4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task
);
122 DEFINE_TRACE(sched_wakeup
);
123 DEFINE_TRACE(sched_wakeup_new
);
124 DEFINE_TRACE(sched_switch
);
125 DEFINE_TRACE(sched_migrate_task
);
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
132 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
134 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
141 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
143 sg
->__cpu_power
+= val
;
144 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
148 static inline int rt_policy(int policy
)
150 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
155 static inline int task_has_rt_policy(struct task_struct
*p
)
157 return rt_policy(p
->policy
);
161 * This is the priority-queue data structure of the RT scheduling class:
163 struct rt_prio_array
{
164 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
165 struct list_head queue
[MAX_RT_PRIO
];
168 struct rt_bandwidth
{
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock
;
173 struct hrtimer rt_period_timer
;
176 static struct rt_bandwidth def_rt_bandwidth
;
178 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
180 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
182 struct rt_bandwidth
*rt_b
=
183 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
189 now
= hrtimer_cb_get_time(timer
);
190 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
195 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
198 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
202 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
204 rt_b
->rt_period
= ns_to_ktime(period
);
205 rt_b
->rt_runtime
= runtime
;
207 spin_lock_init(&rt_b
->rt_runtime_lock
);
209 hrtimer_init(&rt_b
->rt_period_timer
,
210 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
211 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
214 static inline int rt_bandwidth_enabled(void)
216 return sysctl_sched_rt_runtime
>= 0;
219 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
223 if (rt_bandwidth_enabled() && rt_b
->rt_runtime
== RUNTIME_INF
)
226 if (hrtimer_active(&rt_b
->rt_period_timer
))
229 spin_lock(&rt_b
->rt_runtime_lock
);
231 if (hrtimer_active(&rt_b
->rt_period_timer
))
234 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
235 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
236 hrtimer_start_expires(&rt_b
->rt_period_timer
,
239 spin_unlock(&rt_b
->rt_runtime_lock
);
242 #ifdef CONFIG_RT_GROUP_SCHED
243 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
245 hrtimer_cancel(&rt_b
->rt_period_timer
);
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
253 static DEFINE_MUTEX(sched_domains_mutex
);
255 #ifdef CONFIG_GROUP_SCHED
257 #include <linux/cgroup.h>
261 static LIST_HEAD(task_groups
);
263 /* task group related information */
265 #ifdef CONFIG_CGROUP_SCHED
266 struct cgroup_subsys_state css
;
269 #ifdef CONFIG_USER_SCHED
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity
**se
;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq
**cfs_rq
;
278 unsigned long shares
;
281 #ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity
**rt_se
;
283 struct rt_rq
**rt_rq
;
285 struct rt_bandwidth rt_bandwidth
;
289 struct list_head list
;
291 struct task_group
*parent
;
292 struct list_head siblings
;
293 struct list_head children
;
296 #ifdef CONFIG_USER_SCHED
298 /* Helper function to pass uid information to create_sched_user() */
299 void set_tg_uid(struct user_struct
*user
)
301 user
->tg
->uid
= user
->uid
;
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
309 struct task_group root_task_group
;
311 #ifdef CONFIG_FAIR_GROUP_SCHED
312 /* Default task group's sched entity on each cpu */
313 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
314 /* Default task group's cfs_rq on each cpu */
315 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
316 #endif /* CONFIG_FAIR_GROUP_SCHED */
318 #ifdef CONFIG_RT_GROUP_SCHED
319 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
320 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
321 #endif /* CONFIG_RT_GROUP_SCHED */
322 #else /* !CONFIG_USER_SCHED */
323 #define root_task_group init_task_group
324 #endif /* CONFIG_USER_SCHED */
326 /* task_group_lock serializes add/remove of task groups and also changes to
327 * a task group's cpu shares.
329 static DEFINE_SPINLOCK(task_group_lock
);
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 #ifdef CONFIG_USER_SCHED
333 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
334 #else /* !CONFIG_USER_SCHED */
335 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
336 #endif /* CONFIG_USER_SCHED */
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
347 #define MAX_SHARES (1UL << 18)
349 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
352 /* Default task group.
353 * Every task in system belong to this group at bootup.
355 struct task_group init_task_group
;
357 /* return group to which a task belongs */
358 static inline struct task_group
*task_group(struct task_struct
*p
)
360 struct task_group
*tg
;
362 #ifdef CONFIG_USER_SCHED
364 tg
= __task_cred(p
)->user
->tg
;
366 #elif defined(CONFIG_CGROUP_SCHED)
367 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
368 struct task_group
, css
);
370 tg
= &init_task_group
;
375 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
376 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
380 p
->se
.parent
= task_group(p
)->se
[cpu
];
383 #ifdef CONFIG_RT_GROUP_SCHED
384 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
385 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
391 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
392 static inline struct task_group
*task_group(struct task_struct
*p
)
397 #endif /* CONFIG_GROUP_SCHED */
399 /* CFS-related fields in a runqueue */
401 struct load_weight load
;
402 unsigned long nr_running
;
407 struct rb_root tasks_timeline
;
408 struct rb_node
*rb_leftmost
;
410 struct list_head tasks
;
411 struct list_head
*balance_iterator
;
414 * 'curr' points to currently running entity on this cfs_rq.
415 * It is set to NULL otherwise (i.e when none are currently running).
417 struct sched_entity
*curr
, *next
, *last
;
419 unsigned int nr_spread_over
;
421 #ifdef CONFIG_FAIR_GROUP_SCHED
422 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
432 struct list_head leaf_cfs_rq_list
;
433 struct task_group
*tg
; /* group that "owns" this runqueue */
437 * the part of load.weight contributed by tasks
439 unsigned long task_weight
;
442 * h_load = weight * f(tg)
444 * Where f(tg) is the recursive weight fraction assigned to
447 unsigned long h_load
;
450 * this cpu's part of tg->shares
452 unsigned long shares
;
455 * load.weight at the time we set shares
457 unsigned long rq_weight
;
462 /* Real-Time classes' related field in a runqueue: */
464 struct rt_prio_array active
;
465 unsigned long rt_nr_running
;
466 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
467 int highest_prio
; /* highest queued rt task prio */
470 unsigned long rt_nr_migratory
;
476 /* Nests inside the rq lock: */
477 spinlock_t rt_runtime_lock
;
479 #ifdef CONFIG_RT_GROUP_SCHED
480 unsigned long rt_nr_boosted
;
483 struct list_head leaf_rt_rq_list
;
484 struct task_group
*tg
;
485 struct sched_rt_entity
*rt_se
;
492 * We add the notion of a root-domain which will be used to define per-domain
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
495 * exclusive cpuset is created, we also create and attach a new root-domain
502 cpumask_var_t online
;
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
508 cpumask_var_t rto_mask
;
511 struct cpupri cpupri
;
513 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
515 * Preferred wake up cpu nominated by sched_mc balance that will be
516 * used when most cpus are idle in the system indicating overall very
517 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
519 unsigned int sched_mc_preferred_wakeup_cpu
;
524 * By default the system creates a single root-domain with all cpus as
525 * members (mimicking the global state we have today).
527 static struct root_domain def_root_domain
;
532 * This is the main, per-CPU runqueue data structure.
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
546 unsigned long nr_running
;
547 #define CPU_LOAD_IDX_MAX 5
548 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
549 unsigned char idle_at_tick
;
551 unsigned long last_tick_seen
;
552 unsigned char in_nohz_recently
;
554 /* capture load from *all* tasks on this cpu: */
555 struct load_weight load
;
556 unsigned long nr_load_updates
;
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 /* list of leaf cfs_rq on this cpu: */
564 struct list_head leaf_cfs_rq_list
;
566 #ifdef CONFIG_RT_GROUP_SCHED
567 struct list_head leaf_rt_rq_list
;
571 * This is part of a global counter where only the total sum
572 * over all CPUs matters. A task can increase this counter on
573 * one CPU and if it got migrated afterwards it may decrease
574 * it on another CPU. Always updated under the runqueue lock:
576 unsigned long nr_uninterruptible
;
578 struct task_struct
*curr
, *idle
;
579 unsigned long next_balance
;
580 struct mm_struct
*prev_mm
;
587 struct root_domain
*rd
;
588 struct sched_domain
*sd
;
590 /* For active balancing */
593 /* cpu of this runqueue: */
597 unsigned long avg_load_per_task
;
599 struct task_struct
*migration_thread
;
600 struct list_head migration_queue
;
603 #ifdef CONFIG_SCHED_HRTICK
605 int hrtick_csd_pending
;
606 struct call_single_data hrtick_csd
;
608 struct hrtimer hrtick_timer
;
611 #ifdef CONFIG_SCHEDSTATS
613 struct sched_info rq_sched_info
;
614 unsigned long long rq_cpu_time
;
615 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
617 /* sys_sched_yield() stats */
618 unsigned int yld_exp_empty
;
619 unsigned int yld_act_empty
;
620 unsigned int yld_both_empty
;
621 unsigned int yld_count
;
623 /* schedule() stats */
624 unsigned int sched_switch
;
625 unsigned int sched_count
;
626 unsigned int sched_goidle
;
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count
;
630 unsigned int ttwu_local
;
633 unsigned int bkl_count
;
637 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
639 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
641 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
644 static inline int cpu_of(struct rq
*rq
)
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655 * See detach_destroy_domains: synchronize_sched for details.
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
660 #define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
663 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664 #define this_rq() (&__get_cpu_var(runqueues))
665 #define task_rq(p) cpu_rq(task_cpu(p))
666 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
668 static inline void update_rq_clock(struct rq
*rq
)
670 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
676 #ifdef CONFIG_SCHED_DEBUG
677 # define const_debug __read_mostly
679 # define const_debug static const
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
689 int runqueue_is_locked(void)
692 struct rq
*rq
= cpu_rq(cpu
);
695 ret
= spin_is_locked(&rq
->lock
);
701 * Debugging: various feature bits
704 #define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
708 #include "sched_features.h"
713 #define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
716 const_debug
unsigned int sysctl_sched_features
=
717 #include "sched_features.h"
722 #ifdef CONFIG_SCHED_DEBUG
723 #define SCHED_FEAT(name, enabled) \
726 static __read_mostly
char *sched_feat_names
[] = {
727 #include "sched_features.h"
733 static int sched_feat_show(struct seq_file
*m
, void *v
)
737 for (i
= 0; sched_feat_names
[i
]; i
++) {
738 if (!(sysctl_sched_features
& (1UL << i
)))
740 seq_printf(m
, "%s ", sched_feat_names
[i
]);
748 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
749 size_t cnt
, loff_t
*ppos
)
759 if (copy_from_user(&buf
, ubuf
, cnt
))
764 if (strncmp(buf
, "NO_", 3) == 0) {
769 for (i
= 0; sched_feat_names
[i
]; i
++) {
770 int len
= strlen(sched_feat_names
[i
]);
772 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
774 sysctl_sched_features
&= ~(1UL << i
);
776 sysctl_sched_features
|= (1UL << i
);
781 if (!sched_feat_names
[i
])
789 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
791 return single_open(filp
, sched_feat_show
, NULL
);
794 static struct file_operations sched_feat_fops
= {
795 .open
= sched_feat_open
,
796 .write
= sched_feat_write
,
799 .release
= single_release
,
802 static __init
int sched_init_debug(void)
804 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
809 late_initcall(sched_init_debug
);
813 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
819 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
822 * ratelimit for updating the group shares.
825 unsigned int sysctl_sched_shares_ratelimit
= 250000;
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
832 unsigned int sysctl_sched_shares_thresh
= 4;
835 * period over which we measure -rt task cpu usage in us.
838 unsigned int sysctl_sched_rt_period
= 1000000;
840 static __read_mostly
int scheduler_running
;
843 * part of the period that we allow rt tasks to run in us.
846 int sysctl_sched_rt_runtime
= 950000;
848 static inline u64
global_rt_period(void)
850 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
853 static inline u64
global_rt_runtime(void)
855 if (sysctl_sched_rt_runtime
< 0)
858 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
868 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
870 return rq
->curr
== p
;
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
876 return task_current(rq
, p
);
879 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
883 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq
->lock
.owner
= current
;
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
894 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
896 spin_unlock_irq(&rq
->lock
);
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
905 return task_current(rq
, p
);
909 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq
->lock
);
922 spin_unlock(&rq
->lock
);
926 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
947 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
951 struct rq
*rq
= task_rq(p
);
952 spin_lock(&rq
->lock
);
953 if (likely(rq
== task_rq(p
)))
955 spin_unlock(&rq
->lock
);
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
964 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
970 local_irq_save(*flags
);
972 spin_lock(&rq
->lock
);
973 if (likely(rq
== task_rq(p
)))
975 spin_unlock_irqrestore(&rq
->lock
, *flags
);
979 void task_rq_unlock_wait(struct task_struct
*p
)
981 struct rq
*rq
= task_rq(p
);
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq
->lock
);
987 static void __task_rq_unlock(struct rq
*rq
)
990 spin_unlock(&rq
->lock
);
993 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
996 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1002 static struct rq
*this_rq_lock(void)
1003 __acquires(rq
->lock
)
1007 local_irq_disable();
1009 spin_lock(&rq
->lock
);
1014 #ifdef CONFIG_SCHED_HRTICK
1016 * Use HR-timers to deliver accurate preemption points.
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1028 * - enabled by features
1029 * - hrtimer is actually high res
1031 static inline int hrtick_enabled(struct rq
*rq
)
1033 if (!sched_feat(HRTICK
))
1035 if (!cpu_active(cpu_of(rq
)))
1037 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1040 static void hrtick_clear(struct rq
*rq
)
1042 if (hrtimer_active(&rq
->hrtick_timer
))
1043 hrtimer_cancel(&rq
->hrtick_timer
);
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1050 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1052 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1054 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1056 spin_lock(&rq
->lock
);
1057 update_rq_clock(rq
);
1058 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1059 spin_unlock(&rq
->lock
);
1061 return HRTIMER_NORESTART
;
1066 * called from hardirq (IPI) context
1068 static void __hrtick_start(void *arg
)
1070 struct rq
*rq
= arg
;
1072 spin_lock(&rq
->lock
);
1073 hrtimer_restart(&rq
->hrtick_timer
);
1074 rq
->hrtick_csd_pending
= 0;
1075 spin_unlock(&rq
->lock
);
1079 * Called to set the hrtick timer state.
1081 * called with rq->lock held and irqs disabled
1083 static void hrtick_start(struct rq
*rq
, u64 delay
)
1085 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1086 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1088 hrtimer_set_expires(timer
, time
);
1090 if (rq
== this_rq()) {
1091 hrtimer_restart(timer
);
1092 } else if (!rq
->hrtick_csd_pending
) {
1093 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1094 rq
->hrtick_csd_pending
= 1;
1099 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1101 int cpu
= (int)(long)hcpu
;
1104 case CPU_UP_CANCELED
:
1105 case CPU_UP_CANCELED_FROZEN
:
1106 case CPU_DOWN_PREPARE
:
1107 case CPU_DOWN_PREPARE_FROZEN
:
1109 case CPU_DEAD_FROZEN
:
1110 hrtick_clear(cpu_rq(cpu
));
1117 static __init
void init_hrtick(void)
1119 hotcpu_notifier(hotplug_hrtick
, 0);
1123 * Called to set the hrtick timer state.
1125 * called with rq->lock held and irqs disabled
1127 static void hrtick_start(struct rq
*rq
, u64 delay
)
1129 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1132 static inline void init_hrtick(void)
1135 #endif /* CONFIG_SMP */
1137 static void init_rq_hrtick(struct rq
*rq
)
1140 rq
->hrtick_csd_pending
= 0;
1142 rq
->hrtick_csd
.flags
= 0;
1143 rq
->hrtick_csd
.func
= __hrtick_start
;
1144 rq
->hrtick_csd
.info
= rq
;
1147 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1148 rq
->hrtick_timer
.function
= hrtick
;
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq
*rq
)
1155 static inline void init_rq_hrtick(struct rq
*rq
)
1159 static inline void init_hrtick(void)
1162 #endif /* CONFIG_SCHED_HRTICK */
1165 * resched_task - mark a task 'to be rescheduled now'.
