs are disabled):
624 void sched_clock_idle_sleep_event(void)
626 struct rq *rq = cpu_rq(smp_processor_id());
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
633 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
636 * We just idled delta nanoseconds (called with irqs disabled):
638 void sched_clock_idle_wakeup_event(u64 delta_ns)
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
643 rq->idle_clock += delta_ns;
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
655 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
658 * resched_task - mark a task 'to be rescheduled now'.
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
664 #ifdef CONFIG_SMP
666 #ifndef tsk_is_polling
667 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668 #endif
670 static void resched_task(struct task_struct *p)
672 int cpu;
674 assert_spin_locked(&task_rq(p)->lock);
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
691 static void resched_cpu(int cpu)
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
701 #else
702 static inline void resched_task(struct task_struct *p)
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
707 #endif
709 #if BITS_PER_LONG == 32
710 # define WMULT_CONST (~0UL)
711 #else
712 # define WMULT_CONST (1UL << 32)
713 #endif
715 #define WMULT_SHIFT 32
718 * Shift right and round:
720 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
722 static unsigned long
723 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
726 u64 tmp;
728 if (unlikely(!lw->inv_weight))
729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
731 tmp = (u64)delta_exec * weight;
733 * Check whether we'd overflow the 64-bit multiplication:
735 if (unlikely(tmp > WMULT_CONST))
736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
737 WMULT_SHIFT/2);
738 else
739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
744 static inline unsigned long
745 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
750 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
752 lw->weight += inc;
755 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
757 lw->weight -= dec;
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
769 #define WEIGHT_IDLEPRIO 2
770 #define WMULT_IDLEPRIO (1 << 31)
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
784 static const int prio_to_weight[40] = {
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
802 static const u32 prio_to_wmult[40] = {
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
813 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
820 struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
826 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
830 int *this_best_prio, struct rq_iterator *iterator);
832 #include "sched_stats.h"
833 #include "sched_idletask.c"
834 #include "sched_fair.c"
835 #include "sched_rt.c"
836 #ifdef CONFIG_SCHED_DEBUG
837 # include "sched_debug.c"
838 #endif
840 #define sched_class_highest (&rt_sched_class)
843 * Update delta_exec, delta_fair fields for rq.
845 * delta_fair clock advances at a rate inversely proportional to
846 * total load (rq->load.weight) on the runqueue, while
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
854 * This function is called /before/ updating rq->load
855 * and when switching tasks.
857 static inline void inc_load(struct rq *rq, const struct task_struct *p)
859 update_load_add(&rq->load, p->se.load.weight);
862 static inline void dec_load(struct rq *rq, const struct task_struct *p)
864 update_load_sub(&rq->load, p->se.load.weight);
867 static void inc_nr_running(struct task_struct *p, struct rq *rq)
869 rq->nr_running++;
870 inc_load(rq, p);
873 static void dec_nr_running(struct task_struct *p, struct rq *rq)
875 rq->nr_running--;
876 dec_load(rq, p);
879 static void set_load_weight(struct task_struct *p)
881 if (task_has_rt_policy(p)) {
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
888 * SCHED_IDLE tasks get minimal weight:
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
900 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
902 sched_info_queued(p);
903 p->sched_class->enqueue_task(rq, p, wakeup);
904 p->se.on_rq = 1;
907 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
909 p->sched_class->dequeue_task(rq, p, sleep);
910 p->se.on_rq = 0;
914 * __normal_prio - return the priority that is based on the static prio
916 static inline int __normal_prio(struct task_struct *p)
918 return p->static_prio;
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
928 static inline int normal_prio(struct task_struct *p)
930 int prio;
932 if (task_has_rt_policy(p))
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
946 static int effective_prio(struct task_struct *p)
948 p->normal_prio = normal_prio(p);
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
960 * activate_task - move a task to the runqueue.
962 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
967 enqueue_task(rq, p, wakeup);
968 inc_nr_running(p, rq);
972 * deactivate_task - remove a task from the runqueue.
974 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
979 dequeue_task(rq, p, sleep);
980 dec_nr_running(p, rq);
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
987 inline int task_curr(const struct task_struct *p)
989 return cpu_curr(task_cpu(p)) == p;
992 /* Used instead of source_load when we know the type == 0 */
993 unsigned long weighted_cpuload(const int cpu)
995 return cpu_rq(cpu)->load.weight;
998 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1000 #ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
1002 #endif
1003 set_task_cfs_rq(p);
1006 #ifdef CONFIG_SMP
1009 * Is this task likely cache-hot:
1011 static inline int
1012 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1014 s64 delta;
1016 if (p->sched_class != &fair_sched_class)
1017 return 0;
1019 if (sysctl_sched_migration_cost == -1)
1020 return 1;
1021 if (sysctl_sched_migration_cost == 0)
1022 return 0;
1024 delta = now - p->se.exec_start;
1026 return delta < (s64)sysctl_sched_migration_cost;
1030 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1032 int old_cpu = task_cpu(p);
1033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1036 u64 clock_offset;
1038 clock_offset = old_rq->clock - new_rq->clock;
1040 #ifdef CONFIG_SCHEDSTATS
1041 if (p->se.wait_start)
1042 p->se.wait_start -= clock_offset;
1043 if (p->se.sleep_start)
1044 p->se.sleep_start -= clock_offset;
1045 if (p->se.block_start)
1046 p->se.block_start -= clock_offset;
1047 if (old_cpu != new_cpu) {
1048 schedstat_inc(p, se.nr_migrations);
1049 if (task_hot(p, old_rq->clock, NULL))
1050 schedstat_inc(p, se.nr_forced2_migrations);
1052 #endif
1053 p->se.vruntime -= old_cfsrq->min_vruntime -
1054 new_cfsrq->min_vruntime;
1056 __set_task_cpu(p, new_cpu);
1059 struct migration_req {
1060 struct list_head list;
1062 struct task_struct *task;
1063 int dest_cpu;
1065 struct completion done;
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1072 static int
1073 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1075 struct rq *rq = task_rq(p);
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1081 if (!p->se.on_rq && !task_running(rq, p)) {
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1086 init_completion(&req->done);
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
1091 return 1;
1095 * wait_task_inactive - wait for a thread to unschedule.
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1103 void wait_task_inactive(struct task_struct *p)
1105 unsigned long flags;
1106 int running, on_rq;
1107 struct rq *rq;
1109 for (;;) {
1111 * We do the initial early heuristics without holding
1112 * any task-queue locks at all. We'll only try to get
1113 * the runqueue lock when things look like they will
1114 * work out!
1116 rq = task_rq(p);
1119 * If the task is actively running on another CPU
1120 * still, just relax and busy-wait without holding
1121 * any locks.
1123 * NOTE! Since we don't hold any locks, it's not
1124 * even sure that "rq" stays as the right runqueue!
1125 * But we don't care, since "task_running()" will
1126 * return false if the runqueue has changed and p
1127 * is actually now running somewhere else!
1129 while (task_running(rq, p))
1130 cpu_relax();
1133 * Ok, time to look more closely! We need the rq
1134 * lock now, to be *sure*. If we're wrong, we'll
1135 * just go back and repeat.
1137 rq = task_rq_lock(p, &flags);
1138 running = task_running(rq, p);
1139 on_rq = p->se.on_rq;
1140 task_rq_unlock(rq, &flags);
1143 * Was it really running after all now that we
1144 * checked with the proper locks actually held?
1146 * Oops. Go back and try again..
1148 if (unlikely(running)) {
1149 cpu_relax();
1150 continue;
1154 * It's not enough that it's not actively running,
1155 * it must be off the runqueue _entirely_, and not
1156 * preempted!
1158 * So if it wa still runnable (but just not actively
1159 * running right now), it's preempted, and we should
1160 * yield - it could be a while.
1162 if (unlikely(on_rq)) {
1163 schedule_timeout_uninterruptible(1);
1164 continue;
1168 * Ahh, all good. It wasn't running, and it wasn't
1169 * runnable, which means that it will never become
1170 * running in the future either. We're all done!
1172 break;
1176 /***
1177 * kick_process - kick a running thread to enter/exit the kernel
1178 * @p: the to-be-kicked thread
1180 * Cause a process which is running on another CPU to enter
1181 * kernel-mode, without any delay. (to get signals handled.)
1183 * NOTE: this function doesnt have to take the runqueue lock,
1184 * because all it wants to ensure is that the remote task enters
1185 * the kernel. If the IPI races and the task has been migrated
1186 * to another CPU then no harm is done and the purpose has been
1187 * achieved as well.
1189 void kick_process(struct task_struct *p)
1191 int cpu;
1193 preempt_disable();
1194 cpu = task_cpu(p);
1195 if ((cpu != smp_processor_id()) && task_curr(p))
1196 smp_send_reschedule(cpu);
1197 preempt_enable();
1201 * Return a low guess at the load of a migration-source cpu weighted
1202 * according to the scheduling class and "nice" value.
1204 * We want to under-estimate the load of migration sources, to
1205 * balance conservatively.
1207 static unsigned long source_load(int cpu, int type)
1209 struct rq *rq = cpu_rq(cpu);
1210 unsigned long total = weighted_cpuload(cpu);
1212 if (type == 0)
1213 return total;
1215 return min(rq->cpu_load[type-1], total);
1219 * Return a high guess at the load of a migration-target cpu weighted
1220 * according to the scheduling class and "nice" value.
1222 static unsigned long target_load(int cpu, int type)
1224 struct rq *rq = cpu_rq(cpu);
1225 unsigned long total = weighted_cpuload(cpu);
1227 if (type == 0)
1228 return total;
1230 return max(rq->cpu_load[type-1], total);
1234 * Return the average load per task on the cpu's run queue
1236 static inline unsigned long cpu_avg_load_per_task(int cpu)
1238 struct rq *rq = cpu_rq(cpu);
1239 unsigned long total = weighted_cpuload(cpu);
1240 unsigned long n = rq->nr_running;
1242 return n ? total / n : SCHED_LOAD_SCALE;
1246 * find_idlest_group finds and returns the least busy CPU group within the
1247 * domain.
1249 static struct sched_group *
1250 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1252 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1253 unsigned long min_load = ULONG_MAX, this_load = 0;
1254 int load_idx = sd->forkexec_idx;
1255 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1257 do {
1258 unsigned long load, avg_load;
1259 int local_group;
1260 int i;
1262 /* Skip over this group if it has no CPUs allowed */
1263 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1264 continue;
1266 local_group = cpu_isset(this_cpu, group->cpumask);
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1271 for_each_cpu_mask(i, group->cpumask) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1278 avg_load += load;
1281 /* Adjust by relative CPU power of the group */
1282 avg_load = sg_div_cpu_power(group,
1283 avg_load * SCHED_LOAD_SCALE);
1285 if (local_group) {
1286 this_load = avg_load;
1287 this = group;
1288 } else if (avg_load < min_load) {
1289 min_load = avg_load;
1290 idlest = group;
1292 } while (group = group->next, group != sd->groups);
1294 if (!idlest || 100*this_load < imbalance*min_load)
1295 return NULL;
1296 return idlest;
1300 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1302 static int
1303 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1305 cpumask_t tmp;
1306 unsigned long load, min_load = ULONG_MAX;
1307 int idlest = -1;
1308 int i;
1310 /* Traverse only the allowed CPUs */
1311 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1313 for_each_cpu_mask(i, tmp) {
1314 load = weighted_cpuload(i);
1316 if (load < min_load || (load == min_load && i == this_cpu)) {
1317 min_load = load;
1318 idlest = i;
1322 return idlest;
1326 * sched_balance_self: balance the current task (running on cpu) in domains
1327 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1328 * SD_BALANCE_EXEC.
1330 * Balance, ie. select the least loaded group.
1332 * Returns the target CPU number, or the same CPU if no balancing is needed.
1334 * preempt must be disabled.
1336 static int sched_balance_self(int cpu, int flag)
1338 struct task_struct *t = current;
1339 struct sched_domain *tmp, *sd = NULL;
1341 for_each_domain(cpu, tmp) {
1343 * If power savings logic is enabled for a domain, stop there.
1345 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1346 break;
1347 if (tmp->flags & flag)
1348 sd = tmp;
1351 while (sd) {
1352 cpumask_t span;
1353 struct sched_group *group;
1354 int new_cpu, weight;
1356 if (!(sd->flags & flag)) {
1357 sd = sd->child;
1358 continue;
1361 span = sd->span;
1362 group = find_idlest_group(sd, t, cpu);
1363 if (!group) {
1364 sd = sd->child;
1365 continue;
1368 new_cpu = find_idlest_cpu(group, t, cpu);
1369 if (new_cpu == -1 || new_cpu == cpu) {
1370 /* Now try balancing at a lower domain level of cpu */
1371 sd = sd->child;
1372 continue;
1375 /* Now try balancing at a lower domain level of new_cpu */
1376 cpu = new_cpu;
1377 sd = NULL;
1378 weight = cpus_weight(span);
1379 for_each_domain(cpu, tmp) {
1380 if (weight <= cpus_weight(tmp->span))
1381 break;
1382 if (tmp->flags & flag)
1383 sd = tmp;
1385 /* while loop will break here if sd == NULL */
1388 return cpu;
1391 #endif /* CONFIG_SMP */
1394 * wake_idle() will wake a task on an idle cpu if task->cpu is
1395 * not idle and an idle cpu is available. The span of cpus to
1396 * search starts with cpus closest then further out as needed,
1397 * so we always favor a closer, idle cpu.
1399 * Returns the CPU we should wake onto.
1401 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402 static int wake_idle(int cpu, struct task_struct *p)
1404 cpumask_t tmp;
1405 struct sched_domain *sd;
1406 int i;
1409 * If it is idle, then it is the best cpu to run this task.
1411 * This cpu is also the best, if it has more than one task already.
1412 * Siblings must be also busy(in most cases) as they didn't already
1413 * pickup the extra load from this cpu and hence we need not check
1414 * sibling runqueue info. This will avoid the checks and cache miss
1415 * penalities associated with that.
1417 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1418 return cpu;
1420 for_each_domain(cpu, sd) {
1421 if (sd->flags & SD_WAKE_IDLE) {
1422 cpus_and(tmp, sd->span, p->cpus_allowed);
1423 for_each_cpu_mask(i, tmp) {
1424 if (idle_cpu(i)) {
1425 if (i != task_cpu(p)) {
1426 schedstat_inc(p,
1427 se.nr_wakeups_idle);
1429 return i;
1432 } else {
1433 break;
1436 return cpu;
1438 #else
1439 static inline int wake_idle(int cpu, struct task_struct *p)
1441 return cpu;
1443 #endif
1445 /***
1446 * try_to_wake_up - wake up a thread
1447 * @p: the to-be-woken-up thread
1448 * @state: the mask of task states that can be woken
1449 * @sync: do a synchronous wakeup?
1451 * Put it on the run-queue if it's not already there. The "current"
1452 * thread is always on the run-queue (except when the actual
1453 * re-schedule is in progress), and as such you're allowed to do
1454 * the simpler "current->state = TASK_RUNNING" to mark yourself
1455 * runnable without the overhead of this.
1457 * returns failure only if the task is already active.
1459 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1461 int cpu, orig_cpu, this_cpu, success = 0;
1462 unsigned long flags;
1463 long old_state;
1464 struct rq *rq;
1465 #ifdef CONFIG_SMP
1466 struct sched_domain *sd, *this_sd = NULL;
1467 unsigned long load, this_load;
1468 int new_cpu;
1469 #endif
1471 rq = task_rq_lock(p, &flags);
1472 old_state = p->state;
1473 if (!(old_state & state))
1474 goto out;
1476 if (p->se.on_rq)
1477 goto out_running;
1479 cpu = task_cpu(p);
1480 orig_cpu = cpu;
1481 this_cpu = smp_processor_id();
1483 #ifdef CONFIG_SMP
1484 if (unlikely(task_running(rq, p)))
1485 goto out_activate;
1487 new_cpu = cpu;
1489 schedstat_inc(rq, ttwu_count);
1490 if (cpu == this_cpu) {
1491 schedstat_inc(rq, ttwu_local);
1492 goto out_set_cpu;
1495 for_each_domain(this_cpu, sd) {
1496 if (cpu_isset(cpu, sd->span)) {
1497 schedstat_inc(sd, ttwu_wake_remote);
1498 this_sd = sd;
1499 break;
1503 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1504 goto out_set_cpu;
1507 * Check for affine wakeup and passive balancing possibilities.
1509 if (this_sd) {
1510 int idx = this_sd->wake_idx;
1511 unsigned int imbalance;
1513 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1515 load = source_load(cpu, idx);
1516 this_load = target_load(this_cpu, idx);
1518 new_cpu = this_cpu; /* Wake to this CPU if we can */
1520 if (this_sd->flags & SD_WAKE_AFFINE) {
1521 unsigned long tl = this_load;
1522 unsigned long tl_per_task;
1524 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1525 tl_per_task = cpu_avg_load_per_task(this_cpu);
1528 * If sync wakeup then subtract the (maximum possible)
1529 * effect of the currently running task from the load
1530 * of the current CPU:
1532 if (sync)
1533 tl -= current->se.load.weight;
1535 if ((tl <= load &&
1536 tl + target_load(cpu, idx) <= tl_per_task) ||
1537 100*(tl + p->se.load.weight) <= imbalance*load) {
1539 * This domain has SD_WAKE_AFFINE and
1540 * p is cache cold in this domain, and
1541 * there is no bad imbalance.
1543 schedstat_inc(this_sd, ttwu_move_affine);
1544 schedstat_inc(p, se.nr_wakeups_affine);
1545 goto out_set_cpu;
1550 * Start passive balancing when half the imbalance_pct
1551 * limit is reached.
1553 if (this_sd->flags & SD_WAKE_BALANCE) {
1554 if (imbalance*this_load <= 100*load) {
1555 schedstat_inc(this_sd, ttwu_move_balance);
1556 schedstat_inc(p, se.nr_wakeups_passive);
1557 goto out_set_cpu;
1562 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1563 out_set_cpu:
1564 new_cpu = wake_idle(new_cpu, p);
1565 if (new_cpu != cpu) {
1566 set_task_cpu(p, new_cpu);
1567 task_rq_unlock(rq, &flags);
1568 /* might preempt at this point */
1569 rq = task_rq_lock(p, &flags);
1570 old_state = p->state;
1571 if (!(old_state & state))
1572 goto out;
1573 if (p->se.on_rq)
1574 goto out_running;
1576 this_cpu = smp_processor_id();
1577 cpu = task_cpu(p);
1580 out_activate:
1581 #endif /* CONFIG_SMP */
1582 schedstat_inc(p, se.nr_wakeups);
1583 if (sync)
1584 schedstat_inc(p, se.nr_wakeups_sync);
1585 if (orig_cpu != cpu)
1586 schedstat_inc(p, se.nr_wakeups_migrate);
1587 if (cpu == this_cpu)
1588 schedstat_inc(p, se.nr_wakeups_local);
1589 else
1590 schedstat_inc(p, se.nr_wakeups_remote);
1591 update_rq_clock(rq);
1592 activate_task(rq, p, 1);
1594 * Sync wakeups (i.e. those types of wakeups where the waker
1595 * has indicated that it will leave the CPU in short order)
1596 * don't trigger a preemption, if the woken up task will run on
1597 * this cpu. (in this case the 'I will reschedule' promise of
1598 * the waker guarantees that the freshly woken up task is going
1599 * to be considered on this CPU.)
1601 if (!sync || cpu != this_cpu)
1602 check_preempt_curr(rq, p);
1603 success = 1;
1605 out_running:
1606 p->state = TASK_RUNNING;
1607 out:
1608 task_rq_unlock(rq, &flags);
1610 return success;
1613 int fastcall wake_up_process(struct task_struct *p)
1615 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1616 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1618 EXPORT_SYMBOL(wake_up_process);
1620 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1622 return try_to_wake_up(p, state, 0);
1626 * Perform scheduler related setup for a newly forked process p.
1627 * p is forked by current.
1629 * __sched_fork() is basic setup used by init_idle() too:
1631 static void __sched_fork(struct task_struct *p)
1633 p->se.exec_start = 0;
1634 p->se.sum_exec_runtime = 0;
1635 p->se.prev_sum_exec_runtime = 0;
1637 #ifdef CONFIG_SCHEDSTATS
1638 p->se.wait_start = 0;
1639 p->se.sum_sleep_runtime = 0;
1640 p->se.sleep_start = 0;
1641 p->se.block_start = 0;
1642 p->se.sleep_max = 0;
1643 p->se.block_max = 0;
1644 p->se.exec_max = 0;
1645 p->se.slice_max = 0;
1646 p->se.wait_max = 0;
1647 #endif
1649 INIT_LIST_HEAD(&p->run_list);
1650 p->se.on_rq = 0;
1652 #ifdef CONFIG_PREEMPT_NOTIFIERS
1653 INIT_HLIST_HEAD(&p->preempt_notifiers);
1654 #endif
1657 * We mark the process as running here, but have not actually
1658 * inserted it onto the runqueue yet. This guarantees that
1659 * nobody will actually run it, and a signal or other external
1660 * event cannot wake it up and insert it on the runqueue either.
