block: implement blk_rq_pos/[cur_]sectors() and convert obvious ones
[linux-2.6/mini2440.git] / drivers / ide / ide-io.c
blobdf23bcbd94b4a6fe48fb8b157a1e14ef753adc55
1 /*
2 * IDE I/O functions
4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
70 return blk_end_request(rq, error, nr_bytes);
72 EXPORT_SYMBOL_GPL(ide_end_rq);
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
76 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 struct ide_taskfile *tf = &cmd->tf;
78 struct request *rq = cmd->rq;
79 u8 tf_cmd = tf->command;
81 tf->error = err;
82 tf->status = stat;
84 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85 u8 data[2];
87 tp_ops->input_data(drive, cmd, data, 2);
89 cmd->tf.data = data[0];
90 cmd->hob.data = data[1];
93 ide_tf_readback(drive, cmd);
95 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 if (tf->lbal != 0xc4) {
98 printk(KERN_ERR "%s: head unload failed!\n",
99 drive->name);
100 ide_tf_dump(drive->name, cmd);
101 } else
102 drive->dev_flags |= IDE_DFLAG_PARKED;
105 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106 struct ide_cmd *orig_cmd = rq->special;
108 if (cmd->tf_flags & IDE_TFLAG_DYN)
109 kfree(orig_cmd);
110 else
111 memcpy(orig_cmd, cmd, sizeof(*cmd));
115 /* obsolete, blk_rq_bytes() should be used instead */
116 unsigned int ide_rq_bytes(struct request *rq)
118 if (blk_pc_request(rq))
119 return rq->data_len;
120 else
121 return blk_rq_cur_sectors(rq) << 9;
123 EXPORT_SYMBOL_GPL(ide_rq_bytes);
125 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
127 ide_hwif_t *hwif = drive->hwif;
128 struct request *rq = hwif->rq;
129 int rc;
132 * if failfast is set on a request, override number of sectors
133 * and complete the whole request right now
135 if (blk_noretry_request(rq) && error <= 0)
136 nr_bytes = blk_rq_sectors(rq) << 9;
138 rc = ide_end_rq(drive, rq, error, nr_bytes);
139 if (rc == 0)
140 hwif->rq = NULL;
142 return rc;
144 EXPORT_SYMBOL(ide_complete_rq);
146 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
148 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
149 u8 media = drive->media;
151 drive->failed_pc = NULL;
153 if ((media == ide_floppy || media == ide_tape) && drv_req) {
154 rq->errors = 0;
155 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
156 } else {
157 if (media == ide_tape)
158 rq->errors = IDE_DRV_ERROR_GENERAL;
159 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
160 rq->errors = -EIO;
161 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
165 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
167 tf->nsect = drive->sect;
168 tf->lbal = drive->sect;
169 tf->lbam = drive->cyl;
170 tf->lbah = drive->cyl >> 8;
171 tf->device = (drive->head - 1) | drive->select;
172 tf->command = ATA_CMD_INIT_DEV_PARAMS;
175 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
177 tf->nsect = drive->sect;
178 tf->command = ATA_CMD_RESTORE;
181 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
183 tf->nsect = drive->mult_req;
184 tf->command = ATA_CMD_SET_MULTI;
187 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
189 special_t *s = &drive->special;
190 struct ide_cmd cmd;
192 memset(&cmd, 0, sizeof(cmd));
193 cmd.protocol = ATA_PROT_NODATA;
195 if (s->b.set_geometry) {
196 s->b.set_geometry = 0;
197 ide_tf_set_specify_cmd(drive, &cmd.tf);
198 } else if (s->b.recalibrate) {
199 s->b.recalibrate = 0;
200 ide_tf_set_restore_cmd(drive, &cmd.tf);
201 } else if (s->b.set_multmode) {
202 s->b.set_multmode = 0;
203 ide_tf_set_setmult_cmd(drive, &cmd.tf);
204 } else if (s->all) {
205 int special = s->all;
206 s->all = 0;
207 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
208 return ide_stopped;
211 cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
212 cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
213 cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
215 do_rw_taskfile(drive, &cmd);
217 return ide_started;
221 * do_special - issue some special commands
222 * @drive: drive the command is for
224 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
225 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
227 * It used to do much more, but has been scaled back.