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1177 static void resched_task(struct task_struct
*p
)
1181 assert_spin_locked(&task_rq(p
)->lock
);
1183 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1186 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1189 if (cpu
== smp_processor_id())
1192 /* NEED_RESCHED must be visible before we test polling */
1194 if (!tsk_is_polling(p
))
1195 smp_send_reschedule(cpu
);
1198 static void resched_cpu(int cpu
)
1200 struct rq
*rq
= cpu_rq(cpu
);
1201 unsigned long flags
;
1203 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1205 resched_task(cpu_curr(cpu
));
1206 spin_unlock_irqrestore(&rq
->lock
, flags
);
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1220 void wake_up_idle_cpu(int cpu
)
1222 struct rq
*rq
= cpu_rq(cpu
);
1224 if (cpu
== smp_processor_id())
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1234 if (rq
->curr
!= rq
->idle
)
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1242 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1244 /* NEED_RESCHED must be visible before we test polling */
1246 if (!tsk_is_polling(rq
->idle
))
1247 smp_send_reschedule(cpu
);
1249 #endif /* CONFIG_NO_HZ */
1251 #else /* !CONFIG_SMP */
1252 static void resched_task(struct task_struct
*p
)
1254 assert_spin_locked(&task_rq(p
)->lock
);
1255 set_tsk_need_resched(p
);
1257 #endif /* CONFIG_SMP */
1259 #if BITS_PER_LONG == 32
1260 # define WMULT_CONST (~0UL)
1262 # define WMULT_CONST (1UL << 32)
1265 #define WMULT_SHIFT 32
1268 * Shift right and round:
1270 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1273 * delta *= weight / lw
1275 static unsigned long
1276 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1277 struct load_weight
*lw
)
1281 if (!lw
->inv_weight
) {
1282 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1285 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1289 tmp
= (u64
)delta_exec
* weight
;
1291 * Check whether we'd overflow the 64-bit multiplication:
1293 if (unlikely(tmp
> WMULT_CONST
))
1294 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1297 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1299 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1302 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1308 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 * scaled version of the new time slice allocation that they receive on time
1323 #define WEIGHT_IDLEPRIO 2
1324 #define WMULT_IDLEPRIO (1 << 31)
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
1338 static const int prio_to_weight
[40] = {
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1356 static const u32 prio_to_wmult
[40] = {
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1367 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1374 struct rq_iterator
{
1376 struct task_struct
*(*start
)(void *);
1377 struct task_struct
*(*next
)(void *);
1381 static unsigned long
1382 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1383 unsigned long max_load_move
, struct sched_domain
*sd
,
1384 enum cpu_idle_type idle
, int *all_pinned
,
1385 int *this_best_prio
, struct rq_iterator
*iterator
);
1388 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1389 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1390 struct rq_iterator
*iterator
);
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1396 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1399 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1401 update_load_add(&rq
->load
, load
);
1404 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1406 update_load_sub(&rq
->load
, load
);
1409 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1410 typedef int (*tg_visitor
)(struct task_group
*, void *);
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1416 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1418 struct task_group
*parent
, *child
;
1422 parent
= &root_task_group
;
1424 ret
= (*down
)(parent
, data
);
1427 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1434 ret
= (*up
)(parent
, data
);
1439 parent
= parent
->parent
;
1448 static int tg_nop(struct task_group
*tg
, void *data
)
1455 static unsigned long source_load(int cpu
, int type
);
1456 static unsigned long target_load(int cpu
, int type
);
1457 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1459 static unsigned long cpu_avg_load_per_task(int cpu
)
1461 struct rq
*rq
= cpu_rq(cpu
);
1462 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1465 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1467 rq
->avg_load_per_task
= 0;
1469 return rq
->avg_load_per_task
;
1472 #ifdef CONFIG_FAIR_GROUP_SCHED
1474 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1477 * Calculate and set the cpu's group shares.
1480 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1481 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1483 unsigned long shares
;
1484 unsigned long rq_weight
;
1489 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1492 * \Sum shares * rq_weight
1493 * shares = -----------------------
1497 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1498 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1500 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1501 sysctl_sched_shares_thresh
) {
1502 struct rq
*rq
= cpu_rq(cpu
);
1503 unsigned long flags
;
1505 spin_lock_irqsave(&rq
->lock
, flags
);
1506 tg
->cfs_rq
[cpu
]->shares
= shares
;
1508 __set_se_shares(tg
->se
[cpu
], shares
);
1509 spin_unlock_irqrestore(&rq
->lock
, flags
);
1514 * Re-compute the task group their per cpu shares over the given domain.
1515 * This needs to be done in a bottom-up fashion because the rq weight of a
1516 * parent group depends on the shares of its child groups.
1518 static int tg_shares_up(struct task_group
*tg
, void *data
)
1520 unsigned long weight
, rq_weight
= 0;
1521 unsigned long shares
= 0;
1522 struct sched_domain
*sd
= data
;
1525 for_each_cpu(i
, sched_domain_span(sd
)) {
1527 * If there are currently no tasks on the cpu pretend there
1528 * is one of average load so that when a new task gets to
1529 * run here it will not get delayed by group starvation.
1531 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1533 weight
= NICE_0_LOAD
;
1535 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1536 rq_weight
+= weight
;
1537 shares
+= tg
->cfs_rq
[i
]->shares
;
1540 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1541 shares
= tg
->shares
;
1543 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1544 shares
= tg
->shares
;
1546 for_each_cpu(i
, sched_domain_span(sd
))
1547 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
1557 static int tg_load_down(struct task_group
*tg
, void *data
)
1560 long cpu
= (long)data
;
1563 load
= cpu_rq(cpu
)->load
.weight
;
1565 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1566 load
*= tg
->cfs_rq
[cpu
]->shares
;
1567 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1570 tg
->cfs_rq
[cpu
]->h_load
= load
;
1575 static void update_shares(struct sched_domain
*sd
)
1577 u64 now
= cpu_clock(raw_smp_processor_id());
1578 s64 elapsed
= now
- sd
->last_update
;
1580 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1581 sd
->last_update
= now
;
1582 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1586 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1588 spin_unlock(&rq
->lock
);
1590 spin_lock(&rq
->lock
);
1593 static void update_h_load(long cpu
)
1595 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1600 static inline void update_shares(struct sched_domain
*sd
)
1604 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1611 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1613 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1614 __releases(this_rq
->lock
)
1615 __acquires(busiest
->lock
)
1616 __acquires(this_rq
->lock
)
1620 if (unlikely(!irqs_disabled())) {
1621 /* printk() doesn't work good under rq->lock */
1622 spin_unlock(&this_rq
->lock
);
1625 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1626 if (busiest
< this_rq
) {
1627 spin_unlock(&this_rq
->lock
);
1628 spin_lock(&busiest
->lock
);
1629 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1632 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1637 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1638 __releases(busiest
->lock
)
1640 spin_unlock(&busiest
->lock
);
1641 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1645 #ifdef CONFIG_FAIR_GROUP_SCHED
1646 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1649 cfs_rq
->shares
= shares
;
1654 #include "sched_stats.h"
1655 #include "sched_idletask.c"
1656 #include "sched_fair.c"
1657 #include "sched_rt.c"
1658 #ifdef CONFIG_SCHED_DEBUG
1659 # include "sched_debug.c"
1662 #define sched_class_highest (&rt_sched_class)
1663 #define for_each_class(class) \
1664 for (class = sched_class_highest; class; class = class->next)
1666 static void inc_nr_running(struct rq
*rq
)
1671 static void dec_nr_running(struct rq
*rq
)
1676 static void set_load_weight(struct task_struct
*p
)
1678 if (task_has_rt_policy(p
)) {
1679 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1680 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1685 * SCHED_IDLE tasks get minimal weight:
1687 if (p
->policy
== SCHED_IDLE
) {
1688 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1689 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1693 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1694 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1697 static void update_avg(u64
*avg
, u64 sample
)
1699 s64 diff
= sample
- *avg
;
1703 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1705 sched_info_queued(p
);
1706 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1710 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1712 if (sleep
&& p
->se
.last_wakeup
) {
1713 update_avg(&p
->se
.avg_overlap
,
1714 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1715 p
->se
.last_wakeup
= 0;
1718 sched_info_dequeued(p
);
1719 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1724 * __normal_prio - return the priority that is based on the static prio
1726 static inline int __normal_prio(struct task_struct
*p
)
1728 return p
->static_prio
;
1732 * Calculate the expected normal priority: i.e. priority
1733 * without taking RT-inheritance into account. Might be
1734 * boosted by interactivity modifiers. Changes upon fork,
1735 * setprio syscalls, and whenever the interactivity
1736 * estimator recalculates.
1738 static inline int normal_prio(struct task_struct
*p
)
1742 if (task_has_rt_policy(p
))
1743 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1745 prio
= __normal_prio(p
);
1750 * Calculate the current priority, i.e. the priority
1751 * taken into account by the scheduler. This value might
1752 * be boosted by RT tasks, or might be boosted by
1753 * interactivity modifiers. Will be RT if the task got
1754 * RT-boosted. If not then it returns p->normal_prio.
1756 static int effective_prio(struct task_struct
*p
)
1758 p
->normal_prio
= normal_prio(p
);
1760 * If we are RT tasks or we were boosted to RT priority,
1761 * keep the priority unchanged. Otherwise, update priority
1762 * to the normal priority:
1764 if (!rt_prio(p
->prio
))
1765 return p
->normal_prio
;
1770 * activate_task - move a task to the runqueue.
1772 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1774 if (task_contributes_to_load(p
))
1775 rq
->nr_uninterruptible
--;
1777 enqueue_task(rq
, p
, wakeup
);
1782 * deactivate_task - remove a task from the runqueue.
1784 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1786 if (task_contributes_to_load(p
))
1787 rq
->nr_uninterruptible
++;
1789 dequeue_task(rq
, p
, sleep
);
1794 * task_curr - is this task currently executing on a CPU?
1795 * @p: the task in question.
1797 inline int task_curr(const struct task_struct
*p
)
1799 return cpu_curr(task_cpu(p
)) == p
;
1802 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1804 set_task_rq(p
, cpu
);
1807 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1808 * successfuly executed on another CPU. We must ensure that updates of
1809 * per-task data have been completed by this moment.
1812 task_thread_info(p
)->cpu
= cpu
;
1816 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1817 const struct sched_class
*prev_class
,
1818 int oldprio
, int running
)
1820 if (prev_class
!= p
->sched_class
) {
1821 if (prev_class
->switched_from
)
1822 prev_class
->switched_from(rq
, p
, running
);
1823 p
->sched_class
->switched_to(rq
, p
, running
);
1825 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1830 /* Used instead of source_load when we know the type == 0 */
1831 static unsigned long weighted_cpuload(const int cpu
)
1833 return cpu_rq(cpu
)->load
.weight
;
1837 * Is this task likely cache-hot:
1840 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1845 * Buddy candidates are cache hot:
1847 if (sched_feat(CACHE_HOT_BUDDY
) &&
1848 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1849 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1852 if (p
->sched_class
!= &fair_sched_class
)
1855 if (sysctl_sched_migration_cost
== -1)
1857 if (sysctl_sched_migration_cost
== 0)
1860 delta
= now
- p
->se
.exec_start
;
1862 return delta
< (s64
)sysctl_sched_migration_cost
;
1866 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1868 int old_cpu
= task_cpu(p
);
1869 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1870 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1871 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1874 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1876 trace_sched_migrate_task(p
, task_cpu(p
), new_cpu
);
1878 #ifdef CONFIG_SCHEDSTATS
1879 if (p
->se
.wait_start
)
1880 p
->se
.wait_start
-= clock_offset
;
1881 if (p
->se
.sleep_start
)
1882 p
->se
.sleep_start
-= clock_offset
;
1883 if (p
->se
.block_start
)
1884 p
->se
.block_start
-= clock_offset
;
1885 if (old_cpu
!= new_cpu
) {
1886 schedstat_inc(p
, se
.nr_migrations
);
1887 if (task_hot(p
, old_rq
->clock
, NULL
))
1888 schedstat_inc(p
, se
.nr_forced2_migrations
);
1891 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1892 new_cfsrq
->min_vruntime
;
1894 __set_task_cpu(p
, new_cpu
);
1897 struct migration_req
{
1898 struct list_head list
;
1900 struct task_struct
*task
;
1903 struct completion done
;
1907 * The task's runqueue lock must be held.
1908 * Returns true if you have to wait for migration thread.
1911 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1913 struct rq
*rq
= task_rq(p
);
1916 * If the task is not on a runqueue (and not running), then
1917 * it is sufficient to simply update the task's cpu field.
1919 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1920 set_task_cpu(p
, dest_cpu
);
1924 init_completion(&req
->done
);
1926 req
->dest_cpu
= dest_cpu
;
1927 list_add(&req
->list
, &rq
->migration_queue
);
1933 * wait_task_inactive - wait for a thread to unschedule.
1935 * If @match_state is nonzero, it's the @p->state value just checked and
1936 * not expected to change. If it changes, i.e. @p might have woken up,
1937 * then return zero. When we succeed in waiting for @p to be off its CPU,
1938 * we return a positive number (its total switch count). If a second call
1939 * a short while later returns the same number, the caller can be sure that
1940 * @p has remained unscheduled the whole time.
1942 * The caller must ensure that the task *will* unschedule sometime soon,
1943 * else this function might spin for a *long* time. This function can't
1944 * be called with interrupts off, or it may introduce deadlock with
1945 * smp_call_function() if an IPI is sent by the same process we are
1946 * waiting to become inactive.
1948 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1950 unsigned long flags
;
1957 * We do the initial early heuristics without holding
1958 * any task-queue locks at all. We'll only try to get
1959 * the runqueue lock when things look like they will
1965 * If the task is actively running on another CPU
1966 * still, just relax and busy-wait without holding
1969 * NOTE! Since we don't hold any locks, it's not
1970 * even sure that "rq" stays as the right runqueue!
1971 * But we don't care, since "task_running()" will
1972 * return false if the runqueue has changed and p
1973 * is actually now running somewhere else!
1975 while (task_running(rq
, p
)) {
1976 if (match_state
&& unlikely(p
->state
!= match_state
))
1982 * Ok, time to look more closely! We need the rq
1983 * lock now, to be *sure*. If we're wrong, we'll
1984 * just go back and repeat.
1986 rq
= task_rq_lock(p
, &flags
);
1987 trace_sched_wait_task(rq
, p
);
1988 running
= task_running(rq
, p
);
1989 on_rq
= p
->se
.on_rq
;
1991 if (!match_state
|| p
->state
== match_state
)
1992 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1993 task_rq_unlock(rq
, &flags
);
1996 * If it changed from the expected state, bail out now.
1998 if (unlikely(!ncsw
))
2002 * Was it really running after all now that we
2003 * checked with the proper locks actually held?
2005 * Oops. Go back and try again..
2007 if (unlikely(running
)) {
2013 * It's not enough that it's not actively running,
2014 * it must be off the runqueue _entirely_, and not
2017 * So if it wa still runnable (but just not actively
2018 * running right now), it's preempted, and we should
2019 * yield - it could be a while.
2021 if (unlikely(on_rq
)) {
2022 schedule_timeout_uninterruptible(1);
2027 * Ahh, all good. It wasn't running, and it wasn't
2028 * runnable, which means that it will never become
2029 * running in the future either. We're all done!
2038 * kick_process - kick a running thread to enter/exit the kernel
2039 * @p: the to-be-kicked thread
2041 * Cause a process which is running on another CPU to enter
2042 * kernel-mode, without any delay. (to get signals handled.)
2044 * NOTE: this function doesnt have to take the runqueue lock,
2045 * because all it wants to ensure is that the remote task enters
2046 * the kernel. If the IPI races and the task has been migrated
2047 * to another CPU then no harm is done and the purpose has been
2050 void kick_process(struct task_struct
*p
)
2056 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2057 smp_send_reschedule(cpu
);
2062 * Return a low guess at the load of a migration-source cpu weighted
2063 * according to the scheduling class and "nice" value.
2065 * We want to under-estimate the load of migration sources, to
2066 * balance conservatively.