1662 p->state = TASK_RUNNING;
1666 * fork()/clone()-time setup:
1668 void sched_fork(struct task_struct *p, int clone_flags)
1670 int cpu = get_cpu();
1672 __sched_fork(p);
1674 #ifdef CONFIG_SMP
1675 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1676 #endif
1677 set_task_cpu(p, cpu);
1680 * Make sure we do not leak PI boosting priority to the child:
1682 p->prio = current->normal_prio;
1683 if (!rt_prio(p->prio))
1684 p->sched_class = &fair_sched_class;
1686 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1687 if (likely(sched_info_on()))
1688 memset(&p->sched_info, 0, sizeof(p->sched_info));
1689 #endif
1690 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1691 p->oncpu = 0;
1692 #endif
1693 #ifdef CONFIG_PREEMPT
1694 /* Want to start with kernel preemption disabled. */
1695 task_thread_info(p)->preempt_count = 1;
1696 #endif
1697 put_cpu();
1701 * wake_up_new_task - wake up a newly created task for the first time.
1703 * This function will do some initial scheduler statistics housekeeping
1704 * that must be done for every newly created context, then puts the task
1705 * on the runqueue and wakes it.
1707 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1709 unsigned long flags;
1710 struct rq *rq;
1712 rq = task_rq_lock(p, &flags);
1713 BUG_ON(p->state != TASK_RUNNING);
1714 update_rq_clock(rq);
1716 p->prio = effective_prio(p);
1718 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
1719 activate_task(rq, p, 0);
1720 } else {
1722 * Let the scheduling class do new task startup
1723 * management (if any):
1725 p->sched_class->task_new(rq, p);
1726 inc_nr_running(p, rq);
1728 check_preempt_curr(rq, p);
1729 task_rq_unlock(rq, &flags);
1732 #ifdef CONFIG_PREEMPT_NOTIFIERS
1735 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1736 * @notifier: notifier struct to register
1738 void preempt_notifier_register(struct preempt_notifier *notifier)
1740 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1742 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1745 * preempt_notifier_unregister - no longer interested in preemption notifications
1746 * @notifier: notifier struct to unregister
1748 * This is safe to call from within a preemption notifier.
1750 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1752 hlist_del(&notifier->link);
1754 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1756 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1758 struct preempt_notifier *notifier;
1759 struct hlist_node *node;
1761 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1762 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1765 static void
1766 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1767 struct task_struct *next)
1769 struct preempt_notifier *notifier;
1770 struct hlist_node *node;
1772 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1773 notifier->ops->sched_out(notifier, next);
1776 #else
1778 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1782 static void
1783 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1784 struct task_struct *next)
1788 #endif
1791 * prepare_task_switch - prepare to switch tasks
1792 * @rq: the runqueue preparing to switch
1793 * @prev: the current task that is being switched out
1794 * @next: the task we are going to switch to.
1796 * This is called with the rq lock held and interrupts off. It must
1797 * be paired with a subsequent finish_task_switch after the context
1798 * switch.
1800 * prepare_task_switch sets up locking and calls architecture specific
1801 * hooks.
1803 static inline void
1804 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1805 struct task_struct *next)
1807 fire_sched_out_preempt_notifiers(prev, next);
1808 prepare_lock_switch(rq, next);
1809 prepare_arch_switch(next);
1813 * finish_task_switch - clean up after a task-switch
1814 * @rq: runqueue associated with task-switch
1815 * @prev: the thread we just switched away from.
1817 * finish_task_switch must be called after the context switch, paired
1818 * with a prepare_task_switch call before the context switch.
1819 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1820 * and do any other architecture-specific cleanup actions.
1822 * Note that we may have delayed dropping an mm in context_switch(). If
1823 * so, we finish that here outside of the runqueue lock. (Doing it
1824 * with the lock held can cause deadlocks; see schedule() for
1825 * details.)
1827 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1828 __releases(rq->lock)
1830 struct mm_struct *mm = rq->prev_mm;
1831 long prev_state;
1833 rq->prev_mm = NULL;
1836 * A task struct has one reference for the use as "current".
1837 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1838 * schedule one last time. The schedule call will never return, and
1839 * the scheduled task must drop that reference.
1840 * The test for TASK_DEAD must occur while the runqueue locks are
1841 * still held, otherwise prev could be scheduled on another cpu, die
1842 * there before we look at prev->state, and then the reference would
1843 * be dropped twice.
1844 * Manfred Spraul <manfred@colorfullife.com>
1846 prev_state = prev->state;
1847 finish_arch_switch(prev);
1848 finish_lock_switch(rq, prev);
1849 fire_sched_in_preempt_notifiers(current);
1850 if (mm)
1851 mmdrop(mm);
1852 if (unlikely(prev_state == TASK_DEAD)) {
1854 * Remove function-return probe instances associated with this
1855 * task and put them back on the free list.
1857 kprobe_flush_task(prev);
1858 put_task_struct(prev);
1863 * schedule_tail - first thing a freshly forked thread must call.
1864 * @prev: the thread we just switched away from.
1866 asmlinkage void schedule_tail(struct task_struct *prev)
1867 __releases(rq->lock)
1869 struct rq *rq = this_rq();
1871 finish_task_switch(rq, prev);
1872 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1873 /* In this case, finish_task_switch does not reenable preemption */
1874 preempt_enable();
1875 #endif
1876 if (current->set_child_tid)
1877 put_user(current->pid, current->set_child_tid);
1881 * context_switch - switch to the new MM and the new
1882 * thread's register state.
1884 static inline void
1885 context_switch(struct rq *rq, struct task_struct *prev,
1886 struct task_struct *next)
1888 struct mm_struct *mm, *oldmm;
1890 prepare_task_switch(rq, prev, next);
1891 mm = next->mm;
1892 oldmm = prev->active_mm;
1894 * For paravirt, this is coupled with an exit in switch_to to
1895 * combine the page table reload and the switch backend into
1896 * one hypercall.
1898 arch_enter_lazy_cpu_mode();
1900 if (unlikely(!mm)) {
1901 next->active_mm = oldmm;
1902 atomic_inc(&oldmm->mm_count);
1903 enter_lazy_tlb(oldmm, next);
1904 } else
1905 switch_mm(oldmm, mm, next);
1907 if (unlikely(!prev->mm)) {
1908 prev->active_mm = NULL;
1909 rq->prev_mm = oldmm;
1912 * Since the runqueue lock will be released by the next
1913 * task (which is an invalid locking op but in the case
1914 * of the scheduler it's an obvious special-case), so we
1915 * do an early lockdep release here:
1917 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1918 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1919 #endif
1921 /* Here we just switch the register state and the stack. */
1922 switch_to(prev, next, prev);
1924 barrier();
1926 * this_rq must be evaluated again because prev may have moved
1927 * CPUs since it called schedule(), thus the 'rq' on its stack
1928 * frame will be invalid.
1930 finish_task_switch(this_rq(), prev);
1934 * nr_running, nr_uninterruptible and nr_context_switches:
1936 * externally visible scheduler statistics: current number of runnable
1937 * threads, current number of uninterruptible-sleeping threads, total
1938 * number of context switches performed since bootup.
1940 unsigned long nr_running(void)
1942 unsigned long i, sum = 0;
1944 for_each_online_cpu(i)
1945 sum += cpu_rq(i)->nr_running;
1947 return sum;
1950 unsigned long nr_uninterruptible(void)
1952 unsigned long i, sum = 0;
1954 for_each_possible_cpu(i)
1955 sum += cpu_rq(i)->nr_uninterruptible;
1958 * Since we read the counters lockless, it might be slightly
1959 * inaccurate. Do not allow it to go below zero though:
1961 if (unlikely((long)sum < 0))
1962 sum = 0;
1964 return sum;
1967 unsigned long long nr_context_switches(void)
1969 int i;
1970 unsigned long long sum = 0;
1972 for_each_possible_cpu(i)
1973 sum += cpu_rq(i)->nr_switches;
1975 return sum;
1978 unsigned long nr_iowait(void)
1980 unsigned long i, sum = 0;
1982 for_each_possible_cpu(i)
1983 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1985 return sum;
1988 unsigned long nr_active(void)
1990 unsigned long i, running = 0, uninterruptible = 0;
1992 for_each_online_cpu(i) {
1993 running += cpu_rq(i)->nr_running;
1994 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1997 if (unlikely((long)uninterruptible < 0))
1998 uninterruptible = 0;
2000 return running + uninterruptible;
2004 * Update rq->cpu_load[] statistics. This function is usually called every
2005 * scheduler tick (TICK_NSEC).
2007 static void update_cpu_load(struct rq *this_rq)
2009 unsigned long this_load = this_rq->load.weight;
2010 int i, scale;
2012 this_rq->nr_load_updates++;
2014 /* Update our load: */
2015 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2016 unsigned long old_load, new_load;
2018 /* scale is effectively 1 << i now, and >> i divides by scale */
2020 old_load = this_rq->cpu_load[i];
2021 new_load = this_load;
2023 * Round up the averaging division if load is increasing. This
2024 * prevents us from getting stuck on 9 if the load is 10, for
2025 * example.
2027 if (new_load > old_load)
2028 new_load += scale-1;
2029 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2033 #ifdef CONFIG_SMP
2036 * double_rq_lock - safely lock two runqueues
2038 * Note this does not disable interrupts like task_rq_lock,
2039 * you need to do so manually before calling.
2041 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2042 __acquires(rq1->lock)
2043 __acquires(rq2->lock)
2045 BUG_ON(!irqs_disabled());
2046 if (rq1 == rq2) {
2047 spin_lock(&rq1->lock);
2048 __acquire(rq2->lock); /* Fake it out ;) */
2049 } else {
2050 if (rq1 < rq2) {
2051 spin_lock(&rq1->lock);
2052 spin_lock(&rq2->lock);
2053 } else {
2054 spin_lock(&rq2->lock);
2055 spin_lock(&rq1->lock);
2058 update_rq_clock(rq1);
2059 update_rq_clock(rq2);
2063 * double_rq_unlock - safely unlock two runqueues
2065 * Note this does not restore interrupts like task_rq_unlock,
2066 * you need to do so manually after calling.
2068 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2069 __releases(rq1->lock)
2070 __releases(rq2->lock)
2072 spin_unlock(&rq1->lock);
2073 if (rq1 != rq2)
2074 spin_unlock(&rq2->lock);
2075 else
2076 __release(rq2->lock);
2080 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2082 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2083 __releases(this_rq->lock)
2084 __acquires(busiest->lock)
2085 __acquires(this_rq->lock)
2087 if (unlikely(!irqs_disabled())) {
2088 /* printk() doesn't work good under rq->lock */
2089 spin_unlock(&this_rq->lock);
2090 BUG_ON(1);
2092 if (unlikely(!spin_trylock(&busiest->lock))) {
2093 if (busiest < this_rq) {
2094 spin_unlock(&this_rq->lock);
2095 spin_lock(&busiest->lock);
2096 spin_lock(&this_rq->lock);
2097 } else
2098 spin_lock(&busiest->lock);
2103 * If dest_cpu is allowed for this process, migrate the task to it.
2104 * This is accomplished by forcing the cpu_allowed mask to only
2105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2106 * the cpu_allowed mask is restored.
2108 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2110 struct migration_req req;
2111 unsigned long flags;
2112 struct rq *rq;
2114 rq = task_rq_lock(p, &flags);
2115 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2116 || unlikely(cpu_is_offline(dest_cpu)))
2117 goto out;
2119 /* force the process onto the specified CPU */
2120 if (migrate_task(p, dest_cpu, &req)) {
2121 /* Need to wait for migration thread (might exit: take ref). */
2122 struct task_struct *mt = rq->migration_thread;
2124 get_task_struct(mt);
2125 task_rq_unlock(rq, &flags);
2126 wake_up_process(mt);
2127 put_task_struct(mt);
2128 wait_for_completion(&req.done);
2130 return;
2132 out:
2133 task_rq_unlock(rq, &flags);
2137 * sched_exec - execve() is a valuable balancing opportunity, because at
2138 * this point the task has the smallest effective memory and cache footprint.
2140 void sched_exec(void)
2142 int new_cpu, this_cpu = get_cpu();
2143 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2144 put_cpu();
2145 if (new_cpu != this_cpu)
2146 sched_migrate_task(current, new_cpu);
2150 * pull_task - move a task from a remote runqueue to the local runqueue.
2151 * Both runqueues must be locked.
2153 static void pull_task(struct rq *src_rq, struct task_struct *p,
2154 struct rq *this_rq, int this_cpu)
2156 deactivate_task(src_rq, p, 0);
2157 set_task_cpu(p, this_cpu);
2158 activate_task(this_rq, p, 0);
2160 * Note that idle threads have a prio of MAX_PRIO, for this test
2161 * to be always true for them.
2163 check_preempt_curr(this_rq, p);
2167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2169 static
2170 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2171 struct sched_domain *sd, enum cpu_idle_type idle,
2172 int *all_pinned)
2175 * We do not migrate tasks that are:
2176 * 1) running (obviously), or
2177 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2178 * 3) are cache-hot on their current CPU.
2180 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2181 schedstat_inc(p, se.nr_failed_migrations_affine);
2182 return 0;
2184 *all_pinned = 0;
2186 if (task_running(rq, p)) {
2187 schedstat_inc(p, se.nr_failed_migrations_running);
2188 return 0;
2192 * Aggressive migration if:
2193 * 1) task is cache cold, or
2194 * 2) too many balance attempts have failed.
2197 if (!task_hot(p, rq->clock, sd) ||
2198 sd->nr_balance_failed > sd->cache_nice_tries) {
2199 #ifdef CONFIG_SCHEDSTATS
2200 if (task_hot(p, rq->clock, sd)) {
2201 schedstat_inc(sd, lb_hot_gained[idle]);
2202 schedstat_inc(p, se.nr_forced_migrations);
2204 #endif
2205 return 1;
2208 if (task_hot(p, rq->clock, sd)) {
2209 schedstat_inc(p, se.nr_failed_migrations_hot);
2210 return 0;
2212 return 1;
2215 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2216 unsigned long max_nr_move, unsigned long max_load_move,
2217 struct sched_domain *sd, enum cpu_idle_type idle,
2218 int *all_pinned, unsigned long *load_moved,
2219 int *this_best_prio, struct rq_iterator *iterator)
2221 int pulled = 0, pinned = 0, skip_for_load;
2222 struct task_struct *p;
2223 long rem_load_move = max_load_move;
2225 if (max_nr_move == 0 || max_load_move == 0)
2226 goto out;
2228 pinned = 1;
2231 * Start the load-balancing iterator:
2233 p = iterator->start(iterator->arg);
2234 next:
2235 if (!p)
2236 goto out;
2238 * To help distribute high priority tasks accross CPUs we don't
2239 * skip a task if it will be the highest priority task (i.e. smallest
2240 * prio value) on its new queue regardless of its load weight
2242 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2243 SCHED_LOAD_SCALE_FUZZ;
2244 if ((skip_for_load && p->prio >= *this_best_prio) ||
2245 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2246 p = iterator->next(iterator->arg);
2247 goto next;
2250 pull_task(busiest, p, this_rq, this_cpu);
2251 pulled++;
2252 rem_load_move -= p->se.load.weight;
2255 * We only want to steal up to the prescribed number of tasks
2256 * and the prescribed amount of weighted load.
2258 if (pulled < max_nr_move && rem_load_move > 0) {
2259 if (p->prio < *this_best_prio)
2260 *this_best_prio = p->prio;
2261 p = iterator->next(iterator->arg);
2262 goto next;
2264 out:
2266 * Right now, this is the only place pull_task() is called,
2267 * so we can safely collect pull_task() stats here rather than
2268 * inside pull_task().
2270 schedstat_add(sd, lb_gained[idle], pulled);
2272 if (all_pinned)
2273 *all_pinned = pinned;
2274 *load_moved = max_load_move - rem_load_move;
2275 return pulled;
2279 * move_tasks tries to move up to max_load_move weighted load from busiest to
2280 * this_rq, as part of a balancing operation within domain "sd".
2281 * Returns 1 if successful and 0 otherwise.
2283 * Called with both runqueues locked.
2285 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2286 unsigned long max_load_move,
2287 struct sched_domain *sd, enum cpu_idle_type idle,
2288 int *all_pinned)
2290 const struct sched_class *class = sched_class_highest;
2291 unsigned long total_load_moved = 0;
2292 int this_best_prio = this_rq->curr->prio;
2294 do {
2295 total_load_moved +=
2296 class->load_balance(this_rq, this_cpu, busiest,
2297 ULONG_MAX, max_load_move - total_load_moved,
2298 sd, idle, all_pinned, &this_best_prio);
2299 class = class->next;
2300 } while (class && max_load_move > total_load_moved);
2302 return total_load_moved > 0;
2306 * move_one_task tries to move exactly one task from busiest to this_rq, as
2307 * part of active balancing operations within "domain".
2308 * Returns 1 if successful and 0 otherwise.
2310 * Called with both runqueues locked.
2312 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2313 struct sched_domain *sd, enum cpu_idle_type idle)
2315 const struct sched_class *class;
2316 int this_best_prio = MAX_PRIO;
2318 for (class = sched_class_highest; class; class = class->next)
2319 if (class->load_balance(this_rq, this_cpu, busiest,
2320 1, ULONG_MAX, sd, idle, NULL,
2321 &this_best_prio))
2322 return 1;
2324 return 0;
2328 * find_busiest_group finds and returns the busiest CPU group within the
2329 * domain. It calculates and returns the amount of weighted load which
2330 * should be moved to restore balance via the imbalance parameter.
2332 static struct sched_group *
2333 find_busiest_group(struct sched_domain *sd, int this_cpu,
2334 unsigned long *imbalance, enum cpu_idle_type idle,
2335 int *sd_idle, cpumask_t *cpus, int *balance)
2337 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2338 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2339 unsigned long max_pull;
2340 unsigned long busiest_load_per_task, busiest_nr_running;
2341 unsigned long this_load_per_task, this_nr_running;
2342 int load_idx;
2343 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2344 int power_savings_balance = 1;
2345 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2346 unsigned long min_nr_running = ULONG_MAX;
2347 struct sched_group *group_min = NULL, *group_leader = NULL;
2348 #endif
2350 max_load = this_load = total_load = total_pwr = 0;
2351 busiest_load_per_task = busiest_nr_running = 0;
2352 this_load_per_task = this_nr_running = 0;
2353 if (idle == CPU_NOT_IDLE)
2354 load_idx = sd->busy_idx;
2355 else if (idle == CPU_NEWLY_IDLE)
2356 load_idx = sd->newidle_idx;
2357 else
2358 load_idx = sd->idle_idx;
2360 do {
2361 unsigned long load, group_capacity;
2362 int local_group;
2363 int i;
2364 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2365 unsigned long sum_nr_running, sum_weighted_load;
2367 local_group = cpu_isset(this_cpu, group->cpumask);
2369 if (local_group)
2370 balance_cpu = first_cpu(group->cpumask);
2372 /* Tally up the load of all CPUs in the group */
2373 sum_weighted_load = sum_nr_running = avg_load = 0;
2375 for_each_cpu_mask(i, group->cpumask) {
2376 struct rq *rq;
2378 if (!cpu_isset(i, *cpus))
2379 continue;
2381 rq = cpu_rq(i);
2383 if (*sd_idle && rq->nr_running)
2384 *sd_idle = 0;
2386 /* Bias balancing toward cpus of our domain */
2387 if (local_group) {
2388 if (idle_cpu(i) && !first_idle_cpu) {
2389 first_idle_cpu = 1;
2390 balance_cpu = i;
2393 load = target_load(i, load_idx);
2394 } else
2395 load = source_load(i, load_idx);
2397 avg_load += load;
2398 sum_nr_running += rq->nr_running;
2399 sum_weighted_load += weighted_cpuload(i);
2403 * First idle cpu or the first cpu(busiest) in this sched group
2404 * is eligible for doing load balancing at this and above
2405 * domains. In the newly idle case, we will allow all the cpu's
2406 * to do the newly idle load balance.