230 static ide_startstop_t do_special (ide_drive_t *drive)
232 special_t *s = &drive->special;
234 #ifdef DEBUG
235 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
236 #endif
237 if (drive->media == ide_disk)
238 return ide_disk_special(drive);
240 s->all = 0;
241 drive->mult_req = 0;
242 return ide_stopped;
245 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
247 ide_hwif_t *hwif = drive->hwif;
248 struct scatterlist *sg = hwif->sg_table;
249 struct request *rq = cmd->rq;
251 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
253 EXPORT_SYMBOL_GPL(ide_map_sg);
255 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
257 cmd->nbytes = cmd->nleft = nr_bytes;
258 cmd->cursg_ofs = 0;
259 cmd->cursg = NULL;
261 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
264 * execute_drive_command - issue special drive command
265 * @drive: the drive to issue the command on
266 * @rq: the request structure holding the command
268 * execute_drive_cmd() issues a special drive command, usually
269 * initiated by ioctl() from the external hdparm program. The
270 * command can be a drive command, drive task or taskfile
271 * operation. Weirdly you can call it with NULL to wait for
272 * all commands to finish. Don't do this as that is due to change
275 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
276 struct request *rq)
278 struct ide_cmd *cmd = rq->special;
280 if (cmd) {
281 if (cmd->protocol == ATA_PROT_PIO) {
282 ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
283 ide_map_sg(drive, cmd);
286 return do_rw_taskfile(drive, cmd);
290 * NULL is actually a valid way of waiting for
291 * all current requests to be flushed from the queue.
293 #ifdef DEBUG
294 printk("%s: DRIVE_CMD (null)\n", drive->name);
295 #endif
296 rq->errors = 0;
297 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
299 return ide_stopped;
302 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
304 u8 cmd = rq->cmd[0];
306 switch (cmd) {
307 case REQ_PARK_HEADS:
308 case REQ_UNPARK_HEADS:
309 return ide_do_park_unpark(drive, rq);
310 case REQ_DEVSET_EXEC:
311 return ide_do_devset(drive, rq);
312 case REQ_DRIVE_RESET:
313 return ide_do_reset(drive);
314 default:
315 BUG();
320 * start_request - start of I/O and command issuing for IDE
322 * start_request() initiates handling of a new I/O request. It
323 * accepts commands and I/O (read/write) requests.
325 * FIXME: this function needs a rename
328 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
330 ide_startstop_t startstop;
332 BUG_ON(!blk_rq_started(rq));
334 #ifdef DEBUG
335 printk("%s: start_request: current=0x%08lx\n",
336 drive->hwif->name, (unsigned long) rq);
337 #endif
339 /* bail early if we've exceeded max_failures */
340 if (drive->max_failures && (drive->failures > drive->max_failures)) {
341 rq->cmd_flags |= REQ_FAILED;
342 goto kill_rq;
345 if (blk_pm_request(rq))
346 ide_check_pm_state(drive, rq);
348 drive->hwif->tp_ops->dev_select(drive);
349 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
350 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
351 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
352 return startstop;
354 if (!drive->special.all) {
355 struct ide_driver *drv;
358 * We reset the drive so we need to issue a SETFEATURES.
359 * Do it _after_ do_special() restored device parameters.