2068 static unsigned long source_load(int cpu
, int type
)
2070 struct rq
*rq
= cpu_rq(cpu
);
2071 unsigned long total
= weighted_cpuload(cpu
);
2073 if (type
== 0 || !sched_feat(LB_BIAS
))
2076 return min(rq
->cpu_load
[type
-1], total
);
2080 * Return a high guess at the load of a migration-target cpu weighted
2081 * according to the scheduling class and "nice" value.
2083 static unsigned long target_load(int cpu
, int type
)
2085 struct rq
*rq
= cpu_rq(cpu
);
2086 unsigned long total
= weighted_cpuload(cpu
);
2088 if (type
== 0 || !sched_feat(LB_BIAS
))
2091 return max(rq
->cpu_load
[type
-1], total
);
2095 * find_idlest_group finds and returns the least busy CPU group within the
2098 static struct sched_group
*
2099 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2101 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2102 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2103 int load_idx
= sd
->forkexec_idx
;
2104 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2107 unsigned long load
, avg_load
;
2111 /* Skip over this group if it has no CPUs allowed */
2112 if (!cpumask_intersects(sched_group_cpus(group
),
2116 local_group
= cpumask_test_cpu(this_cpu
,
2117 sched_group_cpus(group
));
2119 /* Tally up the load of all CPUs in the group */
2122 for_each_cpu(i
, sched_group_cpus(group
)) {
2123 /* Bias balancing toward cpus of our domain */
2125 load
= source_load(i
, load_idx
);
2127 load
= target_load(i
, load_idx
);
2132 /* Adjust by relative CPU power of the group */
2133 avg_load
= sg_div_cpu_power(group
,
2134 avg_load
* SCHED_LOAD_SCALE
);
2137 this_load
= avg_load
;
2139 } else if (avg_load
< min_load
) {
2140 min_load
= avg_load
;
2143 } while (group
= group
->next
, group
!= sd
->groups
);
2145 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2151 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2154 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2156 unsigned long load
, min_load
= ULONG_MAX
;
2160 /* Traverse only the allowed CPUs */
2161 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2162 load
= weighted_cpuload(i
);
2164 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2174 * sched_balance_self: balance the current task (running on cpu) in domains
2175 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2178 * Balance, ie. select the least loaded group.
2180 * Returns the target CPU number, or the same CPU if no balancing is needed.
2182 * preempt must be disabled.
2184 static int sched_balance_self(int cpu
, int flag
)
2186 struct task_struct
*t
= current
;
2187 struct sched_domain
*tmp
, *sd
= NULL
;
2189 for_each_domain(cpu
, tmp
) {
2191 * If power savings logic is enabled for a domain, stop there.
2193 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2195 if (tmp
->flags
& flag
)
2203 struct sched_group
*group
;
2204 int new_cpu
, weight
;
2206 if (!(sd
->flags
& flag
)) {
2211 group
= find_idlest_group(sd
, t
, cpu
);
2217 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2218 if (new_cpu
== -1 || new_cpu
== cpu
) {
2219 /* Now try balancing at a lower domain level of cpu */
2224 /* Now try balancing at a lower domain level of new_cpu */
2226 weight
= cpumask_weight(sched_domain_span(sd
));
2228 for_each_domain(cpu
, tmp
) {
2229 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2231 if (tmp
->flags
& flag
)
2234 /* while loop will break here if sd == NULL */
2240 #endif /* CONFIG_SMP */
2243 * try_to_wake_up - wake up a thread
2244 * @p: the to-be-woken-up thread
2245 * @state: the mask of task states that can be woken
2246 * @sync: do a synchronous wakeup?
2248 * Put it on the run-queue if it's not already there. The "current"
2249 * thread is always on the run-queue (except when the actual
2250 * re-schedule is in progress), and as such you're allowed to do
2251 * the simpler "current->state = TASK_RUNNING" to mark yourself
2252 * runnable without the overhead of this.
2254 * returns failure only if the task is already active.
2256 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2258 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2259 unsigned long flags
;
2263 if (!sched_feat(SYNC_WAKEUPS
))
2267 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2268 struct sched_domain
*sd
;
2270 this_cpu
= raw_smp_processor_id();
2273 for_each_domain(this_cpu
, sd
) {
2274 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2283 rq
= task_rq_lock(p
, &flags
);
2284 update_rq_clock(rq
);
2285 old_state
= p
->state
;
2286 if (!(old_state
& state
))
2294 this_cpu
= smp_processor_id();
2297 if (unlikely(task_running(rq
, p
)))
2300 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2301 if (cpu
!= orig_cpu
) {
2302 set_task_cpu(p
, cpu
);
2303 task_rq_unlock(rq
, &flags
);
2304 /* might preempt at this point */
2305 rq
= task_rq_lock(p
, &flags
);
2306 old_state
= p
->state
;
2307 if (!(old_state
& state
))
2312 this_cpu
= smp_processor_id();
2316 #ifdef CONFIG_SCHEDSTATS
2317 schedstat_inc(rq
, ttwu_count
);
2318 if (cpu
== this_cpu
)
2319 schedstat_inc(rq
, ttwu_local
);
2321 struct sched_domain
*sd
;
2322 for_each_domain(this_cpu
, sd
) {
2323 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2324 schedstat_inc(sd
, ttwu_wake_remote
);
2329 #endif /* CONFIG_SCHEDSTATS */
2332 #endif /* CONFIG_SMP */
2333 schedstat_inc(p
, se
.nr_wakeups
);
2335 schedstat_inc(p
, se
.nr_wakeups_sync
);
2336 if (orig_cpu
!= cpu
)
2337 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2338 if (cpu
== this_cpu
)
2339 schedstat_inc(p
, se
.nr_wakeups_local
);
2341 schedstat_inc(p
, se
.nr_wakeups_remote
);
2342 activate_task(rq
, p
, 1);
2346 trace_sched_wakeup(rq
, p
, success
);
2347 check_preempt_curr(rq
, p
, sync
);
2349 p
->state
= TASK_RUNNING
;
2351 if (p
->sched_class
->task_wake_up
)
2352 p
->sched_class
->task_wake_up(rq
, p
);
2355 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2357 task_rq_unlock(rq
, &flags
);
2362 int wake_up_process(struct task_struct
*p
)
2364 return try_to_wake_up(p
, TASK_ALL
, 0);
2366 EXPORT_SYMBOL(wake_up_process
);
2368 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2370 return try_to_wake_up(p
, state
, 0);
2374 * Perform scheduler related setup for a newly forked process p.
2375 * p is forked by current.
2377 * __sched_fork() is basic setup used by init_idle() too:
2379 static void __sched_fork(struct task_struct
*p
)
2381 p
->se
.exec_start
= 0;
2382 p
->se
.sum_exec_runtime
= 0;
2383 p
->se
.prev_sum_exec_runtime
= 0;
2384 p
->se
.last_wakeup
= 0;
2385 p
->se
.avg_overlap
= 0;
2387 #ifdef CONFIG_SCHEDSTATS
2388 p
->se
.wait_start
= 0;
2389 p
->se
.sum_sleep_runtime
= 0;
2390 p
->se
.sleep_start
= 0;
2391 p
->se
.block_start
= 0;
2392 p
->se
.sleep_max
= 0;
2393 p
->se
.block_max
= 0;
2395 p
->se
.slice_max
= 0;
2399 INIT_LIST_HEAD(&p
->rt
.run_list
);
2401 INIT_LIST_HEAD(&p
->se
.group_node
);
2403 #ifdef CONFIG_PREEMPT_NOTIFIERS
2404 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2408 * We mark the process as running here, but have not actually
2409 * inserted it onto the runqueue yet. This guarantees that
2410 * nobody will actually run it, and a signal or other external
2411 * event cannot wake it up and insert it on the runqueue either.
2413 p
->state
= TASK_RUNNING
;
2417 * fork()/clone()-time setup:
2419 void sched_fork(struct task_struct
*p
, int clone_flags
)
2421 int cpu
= get_cpu();
2426 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2428 set_task_cpu(p
, cpu
);
2431 * Make sure we do not leak PI boosting priority to the child:
2433 p
->prio
= current
->normal_prio
;
2434 if (!rt_prio(p
->prio
))
2435 p
->sched_class
= &fair_sched_class
;
2437 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2438 if (likely(sched_info_on()))
2439 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2441 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2444 #ifdef CONFIG_PREEMPT
2445 /* Want to start with kernel preemption disabled. */
2446 task_thread_info(p
)->preempt_count
= 1;
2452 * wake_up_new_task - wake up a newly created task for the first time.
2454 * This function will do some initial scheduler statistics housekeeping
2455 * that must be done for every newly created context, then puts the task
2456 * on the runqueue and wakes it.
2458 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2460 unsigned long flags
;
2463 rq
= task_rq_lock(p
, &flags
);
2464 BUG_ON(p
->state
!= TASK_RUNNING
);
2465 update_rq_clock(rq
);
2467 p
->prio
= effective_prio(p
);
2469 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2470 activate_task(rq
, p
, 0);
2473 * Let the scheduling class do new task startup
2474 * management (if any):
2476 p
->sched_class
->task_new(rq
, p
);
2479 trace_sched_wakeup_new(rq
, p
, 1);
2480 check_preempt_curr(rq
, p
, 0);
2482 if (p
->sched_class
->task_wake_up
)
2483 p
->sched_class
->task_wake_up(rq
, p
);
2485 task_rq_unlock(rq
, &flags
);
2488 #ifdef CONFIG_PREEMPT_NOTIFIERS
2491 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2492 * @notifier: notifier struct to register
2494 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2496 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2498 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2501 * preempt_notifier_unregister - no longer interested in preemption notifications
2502 * @notifier: notifier struct to unregister
2504 * This is safe to call from within a preemption notifier.
2506 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2508 hlist_del(¬ifier
->link
);
2510 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2512 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2514 struct preempt_notifier
*notifier
;
2515 struct hlist_node
*node
;
2517 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2518 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2522 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2523 struct task_struct
*next
)
2525 struct preempt_notifier
*notifier
;
2526 struct hlist_node
*node
;
2528 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2529 notifier
->ops
->sched_out(notifier
, next
);
2532 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2534 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2539 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2540 struct task_struct
*next
)
2544 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2547 * prepare_task_switch - prepare to switch tasks
2548 * @rq: the runqueue preparing to switch
2549 * @prev: the current task that is being switched out
2550 * @next: the task we are going to switch to.
2552 * This is called with the rq lock held and interrupts off. It must
2553 * be paired with a subsequent finish_task_switch after the context
2556 * prepare_task_switch sets up locking and calls architecture specific
2560 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2561 struct task_struct
*next
)
2563 fire_sched_out_preempt_notifiers(prev
, next
);
2564 prepare_lock_switch(rq
, next
);
2565 prepare_arch_switch(next
);
2569 * finish_task_switch - clean up after a task-switch
2570 * @rq: runqueue associated with task-switch
2571 * @prev: the thread we just switched away from.
2573 * finish_task_switch must be called after the context switch, paired
2574 * with a prepare_task_switch call before the context switch.
2575 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2576 * and do any other architecture-specific cleanup actions.
2578 * Note that we may have delayed dropping an mm in context_switch(). If
2579 * so, we finish that here outside of the runqueue lock. (Doing it
2580 * with the lock held can cause deadlocks; see schedule() for
2583 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2584 __releases(rq
->lock
)
2586 struct mm_struct
*mm
= rq
->prev_mm
;
2592 * A task struct has one reference for the use as "current".
2593 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2594 * schedule one last time. The schedule call will never return, and
2595 * the scheduled task must drop that reference.
2596 * The test for TASK_DEAD must occur while the runqueue locks are
2597 * still held, otherwise prev could be scheduled on another cpu, die
2598 * there before we look at prev->state, and then the reference would
2600 * Manfred Spraul <manfred@colorfullife.com>
2602 prev_state
= prev
->state
;
2603 finish_arch_switch(prev
);
2604 finish_lock_switch(rq
, prev
);
2606 if (current
->sched_class
->post_schedule
)
2607 current
->sched_class
->post_schedule(rq
);
2610 fire_sched_in_preempt_notifiers(current
);
2613 if (unlikely(prev_state
== TASK_DEAD
)) {
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
2618 kprobe_flush_task(prev
);
2619 put_task_struct(prev
);
2624 * schedule_tail - first thing a freshly forked thread must call.
2625 * @prev: the thread we just switched away from.
2627 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2628 __releases(rq
->lock
)
2630 struct rq
*rq
= this_rq();
2632 finish_task_switch(rq
, prev
);
2633 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2634 /* In this case, finish_task_switch does not reenable preemption */
2637 if (current
->set_child_tid
)
2638 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2642 * context_switch - switch to the new MM and the new
2643 * thread's register state.
2646 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2647 struct task_struct
*next
)
2649 struct mm_struct
*mm
, *oldmm
;
2651 prepare_task_switch(rq
, prev
, next
);
2652 trace_sched_switch(rq
, prev
, next
);
2654 oldmm
= prev
->active_mm
;
2656 * For paravirt, this is coupled with an exit in switch_to to
2657 * combine the page table reload and the switch backend into
2660 arch_enter_lazy_cpu_mode();
2662 if (unlikely(!mm
)) {
2663 next
->active_mm
= oldmm
;
2664 atomic_inc(&oldmm
->mm_count
);
2665 enter_lazy_tlb(oldmm
, next
);
2667 switch_mm(oldmm
, mm
, next
);
2669 if (unlikely(!prev
->mm
)) {
2670 prev
->active_mm
= NULL
;
2671 rq
->prev_mm
= oldmm
;
2674 * Since the runqueue lock will be released by the next
2675 * task (which is an invalid locking op but in the case
2676 * of the scheduler it's an obvious special-case), so we
2677 * do an early lockdep release here:
2679 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2680 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2683 /* Here we just switch the register state and the stack. */
2684 switch_to(prev
, next
, prev
);
2688 * this_rq must be evaluated again because prev may have moved
2689 * CPUs since it called schedule(), thus the 'rq' on its stack
2690 * frame will be invalid.
2692 finish_task_switch(this_rq(), prev
);
2696 * nr_running, nr_uninterruptible and nr_context_switches:
2698 * externally visible scheduler statistics: current number of runnable
2699 * threads, current number of uninterruptible-sleeping threads, total
2700 * number of context switches performed since bootup.
2702 unsigned long nr_running(void)
2704 unsigned long i
, sum
= 0;
2706 for_each_online_cpu(i
)
2707 sum
+= cpu_rq(i
)->nr_running
;
2712 unsigned long nr_uninterruptible(void)
2714 unsigned long i
, sum
= 0;
2716 for_each_possible_cpu(i
)
2717 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2720 * Since we read the counters lockless, it might be slightly
2721 * inaccurate. Do not allow it to go below zero though:
2723 if (unlikely((long)sum
< 0))
2729 unsigned long long nr_context_switches(void)
2732 unsigned long long sum
= 0;
2734 for_each_possible_cpu(i
)
2735 sum
+= cpu_rq(i
)->nr_switches
;
2740 unsigned long nr_iowait(void)
2742 unsigned long i
, sum
= 0;
2744 for_each_possible_cpu(i
)
2745 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2750 unsigned long nr_active(void)
2752 unsigned long i
, running
= 0, uninterruptible
= 0;
2754 for_each_online_cpu(i
) {
2755 running
+= cpu_rq(i
)->nr_running
;
2756 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2759 if (unlikely((long)uninterruptible
< 0))
2760 uninterruptible
= 0;
2762 return running
+ uninterruptible
;
2766 * Update rq->cpu_load[] statistics. This function is usually called every
2767 * scheduler tick (TICK_NSEC).
2769 static void update_cpu_load(struct rq
*this_rq
)
2771 unsigned long this_load
= this_rq
->load
.weight
;
2774 this_rq
->nr_load_updates
++;
2776 /* Update our load: */
2777 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2778 unsigned long old_load
, new_load
;
2780 /* scale is effectively 1 << i now, and >> i divides by scale */
2782 old_load
= this_rq
->cpu_load
[i
];
2783 new_load
= this_load
;
2785 * Round up the averaging division if load is increasing. This
2786 * prevents us from getting stuck on 9 if the load is 10, for
2789 if (new_load
> old_load
)
2790 new_load
+= scale
-1;
2791 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2798 * double_rq_lock - safely lock two runqueues
2800 * Note this does not disable interrupts like task_rq_lock,
2801 * you need to do so manually before calling.