2408 if (idle != CPU_NEWLY_IDLE && local_group &&
2409 balance_cpu != this_cpu && balance) {
2410 *balance = 0;
2411 goto ret;
2414 total_load += avg_load;
2415 total_pwr += group->__cpu_power;
2417 /* Adjust by relative CPU power of the group */
2418 avg_load = sg_div_cpu_power(group,
2419 avg_load * SCHED_LOAD_SCALE);
2421 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2423 if (local_group) {
2424 this_load = avg_load;
2425 this = group;
2426 this_nr_running = sum_nr_running;
2427 this_load_per_task = sum_weighted_load;
2428 } else if (avg_load > max_load &&
2429 sum_nr_running > group_capacity) {
2430 max_load = avg_load;
2431 busiest = group;
2432 busiest_nr_running = sum_nr_running;
2433 busiest_load_per_task = sum_weighted_load;
2436 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2438 * Busy processors will not participate in power savings
2439 * balance.
2441 if (idle == CPU_NOT_IDLE ||
2442 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2443 goto group_next;
2446 * If the local group is idle or completely loaded
2447 * no need to do power savings balance at this domain
2449 if (local_group && (this_nr_running >= group_capacity ||
2450 !this_nr_running))
2451 power_savings_balance = 0;
2454 * If a group is already running at full capacity or idle,
2455 * don't include that group in power savings calculations
2457 if (!power_savings_balance || sum_nr_running >= group_capacity
2458 || !sum_nr_running)
2459 goto group_next;
2462 * Calculate the group which has the least non-idle load.
2463 * This is the group from where we need to pick up the load
2464 * for saving power
2466 if ((sum_nr_running < min_nr_running) ||
2467 (sum_nr_running == min_nr_running &&
2468 first_cpu(group->cpumask) <
2469 first_cpu(group_min->cpumask))) {
2470 group_min = group;
2471 min_nr_running = sum_nr_running;
2472 min_load_per_task = sum_weighted_load /
2473 sum_nr_running;
2477 * Calculate the group which is almost near its
2478 * capacity but still has some space to pick up some load
2479 * from other group and save more power
2481 if (sum_nr_running <= group_capacity - 1) {
2482 if (sum_nr_running > leader_nr_running ||
2483 (sum_nr_running == leader_nr_running &&
2484 first_cpu(group->cpumask) >
2485 first_cpu(group_leader->cpumask))) {
2486 group_leader = group;
2487 leader_nr_running = sum_nr_running;
2490 group_next:
2491 #endif
2492 group = group->next;
2493 } while (group != sd->groups);
2495 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2496 goto out_balanced;
2498 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2500 if (this_load >= avg_load ||
2501 100*max_load <= sd->imbalance_pct*this_load)
2502 goto out_balanced;
2504 busiest_load_per_task /= busiest_nr_running;
2506 * We're trying to get all the cpus to the average_load, so we don't
2507 * want to push ourselves above the average load, nor do we wish to
2508 * reduce the max loaded cpu below the average load, as either of these
2509 * actions would just result in more rebalancing later, and ping-pong
2510 * tasks around. Thus we look for the minimum possible imbalance.
2511 * Negative imbalances (*we* are more loaded than anyone else) will
2512 * be counted as no imbalance for these purposes -- we can't fix that
2513 * by pulling tasks to us. Be careful of negative numbers as they'll
2514 * appear as very large values with unsigned longs.
2516 if (max_load <= busiest_load_per_task)
2517 goto out_balanced;
2520 * In the presence of smp nice balancing, certain scenarios can have
2521 * max load less than avg load(as we skip the groups at or below
2522 * its cpu_power, while calculating max_load..)
2524 if (max_load < avg_load) {
2525 *imbalance = 0;
2526 goto small_imbalance;
2529 /* Don't want to pull so many tasks that a group would go idle */
2530 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2532 /* How much load to actually move to equalise the imbalance */
2533 *imbalance = min(max_pull * busiest->__cpu_power,
2534 (avg_load - this_load) * this->__cpu_power)
2535 / SCHED_LOAD_SCALE;
2538 * if *imbalance is less than the average load per runnable task
2539 * there is no gaurantee that any tasks will be moved so we'll have
2540 * a think about bumping its value to force at least one task to be
2541 * moved
2543 if (*imbalance < busiest_load_per_task) {
2544 unsigned long tmp, pwr_now, pwr_move;
2545 unsigned int imbn;
2547 small_imbalance:
2548 pwr_move = pwr_now = 0;
2549 imbn = 2;
2550 if (this_nr_running) {
2551 this_load_per_task /= this_nr_running;
2552 if (busiest_load_per_task > this_load_per_task)
2553 imbn = 1;
2554 } else
2555 this_load_per_task = SCHED_LOAD_SCALE;
2557 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2558 busiest_load_per_task * imbn) {
2559 *imbalance = busiest_load_per_task;
2560 return busiest;
2564 * OK, we don't have enough imbalance to justify moving tasks,
2565 * however we may be able to increase total CPU power used by
2566 * moving them.
2569 pwr_now += busiest->__cpu_power *
2570 min(busiest_load_per_task, max_load);
2571 pwr_now += this->__cpu_power *
2572 min(this_load_per_task, this_load);
2573 pwr_now /= SCHED_LOAD_SCALE;
2575 /* Amount of load we'd subtract */
2576 tmp = sg_div_cpu_power(busiest,
2577 busiest_load_per_task * SCHED_LOAD_SCALE);
2578 if (max_load > tmp)
2579 pwr_move += busiest->__cpu_power *
2580 min(busiest_load_per_task, max_load - tmp);
2582 /* Amount of load we'd add */
2583 if (max_load * busiest->__cpu_power <
2584 busiest_load_per_task * SCHED_LOAD_SCALE)
2585 tmp = sg_div_cpu_power(this,
2586 max_load * busiest->__cpu_power);
2587 else
2588 tmp = sg_div_cpu_power(this,
2589 busiest_load_per_task * SCHED_LOAD_SCALE);
2590 pwr_move += this->__cpu_power *
2591 min(this_load_per_task, this_load + tmp);
2592 pwr_move /= SCHED_LOAD_SCALE;
2594 /* Move if we gain throughput */
2595 if (pwr_move > pwr_now)
2596 *imbalance = busiest_load_per_task;
2599 return busiest;
2601 out_balanced:
2602 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2603 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2604 goto ret;
2606 if (this == group_leader && group_leader != group_min) {
2607 *imbalance = min_load_per_task;
2608 return group_min;
2610 #endif
2611 ret:
2612 *imbalance = 0;
2613 return NULL;
2617 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2619 static struct rq *
2620 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2621 unsigned long imbalance, cpumask_t *cpus)
2623 struct rq *busiest = NULL, *rq;
2624 unsigned long max_load = 0;
2625 int i;
2627 for_each_cpu_mask(i, group->cpumask) {
2628 unsigned long wl;
2630 if (!cpu_isset(i, *cpus))
2631 continue;
2633 rq = cpu_rq(i);
2634 wl = weighted_cpuload(i);
2636 if (rq->nr_running == 1 && wl > imbalance)
2637 continue;
2639 if (wl > max_load) {
2640 max_load = wl;
2641 busiest = rq;
2645 return busiest;
2649 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2650 * so long as it is large enough.
2652 #define MAX_PINNED_INTERVAL 512
2655 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2656 * tasks if there is an imbalance.
2658 static int load_balance(int this_cpu, struct rq *this_rq,
2659 struct sched_domain *sd, enum cpu_idle_type idle,
2660 int *balance)
2662 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2663 struct sched_group *group;
2664 unsigned long imbalance;
2665 struct rq *busiest;
2666 cpumask_t cpus = CPU_MASK_ALL;
2667 unsigned long flags;
2670 * When power savings policy is enabled for the parent domain, idle
2671 * sibling can pick up load irrespective of busy siblings. In this case,
2672 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2673 * portraying it as CPU_NOT_IDLE.
2675 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2676 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2677 sd_idle = 1;
2679 schedstat_inc(sd, lb_count[idle]);
2681 redo:
2682 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2683 &cpus, balance);
2685 if (*balance == 0)
2686 goto out_balanced;
2688 if (!group) {
2689 schedstat_inc(sd, lb_nobusyg[idle]);
2690 goto out_balanced;
2693 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2694 if (!busiest) {
2695 schedstat_inc(sd, lb_nobusyq[idle]);
2696 goto out_balanced;
2699 BUG_ON(busiest == this_rq);
2701 schedstat_add(sd, lb_imbalance[idle], imbalance);
2703 ld_moved = 0;
2704 if (busiest->nr_running > 1) {
2706 * Attempt to move tasks. If find_busiest_group has found
2707 * an imbalance but busiest->nr_running <= 1, the group is
2708 * still unbalanced. ld_moved simply stays zero, so it is
2709 * correctly treated as an imbalance.
2711 local_irq_save(flags);
2712 double_rq_lock(this_rq, busiest);
2713 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2714 imbalance, sd, idle, &all_pinned);
2715 double_rq_unlock(this_rq, busiest);
2716 local_irq_restore(flags);
2719 * some other cpu did the load balance for us.
2721 if (ld_moved && this_cpu != smp_processor_id())
2722 resched_cpu(this_cpu);
2724 /* All tasks on this runqueue were pinned by CPU affinity */
2725 if (unlikely(all_pinned)) {
2726 cpu_clear(cpu_of(busiest), cpus);
2727 if (!cpus_empty(cpus))
2728 goto redo;
2729 goto out_balanced;
2733 if (!ld_moved) {
2734 schedstat_inc(sd, lb_failed[idle]);
2735 sd->nr_balance_failed++;
2737 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2739 spin_lock_irqsave(&busiest->lock, flags);
2741 /* don't kick the migration_thread, if the curr
2742 * task on busiest cpu can't be moved to this_cpu
2744 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2745 spin_unlock_irqrestore(&busiest->lock, flags);
2746 all_pinned = 1;
2747 goto out_one_pinned;
2750 if (!busiest->active_balance) {
2751 busiest->active_balance = 1;
2752 busiest->push_cpu = this_cpu;
2753 active_balance = 1;
2755 spin_unlock_irqrestore(&busiest->lock, flags);
2756 if (active_balance)
2757 wake_up_process(busiest->migration_thread);
2760 * We've kicked active balancing, reset the failure
2761 * counter.
2763 sd->nr_balance_failed = sd->cache_nice_tries+1;
2765 } else
2766 sd->nr_balance_failed = 0;
2768 if (likely(!active_balance)) {
2769 /* We were unbalanced, so reset the balancing interval */
2770 sd->balance_interval = sd->min_interval;
2771 } else {
2773 * If we've begun active balancing, start to back off. This
2774 * case may not be covered by the all_pinned logic if there
2775 * is only 1 task on the busy runqueue (because we don't call
2776 * move_tasks).
2778 if (sd->balance_interval < sd->max_interval)
2779 sd->balance_interval *= 2;
2782 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2783 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2784 return -1;
2785 return ld_moved;
2787 out_balanced:
2788 schedstat_inc(sd, lb_balanced[idle]);
2790 sd->nr_balance_failed = 0;
2792 out_one_pinned:
2793 /* tune up the balancing interval */
2794 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2795 (sd->balance_interval < sd->max_interval))
2796 sd->balance_interval *= 2;
2798 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2800 return -1;
2801 return 0;
2805 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2806 * tasks if there is an imbalance.
2808 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2809 * this_rq is locked.
2811 static int
2812 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2814 struct sched_group *group;
2815 struct rq *busiest = NULL;
2816 unsigned long imbalance;
2817 int ld_moved = 0;
2818 int sd_idle = 0;
2819 int all_pinned = 0;
2820 cpumask_t cpus = CPU_MASK_ALL;
2823 * When power savings policy is enabled for the parent domain, idle
2824 * sibling can pick up load irrespective of busy siblings. In this case,
2825 * let the state of idle sibling percolate up as IDLE, instead of
2826 * portraying it as CPU_NOT_IDLE.
2828 if (sd->flags & SD_SHARE_CPUPOWER &&
2829 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2830 sd_idle = 1;
2832 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2833 redo:
2834 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2835 &sd_idle, &cpus, NULL);
2836 if (!group) {
2837 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2838 goto out_balanced;
2841 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2842 &cpus);
2843 if (!busiest) {
2844 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2845 goto out_balanced;
2848 BUG_ON(busiest == this_rq);
2850 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2852 ld_moved = 0;
2853 if (busiest->nr_running > 1) {
2854 /* Attempt to move tasks */
2855 double_lock_balance(this_rq, busiest);
2856 /* this_rq->clock is already updated */
2857 update_rq_clock(busiest);
2858 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2859 imbalance, sd, CPU_NEWLY_IDLE,
2860 &all_pinned);
2861 spin_unlock(&busiest->lock);
2863 if (unlikely(all_pinned)) {
2864 cpu_clear(cpu_of(busiest), cpus);
2865 if (!cpus_empty(cpus))
2866 goto redo;
2870 if (!ld_moved) {
2871 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2872 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2873 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2874 return -1;
2875 } else
2876 sd->nr_balance_failed = 0;
2878 return ld_moved;
2880 out_balanced:
2881 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2882 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2883 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2884 return -1;
2885 sd->nr_balance_failed = 0;
2887 return 0;
2891 * idle_balance is called by schedule() if this_cpu is about to become
2892 * idle. Attempts to pull tasks from other CPUs.
2894 static void idle_balance(int this_cpu, struct rq *this_rq)
2896 struct sched_domain *sd;
2897 int pulled_task = -1;
2898 unsigned long next_balance = jiffies + HZ;
2900 for_each_domain(this_cpu, sd) {
2901 unsigned long interval;
2903 if (!(sd->flags & SD_LOAD_BALANCE))
2904 continue;
2906 if (sd->flags & SD_BALANCE_NEWIDLE)
2907 /* If we've pulled tasks over stop searching: */
2908 pulled_task = load_balance_newidle(this_cpu,
2909 this_rq, sd);
2911 interval = msecs_to_jiffies(sd->balance_interval);
2912 if (time_after(next_balance, sd->last_balance + interval))
2913 next_balance = sd->last_balance + interval;
2914 if (pulled_task)
2915 break;
2917 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2919 * We are going idle. next_balance may be set based on
2920 * a busy processor. So reset next_balance.
2922 this_rq->next_balance = next_balance;
2927 * active_load_balance is run by migration threads. It pushes running tasks
2928 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2929 * running on each physical CPU where possible, and avoids physical /
2930 * logical imbalances.
2932 * Called with busiest_rq locked.
2934 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2936 int target_cpu = busiest_rq->push_cpu;
2937 struct sched_domain *sd;
2938 struct rq *target_rq;
2940 /* Is there any task to move? */
2941 if (busiest_rq->nr_running <= 1)
2942 return;
2944 target_rq = cpu_rq(target_cpu);
2947 * This condition is "impossible", if it occurs
2948 * we need to fix it. Originally reported by
2949 * Bjorn Helgaas on a 128-cpu setup.
2951 BUG_ON(busiest_rq == target_rq);
2953 /* move a task from busiest_rq to target_rq */
2954 double_lock_balance(busiest_rq, target_rq);
2955 update_rq_clock(busiest_rq);
2956 update_rq_clock(target_rq);
2958 /* Search for an sd spanning us and the target CPU. */
2959 for_each_domain(target_cpu, sd) {
2960 if ((sd->flags & SD_LOAD_BALANCE) &&
2961 cpu_isset(busiest_cpu, sd->span))
2962 break;
2965 if (likely(sd)) {
2966 schedstat_inc(sd, alb_count);
2968 if (move_one_task(target_rq, target_cpu, busiest_rq,
2969 sd, CPU_IDLE))
2970 schedstat_inc(sd, alb_pushed);
2971 else
2972 schedstat_inc(sd, alb_failed);
2974 spin_unlock(&target_rq->lock);
2977 #ifdef CONFIG_NO_HZ
2978 static struct {
2979 atomic_t load_balancer;
2980 cpumask_t cpu_mask;
2981 } nohz ____cacheline_aligned = {
2982 .load_balancer = ATOMIC_INIT(-1),
2983 .cpu_mask = CPU_MASK_NONE,
2987 * This routine will try to nominate the ilb (idle load balancing)
2988 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2989 * load balancing on behalf of all those cpus. If all the cpus in the system
2990 * go into this tickless mode, then there will be no ilb owner (as there is
2991 * no need for one) and all the cpus will sleep till the next wakeup event
2992 * arrives...
2994 * For the ilb owner, tick is not stopped. And this tick will be used
2995 * for idle load balancing. ilb owner will still be part of
2996 * nohz.cpu_mask..
2998 * While stopping the tick, this cpu will become the ilb owner if there
2999 * is no other owner. And will be the owner till that cpu becomes busy
3000 * or if all cpus in the system stop their ticks at which point
3001 * there is no need for ilb owner.
3003 * When the ilb owner becomes busy, it nominates another owner, during the
3004 * next busy scheduler_tick()
3006 int select_nohz_load_balancer(int stop_tick)
3008 int cpu = smp_processor_id();
3010 if (stop_tick) {
3011 cpu_set(cpu, nohz.cpu_mask);
3012 cpu_rq(cpu)->in_nohz_recently = 1;
3015 * If we are going offline and still the leader, give up!
3017 if (cpu_is_offline(cpu) &&
3018 atomic_read(&nohz.load_balancer) == cpu) {
3019 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3020 BUG();
3021 return 0;
3024 /* time for ilb owner also to sleep */
3025 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3026 if (atomic_read(&nohz.load_balancer) == cpu)
3027 atomic_set(&nohz.load_balancer, -1);
3028 return 0;
3031 if (atomic_read(&nohz.load_balancer) == -1) {
3032 /* make me the ilb owner */
3033 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3034 return 1;
3035 } else if (atomic_read(&nohz.load_balancer) == cpu)
3036 return 1;
3037 } else {
3038 if (!cpu_isset(cpu, nohz.cpu_mask))
3039 return 0;
3041 cpu_clear(cpu, nohz.cpu_mask);
3043 if (atomic_read(&nohz.load_balancer) == cpu)
3044 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3045 BUG();
3047 return 0;
3049 #endif
3051 static DEFINE_SPINLOCK(balancing);
3054 * It checks each scheduling domain to see if it is due to be balanced,
3055 * and initiates a balancing operation if so.
3057 * Balancing parameters are set up in arch_init_sched_domains.
3059 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3061 int balance = 1;
3062 struct rq *rq = cpu_rq(cpu);
3063 unsigned long interval;
3064 struct sched_domain *sd;
3065 /* Earliest time when we have to do rebalance again */
3066 unsigned long next_balance = jiffies + 60*HZ;
3067 int update_next_balance = 0;
3069 for_each_domain(cpu, sd) {
3070 if (!(sd->flags & SD_LOAD_BALANCE))
3071 continue;
3073 interval = sd->balance_interval;
3074 if (idle != CPU_IDLE)
3075 interval *= sd->busy_factor;
3077 /* scale ms to jiffies */
3078 interval = msecs_to_jiffies(interval);
3079 if (unlikely(!interval))
3080 interval = 1;
3081 if (interval > HZ*NR_CPUS/10)
3082 interval = HZ*NR_CPUS/10;
3085 if (sd->flags & SD_SERIALIZE) {
3086 if (!spin_trylock(&balancing))
3087 goto out;
3090 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3091 if (load_balance(cpu, rq, sd, idle, &balance)) {
3093 * We've pulled tasks over so either we're no
3094 * longer idle, or one of our SMT siblings is
3095 * not idle.
3097 idle = CPU_NOT_IDLE;
3099 sd->last_balance = jiffies;
3101 if (sd->flags & SD_SERIALIZE)
3102 spin_unlock(&balancing);
3103 out:
3104 if (time_after(next_balance, sd->last_balance + interval)) {
3105 next_balance = sd->last_balance + interval;
3106 update_next_balance = 1;
3110 * Stop the load balance at this level. There is another
3111 * CPU in our sched group which is doing load balancing more
3112 * actively.
3114 if (!balance)
3115 break;
3119 * next_balance will be updated only when there is a need.
3120 * When the cpu is attached to null domain for ex, it will not be
3121 * updated.
3123 if (likely(update_next_balance))
3124 rq->next_balance = next_balance;
3128 * run_rebalance_domains is triggered when needed from the scheduler tick.
