ACPI: add ACPICA version in sysfs
[linux-2.6/mini2440.git] / drivers / cpufreq / cpufreq_ondemand.c
blobf697449327c6fca54f856189801965861855f6a6
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE \
45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE \
47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
50 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
52 static void do_dbs_timer(struct work_struct *work);
54 /* Sampling types */
55 enum dbs_sample {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 struct cpufreq_policy *cur_policy;
61 struct delayed_work work;
62 enum dbs_sample sample_type;
63 unsigned int enable;
64 struct cpufreq_frequency_table *freq_table;
65 unsigned int freq_lo;
66 unsigned int freq_lo_jiffies;
67 unsigned int freq_hi_jiffies;
69 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71 static unsigned int dbs_enable; /* number of CPUs using this policy */
74 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
75 * lock and dbs_mutex. cpu_hotplug lock should always be held before
76 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
77 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
78 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
79 * is recursive for the same process. -Venki
81 static DEFINE_MUTEX(dbs_mutex);
83 static struct workqueue_struct *kondemand_wq;
85 static struct dbs_tuners {
86 unsigned int sampling_rate;
87 unsigned int up_threshold;
88 unsigned int ignore_nice;
89 unsigned int powersave_bias;
90 } dbs_tuners_ins = {
91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 .ignore_nice = 0,
93 .powersave_bias = 0,
96 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
98 cputime64_t retval;
100 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
101 kstat_cpu(cpu).cpustat.iowait);
103 if (dbs_tuners_ins.ignore_nice)
104 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
106 return retval;
110 * Find right freq to be set now with powersave_bias on.
111 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
112 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
114 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
115 unsigned int freq_next,
116 unsigned int relation)
118 unsigned int freq_req, freq_reduc, freq_avg;
119 unsigned int freq_hi, freq_lo;
120 unsigned int index = 0;
121 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
122 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
124 if (!dbs_info->freq_table) {
125 dbs_info->freq_lo = 0;
126 dbs_info->freq_lo_jiffies = 0;
127 return freq_next;
130 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
131 relation, &index);
132 freq_req = dbs_info->freq_table[index].frequency;
133 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
134 freq_avg = freq_req - freq_reduc;
136 /* Find freq bounds for freq_avg in freq_table */
137 index = 0;
138 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
139 CPUFREQ_RELATION_H, &index);
140 freq_lo = dbs_info->freq_table[index].frequency;
141 index = 0;
142 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
143 CPUFREQ_RELATION_L, &index);
144 freq_hi = dbs_info->freq_table[index].frequency;
146 /* Find out how long we have to be in hi and lo freqs */
147 if (freq_hi == freq_lo) {
148 dbs_info->freq_lo = 0;
149 dbs_info->freq_lo_jiffies = 0;
150 return freq_lo;
152 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
153 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
154 jiffies_hi += ((freq_hi - freq_lo) / 2);
155 jiffies_hi /= (freq_hi - freq_lo);
156 jiffies_lo = jiffies_total - jiffies_hi;
157 dbs_info->freq_lo = freq_lo;
158 dbs_info->freq_lo_jiffies = jiffies_lo;
159 dbs_info->freq_hi_jiffies = jiffies_hi;
160 return freq_hi;
163 static void ondemand_powersave_bias_init(void)
165 int i;
166 for_each_online_cpu(i) {
167 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
168 dbs_info->freq_table = cpufreq_frequency_get_table(i);
169 dbs_info->freq_lo = 0;
173 /************************** sysfs interface ************************/
174 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
176 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
179 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