361 if (drive->current_speed == 0xff)
362 ide_config_drive_speed(drive, drive->desired_speed);
364 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
365 return execute_drive_cmd(drive, rq);
366 else if (blk_pm_request(rq)) {
367 struct request_pm_state *pm = rq->special;
368 #ifdef DEBUG_PM
369 printk("%s: start_power_step(step: %d)\n",
370 drive->name, pm->pm_step);
371 #endif
372 startstop = ide_start_power_step(drive, rq);
373 if (startstop == ide_stopped &&
374 pm->pm_step == IDE_PM_COMPLETED)
375 ide_complete_pm_rq(drive, rq);
376 return startstop;
377 } else if (!rq->rq_disk && blk_special_request(rq))
379 * TODO: Once all ULDs have been modified to
380 * check for specific op codes rather than
381 * blindly accepting any special request, the
382 * check for ->rq_disk above may be replaced
383 * by a more suitable mechanism or even
384 * dropped entirely.
386 return ide_special_rq(drive, rq);
388 drv = *(struct ide_driver **)rq->rq_disk->private_data;
390 return drv->do_request(drive, rq, rq->sector);
392 return do_special(drive);
393 kill_rq:
394 ide_kill_rq(drive, rq);
395 return ide_stopped;
399 * ide_stall_queue - pause an IDE device
400 * @drive: drive to stall
401 * @timeout: time to stall for (jiffies)
403 * ide_stall_queue() can be used by a drive to give excess bandwidth back
404 * to the port by sleeping for timeout jiffies.
407 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
409 if (timeout > WAIT_WORSTCASE)
410 timeout = WAIT_WORSTCASE;
411 drive->sleep = timeout + jiffies;
412 drive->dev_flags |= IDE_DFLAG_SLEEPING;
414 EXPORT_SYMBOL(ide_stall_queue);
416 static inline int ide_lock_port(ide_hwif_t *hwif)
418 if (hwif->busy)
419 return 1;
421 hwif->busy = 1;
423 return 0;
426 static inline void ide_unlock_port(ide_hwif_t *hwif)
428 hwif->busy = 0;
431 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
433 int rc = 0;
435 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
436 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
437 if (rc == 0) {
438 if (host->get_lock)
439 host->get_lock(ide_intr, hwif);
442 return rc;
445 static inline void ide_unlock_host(struct ide_host *host)
447 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
448 if (host->release_lock)
449 host->release_lock();
450 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
455 * Issue a new request to a device.
457 void do_ide_request(struct request_queue *q)
459 ide_drive_t *drive = q->queuedata;
460 ide_hwif_t *hwif = drive->hwif;
461 struct ide_host *host = hwif->host;
462 struct request *rq = NULL;
463 ide_startstop_t startstop;
466 * drive is doing pre-flush, ordered write, post-flush sequence. even
467 * though that is 3 requests, it must be seen as a single transaction.
468 * we must not preempt this drive until that is complete
470 if (blk_queue_flushing(q))
472 * small race where queue could get replugged during
473 * the 3-request flush cycle, just yank the plug since
474 * we want it to finish asap
476 blk_remove_plug(q);
478 spin_unlock_irq(q->queue_lock);
480 /* HLD do_request() callback might sleep, make sure it's okay */
481 might_sleep();
483 if (ide_lock_host(host, hwif))
484 goto plug_device_2;
486 spin_lock_irq(&hwif->lock);
488 if (!ide_lock_port(hwif)) {
489 ide_hwif_t *prev_port;
490 repeat:
491 prev_port = hwif->host->cur_port;
492 hwif->rq = NULL;
494 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
495 time_after(drive->sleep, jiffies)) {
496 ide_unlock_port(hwif);
497 goto plug_device;
500 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
501 hwif != prev_port) {
503 * set nIEN for previous port, drives in the
504 * quirk_list may not like intr setups/cleanups
506 if (prev_port && prev_port->cur_dev->quirk_list == 0)
507 prev_port->tp_ops->write_devctl(prev_port,
508 ATA_NIEN |
509 ATA_DEVCTL_OBS);
511 hwif->host->cur_port = hwif;
513 hwif->cur_dev = drive;
514 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
516 spin_unlock_irq(&hwif->lock);
517 spin_lock_irq(q->queue_lock);
519 * we know that the queue isn't empty, but this can happen
520 * if the q->prep_rq_fn() decides to kill a request
522 rq = elv_next_request(drive->queue);
523 spin_unlock_irq(q->queue_lock);
524 spin_lock_irq(&hwif->lock);
526 if (!rq) {
527 ide_unlock_port(hwif);
528 goto out;
532 * Sanity: don't accept a request that isn't a PM request
533 * if we are currently power managed. This is very important as
534 * blk_stop_queue() doesn't prevent the elv_next_request()
535 * above to return us whatever is in the queue. Since we call
536 * ide_do_request() ourselves, we end up taking requests while
537 * the queue is blocked...