3129 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3130 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3132 static void run_rebalance_domains(struct softirq_action *h)
3134 int this_cpu = smp_processor_id();
3135 struct rq *this_rq = cpu_rq(this_cpu);
3136 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3137 CPU_IDLE : CPU_NOT_IDLE;
3139 rebalance_domains(this_cpu, idle);
3141 #ifdef CONFIG_NO_HZ
3143 * If this cpu is the owner for idle load balancing, then do the
3144 * balancing on behalf of the other idle cpus whose ticks are
3145 * stopped.
3147 if (this_rq->idle_at_tick &&
3148 atomic_read(&nohz.load_balancer) == this_cpu) {
3149 cpumask_t cpus = nohz.cpu_mask;
3150 struct rq *rq;
3151 int balance_cpu;
3153 cpu_clear(this_cpu, cpus);
3154 for_each_cpu_mask(balance_cpu, cpus) {
3156 * If this cpu gets work to do, stop the load balancing
3157 * work being done for other cpus. Next load
3158 * balancing owner will pick it up.
3160 if (need_resched())
3161 break;
3163 rebalance_domains(balance_cpu, CPU_IDLE);
3165 rq = cpu_rq(balance_cpu);
3166 if (time_after(this_rq->next_balance, rq->next_balance))
3167 this_rq->next_balance = rq->next_balance;
3170 #endif
3174 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3176 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3177 * idle load balancing owner or decide to stop the periodic load balancing,
3178 * if the whole system is idle.
3180 static inline void trigger_load_balance(struct rq *rq, int cpu)
3182 #ifdef CONFIG_NO_HZ
3184 * If we were in the nohz mode recently and busy at the current
3185 * scheduler tick, then check if we need to nominate new idle
3186 * load balancer.
3188 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3189 rq->in_nohz_recently = 0;
3191 if (atomic_read(&nohz.load_balancer) == cpu) {
3192 cpu_clear(cpu, nohz.cpu_mask);
3193 atomic_set(&nohz.load_balancer, -1);
3196 if (atomic_read(&nohz.load_balancer) == -1) {
3198 * simple selection for now: Nominate the
3199 * first cpu in the nohz list to be the next
3200 * ilb owner.
3202 * TBD: Traverse the sched domains and nominate
3203 * the nearest cpu in the nohz.cpu_mask.
3205 int ilb = first_cpu(nohz.cpu_mask);
3207 if (ilb != NR_CPUS)
3208 resched_cpu(ilb);
3213 * If this cpu is idle and doing idle load balancing for all the
3214 * cpus with ticks stopped, is it time for that to stop?
3216 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3217 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3218 resched_cpu(cpu);
3219 return;
3223 * If this cpu is idle and the idle load balancing is done by
3224 * someone else, then no need raise the SCHED_SOFTIRQ
3226 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3227 cpu_isset(cpu, nohz.cpu_mask))
3228 return;
3229 #endif
3230 if (time_after_eq(jiffies, rq->next_balance))
3231 raise_softirq(SCHED_SOFTIRQ);
3234 #else /* CONFIG_SMP */
3237 * on UP we do not need to balance between CPUs:
3239 static inline void idle_balance(int cpu, struct rq *rq)
3243 /* Avoid "used but not defined" warning on UP */
3244 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3245 unsigned long max_nr_move, unsigned long max_load_move,
3246 struct sched_domain *sd, enum cpu_idle_type idle,
3247 int *all_pinned, unsigned long *load_moved,
3248 int *this_best_prio, struct rq_iterator *iterator)
3250 *load_moved = 0;
3252 return 0;
3255 #endif
3257 DEFINE_PER_CPU(struct kernel_stat, kstat);
3259 EXPORT_PER_CPU_SYMBOL(kstat);
3262 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3263 * that have not yet been banked in case the task is currently running.
3265 unsigned long long task_sched_runtime(struct task_struct *p)
3267 unsigned long flags;
3268 u64 ns, delta_exec;
3269 struct rq *rq;
3271 rq = task_rq_lock(p, &flags);
3272 ns = p->se.sum_exec_runtime;
3273 if (rq->curr == p) {
3274 update_rq_clock(rq);
3275 delta_exec = rq->clock - p->se.exec_start;
3276 if ((s64)delta_exec > 0)
3277 ns += delta_exec;
3279 task_rq_unlock(rq, &flags);
3281 return ns;
3285 * Account user cpu time to a process.
3286 * @p: the process that the cpu time gets accounted to
3287 * @hardirq_offset: the offset to subtract from hardirq_count()
3288 * @cputime: the cpu time spent in user space since the last update
3290 void account_user_time(struct task_struct *p, cputime_t cputime)
3292 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3293 cputime64_t tmp;
3295 p->utime = cputime_add(p->utime, cputime);
3297 /* Add user time to cpustat. */
3298 tmp = cputime_to_cputime64(cputime);
3299 if (TASK_NICE(p) > 0)
3300 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3301 else
3302 cpustat->user = cputime64_add(cpustat->user, tmp);
3306 * Account system cpu time to a process.
3307 * @p: the process that the cpu time gets accounted to
3308 * @hardirq_offset: the offset to subtract from hardirq_count()
3309 * @cputime: the cpu time spent in kernel space since the last update
3311 void account_system_time(struct task_struct *p, int hardirq_offset,
3312 cputime_t cputime)
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3315 struct rq *rq = this_rq();
3316 cputime64_t tmp;
3318 p->stime = cputime_add(p->stime, cputime);
3320 /* Add system time to cpustat. */
3321 tmp = cputime_to_cputime64(cputime);
3322 if (hardirq_count() - hardirq_offset)
3323 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3324 else if (softirq_count())
3325 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3326 else if (p != rq->idle)
3327 cpustat->system = cputime64_add(cpustat->system, tmp);
3328 else if (atomic_read(&rq->nr_iowait) > 0)
3329 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3330 else
3331 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3332 /* Account for system time used */
3333 acct_update_integrals(p);
3337 * Account for involuntary wait time.
3338 * @p: the process from which the cpu time has been stolen
3339 * @steal: the cpu time spent in involuntary wait
3341 void account_steal_time(struct task_struct *p, cputime_t steal)
3343 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3344 cputime64_t tmp = cputime_to_cputime64(steal);
3345 struct rq *rq = this_rq();
3347 if (p == rq->idle) {
3348 p->stime = cputime_add(p->stime, steal);
3349 if (atomic_read(&rq->nr_iowait) > 0)
3350 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3351 else
3352 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3353 } else
3354 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3358 * This function gets called by the timer code, with HZ frequency.
3359 * We call it with interrupts disabled.
3361 * It also gets called by the fork code, when changing the parent's
3362 * timeslices.
3364 void scheduler_tick(void)
3366 int cpu = smp_processor_id();
3367 struct rq *rq = cpu_rq(cpu);
3368 struct task_struct *curr = rq->curr;
3369 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3371 spin_lock(&rq->lock);
3372 __update_rq_clock(rq);
3374 * Let rq->clock advance by at least TICK_NSEC:
3376 if (unlikely(rq->clock < next_tick))
3377 rq->clock = next_tick;
3378 rq->tick_timestamp = rq->clock;
3379 update_cpu_load(rq);
3380 if (curr != rq->idle) /* FIXME: needed? */
3381 curr->sched_class->task_tick(rq, curr);
3382 spin_unlock(&rq->lock);
3384 #ifdef CONFIG_SMP
3385 rq->idle_at_tick = idle_cpu(cpu);
3386 trigger_load_balance(rq, cpu);
3387 #endif
3390 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3392 void fastcall add_preempt_count(int val)
3395 * Underflow?
3397 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3398 return;
3399 preempt_count() += val;
3401 * Spinlock count overflowing soon?
3403 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3404 PREEMPT_MASK - 10);
3406 EXPORT_SYMBOL(add_preempt_count);
3408 void fastcall sub_preempt_count(int val)
3411 * Underflow?
3413 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3414 return;
3416 * Is the spinlock portion underflowing?
3418 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3419 !(preempt_count() & PREEMPT_MASK)))
3420 return;
3422 preempt_count() -= val;
3424 EXPORT_SYMBOL(sub_preempt_count);
3426 #endif
3429 * Print scheduling while atomic bug:
3431 static noinline void __schedule_bug(struct task_struct *prev)
3433 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3434 prev->comm, preempt_count(), prev->pid);
3435 debug_show_held_locks(prev);
3436 if (irqs_disabled())
3437 print_irqtrace_events(prev);
3438 dump_stack();
3442 * Various schedule()-time debugging checks and statistics:
3444 static inline void schedule_debug(struct task_struct *prev)
3447 * Test if we are atomic. Since do_exit() needs to call into
3448 * schedule() atomically, we ignore that path for now.
3449 * Otherwise, whine if we are scheduling when we should not be.
3451 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3452 __schedule_bug(prev);
3454 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3456 schedstat_inc(this_rq(), sched_count);
3457 #ifdef CONFIG_SCHEDSTATS
3458 if (unlikely(prev->lock_depth >= 0)) {
3459 schedstat_inc(this_rq(), bkl_count);
3460 schedstat_inc(prev, sched_info.bkl_count);
3462 #endif
3466 * Pick up the highest-prio task:
3468 static inline struct task_struct *
3469 pick_next_task(struct rq *rq, struct task_struct *prev)
3471 const struct sched_class *class;
3472 struct task_struct *p;
3475 * Optimization: we know that if all tasks are in
3476 * the fair class we can call that function directly:
3478 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3479 p = fair_sched_class.pick_next_task(rq);
3480 if (likely(p))
3481 return p;
3484 class = sched_class_highest;
3485 for ( ; ; ) {
3486 p = class->pick_next_task(rq);
3487 if (p)
3488 return p;
3490 * Will never be NULL as the idle class always
3491 * returns a non-NULL p:
3493 class = class->next;
3498 * schedule() is the main scheduler function.
3500 asmlinkage void __sched schedule(void)
3502 struct task_struct *prev, *next;
3503 long *switch_count;
3504 struct rq *rq;
3505 int cpu;
3507 need_resched:
3508 preempt_disable();
3509 cpu = smp_processor_id();
3510 rq = cpu_rq(cpu);
3511 rcu_qsctr_inc(cpu);
3512 prev = rq->curr;
3513 switch_count = &prev->nivcsw;
3515 release_kernel_lock(prev);
3516 need_resched_nonpreemptible:
3518 schedule_debug(prev);
3521 * Do the rq-clock update outside the rq lock:
3523 local_irq_disable();
3524 __update_rq_clock(rq);
3525 spin_lock(&rq->lock);
3526 clear_tsk_need_resched(prev);
3528 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3529 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3530 unlikely(signal_pending(prev)))) {
3531 prev->state = TASK_RUNNING;
3532 } else {
3533 deactivate_task(rq, prev, 1);
3535 switch_count = &prev->nvcsw;
3538 if (unlikely(!rq->nr_running))
3539 idle_balance(cpu, rq);
3541 prev->sched_class->put_prev_task(rq, prev);
3542 next = pick_next_task(rq, prev);
3544 sched_info_switch(prev, next);
3546 if (likely(prev != next)) {
3547 rq->nr_switches++;
3548 rq->curr = next;
3549 ++*switch_count;
3551 context_switch(rq, prev, next); /* unlocks the rq */
3552 } else
3553 spin_unlock_irq(&rq->lock);
3555 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3556 cpu = smp_processor_id();
3557 rq = cpu_rq(cpu);
3558 goto need_resched_nonpreemptible;
3560 preempt_enable_no_resched();
3561 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3562 goto need_resched;
3564 EXPORT_SYMBOL(schedule);
3566 #ifdef CONFIG_PREEMPT
3568 * this is the entry point to schedule() from in-kernel preemption
3569 * off of preempt_enable. Kernel preemptions off return from interrupt
3570 * occur there and call schedule directly.
3572 asmlinkage void __sched preempt_schedule(void)
3574 struct thread_info *ti = current_thread_info();
3575 #ifdef CONFIG_PREEMPT_BKL
3576 struct task_struct *task = current;
3577 int saved_lock_depth;
3578 #endif
3580 * If there is a non-zero preempt_count or interrupts are disabled,
3581 * we do not want to preempt the current task. Just return..
3583 if (likely(ti->preempt_count || irqs_disabled()))
3584 return;
3586 do {
3587 add_preempt_count(PREEMPT_ACTIVE);
3590 * We keep the big kernel semaphore locked, but we
3591 * clear ->lock_depth so that schedule() doesnt
3592 * auto-release the semaphore:
3594 #ifdef CONFIG_PREEMPT_BKL
3595 saved_lock_depth = task->lock_depth;
3596 task->lock_depth = -1;
3597 #endif
3598 schedule();
3599 #ifdef CONFIG_PREEMPT_BKL
3600 task->lock_depth = saved_lock_depth;
3601 #endif
3602 sub_preempt_count(PREEMPT_ACTIVE);
3605 * Check again in case we missed a preemption opportunity
3606 * between schedule and now.
3608 barrier();
3609 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3611 EXPORT_SYMBOL(preempt_schedule);
3614 * this is the entry point to schedule() from kernel preemption
3615 * off of irq context.
3616 * Note, that this is called and return with irqs disabled. This will
3617 * protect us against recursive calling from irq.
3619 asmlinkage void __sched preempt_schedule_irq(void)
3621 struct thread_info *ti = current_thread_info();
3622 #ifdef CONFIG_PREEMPT_BKL
3623 struct task_struct *task = current;
3624 int saved_lock_depth;
3625 #endif
3626 /* Catch callers which need to be fixed */
3627 BUG_ON(ti->preempt_count || !irqs_disabled());
3629 do {
3630 add_preempt_count(PREEMPT_ACTIVE);
3633 * We keep the big kernel semaphore locked, but we
3634 * clear ->lock_depth so that schedule() doesnt
3635 * auto-release the semaphore:
3637 #ifdef CONFIG_PREEMPT_BKL
3638 saved_lock_depth = task->lock_depth;
3639 task->lock_depth = -1;
3640 #endif
3641 local_irq_enable();
3642 schedule();
3643 local_irq_disable();
3644 #ifdef CONFIG_PREEMPT_BKL
3645 task->lock_depth = saved_lock_depth;
3646 #endif
3647 sub_preempt_count(PREEMPT_ACTIVE);
3650 * Check again in case we missed a preemption opportunity
3651 * between schedule and now.
3653 barrier();
3654 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3657 #endif /* CONFIG_PREEMPT */
3659 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3660 void *key)
3662 return try_to_wake_up(curr->private, mode, sync);
3664 EXPORT_SYMBOL(default_wake_function);
3667 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3668 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3669 * number) then we wake all the non-exclusive tasks and one exclusive task.
3671 * There are circumstances in which we can try to wake a task which has already
3672 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3673 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3675 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3676 int nr_exclusive, int sync, void *key)
3678 wait_queue_t *curr, *next;
3680 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3681 unsigned flags = curr->flags;
3683 if (curr->func(curr, mode, sync, key) &&
3684 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3685 break;
3690 * __wake_up - wake up threads blocked on a waitqueue.
3691 * @q: the waitqueue
3692 * @mode: which threads
3693 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3694 * @key: is directly passed to the wakeup function
3696 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3697 int nr_exclusive, void *key)
3699 unsigned long flags;
3701 spin_lock_irqsave(&q->lock, flags);
3702 __wake_up_common(q, mode, nr_exclusive, 0, key);
3703 spin_unlock_irqrestore(&q->lock, flags);
3705 EXPORT_SYMBOL(__wake_up);
3708 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3710 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3712 __wake_up_common(q, mode, 1, 0, NULL);
3716 * __wake_up_sync - wake up threads blocked on a waitqueue.
3717 * @q: the waitqueue
3718 * @mode: which threads
3719 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3721 * The sync wakeup differs that the waker knows that it will schedule
3722 * away soon, so while the target thread will be woken up, it will not
3723 * be migrated to another CPU - ie. the two threads are 'synchronized'
3724 * with each other. This can prevent needless bouncing between CPUs.
3726 * On UP it can prevent extra preemption.
3728 void fastcall
3729 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3731 unsigned long flags;
3732 int sync = 1;
3734 if (unlikely(!q))
3735 return;
3737 if (unlikely(!nr_exclusive))
3738 sync = 0;
3740 spin_lock_irqsave(&q->lock, flags);
3741 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3742 spin_unlock_irqrestore(&q->lock, flags);
3744 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3746 void fastcall complete(struct completion *x)
3748 unsigned long flags;
3750 spin_lock_irqsave(&x->wait.lock, flags);
3751 x->done++;
3752 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3753 1, 0, NULL);
3754 spin_unlock_irqrestore(&x->wait.lock, flags);
3756 EXPORT_SYMBOL(complete);
3758 void fastcall complete_all(struct completion *x)
3760 unsigned long flags;
3762 spin_lock_irqsave(&x->wait.lock, flags);
3763 x->done += UINT_MAX/2;
3764 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3765 0, 0, NULL);
3766 spin_unlock_irqrestore(&x->wait.lock, flags);
3768 EXPORT_SYMBOL(complete_all);
3770 static inline long __sched
3771 do_wait_for_common(struct completion *x, long timeout, int state)
3773 if (!x->done) {
3774 DECLARE_WAITQUEUE(wait, current);
3776 wait.flags |= WQ_FLAG_EXCLUSIVE;
3777 __add_wait_queue_tail(&x->wait, &wait);
3778 do {
3779 if (state == TASK_INTERRUPTIBLE &&
3780 signal_pending(current)) {
3781 __remove_wait_queue(&x->wait, &wait);
3782 return -ERESTARTSYS;
3784 __set_current_state(state);
3785 spin_unlock_irq(&x->wait.lock);
3786 timeout = schedule_timeout(timeout);
3787 spin_lock_irq(&x->wait.lock);
3788 if (!timeout) {
3789 __remove_wait_queue(&x->wait, &wait);
3790 return timeout;
3792 } while (!x->done);
3793 __remove_wait_queue(&x->wait, &wait);
3795 x->done--;
3796 return timeout;
3799 static long __sched
3800 wait_for_common(struct completion *x, long timeout, int state)
3802 might_sleep();
3804 spin_lock_irq(&x->wait.lock);
3805 timeout = do_wait_for_common(x, timeout, state);
3806 spin_unlock_irq(&x->wait.lock);
3807 return timeout;
3810 void fastcall __sched wait_for_completion(struct completion *x)
3812 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3814 EXPORT_SYMBOL(wait_for_completion);
3816 unsigned long fastcall __sched
3817 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3819 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3821 EXPORT_SYMBOL(wait_for_completion_timeout);
3823 int __sched wait_for_completion_interruptible(struct completion *x)
3825 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3827 EXPORT_SYMBOL(wait_for_completion_interruptible);
3829 unsigned long fastcall __sched
3830 wait_for_completion_interruptible_timeout(struct completion *x,
3831 unsigned long timeout)
3833 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3835 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3837 static long __sched
3838 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3840 unsigned long flags;
3841 wait_queue_t wait;
3843 init_waitqueue_entry(&wait, current);
3845 __set_current_state(state);
3847 spin_lock_irqsave(&q->lock, flags);
3848 __add_wait_queue(q, &wait);
3849 spin_unlock(&q->lock);
3850 timeout = schedule_timeout(timeout);
3851 spin_lock_irq(&q->lock);
3852 __remove_wait_queue(q, &wait);
3853 spin_unlock_irqrestore(&q->lock, flags);
3855 return timeout;
3858 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3860 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3862 EXPORT_SYMBOL(interruptible_sleep_on);
3864 long __sched
3865 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3867 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3869 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3871 void __sched sleep_on(wait_queue_head_t *q)
3873 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3875 EXPORT_SYMBOL(sleep_on);
3877 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3879 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3881 EXPORT_SYMBOL(sleep_on_timeout);
3883 #ifdef CONFIG_RT_MUTEXES
3886 * rt_mutex_setprio - set the current priority of a task
3887 * @p: task
3888 * @prio: prio value (kernel-internal form)
3890 * This function changes the 'effective' priority of a task. It does
3891 * not touch ->normal_prio like __setscheduler().
3893 * Used by the rt_mutex code to implement priority inheritance logic.