181 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
184 #define define_one_ro(_name) \
185 static struct freq_attr _name = \
186 __ATTR(_name, 0444, show_##_name, NULL)
188 define_one_ro(sampling_rate_max);
189 define_one_ro(sampling_rate_min);
191 /* cpufreq_ondemand Governor Tunables */
192 #define show_one(file_name, object) \
193 static ssize_t show_##file_name \
194 (struct cpufreq_policy *unused, char *buf) \
196 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
198 show_one(sampling_rate, sampling_rate);
199 show_one(up_threshold, up_threshold);
200 show_one(ignore_nice_load, ignore_nice);
201 show_one(powersave_bias, powersave_bias);
203 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
204 const char *buf, size_t count)
206 unsigned int input;
207 int ret;
208 ret = sscanf(buf, "%u", &input);
210 mutex_lock(&dbs_mutex);
211 if (ret != 1 || input > MAX_SAMPLING_RATE
212 || input < MIN_SAMPLING_RATE) {
213 mutex_unlock(&dbs_mutex);
214 return -EINVAL;
217 dbs_tuners_ins.sampling_rate = input;
218 mutex_unlock(&dbs_mutex);
220 return count;
223 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
224 const char *buf, size_t count)
226 unsigned int input;
227 int ret;
228 ret = sscanf(buf, "%u", &input);
230 mutex_lock(&dbs_mutex);
231 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
232 input < MIN_FREQUENCY_UP_THRESHOLD) {
233 mutex_unlock(&dbs_mutex);
234 return -EINVAL;
237 dbs_tuners_ins.up_threshold = input;
238 mutex_unlock(&dbs_mutex);
240 return count;
243 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
244 const char *buf, size_t count)
246 unsigned int input;
247 int ret;
249 unsigned int j;
251 ret = sscanf(buf, "%u", &input);
252 if ( ret != 1 )
253 return -EINVAL;
255 if ( input > 1 )
256 input = 1;
258 mutex_lock(&dbs_mutex);
259 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
260 mutex_unlock(&dbs_mutex);
261 return count;
263 dbs_tuners_ins.ignore_nice = input;
265 /* we need to re-evaluate prev_cpu_idle */
266 for_each_online_cpu(j) {
267 struct cpu_dbs_info_s *dbs_info;
268 dbs_info = &per_cpu(cpu_dbs_info, j);
269 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
270 dbs_info->prev_cpu_wall = get_jiffies_64();
272 mutex_unlock(&dbs_mutex);
274 return count;
277 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
278 const char *buf, size_t count)
280 unsigned int input;
281 int ret;
282 ret = sscanf(buf, "%u", &input);
284 if (ret != 1)
285 return -EINVAL;
287 if (input > 1000)
288 input = 1000;
290 mutex_lock(&dbs_mutex);
291 dbs_tuners_ins.powersave_bias = input;
292 ondemand_powersave_bias_init();
293 mutex_unlock(&dbs_mutex);
295 return count;
298 #define define_one_rw(_name) \
299 static struct freq_attr _name = \
300 __ATTR(_name, 0644, show_##_name, store_##_name)
302 define_one_rw(sampling_rate);
303 define_one_rw(up_threshold);
304 define_one_rw(ignore_nice_load);
305 define_one_rw(powersave_bias);
307 static struct attribute * dbs_attributes[] = {
308 &sampling_rate_max.attr,
309 &sampling_rate_min.attr,
310 &sampling_rate.attr,
311 &up_threshold.attr,
312 &ignore_nice_load.attr,
313 &powersave_bias.attr,
314 NULL
317 static struct attribute_group dbs_attr_group = {
318 .attrs = dbs_attributes,
319 .name = "ondemand",
322 /************************** sysfs end ************************/
324 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
326 unsigned int idle_ticks, total_ticks;
327 unsigned int load;
328 cputime64_t cur_jiffies;
330 struct cpufreq_policy *policy;
331 unsigned int j;
333 if (!this_dbs_info->enable)
334 return;
336 this_dbs_info->freq_lo = 0;
337 policy = this_dbs_info->cur_policy;
338 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
339 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
340 this_dbs_info->prev_cpu_wall);
341 this_dbs_info->prev_cpu_wall = cur_jiffies;
342 if (!total_ticks)
343 return;
345 * Every sampling_rate, we check, if current idle time is less
346 * than 20% (default), then we try to increase frequency
347 * Every sampling_rate, we look for a the lowest
348 * frequency which can sustain the load while keeping idle time over
349 * 30%. If such a frequency exist, we try to decrease to this frequency.