2803 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2804 __acquires(rq1
->lock
)
2805 __acquires(rq2
->lock
)
2807 BUG_ON(!irqs_disabled());
2809 spin_lock(&rq1
->lock
);
2810 __acquire(rq2
->lock
); /* Fake it out ;) */
2813 spin_lock(&rq1
->lock
);
2814 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2816 spin_lock(&rq2
->lock
);
2817 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2820 update_rq_clock(rq1
);
2821 update_rq_clock(rq2
);
2825 * double_rq_unlock - safely unlock two runqueues
2827 * Note this does not restore interrupts like task_rq_unlock,
2828 * you need to do so manually after calling.
2830 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2831 __releases(rq1
->lock
)
2832 __releases(rq2
->lock
)
2834 spin_unlock(&rq1
->lock
);
2836 spin_unlock(&rq2
->lock
);
2838 __release(rq2
->lock
);
2842 * If dest_cpu is allowed for this process, migrate the task to it.
2843 * This is accomplished by forcing the cpu_allowed mask to only
2844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2845 * the cpu_allowed mask is restored.
2847 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2849 struct migration_req req
;
2850 unsigned long flags
;
2853 rq
= task_rq_lock(p
, &flags
);
2854 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
2855 || unlikely(!cpu_active(dest_cpu
)))
2858 /* force the process onto the specified CPU */
2859 if (migrate_task(p
, dest_cpu
, &req
)) {
2860 /* Need to wait for migration thread (might exit: take ref). */
2861 struct task_struct
*mt
= rq
->migration_thread
;
2863 get_task_struct(mt
);
2864 task_rq_unlock(rq
, &flags
);
2865 wake_up_process(mt
);
2866 put_task_struct(mt
);
2867 wait_for_completion(&req
.done
);
2872 task_rq_unlock(rq
, &flags
);
2876 * sched_exec - execve() is a valuable balancing opportunity, because at
2877 * this point the task has the smallest effective memory and cache footprint.
2879 void sched_exec(void)
2881 int new_cpu
, this_cpu
= get_cpu();
2882 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2884 if (new_cpu
!= this_cpu
)
2885 sched_migrate_task(current
, new_cpu
);
2889 * pull_task - move a task from a remote runqueue to the local runqueue.
2890 * Both runqueues must be locked.
2892 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2893 struct rq
*this_rq
, int this_cpu
)
2895 deactivate_task(src_rq
, p
, 0);
2896 set_task_cpu(p
, this_cpu
);
2897 activate_task(this_rq
, p
, 0);
2899 * Note that idle threads have a prio of MAX_PRIO, for this test
2900 * to be always true for them.
2902 check_preempt_curr(this_rq
, p
, 0);
2906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2909 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2910 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2914 * We do not migrate tasks that are:
2915 * 1) running (obviously), or
2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2917 * 3) are cache-hot on their current CPU.
2919 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
2920 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2925 if (task_running(rq
, p
)) {
2926 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2931 * Aggressive migration if:
2932 * 1) task is cache cold, or
2933 * 2) too many balance attempts have failed.
2936 if (!task_hot(p
, rq
->clock
, sd
) ||
2937 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2938 #ifdef CONFIG_SCHEDSTATS
2939 if (task_hot(p
, rq
->clock
, sd
)) {
2940 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2941 schedstat_inc(p
, se
.nr_forced_migrations
);
2947 if (task_hot(p
, rq
->clock
, sd
)) {
2948 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2954 static unsigned long
2955 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2956 unsigned long max_load_move
, struct sched_domain
*sd
,
2957 enum cpu_idle_type idle
, int *all_pinned
,
2958 int *this_best_prio
, struct rq_iterator
*iterator
)
2960 int loops
= 0, pulled
= 0, pinned
= 0;
2961 struct task_struct
*p
;
2962 long rem_load_move
= max_load_move
;
2964 if (max_load_move
== 0)
2970 * Start the load-balancing iterator:
2972 p
= iterator
->start(iterator
->arg
);
2974 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2977 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2978 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2979 p
= iterator
->next(iterator
->arg
);
2983 pull_task(busiest
, p
, this_rq
, this_cpu
);
2985 rem_load_move
-= p
->se
.load
.weight
;
2988 * We only want to steal up to the prescribed amount of weighted load.
2990 if (rem_load_move
> 0) {
2991 if (p
->prio
< *this_best_prio
)
2992 *this_best_prio
= p
->prio
;
2993 p
= iterator
->next(iterator
->arg
);
2998 * Right now, this is one of only two places pull_task() is called,
2999 * so we can safely collect pull_task() stats here rather than
3000 * inside pull_task().
3002 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3005 *all_pinned
= pinned
;
3007 return max_load_move
- rem_load_move
;
3011 * move_tasks tries to move up to max_load_move weighted load from busiest to
3012 * this_rq, as part of a balancing operation within domain "sd".
3013 * Returns 1 if successful and 0 otherwise.
3015 * Called with both runqueues locked.
3017 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3018 unsigned long max_load_move
,
3019 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3022 const struct sched_class
*class = sched_class_highest
;
3023 unsigned long total_load_moved
= 0;
3024 int this_best_prio
= this_rq
->curr
->prio
;
3028 class->load_balance(this_rq
, this_cpu
, busiest
,
3029 max_load_move
- total_load_moved
,
3030 sd
, idle
, all_pinned
, &this_best_prio
);
3031 class = class->next
;
3033 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3036 } while (class && max_load_move
> total_load_moved
);
3038 return total_load_moved
> 0;
3042 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3043 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3044 struct rq_iterator
*iterator
)
3046 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3050 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3051 pull_task(busiest
, p
, this_rq
, this_cpu
);
3053 * Right now, this is only the second place pull_task()
3054 * is called, so we can safely collect pull_task()
3055 * stats here rather than inside pull_task().
3057 schedstat_inc(sd
, lb_gained
[idle
]);
3061 p
= iterator
->next(iterator
->arg
);
3068 * move_one_task tries to move exactly one task from busiest to this_rq, as
3069 * part of active balancing operations within "domain".
3070 * Returns 1 if successful and 0 otherwise.
3072 * Called with both runqueues locked.
3074 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3075 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3077 const struct sched_class
*class;
3079 for (class = sched_class_highest
; class; class = class->next
)
3080 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3087 * find_busiest_group finds and returns the busiest CPU group within the
3088 * domain. It calculates and returns the amount of weighted load which
3089 * should be moved to restore balance via the imbalance parameter.
3091 static struct sched_group
*
3092 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3093 unsigned long *imbalance
, enum cpu_idle_type idle
,
3094 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3096 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3097 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3098 unsigned long max_pull
;
3099 unsigned long busiest_load_per_task
, busiest_nr_running
;
3100 unsigned long this_load_per_task
, this_nr_running
;
3101 int load_idx
, group_imb
= 0;
3102 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3103 int power_savings_balance
= 1;
3104 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3105 unsigned long min_nr_running
= ULONG_MAX
;
3106 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3109 max_load
= this_load
= total_load
= total_pwr
= 0;
3110 busiest_load_per_task
= busiest_nr_running
= 0;
3111 this_load_per_task
= this_nr_running
= 0;
3113 if (idle
== CPU_NOT_IDLE
)
3114 load_idx
= sd
->busy_idx
;
3115 else if (idle
== CPU_NEWLY_IDLE
)
3116 load_idx
= sd
->newidle_idx
;
3118 load_idx
= sd
->idle_idx
;
3121 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3124 int __group_imb
= 0;
3125 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3126 unsigned long sum_nr_running
, sum_weighted_load
;
3127 unsigned long sum_avg_load_per_task
;
3128 unsigned long avg_load_per_task
;
3130 local_group
= cpumask_test_cpu(this_cpu
,
3131 sched_group_cpus(group
));
3134 balance_cpu
= cpumask_first(sched_group_cpus(group
));
3136 /* Tally up the load of all CPUs in the group */
3137 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3138 sum_avg_load_per_task
= avg_load_per_task
= 0;
3141 min_cpu_load
= ~0UL;
3143 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3144 struct rq
*rq
= cpu_rq(i
);
3146 if (*sd_idle
&& rq
->nr_running
)
3149 /* Bias balancing toward cpus of our domain */
3151 if (idle_cpu(i
) && !first_idle_cpu
) {
3156 load
= target_load(i
, load_idx
);
3158 load
= source_load(i
, load_idx
);
3159 if (load
> max_cpu_load
)
3160 max_cpu_load
= load
;
3161 if (min_cpu_load
> load
)
3162 min_cpu_load
= load
;
3166 sum_nr_running
+= rq
->nr_running
;
3167 sum_weighted_load
+= weighted_cpuload(i
);
3169 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
3178 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3179 balance_cpu
!= this_cpu
&& balance
) {
3184 total_load
+= avg_load
;
3185 total_pwr
+= group
->__cpu_power
;
3187 /* Adjust by relative CPU power of the group */
3188 avg_load
= sg_div_cpu_power(group
,
3189 avg_load
* SCHED_LOAD_SCALE
);
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3201 avg_load_per_task
= sg_div_cpu_power(group
,
3202 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3204 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3207 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3210 this_load
= avg_load
;
3212 this_nr_running
= sum_nr_running
;
3213 this_load_per_task
= sum_weighted_load
;
3214 } else if (avg_load
> max_load
&&
3215 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3216 max_load
= avg_load
;
3218 busiest_nr_running
= sum_nr_running
;
3219 busiest_load_per_task
= sum_weighted_load
;
3220 group_imb
= __group_imb
;
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3225 * Busy processors will not participate in power savings
3228 if (idle
== CPU_NOT_IDLE
||
3229 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3236 if (local_group
&& (this_nr_running
>= group_capacity
||
3238 power_savings_balance
= 0;
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
3244 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3249 * Calculate the group which has the least non-idle load.
3250 * This is the group from where we need to pick up the load
3253 if ((sum_nr_running
< min_nr_running
) ||
3254 (sum_nr_running
== min_nr_running
&&
3255 cpumask_first(sched_group_cpus(group
)) >
3256 cpumask_first(sched_group_cpus(group_min
)))) {
3258 min_nr_running
= sum_nr_running
;
3259 min_load_per_task
= sum_weighted_load
/
3264 * Calculate the group which is almost near its
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3268 if (sum_nr_running
<= group_capacity
- 1) {
3269 if (sum_nr_running
> leader_nr_running
||
3270 (sum_nr_running
== leader_nr_running
&&
3271 cpumask_first(sched_group_cpus(group
)) <
3272 cpumask_first(sched_group_cpus(group_leader
)))) {
3273 group_leader
= group
;
3274 leader_nr_running
= sum_nr_running
;
3279 group
= group
->next
;
3280 } while (group
!= sd
->groups
);
3282 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3285 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3287 if (this_load
>= avg_load
||
3288 100*max_load
<= sd
->imbalance_pct
*this_load
)
3291 busiest_load_per_task
/= busiest_nr_running
;
3293 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
3303 * by pulling tasks to us. Be careful of negative numbers as they'll
3304 * appear as very large values with unsigned longs.
3306 if (max_load
<= busiest_load_per_task
)
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3314 if (max_load
< avg_load
) {
3316 goto small_imbalance
;
3319 /* Don't want to pull so many tasks that a group would go idle */
3320 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3322 /* How much load to actually move to equalise the imbalance */
3323 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3324 (avg_load
- this_load
) * this->__cpu_power
)
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3333 if (*imbalance
< busiest_load_per_task
) {
3334 unsigned long tmp
, pwr_now
, pwr_move
;
3338 pwr_move
= pwr_now
= 0;
3340 if (this_nr_running
) {
3341 this_load_per_task
/= this_nr_running
;
3342 if (busiest_load_per_task
> this_load_per_task
)
3345 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3347 if (max_load
- this_load
+ busiest_load_per_task
>=
3348 busiest_load_per_task
* imbn
) {
3349 *imbalance
= busiest_load_per_task
;
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3359 pwr_now
+= busiest
->__cpu_power
*
3360 min(busiest_load_per_task
, max_load
);
3361 pwr_now
+= this->__cpu_power
*
3362 min(this_load_per_task
, this_load
);
3363 pwr_now
/= SCHED_LOAD_SCALE
;
3365 /* Amount of load we'd subtract */
3366 tmp
= sg_div_cpu_power(busiest
,
3367 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3369 pwr_move
+= busiest
->__cpu_power
*
3370 min(busiest_load_per_task
, max_load
- tmp
);
3372 /* Amount of load we'd add */
3373 if (max_load
* busiest
->__cpu_power
<
3374 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3375 tmp
= sg_div_cpu_power(this,
3376 max_load
* busiest
->__cpu_power
);
3378 tmp
= sg_div_cpu_power(this,
3379 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3380 pwr_move
+= this->__cpu_power
*
3381 min(this_load_per_task
, this_load
+ tmp
);
3382 pwr_move
/= SCHED_LOAD_SCALE
;
3384 /* Move if we gain throughput */
3385 if (pwr_move
> pwr_now
)
3386 *imbalance
= busiest_load_per_task
;
3392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3393 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3396 if (this == group_leader
&& group_leader
!= group_min
) {
3397 *imbalance
= min_load_per_task
;
3398 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3399 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3400 cpumask_first(sched_group_cpus(group_leader
));
3411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3414 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3415 unsigned long imbalance
, const struct cpumask
*cpus
)
3417 struct rq
*busiest
= NULL
, *rq
;
3418 unsigned long max_load
= 0;
3421 for_each_cpu(i
, sched_group_cpus(group
)) {
3424 if (!cpumask_test_cpu(i
, cpus
))
3428 wl
= weighted_cpuload(i
);
3430 if (rq
->nr_running
== 1 && wl
> imbalance
)
3433 if (wl
> max_load
) {
3443 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3444 * so long as it is large enough.
3446 #define MAX_PINNED_INTERVAL 512
3449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3450 * tasks if there is an imbalance.
3452 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3453 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3454 int *balance
, struct cpumask
*cpus
)
3456 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3457 struct sched_group
*group
;
3458 unsigned long imbalance
;
3460 unsigned long flags
;
3462 cpumask_setall(cpus
);
3465 * When power savings policy is enabled for the parent domain, idle
3466 * sibling can pick up load irrespective of busy siblings. In this case,
3467 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3468 * portraying it as CPU_NOT_IDLE.
3470 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3471 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3474 schedstat_inc(sd
, lb_count
[idle
]);
3478 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3485 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3489 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3491 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3495 BUG_ON(busiest
== this_rq
);
3497 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3500 if (busiest
->nr_running
> 1) {
3502 * Attempt to move tasks. If find_busiest_group has found
3503 * an imbalance but busiest->nr_running <= 1, the group is
3504 * still unbalanced. ld_moved simply stays zero, so it is
3505 * correctly treated as an imbalance.
3507 local_irq_save(flags
);
3508 double_rq_lock(this_rq
, busiest
);
3509 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3510 imbalance
, sd
, idle
, &all_pinned
);
3511 double_rq_unlock(this_rq
, busiest
);
3512 local_irq_restore(flags
);
3515 * some other cpu did the load balance for us.