3895 void rt_mutex_setprio(struct task_struct *p, int prio)
3897 unsigned long flags;
3898 int oldprio, on_rq, running;
3899 struct rq *rq;
3901 BUG_ON(prio < 0 || prio > MAX_PRIO);
3903 rq = task_rq_lock(p, &flags);
3904 update_rq_clock(rq);
3906 oldprio = p->prio;
3907 on_rq = p->se.on_rq;
3908 running = task_running(rq, p);
3909 if (on_rq) {
3910 dequeue_task(rq, p, 0);
3911 if (running)
3912 p->sched_class->put_prev_task(rq, p);
3915 if (rt_prio(prio))
3916 p->sched_class = &rt_sched_class;
3917 else
3918 p->sched_class = &fair_sched_class;
3920 p->prio = prio;
3922 if (on_rq) {
3923 if (running)
3924 p->sched_class->set_curr_task(rq);
3925 enqueue_task(rq, p, 0);
3927 * Reschedule if we are currently running on this runqueue and
3928 * our priority decreased, or if we are not currently running on
3929 * this runqueue and our priority is higher than the current's
3931 if (running) {
3932 if (p->prio > oldprio)
3933 resched_task(rq->curr);
3934 } else {
3935 check_preempt_curr(rq, p);
3938 task_rq_unlock(rq, &flags);
3941 #endif
3943 void set_user_nice(struct task_struct *p, long nice)
3945 int old_prio, delta, on_rq;
3946 unsigned long flags;
3947 struct rq *rq;
3949 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3950 return;
3952 * We have to be careful, if called from sys_setpriority(),
3953 * the task might be in the middle of scheduling on another CPU.
3955 rq = task_rq_lock(p, &flags);
3956 update_rq_clock(rq);
3958 * The RT priorities are set via sched_setscheduler(), but we still
3959 * allow the 'normal' nice value to be set - but as expected
3960 * it wont have any effect on scheduling until the task is
3961 * SCHED_FIFO/SCHED_RR:
3963 if (task_has_rt_policy(p)) {
3964 p->static_prio = NICE_TO_PRIO(nice);
3965 goto out_unlock;
3967 on_rq = p->se.on_rq;
3968 if (on_rq) {
3969 dequeue_task(rq, p, 0);
3970 dec_load(rq, p);
3973 p->static_prio = NICE_TO_PRIO(nice);
3974 set_load_weight(p);
3975 old_prio = p->prio;
3976 p->prio = effective_prio(p);
3977 delta = p->prio - old_prio;
3979 if (on_rq) {
3980 enqueue_task(rq, p, 0);
3981 inc_load(rq, p);
3983 * If the task increased its priority or is running and
3984 * lowered its priority, then reschedule its CPU:
3986 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3987 resched_task(rq->curr);
3989 out_unlock:
3990 task_rq_unlock(rq, &flags);
3992 EXPORT_SYMBOL(set_user_nice);
3995 * can_nice - check if a task can reduce its nice value
3996 * @p: task
3997 * @nice: nice value
3999 int can_nice(const struct task_struct *p, const int nice)
4001 /* convert nice value [19,-20] to rlimit style value [1,40] */
4002 int nice_rlim = 20 - nice;
4004 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4005 capable(CAP_SYS_NICE));
4008 #ifdef __ARCH_WANT_SYS_NICE
4011 * sys_nice - change the priority of the current process.
4012 * @increment: priority increment
4014 * sys_setpriority is a more generic, but much slower function that
4015 * does similar things.
4017 asmlinkage long sys_nice(int increment)
4019 long nice, retval;
4022 * Setpriority might change our priority at the same moment.
4023 * We don't have to worry. Conceptually one call occurs first
4024 * and we have a single winner.
4026 if (increment < -40)
4027 increment = -40;
4028 if (increment > 40)
4029 increment = 40;
4031 nice = PRIO_TO_NICE(current->static_prio) + increment;
4032 if (nice < -20)
4033 nice = -20;
4034 if (nice > 19)
4035 nice = 19;
4037 if (increment < 0 && !can_nice(current, nice))
4038 return -EPERM;
4040 retval = security_task_setnice(current, nice);
4041 if (retval)
4042 return retval;
4044 set_user_nice(current, nice);
4045 return 0;
4048 #endif
4051 * task_prio - return the priority value of a given task.
4052 * @p: the task in question.
4054 * This is the priority value as seen by users in /proc.
4055 * RT tasks are offset by -200. Normal tasks are centered
4056 * around 0, value goes from -16 to +15.
4058 int task_prio(const struct task_struct *p)
4060 return p->prio - MAX_RT_PRIO;
4064 * task_nice - return the nice value of a given task.
4065 * @p: the task in question.
4067 int task_nice(const struct task_struct *p)
4069 return TASK_NICE(p);
4071 EXPORT_SYMBOL_GPL(task_nice);
4074 * idle_cpu - is a given cpu idle currently?
4075 * @cpu: the processor in question.
4077 int idle_cpu(int cpu)
4079 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4083 * idle_task - return the idle task for a given cpu.
4084 * @cpu: the processor in question.
4086 struct task_struct *idle_task(int cpu)
4088 return cpu_rq(cpu)->idle;
4092 * find_process_by_pid - find a process with a matching PID value.
4093 * @pid: the pid in question.
4095 static struct task_struct *find_process_by_pid(pid_t pid)
4097 return pid ? find_task_by_pid(pid) : current;
4100 /* Actually do priority change: must hold rq lock. */
4101 static void
4102 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4104 BUG_ON(p->se.on_rq);
4106 p->policy = policy;
4107 switch (p->policy) {
4108 case SCHED_NORMAL:
4109 case SCHED_BATCH:
4110 case SCHED_IDLE:
4111 p->sched_class = &fair_sched_class;
4112 break;
4113 case SCHED_FIFO:
4114 case SCHED_RR:
4115 p->sched_class = &rt_sched_class;
4116 break;
4119 p->rt_priority = prio;
4120 p->normal_prio = normal_prio(p);
4121 /* we are holding p->pi_lock already */
4122 p->prio = rt_mutex_getprio(p);
4123 set_load_weight(p);
4127 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4128 * @p: the task in question.
4129 * @policy: new policy.
4130 * @param: structure containing the new RT priority.
4132 * NOTE that the task may be already dead.
4134 int sched_setscheduler(struct task_struct *p, int policy,
4135 struct sched_param *param)
4137 int retval, oldprio, oldpolicy = -1, on_rq, running;
4138 unsigned long flags;
4139 struct rq *rq;
4141 /* may grab non-irq protected spin_locks */
4142 BUG_ON(in_interrupt());
4143 recheck:
4144 /* double check policy once rq lock held */
4145 if (policy < 0)
4146 policy = oldpolicy = p->policy;
4147 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4148 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4149 policy != SCHED_IDLE)
4150 return -EINVAL;
4152 * Valid priorities for SCHED_FIFO and SCHED_RR are
4153 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4154 * SCHED_BATCH and SCHED_IDLE is 0.
4156 if (param->sched_priority < 0 ||
4157 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4158 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4159 return -EINVAL;
4160 if (rt_policy(policy) != (param->sched_priority != 0))
4161 return -EINVAL;
4164 * Allow unprivileged RT tasks to decrease priority:
4166 if (!capable(CAP_SYS_NICE)) {
4167 if (rt_policy(policy)) {
4168 unsigned long rlim_rtprio;
4170 if (!lock_task_sighand(p, &flags))
4171 return -ESRCH;
4172 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4173 unlock_task_sighand(p, &flags);
4175 /* can't set/change the rt policy */
4176 if (policy != p->policy && !rlim_rtprio)
4177 return -EPERM;
4179 /* can't increase priority */
4180 if (param->sched_priority > p->rt_priority &&
4181 param->sched_priority > rlim_rtprio)
4182 return -EPERM;
4185 * Like positive nice levels, dont allow tasks to
4186 * move out of SCHED_IDLE either:
4188 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4189 return -EPERM;
4191 /* can't change other user's priorities */
4192 if ((current->euid != p->euid) &&
4193 (current->euid != p->uid))
4194 return -EPERM;
4197 retval = security_task_setscheduler(p, policy, param);
4198 if (retval)
4199 return retval;
4201 * make sure no PI-waiters arrive (or leave) while we are
4202 * changing the priority of the task:
4204 spin_lock_irqsave(&p->pi_lock, flags);
4206 * To be able to change p->policy safely, the apropriate
4207 * runqueue lock must be held.
4209 rq = __task_rq_lock(p);
4210 /* recheck policy now with rq lock held */
4211 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4212 policy = oldpolicy = -1;
4213 __task_rq_unlock(rq);
4214 spin_unlock_irqrestore(&p->pi_lock, flags);
4215 goto recheck;
4217 update_rq_clock(rq);
4218 on_rq = p->se.on_rq;
4219 running = task_running(rq, p);
4220 if (on_rq) {
4221 deactivate_task(rq, p, 0);
4222 if (running)
4223 p->sched_class->put_prev_task(rq, p);
4226 oldprio = p->prio;
4227 __setscheduler(rq, p, policy, param->sched_priority);
4229 if (on_rq) {
4230 if (running)
4231 p->sched_class->set_curr_task(rq);
4232 activate_task(rq, p, 0);
4234 * Reschedule if we are currently running on this runqueue and
4235 * our priority decreased, or if we are not currently running on
4236 * this runqueue and our priority is higher than the current's
4238 if (running) {
4239 if (p->prio > oldprio)
4240 resched_task(rq->curr);
4241 } else {
4242 check_preempt_curr(rq, p);
4245 __task_rq_unlock(rq);
4246 spin_unlock_irqrestore(&p->pi_lock, flags);
4248 rt_mutex_adjust_pi(p);
4250 return 0;
4252 EXPORT_SYMBOL_GPL(sched_setscheduler);
4254 static int
4255 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4257 struct sched_param lparam;
4258 struct task_struct *p;
4259 int retval;
4261 if (!param || pid < 0)
4262 return -EINVAL;
4263 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4264 return -EFAULT;
4266 rcu_read_lock();
4267 retval = -ESRCH;
4268 p = find_process_by_pid(pid);
4269 if (p != NULL)
4270 retval = sched_setscheduler(p, policy, &lparam);
4271 rcu_read_unlock();
4273 return retval;
4277 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4278 * @pid: the pid in question.
4279 * @policy: new policy.
4280 * @param: structure containing the new RT priority.
4282 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4283 struct sched_param __user *param)
4285 /* negative values for policy are not valid */
4286 if (policy < 0)
4287 return -EINVAL;
4289 return do_sched_setscheduler(pid, policy, param);
4293 * sys_sched_setparam - set/change the RT priority of a thread
4294 * @pid: the pid in question.
4295 * @param: structure containing the new RT priority.
4297 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4299 return do_sched_setscheduler(pid, -1, param);
4303 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4304 * @pid: the pid in question.
4306 asmlinkage long sys_sched_getscheduler(pid_t pid)
4308 struct task_struct *p;
4309 int retval;
4311 if (pid < 0)
4312 return -EINVAL;
4314 retval = -ESRCH;
4315 read_lock(&tasklist_lock);
4316 p = find_process_by_pid(pid);
4317 if (p) {
4318 retval = security_task_getscheduler(p);
4319 if (!retval)
4320 retval = p->policy;
4322 read_unlock(&tasklist_lock);
4323 return retval;
4327 * sys_sched_getscheduler - get the RT priority of a thread
4328 * @pid: the pid in question.
4329 * @param: structure containing the RT priority.
4331 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4333 struct sched_param lp;
4334 struct task_struct *p;
4335 int retval;
4337 if (!param || pid < 0)
4338 return -EINVAL;
4340 read_lock(&tasklist_lock);
4341 p = find_process_by_pid(pid);
4342 retval = -ESRCH;
4343 if (!p)
4344 goto out_unlock;
4346 retval = security_task_getscheduler(p);
4347 if (retval)
4348 goto out_unlock;
4350 lp.sched_priority = p->rt_priority;
4351 read_unlock(&tasklist_lock);
4354 * This one might sleep, we cannot do it with a spinlock held ...
4356 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4358 return retval;
4360 out_unlock:
4361 read_unlock(&tasklist_lock);
4362 return retval;
4365 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4367 cpumask_t cpus_allowed;
4368 struct task_struct *p;
4369 int retval;
4371 mutex_lock(&sched_hotcpu_mutex);
4372 read_lock(&tasklist_lock);
4374 p = find_process_by_pid(pid);
4375 if (!p) {
4376 read_unlock(&tasklist_lock);
4377 mutex_unlock(&sched_hotcpu_mutex);
4378 return -ESRCH;
4382 * It is not safe to call set_cpus_allowed with the
4383 * tasklist_lock held. We will bump the task_struct's
4384 * usage count and then drop tasklist_lock.
4386 get_task_struct(p);
4387 read_unlock(&tasklist_lock);
4389 retval = -EPERM;
4390 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4391 !capable(CAP_SYS_NICE))
4392 goto out_unlock;
4394 retval = security_task_setscheduler(p, 0, NULL);
4395 if (retval)
4396 goto out_unlock;
4398 cpus_allowed = cpuset_cpus_allowed(p);
4399 cpus_and(new_mask, new_mask, cpus_allowed);
4400 retval = set_cpus_allowed(p, new_mask);
4402 out_unlock:
4403 put_task_struct(p);
4404 mutex_unlock(&sched_hotcpu_mutex);
4405 return retval;
4408 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4409 cpumask_t *new_mask)
4411 if (len < sizeof(cpumask_t)) {
4412 memset(new_mask, 0, sizeof(cpumask_t));
4413 } else if (len > sizeof(cpumask_t)) {
4414 len = sizeof(cpumask_t);
4416 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4420 * sys_sched_setaffinity - set the cpu affinity of a process
4421 * @pid: pid of the process
4422 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4423 * @user_mask_ptr: user-space pointer to the new cpu mask
4425 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4426 unsigned long __user *user_mask_ptr)
4428 cpumask_t new_mask;
4429 int retval;
4431 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4432 if (retval)
4433 return retval;
4435 return sched_setaffinity(pid, new_mask);
4439 * Represents all cpu's present in the system
4440 * In systems capable of hotplug, this map could dynamically grow
4441 * as new cpu's are detected in the system via any platform specific
4442 * method, such as ACPI for e.g.
4445 cpumask_t cpu_present_map __read_mostly;
4446 EXPORT_SYMBOL(cpu_present_map);
4448 #ifndef CONFIG_SMP
4449 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4450 EXPORT_SYMBOL(cpu_online_map);
4452 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4453 EXPORT_SYMBOL(cpu_possible_map);
4454 #endif
4456 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4458 struct task_struct *p;
4459 int retval;
4461 mutex_lock(&sched_hotcpu_mutex);
4462 read_lock(&tasklist_lock);
4464 retval = -ESRCH;
4465 p = find_process_by_pid(pid);
4466 if (!p)
4467 goto out_unlock;
4469 retval = security_task_getscheduler(p);
4470 if (retval)
4471 goto out_unlock;
4473 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4475 out_unlock:
4476 read_unlock(&tasklist_lock);
4477 mutex_unlock(&sched_hotcpu_mutex);
4479 return retval;
4483 * sys_sched_getaffinity - get the cpu affinity of a process
4484 * @pid: pid of the process
4485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4486 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4488 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4489 unsigned long __user *user_mask_ptr)
4491 int ret;
4492 cpumask_t mask;
4494 if (len < sizeof(cpumask_t))
4495 return -EINVAL;
4497 ret = sched_getaffinity(pid, &mask);
4498 if (ret < 0)
4499 return ret;
4501 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4502 return -EFAULT;
4504 return sizeof(cpumask_t);
4508 * sys_sched_yield - yield the current processor to other threads.
4510 * This function yields the current CPU to other tasks. If there are no
4511 * other threads running on this CPU then this function will return.
4513 asmlinkage long sys_sched_yield(void)
4515 struct rq *rq = this_rq_lock();
4517 schedstat_inc(rq, yld_count);
4518 current->sched_class->yield_task(rq);
4521 * Since we are going to call schedule() anyway, there's
4522 * no need to preempt or enable interrupts:
4524 __release(rq->lock);
4525 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4526 _raw_spin_unlock(&rq->lock);
4527 preempt_enable_no_resched();
4529 schedule();
4531 return 0;
4534 static void __cond_resched(void)
4536 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4537 __might_sleep(__FILE__, __LINE__);
4538 #endif
4540 * The BKS might be reacquired before we have dropped
4541 * PREEMPT_ACTIVE, which could trigger a second
4542 * cond_resched() call.
4544 do {
4545 add_preempt_count(PREEMPT_ACTIVE);
4546 schedule();
4547 sub_preempt_count(PREEMPT_ACTIVE);
4548 } while (need_resched());
4551 int __sched cond_resched(void)
4553 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4554 system_state == SYSTEM_RUNNING) {
4555 __cond_resched();
4556 return 1;
4558 return 0;
4560 EXPORT_SYMBOL(cond_resched);
4563 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4564 * call schedule, and on return reacquire the lock.
4566 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4567 * operations here to prevent schedule() from being called twice (once via
4568 * spin_unlock(), once by hand).
4570 int cond_resched_lock(spinlock_t *lock)
4572 int ret = 0;
4574 if (need_lockbreak(lock)) {
4575 spin_unlock(lock);
4576 cpu_relax();
4577 ret = 1;
4578 spin_lock(lock);
4580 if (need_resched() && system_state == SYSTEM_RUNNING) {
4581 spin_release(&lock->dep_map, 1, _THIS_IP_);
4582 _raw_spin_unlock(lock);
4583 preempt_enable_no_resched();
4584 __cond_resched();
4585 ret = 1;
4586 spin_lock(lock);
4588 return ret;
4590 EXPORT_SYMBOL(cond_resched_lock);
4592 int __sched cond_resched_softirq(void)
4594 BUG_ON(!in_softirq());
4596 if (need_resched() && system_state == SYSTEM_RUNNING) {
4597 local_bh_enable();
4598 __cond_resched();
4599 local_bh_disable();
4600 return 1;
4602 return 0;
4604 EXPORT_SYMBOL(cond_resched_softirq);
4607 * yield - yield the current processor to other threads.
4609 * This is a shortcut for kernel-space yielding - it marks the
4610 * thread runnable and calls sys_sched_yield().
4612 void __sched yield(void)
4614 set_current_state(TASK_RUNNING);
4615 sys_sched_yield();
4617 EXPORT_SYMBOL(yield);
4620 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4621 * that process accounting knows that this is a task in IO wait state.
4623 * But don't do that if it is a deliberate, throttling IO wait (this task
4624 * has set its backing_dev_info: the queue against which it should throttle)
4626 void __sched io_schedule(void)
4628 struct rq *rq = &__raw_get_cpu_var(runqueues);
4630 delayacct_blkio_start();
4631 atomic_inc(&rq->nr_iowait);
4632 schedule();
4633 atomic_dec(&rq->nr_iowait);
4634 delayacct_blkio_end();
4636 EXPORT_SYMBOL(io_schedule);
4638 long __sched io_schedule_timeout(long timeout)
4640 struct rq *rq = &__raw_get_cpu_var(runqueues);
4641 long ret;
4643 delayacct_blkio_start();
4644 atomic_inc(&rq->nr_iowait);
4645 ret = schedule_timeout(timeout);
4646 atomic_dec(&rq->nr_iowait);
4647 delayacct_blkio_end();
4648 return ret;
4652 * sys_sched_get_priority_max - return maximum RT priority.
4653 * @policy: scheduling class.
4655 * this syscall returns the maximum rt_priority that can be used
4656 * by a given scheduling class.
4658 asmlinkage long sys_sched_get_priority_max(int policy)
4660 int ret = -EINVAL;
4662 switch (policy) {
4663 case SCHED_FIFO:
4664 case SCHED_RR:
4665 ret = MAX_USER_RT_PRIO-1;
4666 break;
4667 case SCHED_NORMAL:
4668 case SCHED_BATCH:
4669 case SCHED_IDLE:
4670 ret = 0;
4671 break;
4673 return ret;
4677 * sys_sched_get_priority_min - return minimum RT priority.
4678 * @policy: scheduling class.
4680 * this syscall returns the minimum rt_priority that can be used
4681 * by a given scheduling class.
4683 asmlinkage long sys_sched_get_priority_min(int policy)
4685 int ret = -EINVAL;
4687 switch (policy) {
4688 case SCHED_FIFO:
4689 case SCHED_RR:
4690 ret = 1;
4691 break;
4692 case SCHED_NORMAL:
4693 case SCHED_BATCH:
4694 case SCHED_IDLE:
4695 ret = 0;
4697 return ret;
4701 * sys_sched_rr_get_interval - return the default timeslice of a process.
4702 * @pid: pid of the process.
4703 * @interval: userspace pointer to the timeslice value.
4705 * this syscall writes the default timeslice value of a given process
4706 * into the user-space timespec buffer. A value of '0' means infinity.