351 * Any frequency increase takes it to the maximum frequency.
352 * Frequency reduction happens at minimum steps of
353 * 5% (default) of current frequency
356 /* Get Idle Time */
357 idle_ticks = UINT_MAX;
358 for_each_cpu_mask(j, policy->cpus) {
359 cputime64_t total_idle_ticks;
360 unsigned int tmp_idle_ticks;
361 struct cpu_dbs_info_s *j_dbs_info;
363 j_dbs_info = &per_cpu(cpu_dbs_info, j);
364 total_idle_ticks = get_cpu_idle_time(j);
365 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
366 j_dbs_info->prev_cpu_idle);
367 j_dbs_info->prev_cpu_idle = total_idle_ticks;
369 if (tmp_idle_ticks < idle_ticks)
370 idle_ticks = tmp_idle_ticks;
372 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
374 /* Check for frequency increase */
375 if (load > dbs_tuners_ins.up_threshold) {
376 /* if we are already at full speed then break out early */
377 if (!dbs_tuners_ins.powersave_bias) {
378 if (policy->cur == policy->max)
379 return;
381 __cpufreq_driver_target(policy, policy->max,
382 CPUFREQ_RELATION_H);
383 } else {
384 int freq = powersave_bias_target(policy, policy->max,
385 CPUFREQ_RELATION_H);
386 __cpufreq_driver_target(policy, freq,
387 CPUFREQ_RELATION_L);
389 return;
392 /* Check for frequency decrease */
393 /* if we cannot reduce the frequency anymore, break out early */
394 if (policy->cur == policy->min)
395 return;
398 * The optimal frequency is the frequency that is the lowest that
399 * can support the current CPU usage without triggering the up
400 * policy. To be safe, we focus 10 points under the threshold.
402 if (load < (dbs_tuners_ins.up_threshold - 10)) {
403 unsigned int freq_next, freq_cur;
405 freq_cur = cpufreq_driver_getavg(policy);
406 if (!freq_cur)
407 freq_cur = policy->cur;
409 freq_next = (freq_cur * load) /
410 (dbs_tuners_ins.up_threshold - 10);
412 if (!dbs_tuners_ins.powersave_bias) {
413 __cpufreq_driver_target(policy, freq_next,
414 CPUFREQ_RELATION_L);
415 } else {
416 int freq = powersave_bias_target(policy, freq_next,
417 CPUFREQ_RELATION_L);
418 __cpufreq_driver_target(policy, freq,
419 CPUFREQ_RELATION_L);
424 static void do_dbs_timer(struct work_struct *work)
426 unsigned int cpu = smp_processor_id();
427 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
428 enum dbs_sample sample_type = dbs_info->sample_type;
429 /* We want all CPUs to do sampling nearly on same jiffy */
430 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
432 /* Permit rescheduling of this work item */
433 work_release(work);
435 delay -= jiffies % delay;
437 if (!dbs_info->enable)
438 return;
439 /* Common NORMAL_SAMPLE setup */
440 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
441 if (!dbs_tuners_ins.powersave_bias ||
442 sample_type == DBS_NORMAL_SAMPLE) {
443 lock_cpu_hotplug();
444 dbs_check_cpu(dbs_info);
445 unlock_cpu_hotplug();
446 if (dbs_info->freq_lo) {
447 /* Setup timer for SUB_SAMPLE */
448 dbs_info->sample_type = DBS_SUB_SAMPLE;
449 delay = dbs_info->freq_hi_jiffies;
451 } else {
452 __cpufreq_driver_target(dbs_info->cur_policy,
453 dbs_info->freq_lo,
454 CPUFREQ_RELATION_H);
456 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
459 static inline void dbs_timer_init(unsigned int cpu)
461 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
462 /* We want all CPUs to do sampling nearly on same jiffy */
463 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
464 delay -= jiffies % delay;
466 ondemand_powersave_bias_init();
467 INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer);
468 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
469 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