3517 if (ld_moved
&& this_cpu
!= smp_processor_id())
3518 resched_cpu(this_cpu
);
3520 /* All tasks on this runqueue were pinned by CPU affinity */
3521 if (unlikely(all_pinned
)) {
3522 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3523 if (!cpumask_empty(cpus
))
3530 schedstat_inc(sd
, lb_failed
[idle
]);
3531 sd
->nr_balance_failed
++;
3533 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3535 spin_lock_irqsave(&busiest
->lock
, flags
);
3537 /* don't kick the migration_thread, if the curr
3538 * task on busiest cpu can't be moved to this_cpu
3540 if (!cpumask_test_cpu(this_cpu
,
3541 &busiest
->curr
->cpus_allowed
)) {
3542 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3544 goto out_one_pinned
;
3547 if (!busiest
->active_balance
) {
3548 busiest
->active_balance
= 1;
3549 busiest
->push_cpu
= this_cpu
;
3552 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3554 wake_up_process(busiest
->migration_thread
);
3557 * We've kicked active balancing, reset the failure
3560 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3563 sd
->nr_balance_failed
= 0;
3565 if (likely(!active_balance
)) {
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd
->balance_interval
= sd
->min_interval
;
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3575 if (sd
->balance_interval
< sd
->max_interval
)
3576 sd
->balance_interval
*= 2;
3579 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3580 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3586 schedstat_inc(sd
, lb_balanced
[idle
]);
3588 sd
->nr_balance_failed
= 0;
3591 /* tune up the balancing interval */
3592 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3593 (sd
->balance_interval
< sd
->max_interval
))
3594 sd
->balance_interval
*= 2;
3596 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3597 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3612 * this_rq is locked.
3615 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3616 struct cpumask
*cpus
)
3618 struct sched_group
*group
;
3619 struct rq
*busiest
= NULL
;
3620 unsigned long imbalance
;
3625 cpumask_setall(cpus
);
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
3631 * portraying it as CPU_NOT_IDLE.
3633 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3634 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3637 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3639 update_shares_locked(this_rq
, sd
);
3640 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3641 &sd_idle
, cpus
, NULL
);
3643 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3647 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3649 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3653 BUG_ON(busiest
== this_rq
);
3655 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3658 if (busiest
->nr_running
> 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq
, busiest
);
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest
);
3663 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3664 imbalance
, sd
, CPU_NEWLY_IDLE
,
3666 double_unlock_balance(this_rq
, busiest
);
3668 if (unlikely(all_pinned
)) {
3669 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3670 if (!cpumask_empty(cpus
))
3676 int active_balance
= 0;
3678 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3679 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3680 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3683 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3686 if (sd
->nr_balance_failed
++ < 2)
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq
, busiest
);
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3718 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
3719 double_unlock_balance(this_rq
, busiest
);
3724 if (!busiest
->active_balance
) {
3725 busiest
->active_balance
= 1;
3726 busiest
->push_cpu
= this_cpu
;
3730 double_unlock_balance(this_rq
, busiest
);
3732 * Should not call ttwu while holding a rq->lock
3734 spin_unlock(&this_rq
->lock
);
3736 wake_up_process(busiest
->migration_thread
);
3737 spin_lock(&this_rq
->lock
);
3740 sd
->nr_balance_failed
= 0;
3742 update_shares_locked(this_rq
, sd
);
3746 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3747 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3748 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3750 sd
->nr_balance_failed
= 0;
3756 * idle_balance is called by schedule() if this_cpu is about to become
3757 * idle. Attempts to pull tasks from other CPUs.
3759 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3761 struct sched_domain
*sd
;
3762 int pulled_task
= 0;
3763 unsigned long next_balance
= jiffies
+ HZ
;
3764 cpumask_var_t tmpmask
;
3766 if (!alloc_cpumask_var(&tmpmask
, GFP_ATOMIC
))
3769 for_each_domain(this_cpu
, sd
) {
3770 unsigned long interval
;
3772 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3775 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3776 /* If we've pulled tasks over stop searching: */
3777 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3780 interval
= msecs_to_jiffies(sd
->balance_interval
);
3781 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3782 next_balance
= sd
->last_balance
+ interval
;
3786 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3788 * We are going idle. next_balance may be set based on
3789 * a busy processor. So reset next_balance.
3791 this_rq
->next_balance
= next_balance
;
3793 free_cpumask_var(tmpmask
);
3797 * active_load_balance is run by migration threads. It pushes running tasks
3798 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3799 * running on each physical CPU where possible, and avoids physical /
3800 * logical imbalances.
3802 * Called with busiest_rq locked.
3804 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3806 int target_cpu
= busiest_rq
->push_cpu
;
3807 struct sched_domain
*sd
;
3808 struct rq
*target_rq
;
3810 /* Is there any task to move? */
3811 if (busiest_rq
->nr_running
<= 1)
3814 target_rq
= cpu_rq(target_cpu
);
3817 * This condition is "impossible", if it occurs
3818 * we need to fix it. Originally reported by
3819 * Bjorn Helgaas on a 128-cpu setup.
3821 BUG_ON(busiest_rq
== target_rq
);
3823 /* move a task from busiest_rq to target_rq */
3824 double_lock_balance(busiest_rq
, target_rq
);
3825 update_rq_clock(busiest_rq
);
3826 update_rq_clock(target_rq
);
3828 /* Search for an sd spanning us and the target CPU. */
3829 for_each_domain(target_cpu
, sd
) {
3830 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3831 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3836 schedstat_inc(sd
, alb_count
);
3838 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3840 schedstat_inc(sd
, alb_pushed
);
3842 schedstat_inc(sd
, alb_failed
);
3844 double_unlock_balance(busiest_rq
, target_rq
);
3849 atomic_t load_balancer
;
3850 cpumask_var_t cpu_mask
;
3851 } nohz ____cacheline_aligned
= {
3852 .load_balancer
= ATOMIC_INIT(-1),
3856 * This routine will try to nominate the ilb (idle load balancing)
3857 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3858 * load balancing on behalf of all those cpus. If all the cpus in the system
3859 * go into this tickless mode, then there will be no ilb owner (as there is
3860 * no need for one) and all the cpus will sleep till the next wakeup event
3863 * For the ilb owner, tick is not stopped. And this tick will be used
3864 * for idle load balancing. ilb owner will still be part of
3867 * While stopping the tick, this cpu will become the ilb owner if there
3868 * is no other owner. And will be the owner till that cpu becomes busy
3869 * or if all cpus in the system stop their ticks at which point
3870 * there is no need for ilb owner.
3872 * When the ilb owner becomes busy, it nominates another owner, during the
3873 * next busy scheduler_tick()
3875 int select_nohz_load_balancer(int stop_tick
)
3877 int cpu
= smp_processor_id();
3880 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
3881 cpu_rq(cpu
)->in_nohz_recently
= 1;
3884 * If we are going offline and still the leader, give up!
3886 if (!cpu_active(cpu
) &&
3887 atomic_read(&nohz
.load_balancer
) == cpu
) {
3888 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3893 /* time for ilb owner also to sleep */
3894 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3895 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3896 atomic_set(&nohz
.load_balancer
, -1);
3900 if (atomic_read(&nohz
.load_balancer
) == -1) {
3901 /* make me the ilb owner */
3902 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3904 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3907 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
3910 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
3912 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3913 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3920 static DEFINE_SPINLOCK(balancing
);
3923 * It checks each scheduling domain to see if it is due to be balanced,
3924 * and initiates a balancing operation if so.
3926 * Balancing parameters are set up in arch_init_sched_domains.
3928 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3931 struct rq
*rq
= cpu_rq(cpu
);
3932 unsigned long interval
;
3933 struct sched_domain
*sd
;
3934 /* Earliest time when we have to do rebalance again */
3935 unsigned long next_balance
= jiffies
+ 60*HZ
;
3936 int update_next_balance
= 0;
3940 /* Fails alloc? Rebalancing probably not a priority right now. */
3941 if (!alloc_cpumask_var(&tmp
, GFP_ATOMIC
))
3944 for_each_domain(cpu
, sd
) {
3945 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3948 interval
= sd
->balance_interval
;
3949 if (idle
!= CPU_IDLE
)
3950 interval
*= sd
->busy_factor
;
3952 /* scale ms to jiffies */
3953 interval
= msecs_to_jiffies(interval
);
3954 if (unlikely(!interval
))
3956 if (interval
> HZ
*NR_CPUS
/10)
3957 interval
= HZ
*NR_CPUS
/10;
3959 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3961 if (need_serialize
) {
3962 if (!spin_trylock(&balancing
))
3966 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3967 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, tmp
)) {
3969 * We've pulled tasks over so either we're no
3970 * longer idle, or one of our SMT siblings is
3973 idle
= CPU_NOT_IDLE
;
3975 sd
->last_balance
= jiffies
;
3978 spin_unlock(&balancing
);
3980 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3981 next_balance
= sd
->last_balance
+ interval
;
3982 update_next_balance
= 1;
3986 * Stop the load balance at this level. There is another
3987 * CPU in our sched group which is doing load balancing more
3995 * next_balance will be updated only when there is a need.
3996 * When the cpu is attached to null domain for ex, it will not be
3999 if (likely(update_next_balance
))
4000 rq
->next_balance
= next_balance
;
4002 free_cpumask_var(tmp
);
4006 * run_rebalance_domains is triggered when needed from the scheduler tick.
4007 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4008 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4010 static void run_rebalance_domains(struct softirq_action
*h
)
4012 int this_cpu
= smp_processor_id();
4013 struct rq
*this_rq
= cpu_rq(this_cpu
);
4014 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4015 CPU_IDLE
: CPU_NOT_IDLE
;
4017 rebalance_domains(this_cpu
, idle
);
4021 * If this cpu is the owner for idle load balancing, then do the
4022 * balancing on behalf of the other idle cpus whose ticks are
4025 if (this_rq
->idle_at_tick
&&
4026 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4030 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4031 if (balance_cpu
== this_cpu
)
4035 * If this cpu gets work to do, stop the load balancing
4036 * work being done for other cpus. Next load
4037 * balancing owner will pick it up.
4042 rebalance_domains(balance_cpu
, CPU_IDLE
);
4044 rq
= cpu_rq(balance_cpu
);
4045 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4046 this_rq
->next_balance
= rq
->next_balance
;
4053 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4055 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4056 * idle load balancing owner or decide to stop the periodic load balancing,
4057 * if the whole system is idle.
4059 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4063 * If we were in the nohz mode recently and busy at the current
4064 * scheduler tick, then check if we need to nominate new idle
4067 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4068 rq
->in_nohz_recently
= 0;
4070 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4071 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4072 atomic_set(&nohz
.load_balancer
, -1);
4075 if (atomic_read(&nohz
.load_balancer
) == -1) {
4077 * simple selection for now: Nominate the
4078 * first cpu in the nohz list to be the next
4081 * TBD: Traverse the sched domains and nominate
4082 * the nearest cpu in the nohz.cpu_mask.
4084 int ilb
= cpumask_first(nohz
.cpu_mask
);
4086 if (ilb
< nr_cpu_ids
)
4092 * If this cpu is idle and doing idle load balancing for all the
4093 * cpus with ticks stopped, is it time for that to stop?
4095 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4096 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4102 * If this cpu is idle and the idle load balancing is done by
4103 * someone else, then no need raise the SCHED_SOFTIRQ
4105 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4106 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4109 if (time_after_eq(jiffies
, rq
->next_balance
))
4110 raise_softirq(SCHED_SOFTIRQ
);
4113 #else /* CONFIG_SMP */
4116 * on UP we do not need to balance between CPUs:
4118 static inline void idle_balance(int cpu
, struct rq
*rq
)
4124 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4126 EXPORT_PER_CPU_SYMBOL(kstat
);
4129 * Return any ns on the sched_clock that have not yet been banked in
4130 * @p in case that task is currently running.
4132 unsigned long long task_delta_exec(struct task_struct
*p
)
4134 unsigned long flags
;
4138 rq
= task_rq_lock(p
, &flags
);
4140 if (task_current(rq
, p
)) {
4143 update_rq_clock(rq
);
4144 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4145 if ((s64
)delta_exec
> 0)
4149 task_rq_unlock(rq
, &flags
);
4155 * Account user cpu time to a process.
4156 * @p: the process that the cpu time gets accounted to
4157 * @cputime: the cpu time spent in user space since the last update
4158 * @cputime_scaled: cputime scaled by cpu frequency
4160 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4161 cputime_t cputime_scaled
)
4163 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4166 /* Add user time to process. */
4167 p
->utime
= cputime_add(p
->utime
, cputime
);
4168 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4169 account_group_user_time(p
, cputime
);
4171 /* Add user time to cpustat. */
4172 tmp
= cputime_to_cputime64(cputime
);
4173 if (TASK_NICE(p
) > 0)
4174 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4176 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4177 /* Account for user time used */
4178 acct_update_integrals(p
);
4182 * Account guest cpu time to a process.
4183 * @p: the process that the cpu time gets accounted to
4184 * @cputime: the cpu time spent in virtual machine since the last update
4185 * @cputime_scaled: cputime scaled by cpu frequency
4187 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4188 cputime_t cputime_scaled
)
4191 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4193 tmp
= cputime_to_cputime64(cputime
);
4195 /* Add guest time to process. */
4196 p
->utime
= cputime_add(p
->utime
, cputime
);
4197 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4198 account_group_user_time(p
, cputime
);
4199 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4201 /* Add guest time to cpustat. */
4202 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4203 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4207 * Account system cpu time to a process.
4208 * @p: the process that the cpu time gets accounted to
4209 * @hardirq_offset: the offset to subtract from hardirq_count()
4210 * @cputime: the cpu time spent in kernel space since the last update
4211 * @cputime_scaled: cputime scaled by cpu frequency
4213 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4214 cputime_t cputime
, cputime_t cputime_scaled
)
4216 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4219 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4220 account_guest_time(p
, cputime
, cputime_scaled
);
4224 /* Add system time to process. */
4225 p
->stime
= cputime_add(p
->stime
, cputime
);
4226 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4227 account_group_system_time(p
, cputime
);
4229 /* Add system time to cpustat. */
4230 tmp
= cputime_to_cputime64(cputime
);
4231 if (hardirq_count() - hardirq_offset
)
4232 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4233 else if (softirq_count())
4234 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4236 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4238 /* Account for system time used */
4239 acct_update_integrals(p
);
4243 * Account for involuntary wait time.
4244 * @steal: the cpu time spent in involuntary wait
4246 void account_steal_time(cputime_t cputime
)
4248 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4249 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4251 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4255 * Account for idle time.
4256 * @cputime: the cpu time spent in idle wait
4258 void account_idle_time(cputime_t cputime
)
4260 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4261 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4262 struct rq
*rq
= this_rq();
4264 if (atomic_read(&rq
->nr_iowait
) > 0)
4265 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4267 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4270 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4273 * Account a single tick of cpu time.
4274 * @p: the process that the cpu time gets accounted to
4275 * @user_tick: indicates if the tick is a user or a system tick
4277 void account_process_tick(struct task_struct
*p
, int user_tick
)
4279 cputime_t one_jiffy
= jiffies_to_cputime(1);
4280 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
4281 struct rq
*rq
= this_rq();
4284 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
4285 else if (p
!= rq
->idle
)
4286 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
4289 account_idle_time(one_jiffy
);
4293 * Account multiple ticks of steal time.
4294 * @p: the process from which the cpu time has been stolen
4295 * @ticks: number of stolen ticks
4297 void account_steal_ticks(unsigned long ticks
)
4299 account_steal_time(jiffies_to_cputime(ticks
));
4303 * Account multiple ticks of idle time.
4304 * @ticks: number of stolen ticks
4306 void account_idle_ticks(unsigned long ticks
)
4308 account_idle_time(jiffies_to_cputime(ticks
));
4314 * Use precise platform statistics if available:
4316 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4317 cputime_t
task_utime(struct task_struct
*p
)
4322 cputime_t
task_stime(struct task_struct
*p
)
4327 cputime_t
task_utime(struct task_struct
*p
)
4329 clock_t utime
= cputime_to_clock_t(p
->utime
),
4330 total
= utime
+ cputime_to_clock_t(p
->stime
);
4334 * Use CFS's precise accounting:
4336 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4340 do_div(temp
, total
);
4342 utime
= (clock_t)temp
;
4344 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4345 return p
->prev_utime
;
4348 cputime_t
task_stime(struct task_struct
*p
)
4353 * Use CFS's precise accounting. (we subtract utime from
4354 * the total, to make sure the total observed by userspace
4355 * grows monotonically - apps rely on that):
4357 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4358 cputime_to_clock_t(task_utime(p
));
4361 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4363 return p
->prev_stime
;
4367 inline cputime_t
task_gtime(struct task_struct
*p
)
4373 * This function gets called by the timer code, with HZ frequency.