539 * We let requests forced at head of queue with ide-preempt
540 * though. I hope that doesn't happen too much, hopefully not
541 * unless the subdriver triggers such a thing in its own PM
542 * state machine.
544 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
545 blk_pm_request(rq) == 0 &&
546 (rq->cmd_flags & REQ_PREEMPT) == 0) {
547 /* there should be no pending command at this point */
548 ide_unlock_port(hwif);
549 goto plug_device;
552 hwif->rq = rq;
554 spin_unlock_irq(&hwif->lock);
555 startstop = start_request(drive, rq);
556 spin_lock_irq(&hwif->lock);
558 if (startstop == ide_stopped)
559 goto repeat;
560 } else
561 goto plug_device;
562 out:
563 spin_unlock_irq(&hwif->lock);
564 if (rq == NULL)
565 ide_unlock_host(host);
566 spin_lock_irq(q->queue_lock);
567 return;
569 plug_device:
570 spin_unlock_irq(&hwif->lock);
571 ide_unlock_host(host);
572 plug_device_2:
573 spin_lock_irq(q->queue_lock);
575 if (!elv_queue_empty(q))
576 blk_plug_device(q);
579 static void ide_plug_device(ide_drive_t *drive)
581 struct request_queue *q = drive->queue;
582 unsigned long flags;
584 spin_lock_irqsave(q->queue_lock, flags);
585 if (!elv_queue_empty(q))
586 blk_plug_device(q);
587 spin_unlock_irqrestore(q->queue_lock, flags);
590 static int drive_is_ready(ide_drive_t *drive)
592 ide_hwif_t *hwif = drive->hwif;
593 u8 stat = 0;
595 if (drive->waiting_for_dma)
596 return hwif->dma_ops->dma_test_irq(drive);
598 if (hwif->io_ports.ctl_addr &&
599 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
600 stat = hwif->tp_ops->read_altstatus(hwif);
601 else
602 /* Note: this may clear a pending IRQ!! */
603 stat = hwif->tp_ops->read_status(hwif);
605 if (stat & ATA_BUSY)
606 /* drive busy: definitely not interrupting */
607 return 0;
609 /* drive ready: *might* be interrupting */
610 return 1;
614 * ide_timer_expiry - handle lack of an IDE interrupt
615 * @data: timer callback magic (hwif)
617 * An IDE command has timed out before the expected drive return
618 * occurred. At this point we attempt to clean up the current
619 * mess. If the current handler includes an expiry handler then
620 * we invoke the expiry handler, and providing it is happy the
621 * work is done. If that fails we apply generic recovery rules
622 * invoking the handler and checking the drive DMA status. We
623 * have an excessively incestuous relationship with the DMA
624 * logic that wants cleaning up.
627 void ide_timer_expiry (unsigned long data)
629 ide_hwif_t *hwif = (ide_hwif_t *)data;
630 ide_drive_t *uninitialized_var(drive);
631 ide_handler_t *handler;
632 unsigned long flags;
633 int wait = -1;
634 int plug_device = 0;
636 spin_lock_irqsave(&hwif->lock, flags);
638 handler = hwif->handler;
640 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
642 * Either a marginal timeout occurred
643 * (got the interrupt just as timer expired),
644 * or we were "sleeping" to give other devices a chance.
645 * Either way, we don't really want to complain about anything.