472 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
474 dbs_info->enable = 0;
475 cancel_delayed_work(&dbs_info->work);
476 flush_workqueue(kondemand_wq);
479 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
480 unsigned int event)
482 unsigned int cpu = policy->cpu;
483 struct cpu_dbs_info_s *this_dbs_info;
484 unsigned int j;
485 int rc;
487 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
489 switch (event) {
490 case CPUFREQ_GOV_START:
491 if ((!cpu_online(cpu)) || (!policy->cur))
492 return -EINVAL;
494 if (policy->cpuinfo.transition_latency >
495 (TRANSITION_LATENCY_LIMIT * 1000)) {
496 printk(KERN_WARNING "ondemand governor failed to load "
497 "due to too long transition latency\n");
498 return -EINVAL;
500 if (this_dbs_info->enable) /* Already enabled */
501 break;
503 mutex_lock(&dbs_mutex);
504 dbs_enable++;
505 if (dbs_enable == 1) {
506 kondemand_wq = create_workqueue("kondemand");
507 if (!kondemand_wq) {
508 printk(KERN_ERR
509 "Creation of kondemand failed\n");
510 dbs_enable--;
511 mutex_unlock(&dbs_mutex);
512 return -ENOSPC;
516 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
517 if (rc) {
518 if (dbs_enable == 1)
519 destroy_workqueue(kondemand_wq);
520 dbs_enable--;
521 mutex_unlock(&dbs_mutex);
522 return rc;
525 for_each_cpu_mask(j, policy->cpus) {
526 struct cpu_dbs_info_s *j_dbs_info;
527 j_dbs_info = &per_cpu(cpu_dbs_info, j);
528 j_dbs_info->cur_policy = policy;
530 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
531 j_dbs_info->prev_cpu_wall = get_jiffies_64();
533 this_dbs_info->enable = 1;
535 * Start the timerschedule work, when this governor
536 * is used for first time
538 if (dbs_enable == 1) {
539 unsigned int latency;
540 /* policy latency is in nS. Convert it to uS first */
541 latency = policy->cpuinfo.transition_latency / 1000;
542 if (latency == 0)
543 latency = 1;
545 def_sampling_rate = latency *
546 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
548 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
549 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
551 dbs_tuners_ins.sampling_rate = def_sampling_rate;
553 dbs_timer_init(policy->cpu);
555 mutex_unlock(&dbs_mutex);
556 break;
558 case CPUFREQ_GOV_STOP:
559 mutex_lock(&dbs_mutex);
560 dbs_timer_exit(this_dbs_info);
561 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
562 dbs_enable--;
563 if (dbs_enable == 0)
564 destroy_workqueue(kondemand_wq);
566 mutex_unlock(&dbs_mutex);
568 break;
570 case CPUFREQ_GOV_LIMITS:
571 mutex_lock(&dbs_mutex);
572 if (policy->max < this_dbs_info->cur_policy->cur)
573 __cpufreq_driver_target(this_dbs_info->cur_policy,
574 policy->max,
575 CPUFREQ_RELATION_H);
576 else if (policy->min > this_dbs_info->cur_policy->cur)
577 __cpufreq_driver_target(this_dbs_info->cur_policy,
578 policy->min,
579 CPUFREQ_RELATION_L);
580 mutex_unlock(&dbs_mutex);
581 break;
583 return 0;
586 static struct cpufreq_governor cpufreq_gov_dbs = {
587 .name = "ondemand",
588 .governor = cpufreq_governor_dbs,
589 .owner = THIS_MODULE,
592 static int __init cpufreq_gov_dbs_init(void)
594 return cpufreq_register_governor(&cpufreq_gov_dbs);
597 static void __exit cpufreq_gov_dbs_exit(void)
599 cpufreq_unregister_governor(&cpufreq_gov_dbs);
603 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
604 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
605 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
606 "Low Latency Frequency Transition capable processors");
607 MODULE_LICENSE("GPL");
609 module_init(cpufreq_gov_dbs_init);
610 module_exit(cpufreq_gov_dbs_exit);