4374 * We call it with interrupts disabled.
4376 * It also gets called by the fork code, when changing the parent's
4379 void scheduler_tick(void)
4381 int cpu
= smp_processor_id();
4382 struct rq
*rq
= cpu_rq(cpu
);
4383 struct task_struct
*curr
= rq
->curr
;
4387 spin_lock(&rq
->lock
);
4388 update_rq_clock(rq
);
4389 update_cpu_load(rq
);
4390 curr
->sched_class
->task_tick(rq
, curr
, 0);
4391 spin_unlock(&rq
->lock
);
4394 rq
->idle_at_tick
= idle_cpu(cpu
);
4395 trigger_load_balance(rq
, cpu
);
4399 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4400 defined(CONFIG_PREEMPT_TRACER))
4402 static inline unsigned long get_parent_ip(unsigned long addr
)
4404 if (in_lock_functions(addr
)) {
4405 addr
= CALLER_ADDR2
;
4406 if (in_lock_functions(addr
))
4407 addr
= CALLER_ADDR3
;
4412 void __kprobes
add_preempt_count(int val
)
4414 #ifdef CONFIG_DEBUG_PREEMPT
4418 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4421 preempt_count() += val
;
4422 #ifdef CONFIG_DEBUG_PREEMPT
4424 * Spinlock count overflowing soon?
4426 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4429 if (preempt_count() == val
)
4430 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4432 EXPORT_SYMBOL(add_preempt_count
);
4434 void __kprobes
sub_preempt_count(int val
)
4436 #ifdef CONFIG_DEBUG_PREEMPT
4440 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count() - (!!kernel_locked())))
4443 * Is the spinlock portion underflowing?
4445 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4446 !(preempt_count() & PREEMPT_MASK
)))
4450 if (preempt_count() == val
)
4451 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4452 preempt_count() -= val
;
4454 EXPORT_SYMBOL(sub_preempt_count
);
4459 * Print scheduling while atomic bug:
4461 static noinline
void __schedule_bug(struct task_struct
*prev
)
4463 struct pt_regs
*regs
= get_irq_regs();
4465 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4466 prev
->comm
, prev
->pid
, preempt_count());
4468 debug_show_held_locks(prev
);
4470 if (irqs_disabled())
4471 print_irqtrace_events(prev
);
4480 * Various schedule()-time debugging checks and statistics:
4482 static inline void schedule_debug(struct task_struct
*prev
)
4485 * Test if we are atomic. Since do_exit() needs to call into
4486 * schedule() atomically, we ignore that path for now.
4487 * Otherwise, whine if we are scheduling when we should not be.
4489 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4490 __schedule_bug(prev
);
4492 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4494 schedstat_inc(this_rq(), sched_count
);
4495 #ifdef CONFIG_SCHEDSTATS
4496 if (unlikely(prev
->lock_depth
>= 0)) {
4497 schedstat_inc(this_rq(), bkl_count
);
4498 schedstat_inc(prev
, sched_info
.bkl_count
);
4504 * Pick up the highest-prio task:
4506 static inline struct task_struct
*
4507 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4509 const struct sched_class
*class;
4510 struct task_struct
*p
;
4513 * Optimization: we know that if all tasks are in
4514 * the fair class we can call that function directly:
4516 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4517 p
= fair_sched_class
.pick_next_task(rq
);
4522 class = sched_class_highest
;
4524 p
= class->pick_next_task(rq
);
4528 * Will never be NULL as the idle class always
4529 * returns a non-NULL p:
4531 class = class->next
;
4536 * schedule() is the main scheduler function.
4538 asmlinkage
void __sched
schedule(void)
4540 struct task_struct
*prev
, *next
;
4541 unsigned long *switch_count
;
4547 cpu
= smp_processor_id();
4551 switch_count
= &prev
->nivcsw
;
4553 release_kernel_lock(prev
);
4554 need_resched_nonpreemptible
:
4556 schedule_debug(prev
);
4558 if (sched_feat(HRTICK
))
4561 spin_lock_irq(&rq
->lock
);
4562 update_rq_clock(rq
);
4563 clear_tsk_need_resched(prev
);
4565 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4566 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4567 prev
->state
= TASK_RUNNING
;
4569 deactivate_task(rq
, prev
, 1);
4570 switch_count
= &prev
->nvcsw
;
4574 if (prev
->sched_class
->pre_schedule
)
4575 prev
->sched_class
->pre_schedule(rq
, prev
);
4578 if (unlikely(!rq
->nr_running
))
4579 idle_balance(cpu
, rq
);
4581 prev
->sched_class
->put_prev_task(rq
, prev
);
4582 next
= pick_next_task(rq
, prev
);
4584 if (likely(prev
!= next
)) {
4585 sched_info_switch(prev
, next
);
4591 context_switch(rq
, prev
, next
); /* unlocks the rq */
4593 * the context switch might have flipped the stack from under
4594 * us, hence refresh the local variables.
4596 cpu
= smp_processor_id();
4599 spin_unlock_irq(&rq
->lock
);
4601 if (unlikely(reacquire_kernel_lock(current
) < 0))
4602 goto need_resched_nonpreemptible
;
4604 preempt_enable_no_resched();
4605 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4608 EXPORT_SYMBOL(schedule
);
4610 #ifdef CONFIG_PREEMPT
4612 * this is the entry point to schedule() from in-kernel preemption
4613 * off of preempt_enable. Kernel preemptions off return from interrupt
4614 * occur there and call schedule directly.
4616 asmlinkage
void __sched
preempt_schedule(void)
4618 struct thread_info
*ti
= current_thread_info();
4621 * If there is a non-zero preempt_count or interrupts are disabled,
4622 * we do not want to preempt the current task. Just return..
4624 if (likely(ti
->preempt_count
|| irqs_disabled()))
4628 add_preempt_count(PREEMPT_ACTIVE
);
4630 sub_preempt_count(PREEMPT_ACTIVE
);
4633 * Check again in case we missed a preemption opportunity
4634 * between schedule and now.
4637 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4639 EXPORT_SYMBOL(preempt_schedule
);
4642 * this is the entry point to schedule() from kernel preemption
4643 * off of irq context.
4644 * Note, that this is called and return with irqs disabled. This will
4645 * protect us against recursive calling from irq.
4647 asmlinkage
void __sched
preempt_schedule_irq(void)
4649 struct thread_info
*ti
= current_thread_info();
4651 /* Catch callers which need to be fixed */
4652 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4655 add_preempt_count(PREEMPT_ACTIVE
);
4658 local_irq_disable();
4659 sub_preempt_count(PREEMPT_ACTIVE
);
4662 * Check again in case we missed a preemption opportunity
4663 * between schedule and now.
4666 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4669 #endif /* CONFIG_PREEMPT */
4671 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4674 return try_to_wake_up(curr
->private, mode
, sync
);
4676 EXPORT_SYMBOL(default_wake_function
);
4679 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4680 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4681 * number) then we wake all the non-exclusive tasks and one exclusive task.
4683 * There are circumstances in which we can try to wake a task which has already
4684 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4685 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4687 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4688 int nr_exclusive
, int sync
, void *key
)
4690 wait_queue_t
*curr
, *next
;
4692 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4693 unsigned flags
= curr
->flags
;
4695 if (curr
->func(curr
, mode
, sync
, key
) &&
4696 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4702 * __wake_up - wake up threads blocked on a waitqueue.
4704 * @mode: which threads
4705 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4706 * @key: is directly passed to the wakeup function
4708 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4709 int nr_exclusive
, void *key
)
4711 unsigned long flags
;
4713 spin_lock_irqsave(&q
->lock
, flags
);
4714 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4715 spin_unlock_irqrestore(&q
->lock
, flags
);
4717 EXPORT_SYMBOL(__wake_up
);
4720 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4722 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4724 __wake_up_common(q
, mode
, 1, 0, NULL
);
4728 * __wake_up_sync - wake up threads blocked on a waitqueue.
4730 * @mode: which threads
4731 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4733 * The sync wakeup differs that the waker knows that it will schedule
4734 * away soon, so while the target thread will be woken up, it will not
4735 * be migrated to another CPU - ie. the two threads are 'synchronized'
4736 * with each other. This can prevent needless bouncing between CPUs.
4738 * On UP it can prevent extra preemption.
4741 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4743 unsigned long flags
;
4749 if (unlikely(!nr_exclusive
))
4752 spin_lock_irqsave(&q
->lock
, flags
);
4753 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4754 spin_unlock_irqrestore(&q
->lock
, flags
);
4756 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4759 * complete: - signals a single thread waiting on this completion
4760 * @x: holds the state of this particular completion
4762 * This will wake up a single thread waiting on this completion. Threads will be
4763 * awakened in the same order in which they were queued.
4765 * See also complete_all(), wait_for_completion() and related routines.
4767 void complete(struct completion
*x
)
4769 unsigned long flags
;
4771 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4773 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4774 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4776 EXPORT_SYMBOL(complete
);
4779 * complete_all: - signals all threads waiting on this completion
4780 * @x: holds the state of this particular completion
4782 * This will wake up all threads waiting on this particular completion event.
4784 void complete_all(struct completion
*x
)
4786 unsigned long flags
;
4788 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4789 x
->done
+= UINT_MAX
/2;
4790 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4791 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4793 EXPORT_SYMBOL(complete_all
);
4795 static inline long __sched
4796 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4799 DECLARE_WAITQUEUE(wait
, current
);
4801 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4802 __add_wait_queue_tail(&x
->wait
, &wait
);
4804 if (signal_pending_state(state
, current
)) {
4805 timeout
= -ERESTARTSYS
;
4808 __set_current_state(state
);
4809 spin_unlock_irq(&x
->wait
.lock
);
4810 timeout
= schedule_timeout(timeout
);
4811 spin_lock_irq(&x
->wait
.lock
);
4812 } while (!x
->done
&& timeout
);
4813 __remove_wait_queue(&x
->wait
, &wait
);
4818 return timeout
?: 1;
4822 wait_for_common(struct completion
*x
, long timeout
, int state
)
4826 spin_lock_irq(&x
->wait
.lock
);
4827 timeout
= do_wait_for_common(x
, timeout
, state
);
4828 spin_unlock_irq(&x
->wait
.lock
);
4833 * wait_for_completion: - waits for completion of a task
4834 * @x: holds the state of this particular completion
4836 * This waits to be signaled for completion of a specific task. It is NOT
4837 * interruptible and there is no timeout.
4839 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4840 * and interrupt capability. Also see complete().
4842 void __sched
wait_for_completion(struct completion
*x
)
4844 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4846 EXPORT_SYMBOL(wait_for_completion
);
4849 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4850 * @x: holds the state of this particular completion
4851 * @timeout: timeout value in jiffies
4853 * This waits for either a completion of a specific task to be signaled or for a
4854 * specified timeout to expire. The timeout is in jiffies. It is not
4857 unsigned long __sched
4858 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4860 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4862 EXPORT_SYMBOL(wait_for_completion_timeout
);
4865 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4866 * @x: holds the state of this particular completion
4868 * This waits for completion of a specific task to be signaled. It is
4871 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4873 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4874 if (t
== -ERESTARTSYS
)
4878 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4881 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4882 * @x: holds the state of this particular completion
4883 * @timeout: timeout value in jiffies
4885 * This waits for either a completion of a specific task to be signaled or for a
4886 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4888 unsigned long __sched
4889 wait_for_completion_interruptible_timeout(struct completion
*x
,
4890 unsigned long timeout
)
4892 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4894 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4897 * wait_for_completion_killable: - waits for completion of a task (killable)
4898 * @x: holds the state of this particular completion
4900 * This waits to be signaled for completion of a specific task. It can be
4901 * interrupted by a kill signal.
4903 int __sched
wait_for_completion_killable(struct completion
*x
)
4905 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4906 if (t
== -ERESTARTSYS
)
4910 EXPORT_SYMBOL(wait_for_completion_killable
);
4913 * try_wait_for_completion - try to decrement a completion without blocking
4914 * @x: completion structure
4916 * Returns: 0 if a decrement cannot be done without blocking
4917 * 1 if a decrement succeeded.
4919 * If a completion is being used as a counting completion,
4920 * attempt to decrement the counter without blocking. This
4921 * enables us to avoid waiting if the resource the completion
4922 * is protecting is not available.
4924 bool try_wait_for_completion(struct completion
*x
)
4928 spin_lock_irq(&x
->wait
.lock
);
4933 spin_unlock_irq(&x
->wait
.lock
);
4936 EXPORT_SYMBOL(try_wait_for_completion
);
4939 * completion_done - Test to see if a completion has any waiters
4940 * @x: completion structure
4942 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4943 * 1 if there are no waiters.
4946 bool completion_done(struct completion
*x
)
4950 spin_lock_irq(&x
->wait
.lock
);
4953 spin_unlock_irq(&x
->wait
.lock
);
4956 EXPORT_SYMBOL(completion_done
);
4959 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4961 unsigned long flags
;
4964 init_waitqueue_entry(&wait
, current
);
4966 __set_current_state(state
);
4968 spin_lock_irqsave(&q
->lock
, flags
);
4969 __add_wait_queue(q
, &wait
);
4970 spin_unlock(&q
->lock
);
4971 timeout
= schedule_timeout(timeout
);
4972 spin_lock_irq(&q
->lock
);
4973 __remove_wait_queue(q
, &wait
);
4974 spin_unlock_irqrestore(&q
->lock
, flags
);
4979 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4981 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4983 EXPORT_SYMBOL(interruptible_sleep_on
);
4986 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4988 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4990 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4992 void __sched
sleep_on(wait_queue_head_t
*q
)
4994 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4996 EXPORT_SYMBOL(sleep_on
);
4998 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5000 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5002 EXPORT_SYMBOL(sleep_on_timeout
);
5004 #ifdef CONFIG_RT_MUTEXES
5007 * rt_mutex_setprio - set the current priority of a task
5009 * @prio: prio value (kernel-internal form)
5011 * This function changes the 'effective' priority of a task. It does
5012 * not touch ->normal_prio like __setscheduler().
5014 * Used by the rt_mutex code to implement priority inheritance logic.
5016 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5018 unsigned long flags
;
5019 int oldprio
, on_rq
, running
;
5021 const struct sched_class
*prev_class
= p
->sched_class
;
5023 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5025 rq
= task_rq_lock(p
, &flags
);
5026 update_rq_clock(rq
);
5029 on_rq
= p
->se
.on_rq
;
5030 running
= task_current(rq
, p
);
5032 dequeue_task(rq
, p
, 0);
5034 p
->sched_class
->put_prev_task(rq
, p
);
5037 p
->sched_class
= &rt_sched_class
;
5039 p
->sched_class
= &fair_sched_class
;
5044 p
->sched_class
->set_curr_task(rq
);
5046 enqueue_task(rq
, p
, 0);
5048 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5050 task_rq_unlock(rq
, &flags
);
5055 void set_user_nice(struct task_struct
*p
, long nice
)
5057 int old_prio
, delta
, on_rq
;
5058 unsigned long flags
;
5061 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5064 * We have to be careful, if called from sys_setpriority(),
5065 * the task might be in the middle of scheduling on another CPU.
5067 rq
= task_rq_lock(p
, &flags
);
5068 update_rq_clock(rq
);
5070 * The RT priorities are set via sched_setscheduler(), but we still
5071 * allow the 'normal' nice value to be set - but as expected
5072 * it wont have any effect on scheduling until the task is
5073 * SCHED_FIFO/SCHED_RR:
5075 if (task_has_rt_policy(p
)) {
5076 p
->static_prio
= NICE_TO_PRIO(nice
);
5079 on_rq
= p
->se
.on_rq
;
5081 dequeue_task(rq
, p
, 0);
5083 p
->static_prio
= NICE_TO_PRIO(nice
);
5086 p
->prio
= effective_prio(p
);
5087 delta
= p
->prio
- old_prio
;
5090 enqueue_task(rq
, p
, 0);
5092 * If the task increased its priority or is running and
5093 * lowered its priority, then reschedule its CPU:
5095 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5096 resched_task(rq
->curr
);
5099 task_rq_unlock(rq
, &flags
);
5101 EXPORT_SYMBOL(set_user_nice
);
5104 * can_nice - check if a task can reduce its nice value
5108 int can_nice(const struct task_struct
*p
, const int nice
)
5110 /* convert nice value [19,-20] to rlimit style value [1,40] */
5111 int nice_rlim
= 20 - nice
;
5113 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5114 capable(CAP_SYS_NICE
));
5117 #ifdef __ARCH_WANT_SYS_NICE
5120 * sys_nice - change the priority of the current process.