647 } else {
648 ide_expiry_t *expiry = hwif->expiry;
649 ide_startstop_t startstop = ide_stopped;
651 drive = hwif->cur_dev;
653 if (expiry) {
654 wait = expiry(drive);
655 if (wait > 0) { /* continue */
656 /* reset timer */
657 hwif->timer.expires = jiffies + wait;
658 hwif->req_gen_timer = hwif->req_gen;
659 add_timer(&hwif->timer);
660 spin_unlock_irqrestore(&hwif->lock, flags);
661 return;
664 hwif->handler = NULL;
665 hwif->expiry = NULL;
667 * We need to simulate a real interrupt when invoking
668 * the handler() function, which means we need to
669 * globally mask the specific IRQ:
671 spin_unlock(&hwif->lock);
672 /* disable_irq_nosync ?? */
673 disable_irq(hwif->irq);
674 /* local CPU only, as if we were handling an interrupt */
675 local_irq_disable();
676 if (hwif->polling) {
677 startstop = handler(drive);
678 } else if (drive_is_ready(drive)) {
679 if (drive->waiting_for_dma)
680 hwif->dma_ops->dma_lost_irq(drive);
681 if (hwif->ack_intr)
682 hwif->ack_intr(hwif);
683 printk(KERN_WARNING "%s: lost interrupt\n",
684 drive->name);
685 startstop = handler(drive);
686 } else {
687 if (drive->waiting_for_dma)
688 startstop = ide_dma_timeout_retry(drive, wait);
689 else
690 startstop = ide_error(drive, "irq timeout",
691 hwif->tp_ops->read_status(hwif));
693 spin_lock_irq(&hwif->lock);
694 enable_irq(hwif->irq);
695 if (startstop == ide_stopped) {
696 ide_unlock_port(hwif);
697 plug_device = 1;
700 spin_unlock_irqrestore(&hwif->lock, flags);
702 if (plug_device) {
703 ide_unlock_host(hwif->host);
704 ide_plug_device(drive);
709 * unexpected_intr - handle an unexpected IDE interrupt
710 * @irq: interrupt line
711 * @hwif: port being processed
713 * There's nothing really useful we can do with an unexpected interrupt,
714 * other than reading the status register (to clear it), and logging it.
715 * There should be no way that an irq can happen before we're ready for it,
716 * so we needn't worry much about losing an "important" interrupt here.
718 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
719 * the drive enters "idle", "standby", or "sleep" mode, so if the status
720 * looks "good", we just ignore the interrupt completely.
722 * This routine assumes __cli() is in effect when called.
724 * If an unexpected interrupt happens on irq15 while we are handling irq14
725 * and if the two interfaces are "serialized" (CMD640), then it looks like
726 * we could screw up by interfering with a new request being set up for
727 * irq15.
729 * In reality, this is a non-issue. The new command is not sent unless
730 * the drive is ready to accept one, in which case we know the drive is
731 * not trying to interrupt us. And ide_set_handler() is always invoked
732 * before completing the issuance of any new drive command, so we will not
733 * be accidentally invoked as a result of any valid command completion
734 * interrupt.
737 static void unexpected_intr(int irq, ide_hwif_t *hwif)
739 u8 stat = hwif->tp_ops->read_status(hwif);
741 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
742 /* Try to not flood the console with msgs */
743 static unsigned long last_msgtime, count;
744 ++count;
746 if (time_after(jiffies, last_msgtime + HZ)) {
747 last_msgtime = jiffies;
748 printk(KERN_ERR "%s: unexpected interrupt, "
749 "status=0x%02x, count=%ld\n",
750 hwif->name, stat, count);
756 * ide_intr - default IDE interrupt handler
757 * @irq: interrupt number
758 * @dev_id: hwif
759 * @regs: unused weirdness from the kernel irq layer
761 * This is the default IRQ handler for the IDE layer. You should
762 * not need to override it. If you do be aware it is subtle in
763 * places
765 * hwif is the interface in the group currently performing
766 * a command. hwif->cur_dev is the drive and hwif->handler is
767 * the IRQ handler to call. As we issue a command the handlers
768 * step through multiple states, reassigning the handler to the
769 * next step in the process. Unlike a smart SCSI controller IDE
770 * expects the main processor to sequence the various transfer
771 * stages. We also manage a poll timer to catch up with most
772 * timeout situations. There are still a few where the handlers
773 * don't ever decide to give up.