4708 asmlinkage
4709 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4711 struct task_struct *p;
4712 unsigned int time_slice;
4713 int retval;
4714 struct timespec t;
4716 if (pid < 0)
4717 return -EINVAL;
4719 retval = -ESRCH;
4720 read_lock(&tasklist_lock);
4721 p = find_process_by_pid(pid);
4722 if (!p)
4723 goto out_unlock;
4725 retval = security_task_getscheduler(p);
4726 if (retval)
4727 goto out_unlock;
4729 if (p->policy == SCHED_FIFO)
4730 time_slice = 0;
4731 else if (p->policy == SCHED_RR)
4732 time_slice = DEF_TIMESLICE;
4733 else {
4734 struct sched_entity *se = &p->se;
4735 unsigned long flags;
4736 struct rq *rq;
4738 rq = task_rq_lock(p, &flags);
4739 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4740 task_rq_unlock(rq, &flags);
4742 read_unlock(&tasklist_lock);
4743 jiffies_to_timespec(time_slice, &t);
4744 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4745 return retval;
4747 out_unlock:
4748 read_unlock(&tasklist_lock);
4749 return retval;
4752 static const char stat_nam[] = "RSDTtZX";
4754 static void show_task(struct task_struct *p)
4756 unsigned long free = 0;
4757 unsigned state;
4759 state = p->state ? __ffs(p->state) + 1 : 0;
4760 printk("%-13.13s %c", p->comm,
4761 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4762 #if BITS_PER_LONG == 32
4763 if (state == TASK_RUNNING)
4764 printk(" running ");
4765 else
4766 printk(" %08lx ", thread_saved_pc(p));
4767 #else
4768 if (state == TASK_RUNNING)
4769 printk(" running task ");
4770 else
4771 printk(" %016lx ", thread_saved_pc(p));
4772 #endif
4773 #ifdef CONFIG_DEBUG_STACK_USAGE
4775 unsigned long *n = end_of_stack(p);
4776 while (!*n)
4777 n++;
4778 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4780 #endif
4781 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4783 if (state != TASK_RUNNING)
4784 show_stack(p, NULL);
4787 void show_state_filter(unsigned long state_filter)
4789 struct task_struct *g, *p;
4791 #if BITS_PER_LONG == 32
4792 printk(KERN_INFO
4793 " task PC stack pid father\n");
4794 #else
4795 printk(KERN_INFO
4796 " task PC stack pid father\n");
4797 #endif
4798 read_lock(&tasklist_lock);
4799 do_each_thread(g, p) {
4801 * reset the NMI-timeout, listing all files on a slow
4802 * console might take alot of time:
4804 touch_nmi_watchdog();
4805 if (!state_filter || (p->state & state_filter))
4806 show_task(p);
4807 } while_each_thread(g, p);
4809 touch_all_softlockup_watchdogs();
4811 #ifdef CONFIG_SCHED_DEBUG
4812 sysrq_sched_debug_show();
4813 #endif
4814 read_unlock(&tasklist_lock);
4816 * Only show locks if all tasks are dumped:
4818 if (state_filter == -1)
4819 debug_show_all_locks();
4822 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4824 idle->sched_class = &idle_sched_class;
4828 * init_idle - set up an idle thread for a given CPU
4829 * @idle: task in question
4830 * @cpu: cpu the idle task belongs to
4832 * NOTE: this function does not set the idle thread's NEED_RESCHED
4833 * flag, to make booting more robust.
4835 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4837 struct rq *rq = cpu_rq(cpu);
4838 unsigned long flags;
4840 __sched_fork(idle);
4841 idle->se.exec_start = sched_clock();
4843 idle->prio = idle->normal_prio = MAX_PRIO;
4844 idle->cpus_allowed = cpumask_of_cpu(cpu);
4845 __set_task_cpu(idle, cpu);
4847 spin_lock_irqsave(&rq->lock, flags);
4848 rq->curr = rq->idle = idle;
4849 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4850 idle->oncpu = 1;
4851 #endif
4852 spin_unlock_irqrestore(&rq->lock, flags);
4854 /* Set the preempt count _outside_ the spinlocks! */
4855 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4856 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4857 #else
4858 task_thread_info(idle)->preempt_count = 0;
4859 #endif
4861 * The idle tasks have their own, simple scheduling class:
4863 idle->sched_class = &idle_sched_class;
4867 * In a system that switches off the HZ timer nohz_cpu_mask
4868 * indicates which cpus entered this state. This is used
4869 * in the rcu update to wait only for active cpus. For system
4870 * which do not switch off the HZ timer nohz_cpu_mask should
4871 * always be CPU_MASK_NONE.
4873 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4875 #ifdef CONFIG_SMP
4877 * This is how migration works:
4879 * 1) we queue a struct migration_req structure in the source CPU's
4880 * runqueue and wake up that CPU's migration thread.
4881 * 2) we down() the locked semaphore => thread blocks.
4882 * 3) migration thread wakes up (implicitly it forces the migrated
4883 * thread off the CPU)
4884 * 4) it gets the migration request and checks whether the migrated
4885 * task is still in the wrong runqueue.
4886 * 5) if it's in the wrong runqueue then the migration thread removes
4887 * it and puts it into the right queue.
4888 * 6) migration thread up()s the semaphore.
4889 * 7) we wake up and the migration is done.
4893 * Change a given task's CPU affinity. Migrate the thread to a
4894 * proper CPU and schedule it away if the CPU it's executing on
4895 * is removed from the allowed bitmask.
4897 * NOTE: the caller must have a valid reference to the task, the
4898 * task must not exit() & deallocate itself prematurely. The
4899 * call is not atomic; no spinlocks may be held.
4901 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4903 struct migration_req req;
4904 unsigned long flags;
4905 struct rq *rq;
4906 int ret = 0;
4908 rq = task_rq_lock(p, &flags);
4909 if (!cpus_intersects(new_mask, cpu_online_map)) {
4910 ret = -EINVAL;
4911 goto out;
4914 p->cpus_allowed = new_mask;
4915 /* Can the task run on the task's current CPU? If so, we're done */
4916 if (cpu_isset(task_cpu(p), new_mask))
4917 goto out;
4919 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4920 /* Need help from migration thread: drop lock and wait. */
4921 task_rq_unlock(rq, &flags);
4922 wake_up_process(rq->migration_thread);
4923 wait_for_completion(&req.done);
4924 tlb_migrate_finish(p->mm);
4925 return 0;
4927 out:
4928 task_rq_unlock(rq, &flags);
4930 return ret;
4932 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4935 * Move (not current) task off this cpu, onto dest cpu. We're doing
4936 * this because either it can't run here any more (set_cpus_allowed()
4937 * away from this CPU, or CPU going down), or because we're
4938 * attempting to rebalance this task on exec (sched_exec).
4940 * So we race with normal scheduler movements, but that's OK, as long
4941 * as the task is no longer on this CPU.
4943 * Returns non-zero if task was successfully migrated.
4945 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4947 struct rq *rq_dest, *rq_src;
4948 int ret = 0, on_rq;
4950 if (unlikely(cpu_is_offline(dest_cpu)))
4951 return ret;
4953 rq_src = cpu_rq(src_cpu);
4954 rq_dest = cpu_rq(dest_cpu);
4956 double_rq_lock(rq_src, rq_dest);
4957 /* Already moved. */
4958 if (task_cpu(p) != src_cpu)
4959 goto out;
4960 /* Affinity changed (again). */
4961 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4962 goto out;
4964 on_rq = p->se.on_rq;
4965 if (on_rq)
4966 deactivate_task(rq_src, p, 0);
4968 set_task_cpu(p, dest_cpu);
4969 if (on_rq) {
4970 activate_task(rq_dest, p, 0);
4971 check_preempt_curr(rq_dest, p);
4973 ret = 1;
4974 out:
4975 double_rq_unlock(rq_src, rq_dest);
4976 return ret;
4980 * migration_thread - this is a highprio system thread that performs
4981 * thread migration by bumping thread off CPU then 'pushing' onto
4982 * another runqueue.
4984 static int migration_thread(void *data)
4986 int cpu = (long)data;
4987 struct rq *rq;
4989 rq = cpu_rq(cpu);
4990 BUG_ON(rq->migration_thread != current);
4992 set_current_state(TASK_INTERRUPTIBLE);
4993 while (!kthread_should_stop()) {
4994 struct migration_req *req;
4995 struct list_head *head;
4997 spin_lock_irq(&rq->lock);
4999 if (cpu_is_offline(cpu)) {
5000 spin_unlock_irq(&rq->lock);
5001 goto wait_to_die;
5004 if (rq->active_balance) {
5005 active_load_balance(rq, cpu);
5006 rq->active_balance = 0;
5009 head = &rq->migration_queue;
5011 if (list_empty(head)) {
5012 spin_unlock_irq(&rq->lock);
5013 schedule();
5014 set_current_state(TASK_INTERRUPTIBLE);
5015 continue;
5017 req = list_entry(head->next, struct migration_req, list);
5018 list_del_init(head->next);
5020 spin_unlock(&rq->lock);
5021 __migrate_task(req->task, cpu, req->dest_cpu);
5022 local_irq_enable();
5024 complete(&req->done);
5026 __set_current_state(TASK_RUNNING);
5027 return 0;
5029 wait_to_die:
5030 /* Wait for kthread_stop */
5031 set_current_state(TASK_INTERRUPTIBLE);
5032 while (!kthread_should_stop()) {
5033 schedule();
5034 set_current_state(TASK_INTERRUPTIBLE);
5036 __set_current_state(TASK_RUNNING);
5037 return 0;
5040 #ifdef CONFIG_HOTPLUG_CPU
5042 * Figure out where task on dead CPU should go, use force if neccessary.
5043 * NOTE: interrupts should be disabled by the caller
5045 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5047 unsigned long flags;
5048 cpumask_t mask;
5049 struct rq *rq;
5050 int dest_cpu;
5052 do {
5053 /* On same node? */
5054 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5055 cpus_and(mask, mask, p->cpus_allowed);
5056 dest_cpu = any_online_cpu(mask);
5058 /* On any allowed CPU? */
5059 if (dest_cpu == NR_CPUS)
5060 dest_cpu = any_online_cpu(p->cpus_allowed);
5062 /* No more Mr. Nice Guy. */
5063 if (dest_cpu == NR_CPUS) {
5064 rq = task_rq_lock(p, &flags);
5065 cpus_setall(p->cpus_allowed);
5066 dest_cpu = any_online_cpu(p->cpus_allowed);
5067 task_rq_unlock(rq, &flags);
5070 * Don't tell them about moving exiting tasks or
5071 * kernel threads (both mm NULL), since they never
5072 * leave kernel.
5074 if (p->mm && printk_ratelimit())
5075 printk(KERN_INFO "process %d (%s) no "
5076 "longer affine to cpu%d\n",
5077 p->pid, p->comm, dead_cpu);
5079 } while (!__migrate_task(p, dead_cpu, dest_cpu));
5083 * While a dead CPU has no uninterruptible tasks queued at this point,
5084 * it might still have a nonzero ->nr_uninterruptible counter, because
5085 * for performance reasons the counter is not stricly tracking tasks to
5086 * their home CPUs. So we just add the counter to another CPU's counter,
5087 * to keep the global sum constant after CPU-down:
5089 static void migrate_nr_uninterruptible(struct rq *rq_src)
5091 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5092 unsigned long flags;
5094 local_irq_save(flags);
5095 double_rq_lock(rq_src, rq_dest);
5096 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5097 rq_src->nr_uninterruptible = 0;
5098 double_rq_unlock(rq_src, rq_dest);
5099 local_irq_restore(flags);
5102 /* Run through task list and migrate tasks from the dead cpu. */
5103 static void migrate_live_tasks(int src_cpu)
5105 struct task_struct *p, *t;
5107 write_lock_irq(&tasklist_lock);
5109 do_each_thread(t, p) {
5110 if (p == current)
5111 continue;
5113 if (task_cpu(p) == src_cpu)
5114 move_task_off_dead_cpu(src_cpu, p);
5115 } while_each_thread(t, p);
5117 write_unlock_irq(&tasklist_lock);
5121 * activate_idle_task - move idle task to the _front_ of runqueue.
5123 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5125 update_rq_clock(rq);
5127 if (p->state == TASK_UNINTERRUPTIBLE)
5128 rq->nr_uninterruptible--;
5130 enqueue_task(rq, p, 0);
5131 inc_nr_running(p, rq);
5135 * Schedules idle task to be the next runnable task on current CPU.
5136 * It does so by boosting its priority to highest possible and adding it to
5137 * the _front_ of the runqueue. Used by CPU offline code.
5139 void sched_idle_next(void)
5141 int this_cpu = smp_processor_id();
5142 struct rq *rq = cpu_rq(this_cpu);
5143 struct task_struct *p = rq->idle;
5144 unsigned long flags;
5146 /* cpu has to be offline */
5147 BUG_ON(cpu_online(this_cpu));
5150 * Strictly not necessary since rest of the CPUs are stopped by now
5151 * and interrupts disabled on the current cpu.
5153 spin_lock_irqsave(&rq->lock, flags);
5155 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5157 /* Add idle task to the _front_ of its priority queue: */
5158 activate_idle_task(p, rq);
5160 spin_unlock_irqrestore(&rq->lock, flags);
5164 * Ensures that the idle task is using init_mm right before its cpu goes
5165 * offline.
5167 void idle_task_exit(void)
5169 struct mm_struct *mm = current->active_mm;
5171 BUG_ON(cpu_online(smp_processor_id()));
5173 if (mm != &init_mm)
5174 switch_mm(mm, &init_mm, current);
5175 mmdrop(mm);
5178 /* called under rq->lock with disabled interrupts */
5179 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5181 struct rq *rq = cpu_rq(dead_cpu);
5183 /* Must be exiting, otherwise would be on tasklist. */
5184 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5186 /* Cannot have done final schedule yet: would have vanished. */
5187 BUG_ON(p->state == TASK_DEAD);
5189 get_task_struct(p);
5192 * Drop lock around migration; if someone else moves it,
5193 * that's OK. No task can be added to this CPU, so iteration is
5194 * fine.
5195 * NOTE: interrupts should be left disabled --dev@
5197 spin_unlock(&rq->lock);
5198 move_task_off_dead_cpu(dead_cpu, p);
5199 spin_lock(&rq->lock);
5201 put_task_struct(p);
5204 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5205 static void migrate_dead_tasks(unsigned int dead_cpu)
5207 struct rq *rq = cpu_rq(dead_cpu);
5208 struct task_struct *next;
5210 for ( ; ; ) {
5211 if (!rq->nr_running)
5212 break;
5213 update_rq_clock(rq);
5214 next = pick_next_task(rq, rq->curr);
5215 if (!next)
5216 break;
5217 migrate_dead(dead_cpu, next);
5221 #endif /* CONFIG_HOTPLUG_CPU */
5223 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5225 static struct ctl_table sd_ctl_dir[] = {
5227 .procname = "sched_domain",
5228 .mode = 0555,
5230 {0,},
5233 static struct ctl_table sd_ctl_root[] = {
5235 .ctl_name = CTL_KERN,
5236 .procname = "kernel",
5237 .mode = 0555,
5238 .child = sd_ctl_dir,
5240 {0,},
5243 static struct ctl_table *sd_alloc_ctl_entry(int n)
5245 struct ctl_table *entry =
5246 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5248 BUG_ON(!entry);
5250 return entry;
5253 static void
5254 set_table_entry(struct ctl_table *entry,
5255 const char *procname, void *data, int maxlen,
5256 mode_t mode, proc_handler *proc_handler)
5258 entry->procname = procname;
5259 entry->data = data;
5260 entry->maxlen = maxlen;
5261 entry->mode = mode;
5262 entry->proc_handler = proc_handler;
5265 static struct ctl_table *
5266 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5268 struct ctl_table *table = sd_alloc_ctl_entry(12);
5270 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5271 sizeof(long), 0644, proc_doulongvec_minmax);
5272 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5273 sizeof(long), 0644, proc_doulongvec_minmax);
5274 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5275 sizeof(int), 0644, proc_dointvec_minmax);
5276 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5277 sizeof(int), 0644, proc_dointvec_minmax);
5278 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5279 sizeof(int), 0644, proc_dointvec_minmax);
5280 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5281 sizeof(int), 0644, proc_dointvec_minmax);
5282 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5285 sizeof(int), 0644, proc_dointvec_minmax);
5286 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5287 sizeof(int), 0644, proc_dointvec_minmax);
5288 set_table_entry(&table[9], "cache_nice_tries",
5289 &sd->cache_nice_tries,
5290 sizeof(int), 0644, proc_dointvec_minmax);
5291 set_table_entry(&table[10], "flags", &sd->flags,
5292 sizeof(int), 0644, proc_dointvec_minmax);
5294 return table;
5297 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5299 struct ctl_table *entry, *table;
5300 struct sched_domain *sd;
5301 int domain_num = 0, i;
5302 char buf[32];
5304 for_each_domain(cpu, sd)
5305 domain_num++;
5306 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5308 i = 0;
5309 for_each_domain(cpu, sd) {
5310 snprintf(buf, 32, "domain%d", i);
5311 entry->procname = kstrdup(buf, GFP_KERNEL);
5312 entry->mode = 0555;
5313 entry->child = sd_alloc_ctl_domain_table(sd);
5314 entry++;
5315 i++;
5317 return table;
5320 static struct ctl_table_header *sd_sysctl_header;
5321 static void init_sched_domain_sysctl(void)
5323 int i, cpu_num = num_online_cpus();
5324 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5325 char buf[32];
5327 sd_ctl_dir[0].child = entry;
5329 for (i = 0; i < cpu_num; i++, entry++) {
5330 snprintf(buf, 32, "cpu%d", i);
5331 entry->procname = kstrdup(buf, GFP_KERNEL);
5332 entry->mode = 0555;
5333 entry->child = sd_alloc_ctl_cpu_table(i);
5335 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5337 #else
5338 static void init_sched_domain_sysctl(void)
5341 #endif
5344 * migration_call - callback that gets triggered when a CPU is added.
5345 * Here we can start up the necessary migration thread for the new CPU.
5347 static int __cpuinit
5348 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5350 struct task_struct *p;
5351 int cpu = (long)hcpu;
5352 unsigned long flags;
5353 struct rq *rq;
5355 switch (action) {
5356 case CPU_LOCK_ACQUIRE:
5357 mutex_lock(&sched_hotcpu_mutex);
5358 break;
5360 case CPU_UP_PREPARE:
5361 case CPU_UP_PREPARE_FROZEN:
5362 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5363 if (IS_ERR(p))
5364 return NOTIFY_BAD;
5365 kthread_bind(p, cpu);
5366 /* Must be high prio: stop_machine expects to yield to it. */
5367 rq = task_rq_lock(p, &flags);
5368 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5369 task_rq_unlock(rq, &flags);
5370 cpu_rq(cpu)->migration_thread = p;
5371 break;
5373 case CPU_ONLINE:
5374 case CPU_ONLINE_FROZEN:
5375 /* Strictly unneccessary, as first user will wake it. */
5376 wake_up_process(cpu_rq(cpu)->migration_thread);
5377 break;
5379 #ifdef CONFIG_HOTPLUG_CPU
5380 case CPU_UP_CANCELED:
5381 case CPU_UP_CANCELED_FROZEN:
5382 if (!cpu_rq(cpu)->migration_thread)
5383 break;
5384 /* Unbind it from offline cpu so it can run. Fall thru. */
5385 kthread_bind(cpu_rq(cpu)->migration_thread,
5386 any_online_cpu(cpu_online_map));
5387 kthread_stop(cpu_rq(cpu)->migration_thread);
5388 cpu_rq(cpu)->migration_thread = NULL;
5389 break;
5391 case CPU_DEAD:
5392 case CPU_DEAD_FROZEN:
5393 migrate_live_tasks(cpu);
5394 rq = cpu_rq(cpu);
5395 kthread_stop(rq->migration_thread);
5396 rq->migration_thread = NULL;
5397 /* Idle task back to normal (off runqueue, low prio) */
5398 rq = task_rq_lock(rq->idle, &flags);
5399 update_rq_clock(rq);
5400 deactivate_task(rq, rq->idle, 0);
5401 rq->idle->static_prio = MAX_PRIO;
5402 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5403 rq->idle->sched_class = &idle_sched_class;
5404 migrate_dead_tasks(cpu);
5405 task_rq_unlock(rq, &flags);
5406 migrate_nr_uninterruptible(rq);
5407 BUG_ON(rq->nr_running != 0);
5409 /* No need to migrate the tasks: it was best-effort if
5410 * they didn't take sched_hotcpu_mutex. Just wake up
5411 * the requestors. */
5412 spin_lock_irq(&rq->lock);
5413 while (!list_empty(&rq->migration_queue)) {
5414 struct migration_req *req;
5416 req = list_entry(rq->migration_queue.next,
5417 struct migration_req, list);
5418 list_del_init(&req->list);
5419 complete(&req->done);
5421 spin_unlock_irq(&rq->lock);
5422 break;
5423 #endif
5424 case CPU_LOCK_RELEASE:
5425 mutex_unlock(&sched_hotcpu_mutex);
5426 break;
5428 return NOTIFY_OK;
5431 /* Register at highest priority so that task migration (migrate_all_tasks)
5432 * happens before everything else.