5121 * @increment: priority increment
5123 * sys_setpriority is a more generic, but much slower function that
5124 * does similar things.
5126 asmlinkage
long sys_nice(int increment
)
5131 * Setpriority might change our priority at the same moment.
5132 * We don't have to worry. Conceptually one call occurs first
5133 * and we have a single winner.
5135 if (increment
< -40)
5140 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5146 if (increment
< 0 && !can_nice(current
, nice
))
5149 retval
= security_task_setnice(current
, nice
);
5153 set_user_nice(current
, nice
);
5160 * task_prio - return the priority value of a given task.
5161 * @p: the task in question.
5163 * This is the priority value as seen by users in /proc.
5164 * RT tasks are offset by -200. Normal tasks are centered
5165 * around 0, value goes from -16 to +15.
5167 int task_prio(const struct task_struct
*p
)
5169 return p
->prio
- MAX_RT_PRIO
;
5173 * task_nice - return the nice value of a given task.
5174 * @p: the task in question.
5176 int task_nice(const struct task_struct
*p
)
5178 return TASK_NICE(p
);
5180 EXPORT_SYMBOL(task_nice
);
5183 * idle_cpu - is a given cpu idle currently?
5184 * @cpu: the processor in question.
5186 int idle_cpu(int cpu
)
5188 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5192 * idle_task - return the idle task for a given cpu.
5193 * @cpu: the processor in question.
5195 struct task_struct
*idle_task(int cpu
)
5197 return cpu_rq(cpu
)->idle
;
5201 * find_process_by_pid - find a process with a matching PID value.
5202 * @pid: the pid in question.
5204 static struct task_struct
*find_process_by_pid(pid_t pid
)
5206 return pid
? find_task_by_vpid(pid
) : current
;
5209 /* Actually do priority change: must hold rq lock. */
5211 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5213 BUG_ON(p
->se
.on_rq
);
5216 switch (p
->policy
) {
5220 p
->sched_class
= &fair_sched_class
;
5224 p
->sched_class
= &rt_sched_class
;
5228 p
->rt_priority
= prio
;
5229 p
->normal_prio
= normal_prio(p
);
5230 /* we are holding p->pi_lock already */
5231 p
->prio
= rt_mutex_getprio(p
);
5236 * check the target process has a UID that matches the current process's
5238 static bool check_same_owner(struct task_struct
*p
)
5240 const struct cred
*cred
= current_cred(), *pcred
;
5244 pcred
= __task_cred(p
);
5245 match
= (cred
->euid
== pcred
->euid
||
5246 cred
->euid
== pcred
->uid
);
5251 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5252 struct sched_param
*param
, bool user
)
5254 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5255 unsigned long flags
;
5256 const struct sched_class
*prev_class
= p
->sched_class
;
5259 /* may grab non-irq protected spin_locks */
5260 BUG_ON(in_interrupt());
5262 /* double check policy once rq lock held */
5264 policy
= oldpolicy
= p
->policy
;
5265 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5266 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5267 policy
!= SCHED_IDLE
)
5270 * Valid priorities for SCHED_FIFO and SCHED_RR are
5271 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5272 * SCHED_BATCH and SCHED_IDLE is 0.
5274 if (param
->sched_priority
< 0 ||
5275 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5276 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5278 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5282 * Allow unprivileged RT tasks to decrease priority:
5284 if (user
&& !capable(CAP_SYS_NICE
)) {
5285 if (rt_policy(policy
)) {
5286 unsigned long rlim_rtprio
;
5288 if (!lock_task_sighand(p
, &flags
))
5290 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5291 unlock_task_sighand(p
, &flags
);
5293 /* can't set/change the rt policy */
5294 if (policy
!= p
->policy
&& !rlim_rtprio
)
5297 /* can't increase priority */
5298 if (param
->sched_priority
> p
->rt_priority
&&
5299 param
->sched_priority
> rlim_rtprio
)
5303 * Like positive nice levels, dont allow tasks to
5304 * move out of SCHED_IDLE either:
5306 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5309 /* can't change other user's priorities */
5310 if (!check_same_owner(p
))
5315 #ifdef CONFIG_RT_GROUP_SCHED
5317 * Do not allow realtime tasks into groups that have no runtime
5320 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5321 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5325 retval
= security_task_setscheduler(p
, policy
, param
);
5331 * make sure no PI-waiters arrive (or leave) while we are
5332 * changing the priority of the task:
5334 spin_lock_irqsave(&p
->pi_lock
, flags
);
5336 * To be able to change p->policy safely, the apropriate
5337 * runqueue lock must be held.
5339 rq
= __task_rq_lock(p
);
5340 /* recheck policy now with rq lock held */
5341 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5342 policy
= oldpolicy
= -1;
5343 __task_rq_unlock(rq
);
5344 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5347 update_rq_clock(rq
);
5348 on_rq
= p
->se
.on_rq
;
5349 running
= task_current(rq
, p
);
5351 deactivate_task(rq
, p
, 0);
5353 p
->sched_class
->put_prev_task(rq
, p
);
5356 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5359 p
->sched_class
->set_curr_task(rq
);
5361 activate_task(rq
, p
, 0);
5363 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5365 __task_rq_unlock(rq
);
5366 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5368 rt_mutex_adjust_pi(p
);
5374 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5375 * @p: the task in question.
5376 * @policy: new policy.
5377 * @param: structure containing the new RT priority.
5379 * NOTE that the task may be already dead.
5381 int sched_setscheduler(struct task_struct
*p
, int policy
,
5382 struct sched_param
*param
)
5384 return __sched_setscheduler(p
, policy
, param
, true);
5386 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5389 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5390 * @p: the task in question.
5391 * @policy: new policy.
5392 * @param: structure containing the new RT priority.
5394 * Just like sched_setscheduler, only don't bother checking if the
5395 * current context has permission. For example, this is needed in
5396 * stop_machine(): we create temporary high priority worker threads,
5397 * but our caller might not have that capability.
5399 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5400 struct sched_param
*param
)
5402 return __sched_setscheduler(p
, policy
, param
, false);
5406 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5408 struct sched_param lparam
;
5409 struct task_struct
*p
;
5412 if (!param
|| pid
< 0)
5414 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5419 p
= find_process_by_pid(pid
);
5421 retval
= sched_setscheduler(p
, policy
, &lparam
);
5428 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5429 * @pid: the pid in question.
5430 * @policy: new policy.
5431 * @param: structure containing the new RT priority.
5434 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5436 /* negative values for policy are not valid */
5440 return do_sched_setscheduler(pid
, policy
, param
);
5444 * sys_sched_setparam - set/change the RT priority of a thread
5445 * @pid: the pid in question.
5446 * @param: structure containing the new RT priority.
5448 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5450 return do_sched_setscheduler(pid
, -1, param
);
5454 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5455 * @pid: the pid in question.
5457 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5459 struct task_struct
*p
;
5466 read_lock(&tasklist_lock
);
5467 p
= find_process_by_pid(pid
);
5469 retval
= security_task_getscheduler(p
);
5473 read_unlock(&tasklist_lock
);
5478 * sys_sched_getscheduler - get the RT priority of a thread
5479 * @pid: the pid in question.
5480 * @param: structure containing the RT priority.
5482 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5484 struct sched_param lp
;
5485 struct task_struct
*p
;
5488 if (!param
|| pid
< 0)
5491 read_lock(&tasklist_lock
);
5492 p
= find_process_by_pid(pid
);
5497 retval
= security_task_getscheduler(p
);
5501 lp
.sched_priority
= p
->rt_priority
;
5502 read_unlock(&tasklist_lock
);
5505 * This one might sleep, we cannot do it with a spinlock held ...
5507 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5512 read_unlock(&tasklist_lock
);
5516 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5518 cpumask_var_t cpus_allowed
, new_mask
;
5519 struct task_struct
*p
;
5523 read_lock(&tasklist_lock
);
5525 p
= find_process_by_pid(pid
);
5527 read_unlock(&tasklist_lock
);
5533 * It is not safe to call set_cpus_allowed with the
5534 * tasklist_lock held. We will bump the task_struct's
5535 * usage count and then drop tasklist_lock.
5538 read_unlock(&tasklist_lock
);
5540 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5544 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5546 goto out_free_cpus_allowed
;
5549 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5552 retval
= security_task_setscheduler(p
, 0, NULL
);
5556 cpuset_cpus_allowed(p
, cpus_allowed
);
5557 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5559 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5562 cpuset_cpus_allowed(p
, cpus_allowed
);
5563 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5565 * We must have raced with a concurrent cpuset
5566 * update. Just reset the cpus_allowed to the
5567 * cpuset's cpus_allowed
5569 cpumask_copy(new_mask
, cpus_allowed
);
5574 free_cpumask_var(new_mask
);
5575 out_free_cpus_allowed
:
5576 free_cpumask_var(cpus_allowed
);
5583 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5584 struct cpumask
*new_mask
)
5586 if (len
< cpumask_size())
5587 cpumask_clear(new_mask
);
5588 else if (len
> cpumask_size())
5589 len
= cpumask_size();
5591 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5595 * sys_sched_setaffinity - set the cpu affinity of a process
5596 * @pid: pid of the process
5597 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5598 * @user_mask_ptr: user-space pointer to the new cpu mask
5600 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5601 unsigned long __user
*user_mask_ptr
)
5603 cpumask_var_t new_mask
;
5606 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5609 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5611 retval
= sched_setaffinity(pid
, new_mask
);
5612 free_cpumask_var(new_mask
);
5616 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5618 struct task_struct
*p
;
5622 read_lock(&tasklist_lock
);
5625 p
= find_process_by_pid(pid
);
5629 retval
= security_task_getscheduler(p
);
5633 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5636 read_unlock(&tasklist_lock
);
5643 * sys_sched_getaffinity - get the cpu affinity of a process
5644 * @pid: pid of the process
5645 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5646 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5648 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5649 unsigned long __user
*user_mask_ptr
)
5654 if (len
< cpumask_size())
5657 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5660 ret
= sched_getaffinity(pid
, mask
);
5662 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
5665 ret
= cpumask_size();
5667 free_cpumask_var(mask
);
5673 * sys_sched_yield - yield the current processor to other threads.
5675 * This function yields the current CPU to other tasks. If there are no
5676 * other threads running on this CPU then this function will return.
5678 asmlinkage
long sys_sched_yield(void)
5680 struct rq
*rq
= this_rq_lock();
5682 schedstat_inc(rq
, yld_count
);
5683 current
->sched_class
->yield_task(rq
);
5686 * Since we are going to call schedule() anyway, there's
5687 * no need to preempt or enable interrupts:
5689 __release(rq
->lock
);
5690 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5691 _raw_spin_unlock(&rq
->lock
);
5692 preempt_enable_no_resched();
5699 static void __cond_resched(void)
5701 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5702 __might_sleep(__FILE__
, __LINE__
);
5705 * The BKS might be reacquired before we have dropped
5706 * PREEMPT_ACTIVE, which could trigger a second
5707 * cond_resched() call.
5710 add_preempt_count(PREEMPT_ACTIVE
);
5712 sub_preempt_count(PREEMPT_ACTIVE
);
5713 } while (need_resched());
5716 int __sched
_cond_resched(void)
5718 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5719 system_state
== SYSTEM_RUNNING
) {
5725 EXPORT_SYMBOL(_cond_resched
);
5728 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5729 * call schedule, and on return reacquire the lock.
5731 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5732 * operations here to prevent schedule() from being called twice (once via
5733 * spin_unlock(), once by hand).
5735 int cond_resched_lock(spinlock_t
*lock
)
5737 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5740 if (spin_needbreak(lock
) || resched
) {
5742 if (resched
&& need_resched())
5751 EXPORT_SYMBOL(cond_resched_lock
);
5753 int __sched
cond_resched_softirq(void)
5755 BUG_ON(!in_softirq());
5757 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5765 EXPORT_SYMBOL(cond_resched_softirq
);
5768 * yield - yield the current processor to other threads.
5770 * This is a shortcut for kernel-space yielding - it marks the
5771 * thread runnable and calls sys_sched_yield().
5773 void __sched
yield(void)
5775 set_current_state(TASK_RUNNING
);
5778 EXPORT_SYMBOL(yield
);
5781 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5782 * that process accounting knows that this is a task in IO wait state.
5784 * But don't do that if it is a deliberate, throttling IO wait (this task
5785 * has set its backing_dev_info: the queue against which it should throttle)
5787 void __sched
io_schedule(void)
5789 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5791 delayacct_blkio_start();
5792 atomic_inc(&rq
->nr_iowait
);
5794 atomic_dec(&rq
->nr_iowait
);
5795 delayacct_blkio_end();
5797 EXPORT_SYMBOL(io_schedule
);
5799 long __sched
io_schedule_timeout(long timeout
)
5801 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5804 delayacct_blkio_start();
5805 atomic_inc(&rq
->nr_iowait
);
5806 ret
= schedule_timeout(timeout
);
5807 atomic_dec(&rq
->nr_iowait
);
5808 delayacct_blkio_end();
5813 * sys_sched_get_priority_max - return maximum RT priority.
5814 * @policy: scheduling class.
5816 * this syscall returns the maximum rt_priority that can be used
5817 * by a given scheduling class.
5819 asmlinkage
long sys_sched_get_priority_max(int policy
)
5826 ret
= MAX_USER_RT_PRIO
-1;
5838 * sys_sched_get_priority_min - return minimum RT priority.
5839 * @policy: scheduling class.
5841 * this syscall returns the minimum rt_priority that can be used
5842 * by a given scheduling class.
5844 asmlinkage
long sys_sched_get_priority_min(int policy
)
5862 * sys_sched_rr_get_interval - return the default timeslice of a process.
5863 * @pid: pid of the process.
5864 * @interval: userspace pointer to the timeslice value.
5866 * this syscall writes the default timeslice value of a given process
5867 * into the user-space timespec buffer. A value of '0' means infinity.
5870 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5872 struct task_struct
*p
;
5873 unsigned int time_slice
;
5881 read_lock(&tasklist_lock
);
5882 p
= find_process_by_pid(pid
);
5886 retval
= security_task_getscheduler(p
);
5891 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5892 * tasks that are on an otherwise idle runqueue:
5895 if (p
->policy
== SCHED_RR
) {
5896 time_slice
= DEF_TIMESLICE
;
5897 } else if (p
->policy
!= SCHED_FIFO
) {
5898 struct sched_entity
*se
= &p
->se
;
5899 unsigned long flags
;
5902 rq
= task_rq_lock(p
, &flags
);
5903 if (rq
->cfs
.load
.weight
)
5904 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5905 task_rq_unlock(rq
, &flags
);
5907 read_unlock(&tasklist_lock
);
5908 jiffies_to_timespec(time_slice
, &t
);
5909 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5913 read_unlock(&tasklist_lock
);
5917 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5919 void sched_show_task(struct task_struct
*p
)
5921 unsigned long free
= 0;
5924 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5925 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5926 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5927 #if BITS_PER_LONG == 32
5928 if (state
== TASK_RUNNING
)
5929 printk(KERN_CONT
" running ");
5931 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5933 if (state
== TASK_RUNNING
)
5934 printk(KERN_CONT
" running task ");
5936 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5938 #ifdef CONFIG_DEBUG_STACK_USAGE
5940 unsigned long *n
= end_of_stack(p
);
5943 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5946 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5947 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5949 show_stack(p
, NULL
);
5952 void show_state_filter(unsigned long state_filter
)
5954 struct task_struct
*g
, *p
;
5956 #if BITS_PER_LONG == 32
5958 " task PC stack pid father\n");
5961 " task PC stack pid father\n");
5963 read_lock(&tasklist_lock
);
5964 do_each_thread(g
, p
) {
5966 * reset the NMI-timeout, listing all files on a slow
5967 * console might take alot of time:
5969 touch_nmi_watchdog();
5970 if (!state_filter
|| (p
->state
& state_filter
))
5972 } while_each_thread(g
, p
);
5974 touch_all_softlockup_watchdogs();
5976 #ifdef CONFIG_SCHED_DEBUG
5977 sysrq_sched_debug_show();
5979 read_unlock(&tasklist_lock
);
5981 * Only show locks if all tasks are dumped:
5983 if (state_filter
== -1)
5984 debug_show_all_locks();
5987 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5989 idle
->sched_class
= &idle_sched_class
;
5993 * init_idle - set up an idle thread for a given CPU
5994 * @idle: task in question
5995 * @cpu: cpu the idle task belongs to
5997 * NOTE: this function does not set the idle thread's NEED_RESCHED
5998 * flag, to make booting more robust.