775 * The handler eventually returns ide_stopped to indicate the
776 * request completed. At this point we issue the next request
777 * on the port and the process begins again.
780 irqreturn_t ide_intr (int irq, void *dev_id)
782 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
783 struct ide_host *host = hwif->host;
784 ide_drive_t *uninitialized_var(drive);
785 ide_handler_t *handler;
786 unsigned long flags;
787 ide_startstop_t startstop;
788 irqreturn_t irq_ret = IRQ_NONE;
789 int plug_device = 0;
791 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
792 if (hwif != host->cur_port)
793 goto out_early;
796 spin_lock_irqsave(&hwif->lock, flags);
798 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
799 goto out;
801 handler = hwif->handler;
803 if (handler == NULL || hwif->polling) {
805 * Not expecting an interrupt from this drive.
806 * That means this could be:
807 * (1) an interrupt from another PCI device
808 * sharing the same PCI INT# as us.
809 * or (2) a drive just entered sleep or standby mode,
810 * and is interrupting to let us know.
811 * or (3) a spurious interrupt of unknown origin.
813 * For PCI, we cannot tell the difference,
814 * so in that case we just ignore it and hope it goes away.
816 if ((host->irq_flags & IRQF_SHARED) == 0) {
818 * Probably not a shared PCI interrupt,
819 * so we can safely try to do something about it:
821 unexpected_intr(irq, hwif);
822 } else {
824 * Whack the status register, just in case
825 * we have a leftover pending IRQ.
827 (void)hwif->tp_ops->read_status(hwif);
829 goto out;
832 drive = hwif->cur_dev;
834 if (!drive_is_ready(drive))
836 * This happens regularly when we share a PCI IRQ with
837 * another device. Unfortunately, it can also happen
838 * with some buggy drives that trigger the IRQ before
839 * their status register is up to date. Hopefully we have
840 * enough advance overhead that the latter isn't a problem.
842 goto out;
844 hwif->handler = NULL;
845 hwif->expiry = NULL;
846 hwif->req_gen++;
847 del_timer(&hwif->timer);
848 spin_unlock(&hwif->lock);
850 if (hwif->port_ops && hwif->port_ops->clear_irq)
851 hwif->port_ops->clear_irq(drive);
853 if (drive->dev_flags & IDE_DFLAG_UNMASK)
854 local_irq_enable_in_hardirq();
856 /* service this interrupt, may set handler for next interrupt */
857 startstop = handler(drive);
859 spin_lock_irq(&hwif->lock);
861 * Note that handler() may have set things up for another
862 * interrupt to occur soon, but it cannot happen until
863 * we exit from this routine, because it will be the
864 * same irq as is currently being serviced here, and Linux
865 * won't allow another of the same (on any CPU) until we return.
867 if (startstop == ide_stopped) {
868 BUG_ON(hwif->handler);
869 ide_unlock_port(hwif);
870 plug_device = 1;
872 irq_ret = IRQ_HANDLED;
873 out:
874 spin_unlock_irqrestore(&hwif->lock, flags);
875 out_early:
876 if (plug_device) {
877 ide_unlock_host(hwif->host);
878 ide_plug_device(drive);
881 return irq_ret;
883 EXPORT_SYMBOL_GPL(ide_intr);
885 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
887 ide_hwif_t *hwif = drive->hwif;
888 u8 buf[4] = { 0 };
890 while (len > 0) {
891 if (write)
892 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
893 else
894 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
895 len -= 4;
898 EXPORT_SYMBOL_GPL(ide_pad_transfer);