5434 static struct notifier_block __cpuinitdata migration_notifier = {
5435 .notifier_call = migration_call,
5436 .priority = 10
5439 int __init migration_init(void)
5441 void *cpu = (void *)(long)smp_processor_id();
5442 int err;
5444 /* Start one for the boot CPU: */
5445 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5446 BUG_ON(err == NOTIFY_BAD);
5447 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5448 register_cpu_notifier(&migration_notifier);
5450 return 0;
5452 #endif
5454 #ifdef CONFIG_SMP
5456 /* Number of possible processor ids */
5457 int nr_cpu_ids __read_mostly = NR_CPUS;
5458 EXPORT_SYMBOL(nr_cpu_ids);
5460 #ifdef CONFIG_SCHED_DEBUG
5461 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5463 int level = 0;
5465 if (!sd) {
5466 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5467 return;
5470 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5472 do {
5473 int i;
5474 char str[NR_CPUS];
5475 struct sched_group *group = sd->groups;
5476 cpumask_t groupmask;
5478 cpumask_scnprintf(str, NR_CPUS, sd->span);
5479 cpus_clear(groupmask);
5481 printk(KERN_DEBUG);
5482 for (i = 0; i < level + 1; i++)
5483 printk(" ");
5484 printk("domain %d: ", level);
5486 if (!(sd->flags & SD_LOAD_BALANCE)) {
5487 printk("does not load-balance\n");
5488 if (sd->parent)
5489 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5490 " has parent");
5491 break;
5494 printk("span %s\n", str);
5496 if (!cpu_isset(cpu, sd->span))
5497 printk(KERN_ERR "ERROR: domain->span does not contain "
5498 "CPU%d\n", cpu);
5499 if (!cpu_isset(cpu, group->cpumask))
5500 printk(KERN_ERR "ERROR: domain->groups does not contain"
5501 " CPU%d\n", cpu);
5503 printk(KERN_DEBUG);
5504 for (i = 0; i < level + 2; i++)
5505 printk(" ");
5506 printk("groups:");
5507 do {
5508 if (!group) {
5509 printk("\n");
5510 printk(KERN_ERR "ERROR: group is NULL\n");
5511 break;
5514 if (!group->__cpu_power) {
5515 printk("\n");
5516 printk(KERN_ERR "ERROR: domain->cpu_power not "
5517 "set\n");
5518 break;
5521 if (!cpus_weight(group->cpumask)) {
5522 printk("\n");
5523 printk(KERN_ERR "ERROR: empty group\n");
5524 break;
5527 if (cpus_intersects(groupmask, group->cpumask)) {
5528 printk("\n");
5529 printk(KERN_ERR "ERROR: repeated CPUs\n");
5530 break;
5533 cpus_or(groupmask, groupmask, group->cpumask);
5535 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5536 printk(" %s", str);
5538 group = group->next;
5539 } while (group != sd->groups);
5540 printk("\n");
5542 if (!cpus_equal(sd->span, groupmask))
5543 printk(KERN_ERR "ERROR: groups don't span "
5544 "domain->span\n");
5546 level++;
5547 sd = sd->parent;
5548 if (!sd)
5549 continue;
5551 if (!cpus_subset(groupmask, sd->span))
5552 printk(KERN_ERR "ERROR: parent span is not a superset "
5553 "of domain->span\n");
5555 } while (sd);
5557 #else
5558 # define sched_domain_debug(sd, cpu) do { } while (0)
5559 #endif
5561 static int sd_degenerate(struct sched_domain *sd)
5563 if (cpus_weight(sd->span) == 1)
5564 return 1;
5566 /* Following flags need at least 2 groups */
5567 if (sd->flags & (SD_LOAD_BALANCE |
5568 SD_BALANCE_NEWIDLE |
5569 SD_BALANCE_FORK |
5570 SD_BALANCE_EXEC |
5571 SD_SHARE_CPUPOWER |
5572 SD_SHARE_PKG_RESOURCES)) {
5573 if (sd->groups != sd->groups->next)
5574 return 0;
5577 /* Following flags don't use groups */
5578 if (sd->flags & (SD_WAKE_IDLE |
5579 SD_WAKE_AFFINE |
5580 SD_WAKE_BALANCE))
5581 return 0;
5583 return 1;
5586 static int
5587 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5589 unsigned long cflags = sd->flags, pflags = parent->flags;
5591 if (sd_degenerate(parent))
5592 return 1;
5594 if (!cpus_equal(sd->span, parent->span))
5595 return 0;
5597 /* Does parent contain flags not in child? */
5598 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5599 if (cflags & SD_WAKE_AFFINE)
5600 pflags &= ~SD_WAKE_BALANCE;
5601 /* Flags needing groups don't count if only 1 group in parent */
5602 if (parent->groups == parent->groups->next) {
5603 pflags &= ~(SD_LOAD_BALANCE |
5604 SD_BALANCE_NEWIDLE |
5605 SD_BALANCE_FORK |
5606 SD_BALANCE_EXEC |
5607 SD_SHARE_CPUPOWER |
5608 SD_SHARE_PKG_RESOURCES);
5610 if (~cflags & pflags)
5611 return 0;
5613 return 1;
5617 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5618 * hold the hotplug lock.
5620 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5622 struct rq *rq = cpu_rq(cpu);
5623 struct sched_domain *tmp;
5625 /* Remove the sched domains which do not contribute to scheduling. */
5626 for (tmp = sd; tmp; tmp = tmp->parent) {
5627 struct sched_domain *parent = tmp->parent;
5628 if (!parent)
5629 break;
5630 if (sd_parent_degenerate(tmp, parent)) {
5631 tmp->parent = parent->parent;
5632 if (parent->parent)
5633 parent->parent->child = tmp;
5637 if (sd && sd_degenerate(sd)) {
5638 sd = sd->parent;
5639 if (sd)
5640 sd->child = NULL;
5643 sched_domain_debug(sd, cpu);
5645 rcu_assign_pointer(rq->sd, sd);
5648 /* cpus with isolated domains */
5649 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5651 /* Setup the mask of cpus configured for isolated domains */
5652 static int __init isolated_cpu_setup(char *str)
5654 int ints[NR_CPUS], i;
5656 str = get_options(str, ARRAY_SIZE(ints), ints);
5657 cpus_clear(cpu_isolated_map);
5658 for (i = 1; i <= ints[0]; i++)
5659 if (ints[i] < NR_CPUS)
5660 cpu_set(ints[i], cpu_isolated_map);
5661 return 1;
5664 __setup("isolcpus=", isolated_cpu_setup);
5667 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5668 * to a function which identifies what group(along with sched group) a CPU
5669 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5670 * (due to the fact that we keep track of groups covered with a cpumask_t).
5672 * init_sched_build_groups will build a circular linked list of the groups
5673 * covered by the given span, and will set each group's ->cpumask correctly,
5674 * and ->cpu_power to 0.
5676 static void
5677 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5678 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5679 struct sched_group **sg))
5681 struct sched_group *first = NULL, *last = NULL;
5682 cpumask_t covered = CPU_MASK_NONE;
5683 int i;
5685 for_each_cpu_mask(i, span) {
5686 struct sched_group *sg;
5687 int group = group_fn(i, cpu_map, &sg);
5688 int j;
5690 if (cpu_isset(i, covered))
5691 continue;
5693 sg->cpumask = CPU_MASK_NONE;
5694 sg->__cpu_power = 0;
5696 for_each_cpu_mask(j, span) {
5697 if (group_fn(j, cpu_map, NULL) != group)
5698 continue;
5700 cpu_set(j, covered);
5701 cpu_set(j, sg->cpumask);
5703 if (!first)
5704 first = sg;
5705 if (last)
5706 last->next = sg;
5707 last = sg;
5709 last->next = first;
5712 #define SD_NODES_PER_DOMAIN 16
5714 #ifdef CONFIG_NUMA
5717 * find_next_best_node - find the next node to include in a sched_domain
5718 * @node: node whose sched_domain we're building
5719 * @used_nodes: nodes already in the sched_domain
5721 * Find the next node to include in a given scheduling domain. Simply
5722 * finds the closest node not already in the @used_nodes map.
5724 * Should use nodemask_t.
5726 static int find_next_best_node(int node, unsigned long *used_nodes)
5728 int i, n, val, min_val, best_node = 0;
5730 min_val = INT_MAX;
5732 for (i = 0; i < MAX_NUMNODES; i++) {
5733 /* Start at @node */
5734 n = (node + i) % MAX_NUMNODES;
5736 if (!nr_cpus_node(n))
5737 continue;
5739 /* Skip already used nodes */
5740 if (test_bit(n, used_nodes))
5741 continue;
5743 /* Simple min distance search */
5744 val = node_distance(node, n);
5746 if (val < min_val) {
5747 min_val = val;
5748 best_node = n;
5752 set_bit(best_node, used_nodes);
5753 return best_node;
5757 * sched_domain_node_span - get a cpumask for a node's sched_domain
5758 * @node: node whose cpumask we're constructing
5759 * @size: number of nodes to include in this span
5761 * Given a node, construct a good cpumask for its sched_domain to span. It
5762 * should be one that prevents unnecessary balancing, but also spreads tasks
5763 * out optimally.
5765 static cpumask_t sched_domain_node_span(int node)
5767 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5768 cpumask_t span, nodemask;
5769 int i;
5771 cpus_clear(span);
5772 bitmap_zero(used_nodes, MAX_NUMNODES);
5774 nodemask = node_to_cpumask(node);
5775 cpus_or(span, span, nodemask);
5776 set_bit(node, used_nodes);
5778 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5779 int next_node = find_next_best_node(node, used_nodes);
5781 nodemask = node_to_cpumask(next_node);
5782 cpus_or(span, span, nodemask);
5785 return span;
5787 #endif
5789 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5792 * SMT sched-domains:
5794 #ifdef CONFIG_SCHED_SMT
5795 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5796 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5798 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5799 struct sched_group **sg)
5801 if (sg)
5802 *sg = &per_cpu(sched_group_cpus, cpu);
5803 return cpu;
5805 #endif
5808 * multi-core sched-domains:
5810 #ifdef CONFIG_SCHED_MC
5811 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5812 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5813 #endif
5815 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5816 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5817 struct sched_group **sg)
5819 int group;
5820 cpumask_t mask = cpu_sibling_map[cpu];
5821 cpus_and(mask, mask, *cpu_map);
5822 group = first_cpu(mask);
5823 if (sg)
5824 *sg = &per_cpu(sched_group_core, group);
5825 return group;
5827 #elif defined(CONFIG_SCHED_MC)
5828 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5829 struct sched_group **sg)
5831 if (sg)
5832 *sg = &per_cpu(sched_group_core, cpu);
5833 return cpu;
5835 #endif
5837 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5838 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5840 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5841 struct sched_group **sg)
5843 int group;
5844 #ifdef CONFIG_SCHED_MC
5845 cpumask_t mask = cpu_coregroup_map(cpu);
5846 cpus_and(mask, mask, *cpu_map);
5847 group = first_cpu(mask);
5848 #elif defined(CONFIG_SCHED_SMT)
5849 cpumask_t mask = cpu_sibling_map[cpu];
5850 cpus_and(mask, mask, *cpu_map);
5851 group = first_cpu(mask);
5852 #else
5853 group = cpu;
5854 #endif
5855 if (sg)
5856 *sg = &per_cpu(sched_group_phys, group);
5857 return group;
5860 #ifdef CONFIG_NUMA
5862 * The init_sched_build_groups can't handle what we want to do with node
5863 * groups, so roll our own. Now each node has its own list of groups which
5864 * gets dynamically allocated.
5866 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5867 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5869 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5870 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5872 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5873 struct sched_group **sg)
5875 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5876 int group;
5878 cpus_and(nodemask, nodemask, *cpu_map);
5879 group = first_cpu(nodemask);
5881 if (sg)
5882 *sg = &per_cpu(sched_group_allnodes, group);
5883 return group;
5886 static void init_numa_sched_groups_power(struct sched_group *group_head)
5888 struct sched_group *sg = group_head;
5889 int j;
5891 if (!sg)
5892 return;
5893 do {
5894 for_each_cpu_mask(j, sg->cpumask) {
5895 struct sched_domain *sd;
5897 sd = &per_cpu(phys_domains, j);
5898 if (j != first_cpu(sd->groups->cpumask)) {
5900 * Only add "power" once for each
5901 * physical package.
5903 continue;
5906 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5908 sg = sg->next;
5909 } while (sg != group_head);
5911 #endif
5913 #ifdef CONFIG_NUMA
5914 /* Free memory allocated for various sched_group structures */
5915 static void free_sched_groups(const cpumask_t *cpu_map)
5917 int cpu, i;
5919 for_each_cpu_mask(cpu, *cpu_map) {
5920 struct sched_group **sched_group_nodes
5921 = sched_group_nodes_bycpu[cpu];
5923 if (!sched_group_nodes)
5924 continue;
5926 for (i = 0; i < MAX_NUMNODES; i++) {
5927 cpumask_t nodemask = node_to_cpumask(i);
5928 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5930 cpus_and(nodemask, nodemask, *cpu_map);
5931 if (cpus_empty(nodemask))
5932 continue;
5934 if (sg == NULL)
5935 continue;
5936 sg = sg->next;
5937 next_sg:
5938 oldsg = sg;
5939 sg = sg->next;
5940 kfree(oldsg);
5941 if (oldsg != sched_group_nodes[i])
5942 goto next_sg;
5944 kfree(sched_group_nodes);
5945 sched_group_nodes_bycpu[cpu] = NULL;
5948 #else
5949 static void free_sched_groups(const cpumask_t *cpu_map)
5952 #endif
5955 * Initialize sched groups cpu_power.
5957 * cpu_power indicates the capacity of sched group, which is used while
5958 * distributing the load between different sched groups in a sched domain.
5959 * Typically cpu_power for all the groups in a sched domain will be same unless
5960 * there are asymmetries in the topology. If there are asymmetries, group
5961 * having more cpu_power will pickup more load compared to the group having
5962 * less cpu_power.
5964 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5965 * the maximum number of tasks a group can handle in the presence of other idle
5966 * or lightly loaded groups in the same sched domain.
5968 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5970 struct sched_domain *child;
5971 struct sched_group *group;
5973 WARN_ON(!sd || !sd->groups);
5975 if (cpu != first_cpu(sd->groups->cpumask))
5976 return;
5978 child = sd->child;
5980 sd->groups->__cpu_power = 0;
5983 * For perf policy, if the groups in child domain share resources
5984 * (for example cores sharing some portions of the cache hierarchy
5985 * or SMT), then set this domain groups cpu_power such that each group
5986 * can handle only one task, when there are other idle groups in the
5987 * same sched domain.
5989 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5990 (child->flags &
5991 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5992 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5993 return;
5997 * add cpu_power of each child group to this groups cpu_power
5999 group = child->groups;
6000 do {
6001 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6002 group = group->next;
6003 } while (group != child->groups);
6007 * Build sched domains for a given set of cpus and attach the sched domains
6008 * to the individual cpus
6010 static int build_sched_domains(const cpumask_t *cpu_map)
6012 int i;
6013 #ifdef CONFIG_NUMA
6014 struct sched_group **sched_group_nodes = NULL;
6015 int sd_allnodes = 0;
6018 * Allocate the per-node list of sched groups
6020 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6021 GFP_KERNEL);
6022 if (!sched_group_nodes) {
6023 printk(KERN_WARNING "Can not alloc sched group node list\n");
6024 return -ENOMEM;
6026 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6027 #endif
6030 * Set up domains for cpus specified by the cpu_map.
6032 for_each_cpu_mask(i, *cpu_map) {
6033 struct sched_domain *sd = NULL, *p;
6034 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6036 cpus_and(nodemask, nodemask, *cpu_map);
6038 #ifdef CONFIG_NUMA
6039 if (cpus_weight(*cpu_map) >
6040 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6041 sd = &per_cpu(allnodes_domains, i);
6042 *sd = SD_ALLNODES_INIT;
6043 sd->span = *cpu_map;
6044 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6045 p = sd;
6046 sd_allnodes = 1;
6047 } else
6048 p = NULL;
6050 sd = &per_cpu(node_domains, i);
6051 *sd = SD_NODE_INIT;
6052 sd->span = sched_domain_node_span(cpu_to_node(i));
6053 sd->parent = p;
6054 if (p)
6055 p->child = sd;
6056 cpus_and(sd->span, sd->span, *cpu_map);
6057 #endif
6059 p = sd;
6060 sd = &per_cpu(phys_domains, i);
6061 *sd = SD_CPU_INIT;
6062 sd->span = nodemask;
6063 sd->parent = p;
6064 if (p)
6065 p->child = sd;
6066 cpu_to_phys_group(i, cpu_map, &sd->groups);
6068 #ifdef CONFIG_SCHED_MC
6069 p = sd;
6070 sd = &per_cpu(core_domains, i);
6071 *sd = SD_MC_INIT;
6072 sd->span = cpu_coregroup_map(i);
6073 cpus_and(sd->span, sd->span, *cpu_map);
6074 sd->parent = p;
6075 p->child = sd;
6076 cpu_to_core_group(i, cpu_map, &sd->groups);
6077 #endif
6079 #ifdef CONFIG_SCHED_SMT
6080 p = sd;
6081 sd = &per_cpu(cpu_domains, i);
6082 *sd = SD_SIBLING_INIT;
6083 sd->span = cpu_sibling_map[i];
6084 cpus_and(sd->span, sd->span, *cpu_map);
6085 sd->parent = p;
6086 p->child = sd;
6087 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6088 #endif
6091 #ifdef CONFIG_SCHED_SMT
6092 /* Set up CPU (sibling) groups */
6093 for_each_cpu_mask(i, *cpu_map) {
6094 cpumask_t this_sibling_map = cpu_sibling_map[i];
6095 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6096 if (i != first_cpu(this_sibling_map))
6097 continue;
6099 init_sched_build_groups(this_sibling_map, cpu_map,
6100 &cpu_to_cpu_group);
6102 #endif
6104 #ifdef CONFIG_SCHED_MC
6105 /* Set up multi-core groups */
6106 for_each_cpu_mask(i, *cpu_map) {
6107 cpumask_t this_core_map = cpu_coregroup_map(i);
6108 cpus_and(this_core_map, this_core_map, *cpu_map);
6109 if (i != first_cpu(this_core_map))
6110 continue;
6111 init_sched_build_groups(this_core_map, cpu_map,
6112 &cpu_to_core_group);
6114 #endif
6116 /* Set up physical groups */
6117 for (i = 0; i < MAX_NUMNODES; i++) {
6118 cpumask_t nodemask = node_to_cpumask(i);
6120 cpus_and(nodemask, nodemask, *cpu_map);
6121 if (cpus_empty(nodemask))
6122 continue;
6124 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6127 #ifdef CONFIG_NUMA
6128 /* Set up node groups */
6129 if (sd_allnodes)
6130 init_sched_build_groups(*cpu_map, cpu_map,
6131 &cpu_to_allnodes_group);
6133 for (i = 0; i < MAX_NUMNODES; i++) {
6134 /* Set up node groups */
6135 struct sched_group *sg, *prev;
6136 cpumask_t nodemask = node_to_cpumask(i);
6137 cpumask_t domainspan;
6138 cpumask_t covered = CPU_MASK_NONE;
6139 int j;
6141 cpus_and(nodemask, nodemask, *cpu_map);
6142 if (cpus_empty(nodemask)) {
6143 sched_group_nodes[i] = NULL;
6144 continue;
6147 domainspan = sched_domain_node_span(i);
6148 cpus_and(domainspan, domainspan, *cpu_map);
6150 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6151 if (!sg) {
6152 printk(KERN_WARNING "Can not alloc domain group for "
6153 "node %d\n", i);
6154 goto error;
6156 sched_group_nodes[i] = sg;
6157 for_each_cpu_mask(j, nodemask) {
6158 struct sched_domain *sd;
6160 sd = &per_cpu(node_domains, j);
6161 sd->groups = sg;
6163 sg->__cpu_power = 0;
6164 sg->cpumask = nodemask;
6165 sg->next = sg;
6166 cpus_or(covered, covered, nodemask);
6167 prev = sg;
6169 for (j = 0; j < MAX_NUMNODES; j++) {
6170 cpumask_t tmp, notcovered;
6171 int n = (i + j) % MAX_NUMNODES;
6173 cpus_complement(notcovered, covered);
6174 cpus_and(tmp, notcovered, *cpu_map);
6175 cpus_and(tmp, tmp, domainspan);
6176 if (cpus_empty(tmp))
6177 break;
6179 nodemask = node_to_cpumask(n);
6180 cpus_and(tmp, tmp, nodemask);
6181 if (cpus_empty(tmp))
6182 continue;
6184 sg = kmalloc_node(sizeof(struct sched_group),
6185 GFP_KERNEL, i);
6186 if (!sg) {
6187 printk(KERN_WARNING
6188 "Can not alloc domain group for node %d\n", j);
6189 goto error;
6191 sg->__cpu_power = 0;
6192 sg->cpumask = tmp;
6193 sg->next = prev->next;
6194 cpus_or(covered, covered, tmp);
6195 prev->next = sg;
6196 prev = sg;
6199 #endif
6201 /* Calculate CPU power for physical packages and nodes */
6202 #ifdef CONFIG_SCHED_SMT
6203 for_each_cpu_mask(i, *cpu_map) {
6204 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6206 init_sched_groups_power(i, sd);
6208 #endif
6209 #ifdef CONFIG_SCHED_MC
6210 for_each_cpu_mask(i, *cpu_map) {
6211 struct sched_domain *sd = &per_cpu(core_domains, i);
6213 init_sched_groups_power(i, sd);
6215 #endif
6217 for_each_cpu_mask(i, *cpu_map) {
6218 struct sched_domain *sd = &per_cpu(phys_domains, i);
6220 init_sched_groups_power(i, sd);
6223 #ifdef CONFIG_NUMA
6224 for (i = 0; i < MAX_NUMNODES; i++)
6225 init_numa_sched_groups_power(sched_group_nodes[i]);
6227 if (sd_allnodes) {
6228 struct sched_group *sg;
6230 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6231 init_numa_sched_groups_power(sg);
6233 #endif
6235 /* Attach the domains */
6236 for_each_cpu_mask(i, *cpu_map) {
6237 struct sched_domain *sd;
6238 #ifdef CONFIG_SCHED_SMT
6239 sd = &per_cpu(cpu_domains, i);
6240 #elif defined(CONFIG_SCHED_MC)
6241 sd = &per_cpu(core_domains, i);
6242 #else
6243 sd = &per_cpu(phys_domains, i);
6244 #endif
6245 cpu_attach_domain(sd, i);
6248 return 0;
6250 #ifdef CONFIG_NUMA
6251 error:
6252 free_sched_groups(cpu_map);
6253 return -ENOMEM;
6254 #endif
6257 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6259 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6261 cpumask_t cpu_default_map;
6262 int err;
6265 * Setup mask for cpus without special case scheduling requirements.
6266 * For now this just excludes isolated cpus, but could be used to
6267 * exclude other special cases in the future.
6269 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6271 err = build_sched_domains(&cpu_default_map);
6273 return err;
6276 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6278 free_sched_groups(cpu_map);
6282 * Detach sched domains from a group of cpus specified in cpu_map
6283 * These cpus will now be attached to the NULL domain
6285 static void detach_destroy_domains(const cpumask_t *cpu_map)
6287 int i;
6289 for_each_cpu_mask(i, *cpu_map)
6290 cpu_attach_domain(NULL, i);
6291 synchronize_sched();
6292 arch_destroy_sched_domains(cpu_map);
6296 * Partition sched domains as specified by the cpumasks below.
6297 * This attaches all cpus from the cpumasks to the NULL domain,
6298 * waits for a RCU quiescent period, recalculates sched
6299 * domain information and then attaches them back to the
6300 * correct sched domains
6301 * Call with hotplug lock held
6303 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6305 cpumask_t change_map;
6306 int err = 0;
6308 cpus_and(*partition1, *partition1, cpu_online_map);
6309 cpus_and(*partition2, *partition2, cpu_online_map);
6310 cpus_or(change_map, *partition1, *partition2);
6312 /* Detach sched domains from all of the affected cpus */
6313 detach_destroy_domains(&change_map);
6314 if (!cpus_empty(*partition1))
6315 err = build_sched_domains(partition1);
6316 if (!err && !cpus_empty(*partition2))
6317 err = build_sched_domains(partition2);
6319 return err;
6322 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6323 static int arch_reinit_sched_domains(void)
6325 int err;
6327 mutex_lock(&sched_hotcpu_mutex);
6328 detach_destroy_domains(&cpu_online_map);
6329 err = arch_init_sched_domains(&cpu_online_map);
6330 mutex_unlock(&sched_hotcpu_mutex);
6332 return err;
6335 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6337 int ret;
6339 if (buf[0] != '0' && buf[0] != '1')
6340 return -EINVAL;
6342 if (smt)
6343 sched_smt_power_savings = (buf[0] == '1');
6344 else
6345 sched_mc_power_savings = (buf[0] == '1');
6347 ret = arch_reinit_sched_domains();
6349 return ret ? ret : count;
6352 #ifdef CONFIG_SCHED_MC
6353 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6355 return sprintf(page, "%u\n", sched_mc_power_savings);
6357 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6358 const char *buf, size_t count)
6360 return sched_power_savings_store(buf, count, 0);
6362 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6363 sched_mc_power_savings_store);
6364 #endif
6366 #ifdef CONFIG_SCHED_SMT
6367 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6369 return sprintf(page, "%u\n", sched_smt_power_savings);
6371 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6372 const char *buf, size_t count)
6374 return sched_power_savings_store(buf, count, 1);
6376 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6377 sched_smt_power_savings_store);
6378 #endif
6380 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6382 int err = 0;
6384 #ifdef CONFIG_SCHED_SMT
6385 if (smt_capable())
6386 err = sysfs_create_file(&cls->kset.kobj,
6387 &attr_sched_smt_power_savings.attr);
6388 #endif
6389 #ifdef CONFIG_SCHED_MC
6390 if (!err && mc_capable())
6391 err = sysfs_create_file(&cls->kset.kobj,
6392 &attr_sched_mc_power_savings.attr);
6393 #endif
6394 return err;
6396 #endif
6399 * Force a reinitialization of the sched domains hierarchy. The domains
6400 * and groups cannot be updated in place without racing with the balancing
6401 * code, so we temporarily attach all running cpus to the NULL domain
6402 * which will prevent rebalancing while the sched domains are recalculated.
6404 static int update_sched_domains(struct notifier_block *nfb,
6405 unsigned long action, void *hcpu)
6407 switch (action) {
6408 case CPU_UP_PREPARE:
6409 case CPU_UP_PREPARE_FROZEN:
6410 case CPU_DOWN_PREPARE:
6411 case CPU_DOWN_PREPARE_FROZEN:
6412 detach_destroy_domains(&cpu_online_map);
6413 return NOTIFY_OK;
6415 case CPU_UP_CANCELED:
6416 case CPU_UP_CANCELED_FROZEN:
6417 case CPU_DOWN_FAILED:
6418 case CPU_DOWN_FAILED_FROZEN:
6419 case CPU_ONLINE:
6420 case CPU_ONLINE_FROZEN:
6421 case CPU_DEAD:
6422 case CPU_DEAD_FROZEN:
6424 * Fall through and re-initialise the domains.
6426 break;
6427 default:
6428 return NOTIFY_DONE;
6431 /* The hotplug lock is already held by cpu_up/cpu_down */
6432 arch_init_sched_domains(&cpu_online_map);
6434 return NOTIFY_OK;
6437 void __init sched_init_smp(void)
6439 cpumask_t non_isolated_cpus;
6441 mutex_lock(&sched_hotcpu_mutex);
6442 arch_init_sched_domains(&cpu_online_map);
6443 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6444 if (cpus_empty(non_isolated_cpus))
6445 cpu_set(smp_processor_id(), non_isolated_cpus);
6446 mutex_unlock(&sched_hotcpu_mutex);
6447 /* XXX: Theoretical race here - CPU may be hotplugged now */
6448 hotcpu_notifier(update_sched_domains, 0);
6450 init_sched_domain_sysctl();
6452 /* Move init over to a non-isolated CPU */
6453 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6454 BUG();
6456 #else
6457 void __init sched_init_smp(void)
6460 #endif /* CONFIG_SMP */
6462 int in_sched_functions(unsigned long addr)
6464 /* Linker adds these: start and end of __sched functions */
6465 extern char __sched_text_start[], __sched_text_end[];
6467 return in_lock_functions(addr) ||
6468 (addr >= (unsigned long)__sched_text_start
6469 && addr < (unsigned long)__sched_text_end);
6472 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6474 cfs_rq->tasks_timeline = RB_ROOT;
6475 #ifdef CONFIG_FAIR_GROUP_SCHED
6476 cfs_rq->rq = rq;
6477 #endif
6478 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6481 void __init sched_init(void)
6483 int highest_cpu = 0;
6484 int i, j;
6486 for_each_possible_cpu(i) {
6487 struct rt_prio_array *array;
6488 struct rq *rq;
6490 rq = cpu_rq(i);
6491 spin_lock_init(&rq->lock);
6492 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6493 rq->nr_running = 0;
6494 rq->clock = 1;
6495 init_cfs_rq(&rq->cfs, rq);
6496 #ifdef CONFIG_FAIR_GROUP_SCHED
6497 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6499 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6500 struct sched_entity *se =
6501 &per_cpu(init_sched_entity, i);
6503 init_cfs_rq_p[i] = cfs_rq;
6504 init_cfs_rq(cfs_rq, rq);
6505 cfs_rq->tg = &init_task_group;
6506 list_add(&cfs_rq->leaf_cfs_rq_list,
6507 &rq->leaf_cfs_rq_list);
6509 init_sched_entity_p[i] = se;
6510 se->cfs_rq = &rq->cfs;
6511 se->my_q = cfs_rq;
6512 se->load.weight = init_task_group_load;
6513 se->load.inv_weight =
6514 div64_64(1ULL<<32, init_task_group_load);
6515 se->parent = NULL;
6517 init_task_group.shares = init_task_group_load;
6518 spin_lock_init(&init_task_group.lock);
6519 #endif
6521 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6522 rq->cpu_load[j] = 0;
6523 #ifdef CONFIG_SMP
6524 rq->sd = NULL;
6525 rq->active_balance = 0;
6526 rq->next_balance = jiffies;
6527 rq->push_cpu = 0;
6528 rq->cpu = i;
6529 rq->migration_thread = NULL;
6530 INIT_LIST_HEAD(&rq->migration_queue);
6531 #endif
6532 atomic_set(&rq->nr_iowait, 0);
6534 array = &rq->rt.active;
6535 for (j = 0; j < MAX_RT_PRIO; j++) {
6536 INIT_LIST_HEAD(array->queue + j);
6537 __clear_bit(j, array->bitmap);
6539 highest_cpu = i;
6540 /* delimiter for bitsearch: */
6541 __set_bit(MAX_RT_PRIO, array->bitmap);
6544 set_load_weight(&init_task);
6546 #ifdef CONFIG_PREEMPT_NOTIFIERS
6547 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6548 #endif
6550 #ifdef CONFIG_SMP
6551 nr_cpu_ids = highest_cpu + 1;
6552 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6553 #endif
6555 #ifdef CONFIG_RT_MUTEXES
6556 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6557 #endif
6560 * The boot idle thread does lazy MMU switching as well:
6562 atomic_inc(&init_mm.mm_count);
6563 enter_lazy_tlb(&init_mm, current);
6566 * Make us the idle thread. Technically, schedule() should not be
6567 * called from this thread, however somewhere below it might be,
6568 * but because we are the idle thread, we just pick up running again
6569 * when this runqueue becomes "idle".
6571 init_idle(current, smp_processor_id());
6573 * During early bootup we pretend to be a normal task:
6575 current->sched_class = &fair_sched_class;
6578 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6579 void __might_sleep(char *file, int line)
6581 #ifdef in_atomic
6582 static unsigned long prev_jiffy; /* ratelimiting */
6584 if ((in_atomic() || irqs_disabled()) &&
6585 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6586 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6587 return;
6588 prev_jiffy = jiffies;
6589 printk(KERN_ERR "BUG: sleeping function called from invalid"
6590 " context at %s:%d\n", file, line);
6591 printk("in_atomic():%d, irqs_disabled():%d\n",
6592 in_atomic(), irqs_disabled());
6593 debug_show_held_locks(current);
6594 if (irqs_disabled())
6595 print_irqtrace_events(current);
6596 dump_stack();
6598 #endif
6600 EXPORT_SYMBOL(__might_sleep);
6601 #endif
6603 #ifdef CONFIG_MAGIC_SYSRQ
6604 static void normalize_task(struct rq *rq, struct task_struct *p)
6606 int on_rq;
6607 update_rq_clock(rq);
6608 on_rq = p->se.on_rq;
6609 if (on_rq)
6610 deactivate_task(rq, p, 0);
6611 __setscheduler(rq, p, SCHED_NORMAL, 0);
6612 if (on_rq) {
6613 activate_task(rq, p, 0);
6614 resched_task(rq->curr);
6618 void normalize_rt_tasks(void)
6620 struct task_struct *g, *p;
6621 unsigned long flags;
6622 struct rq *rq;
6624 read_lock_irq(&tasklist_lock);
6625 do_each_thread(g, p) {
6627 * Only normalize user tasks:
6629 if (!p->mm)
6630 continue;
6632 p->se.exec_start = 0;
6633 #ifdef CONFIG_SCHEDSTATS
6634 p->se.wait_start = 0;
6635 p->se.sleep_start = 0;
6636 p->se.block_start = 0;
6637 #endif
6638 task_rq(p)->clock = 0;
6640 if (!rt_task(p)) {
6642 * Renice negative nice level userspace
6643 * tasks back to 0:
6645 if (TASK_NICE(p) < 0 && p->mm)
6646 set_user_nice(p, 0);
6647 continue;
6650 spin_lock_irqsave(&p->pi_lock, flags);
6651 rq = __task_rq_lock(p);
6653 normalize_task(rq, p);
6655 __task_rq_unlock(rq);
6656 spin_unlock_irqrestore(&p->pi_lock, flags);
6657 } while_each_thread(g, p);
6659 read_unlock_irq(&tasklist_lock);
6662 #endif /* CONFIG_MAGIC_SYSRQ */
6664 #ifdef CONFIG_IA64
6666 * These functions are only useful for the IA64 MCA handling.
6668 * They can only be called when the whole system has been
6669 * stopped - every CPU needs to be quiescent, and no scheduling
6670 * activity can take place. Using them for anything else would
6671 * be a serious bug, and as a result, they aren't even visible
6672 * under any other configuration.
6676 * curr_task - return the current task for a given cpu.
6677 * @cpu: the processor in question.
6679 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6681 struct task_struct *curr_task(int cpu)
6683 return cpu_curr(cpu);
6687 * set_curr_task - set the current task for a given cpu.
6688 * @cpu: the processor in question.
6689 * @p: the task pointer to set.
6691 * Description: This function must only be used when non-maskable interrupts
6692 * are serviced on a separate stack. It allows the architecture to switch the
6693 * notion of the current task on a cpu in a non-blocking manner. This function
6694 * must be called with all CPU's synchronized, and interrupts disabled, the
6695 * and caller must save the original value of the current task (see
6696 * curr_task() above) and restore that value before reenabling interrupts and
6697 * re-starting the system.
6699 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6701 void set_curr_task(int cpu, struct task_struct *p)
6703 cpu_curr(cpu) = p;
6706 #endif
6708 #ifdef CONFIG_FAIR_GROUP_SCHED
6710 /* allocate runqueue etc for a new task group */
6711 struct task_group *sched_create_group(void)
6713 struct task_group *tg;
6714 struct cfs_rq *cfs_rq;
6715 struct sched_entity *se;
6716 struct rq *rq;
6717 int i;
6719 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6720 if (!tg)
6721 return ERR_PTR(-ENOMEM);
6723 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6724 if (!tg->cfs_rq)
6725 goto err;
6726 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6727 if (!tg->se)
6728 goto err;
6730 for_each_possible_cpu(i) {
6731 rq = cpu_rq(i);
6733 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6734 cpu_to_node(i));
6735 if (!cfs_rq)
6736 goto err;
6738 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6739 cpu_to_node(i));
6740 if (!se)
6741 goto err;
6743 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6744 memset(se, 0, sizeof(struct sched_entity));
6746 tg->cfs_rq[i] = cfs_rq;
6747 init_cfs_rq(cfs_rq, rq);
6748 cfs_rq->tg = tg;
6750 tg->se[i] = se;
6751 se->cfs_rq = &rq->cfs;
6752 se->my_q = cfs_rq;
6753 se->load.weight = NICE_0_LOAD;
6754 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6755 se->parent = NULL;
6758 for_each_possible_cpu(i) {
6759 rq = cpu_rq(i);
6760 cfs_rq = tg->cfs_rq[i];
6761 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6764 tg->shares = NICE_0_LOAD;
6765 spin_lock_init(&tg->lock);
6767 return tg;
6769 err:
6770 for_each_possible_cpu(i) {
6771 if (tg->cfs_rq)
6772 kfree(tg->cfs_rq[i]);
6773 if (tg->se)
6774 kfree(tg->se[i]);
6776 kfree(tg->cfs_rq);
6777 kfree(tg->se);
6778 kfree(tg);
6780 return ERR_PTR(-ENOMEM);
6783 /* rcu callback to free various structures associated with a task group */
6784 static void free_sched_group(struct rcu_head *rhp)
6786 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6787 struct task_group *tg = cfs_rq->tg;
6788 struct sched_entity *se;
6789 int i;
6791 /* now it should be safe to free those cfs_rqs */
6792 for_each_possible_cpu(i) {
6793 cfs_rq = tg->cfs_rq[i];
6794 kfree(cfs_rq);
6796 se = tg->se[i];
6797 kfree(se);
6800 kfree(tg->cfs_rq);
6801 kfree(tg->se);
6802 kfree(tg);
6805 /* Destroy runqueue etc associated with a task group */
6806 void sched_destroy_group(struct task_group *tg)
6808 struct cfs_rq *cfs_rq;
6809 int i;
6811 for_each_possible_cpu(i) {
6812 cfs_rq = tg->cfs_rq[i];
6813 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6816 cfs_rq = tg->cfs_rq[0];
6818 /* wait for possible concurrent references to cfs_rqs complete */
6819 call_rcu(&cfs_rq->rcu, free_sched_group);
6822 /* change task's runqueue when it moves between groups.
6823 * The caller of this function should have put the task in its new group
6824 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6825 * reflect its new group.
6827 void sched_move_task(struct task_struct *tsk)
6829 int on_rq, running;
6830 unsigned long flags;
6831 struct rq *rq;
6833 rq = task_rq_lock(tsk, &flags);
6835 if (tsk->sched_class != &fair_sched_class)
6836 goto done;
6838 update_rq_clock(rq);
6840 running = task_running(rq, tsk);
6841 on_rq = tsk->se.on_rq;
6843 if (on_rq) {
6844 dequeue_task(rq, tsk, 0);
6845 if (unlikely(running))
6846 tsk->sched_class->put_prev_task(rq, tsk);
6849 set_task_cfs_rq(tsk);
6851 if (on_rq) {
6852 if (unlikely(running))
6853 tsk->sched_class->set_curr_task(rq);
6854 enqueue_task(rq, tsk, 0);
6857 done:
6858 task_rq_unlock(rq, &flags);
6861 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6863 struct cfs_rq *cfs_rq = se->cfs_rq;
6864 struct rq *rq = cfs_rq->rq;
6865 int on_rq;
6867 spin_lock_irq(&rq->lock);
6869 on_rq = se->on_rq;
6870 if (on_rq)
6871 dequeue_entity(cfs_rq, se, 0);
6873 se->load.weight = shares;
6874 se->load.inv_weight = div64_64((1ULL<<32), shares);
6876 if (on_rq)
6877 enqueue_entity(cfs_rq, se, 0);
6879 spin_unlock_irq(&rq->lock);
6882 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6884 int i;
6886 spin_lock(&tg->lock);
6887 if (tg->shares == shares)
6888 goto done;
6890 tg->shares = shares;
6891 for_each_possible_cpu(i)
6892 set_se_shares(tg->se[i], shares);
6894 done:
6895 spin_unlock(&tg->lock);
6896 return 0;
6899 unsigned long sched_group_shares(struct task_group *tg)
6901 return tg->shares;
6904 #endif /* CONFIG_FAIR_GROUP_SCHED */