6000 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6002 struct rq
*rq
= cpu_rq(cpu
);
6003 unsigned long flags
;
6005 spin_lock_irqsave(&rq
->lock
, flags
);
6008 idle
->se
.exec_start
= sched_clock();
6010 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6011 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6012 __set_task_cpu(idle
, cpu
);
6014 rq
->curr
= rq
->idle
= idle
;
6015 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6018 spin_unlock_irqrestore(&rq
->lock
, flags
);
6020 /* Set the preempt count _outside_ the spinlocks! */
6021 #if defined(CONFIG_PREEMPT)
6022 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6024 task_thread_info(idle
)->preempt_count
= 0;
6027 * The idle tasks have their own, simple scheduling class:
6029 idle
->sched_class
= &idle_sched_class
;
6030 ftrace_graph_init_task(idle
);
6034 * In a system that switches off the HZ timer nohz_cpu_mask
6035 * indicates which cpus entered this state. This is used
6036 * in the rcu update to wait only for active cpus. For system
6037 * which do not switch off the HZ timer nohz_cpu_mask should
6038 * always be CPU_BITS_NONE.
6040 cpumask_var_t nohz_cpu_mask
;
6043 * Increase the granularity value when there are more CPUs,
6044 * because with more CPUs the 'effective latency' as visible
6045 * to users decreases. But the relationship is not linear,
6046 * so pick a second-best guess by going with the log2 of the
6049 * This idea comes from the SD scheduler of Con Kolivas:
6051 static inline void sched_init_granularity(void)
6053 unsigned int factor
= 1 + ilog2(num_online_cpus());
6054 const unsigned long limit
= 200000000;
6056 sysctl_sched_min_granularity
*= factor
;
6057 if (sysctl_sched_min_granularity
> limit
)
6058 sysctl_sched_min_granularity
= limit
;
6060 sysctl_sched_latency
*= factor
;
6061 if (sysctl_sched_latency
> limit
)
6062 sysctl_sched_latency
= limit
;
6064 sysctl_sched_wakeup_granularity
*= factor
;
6066 sysctl_sched_shares_ratelimit
*= factor
;
6071 * This is how migration works:
6073 * 1) we queue a struct migration_req structure in the source CPU's
6074 * runqueue and wake up that CPU's migration thread.
6075 * 2) we down() the locked semaphore => thread blocks.
6076 * 3) migration thread wakes up (implicitly it forces the migrated
6077 * thread off the CPU)
6078 * 4) it gets the migration request and checks whether the migrated
6079 * task is still in the wrong runqueue.
6080 * 5) if it's in the wrong runqueue then the migration thread removes
6081 * it and puts it into the right queue.
6082 * 6) migration thread up()s the semaphore.
6083 * 7) we wake up and the migration is done.
6087 * Change a given task's CPU affinity. Migrate the thread to a
6088 * proper CPU and schedule it away if the CPU it's executing on
6089 * is removed from the allowed bitmask.
6091 * NOTE: the caller must have a valid reference to the task, the
6092 * task must not exit() & deallocate itself prematurely. The
6093 * call is not atomic; no spinlocks may be held.
6095 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6097 struct migration_req req
;
6098 unsigned long flags
;
6102 rq
= task_rq_lock(p
, &flags
);
6103 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6108 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6109 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6114 if (p
->sched_class
->set_cpus_allowed
)
6115 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6117 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6118 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6121 /* Can the task run on the task's current CPU? If so, we're done */
6122 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6125 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6126 /* Need help from migration thread: drop lock and wait. */
6127 task_rq_unlock(rq
, &flags
);
6128 wake_up_process(rq
->migration_thread
);
6129 wait_for_completion(&req
.done
);
6130 tlb_migrate_finish(p
->mm
);
6134 task_rq_unlock(rq
, &flags
);
6138 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6141 * Move (not current) task off this cpu, onto dest cpu. We're doing
6142 * this because either it can't run here any more (set_cpus_allowed()
6143 * away from this CPU, or CPU going down), or because we're
6144 * attempting to rebalance this task on exec (sched_exec).
6146 * So we race with normal scheduler movements, but that's OK, as long
6147 * as the task is no longer on this CPU.
6149 * Returns non-zero if task was successfully migrated.
6151 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6153 struct rq
*rq_dest
, *rq_src
;
6156 if (unlikely(!cpu_active(dest_cpu
)))
6159 rq_src
= cpu_rq(src_cpu
);
6160 rq_dest
= cpu_rq(dest_cpu
);
6162 double_rq_lock(rq_src
, rq_dest
);
6163 /* Already moved. */
6164 if (task_cpu(p
) != src_cpu
)
6166 /* Affinity changed (again). */
6167 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6170 on_rq
= p
->se
.on_rq
;
6172 deactivate_task(rq_src
, p
, 0);
6174 set_task_cpu(p
, dest_cpu
);
6176 activate_task(rq_dest
, p
, 0);
6177 check_preempt_curr(rq_dest
, p
, 0);
6182 double_rq_unlock(rq_src
, rq_dest
);
6187 * migration_thread - this is a highprio system thread that performs
6188 * thread migration by bumping thread off CPU then 'pushing' onto
6191 static int migration_thread(void *data
)
6193 int cpu
= (long)data
;
6197 BUG_ON(rq
->migration_thread
!= current
);
6199 set_current_state(TASK_INTERRUPTIBLE
);
6200 while (!kthread_should_stop()) {
6201 struct migration_req
*req
;
6202 struct list_head
*head
;
6204 spin_lock_irq(&rq
->lock
);
6206 if (cpu_is_offline(cpu
)) {
6207 spin_unlock_irq(&rq
->lock
);
6211 if (rq
->active_balance
) {
6212 active_load_balance(rq
, cpu
);
6213 rq
->active_balance
= 0;
6216 head
= &rq
->migration_queue
;
6218 if (list_empty(head
)) {
6219 spin_unlock_irq(&rq
->lock
);
6221 set_current_state(TASK_INTERRUPTIBLE
);
6224 req
= list_entry(head
->next
, struct migration_req
, list
);
6225 list_del_init(head
->next
);
6227 spin_unlock(&rq
->lock
);
6228 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6231 complete(&req
->done
);
6233 __set_current_state(TASK_RUNNING
);
6237 /* Wait for kthread_stop */
6238 set_current_state(TASK_INTERRUPTIBLE
);
6239 while (!kthread_should_stop()) {
6241 set_current_state(TASK_INTERRUPTIBLE
);
6243 __set_current_state(TASK_RUNNING
);
6247 #ifdef CONFIG_HOTPLUG_CPU
6249 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6253 local_irq_disable();
6254 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6260 * Figure out where task on dead CPU should go, use force if necessary.
6262 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6265 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
6268 /* Look for allowed, online CPU in same node. */
6269 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
6270 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6273 /* Any allowed, online CPU? */
6274 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
6275 if (dest_cpu
< nr_cpu_ids
)
6278 /* No more Mr. Nice Guy. */
6279 if (dest_cpu
>= nr_cpu_ids
) {
6280 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
6281 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
6284 * Don't tell them about moving exiting tasks or
6285 * kernel threads (both mm NULL), since they never
6288 if (p
->mm
&& printk_ratelimit()) {
6289 printk(KERN_INFO
"process %d (%s) no "
6290 "longer affine to cpu%d\n",
6291 task_pid_nr(p
), p
->comm
, dead_cpu
);
6296 /* It can have affinity changed while we were choosing. */
6297 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
6302 * While a dead CPU has no uninterruptible tasks queued at this point,
6303 * it might still have a nonzero ->nr_uninterruptible counter, because
6304 * for performance reasons the counter is not stricly tracking tasks to
6305 * their home CPUs. So we just add the counter to another CPU's counter,
6306 * to keep the global sum constant after CPU-down:
6308 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6310 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
6311 unsigned long flags
;
6313 local_irq_save(flags
);
6314 double_rq_lock(rq_src
, rq_dest
);
6315 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6316 rq_src
->nr_uninterruptible
= 0;
6317 double_rq_unlock(rq_src
, rq_dest
);
6318 local_irq_restore(flags
);
6321 /* Run through task list and migrate tasks from the dead cpu. */
6322 static void migrate_live_tasks(int src_cpu
)
6324 struct task_struct
*p
, *t
;
6326 read_lock(&tasklist_lock
);
6328 do_each_thread(t
, p
) {
6332 if (task_cpu(p
) == src_cpu
)
6333 move_task_off_dead_cpu(src_cpu
, p
);
6334 } while_each_thread(t
, p
);
6336 read_unlock(&tasklist_lock
);
6340 * Schedules idle task to be the next runnable task on current CPU.
6341 * It does so by boosting its priority to highest possible.
6342 * Used by CPU offline code.
6344 void sched_idle_next(void)
6346 int this_cpu
= smp_processor_id();
6347 struct rq
*rq
= cpu_rq(this_cpu
);
6348 struct task_struct
*p
= rq
->idle
;
6349 unsigned long flags
;
6351 /* cpu has to be offline */
6352 BUG_ON(cpu_online(this_cpu
));
6355 * Strictly not necessary since rest of the CPUs are stopped by now
6356 * and interrupts disabled on the current cpu.
6358 spin_lock_irqsave(&rq
->lock
, flags
);
6360 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6362 update_rq_clock(rq
);
6363 activate_task(rq
, p
, 0);
6365 spin_unlock_irqrestore(&rq
->lock
, flags
);
6369 * Ensures that the idle task is using init_mm right before its cpu goes
6372 void idle_task_exit(void)
6374 struct mm_struct
*mm
= current
->active_mm
;
6376 BUG_ON(cpu_online(smp_processor_id()));
6379 switch_mm(mm
, &init_mm
, current
);
6383 /* called under rq->lock with disabled interrupts */
6384 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6386 struct rq
*rq
= cpu_rq(dead_cpu
);
6388 /* Must be exiting, otherwise would be on tasklist. */
6389 BUG_ON(!p
->exit_state
);
6391 /* Cannot have done final schedule yet: would have vanished. */
6392 BUG_ON(p
->state
== TASK_DEAD
);
6397 * Drop lock around migration; if someone else moves it,
6398 * that's OK. No task can be added to this CPU, so iteration is
6401 spin_unlock_irq(&rq
->lock
);
6402 move_task_off_dead_cpu(dead_cpu
, p
);
6403 spin_lock_irq(&rq
->lock
);
6408 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6409 static void migrate_dead_tasks(unsigned int dead_cpu
)
6411 struct rq
*rq
= cpu_rq(dead_cpu
);
6412 struct task_struct
*next
;
6415 if (!rq
->nr_running
)
6417 update_rq_clock(rq
);
6418 next
= pick_next_task(rq
, rq
->curr
);
6421 next
->sched_class
->put_prev_task(rq
, next
);
6422 migrate_dead(dead_cpu
, next
);
6426 #endif /* CONFIG_HOTPLUG_CPU */
6428 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6430 static struct ctl_table sd_ctl_dir
[] = {
6432 .procname
= "sched_domain",
6438 static struct ctl_table sd_ctl_root
[] = {
6440 .ctl_name
= CTL_KERN
,
6441 .procname
= "kernel",
6443 .child
= sd_ctl_dir
,
6448 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6450 struct ctl_table
*entry
=
6451 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6456 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6458 struct ctl_table
*entry
;
6461 * In the intermediate directories, both the child directory and
6462 * procname are dynamically allocated and could fail but the mode
6463 * will always be set. In the lowest directory the names are
6464 * static strings and all have proc handlers.
6466 for (entry
= *tablep
; entry
->mode
; entry
++) {
6468 sd_free_ctl_entry(&entry
->child
);
6469 if (entry
->proc_handler
== NULL
)
6470 kfree(entry
->procname
);
6478 set_table_entry(struct ctl_table
*entry
,
6479 const char *procname
, void *data
, int maxlen
,
6480 mode_t mode
, proc_handler
*proc_handler
)
6482 entry
->procname
= procname
;
6484 entry
->maxlen
= maxlen
;
6486 entry
->proc_handler
= proc_handler
;
6489 static struct ctl_table
*
6490 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6492 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6497 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6498 sizeof(long), 0644, proc_doulongvec_minmax
);
6499 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6500 sizeof(long), 0644, proc_doulongvec_minmax
);
6501 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6502 sizeof(int), 0644, proc_dointvec_minmax
);
6503 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6504 sizeof(int), 0644, proc_dointvec_minmax
);
6505 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6506 sizeof(int), 0644, proc_dointvec_minmax
);
6507 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6508 sizeof(int), 0644, proc_dointvec_minmax
);
6509 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6510 sizeof(int), 0644, proc_dointvec_minmax
);
6511 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6512 sizeof(int), 0644, proc_dointvec_minmax
);
6513 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6514 sizeof(int), 0644, proc_dointvec_minmax
);
6515 set_table_entry(&table
[9], "cache_nice_tries",
6516 &sd
->cache_nice_tries
,
6517 sizeof(int), 0644, proc_dointvec_minmax
);
6518 set_table_entry(&table
[10], "flags", &sd
->flags
,
6519 sizeof(int), 0644, proc_dointvec_minmax
);
6520 set_table_entry(&table
[11], "name", sd
->name
,
6521 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6522 /* &table[12] is terminator */
6527 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6529 struct ctl_table
*entry
, *table
;
6530 struct sched_domain
*sd
;
6531 int domain_num
= 0, i
;
6534 for_each_domain(cpu
, sd
)
6536 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6541 for_each_domain(cpu
, sd
) {
6542 snprintf(buf
, 32, "domain%d", i
);
6543 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6545 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6552 static struct ctl_table_header
*sd_sysctl_header
;
6553 static void register_sched_domain_sysctl(void)
6555 int i
, cpu_num
= num_online_cpus();
6556 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6559 WARN_ON(sd_ctl_dir
[0].child
);
6560 sd_ctl_dir
[0].child
= entry
;
6565 for_each_online_cpu(i
) {
6566 snprintf(buf
, 32, "cpu%d", i
);
6567 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6569 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6573 WARN_ON(sd_sysctl_header
);
6574 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6577 /* may be called multiple times per register */
6578 static void unregister_sched_domain_sysctl(void)
6580 if (sd_sysctl_header
)
6581 unregister_sysctl_table(sd_sysctl_header
);
6582 sd_sysctl_header
= NULL
;
6583 if (sd_ctl_dir
[0].child
)
6584 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6587 static void register_sched_domain_sysctl(void)
6590 static void unregister_sched_domain_sysctl(void)
6595 static void set_rq_online(struct rq
*rq
)
6598 const struct sched_class
*class;
6600 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6603 for_each_class(class) {
6604 if (class->rq_online
)
6605 class->rq_online(rq
);
6610 static void set_rq_offline(struct rq
*rq
)
6613 const struct sched_class
*class;
6615 for_each_class(class) {
6616 if (class->rq_offline
)
6617 class->rq_offline(rq
);
6620 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6626 * migration_call - callback that gets triggered when a CPU is added.
6627 * Here we can start up the necessary migration thread for the new CPU.
6629 static int __cpuinit
6630 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6632 struct task_struct
*p
;
6633 int cpu
= (long)hcpu
;
6634 unsigned long flags
;
6639 case CPU_UP_PREPARE
:
6640 case CPU_UP_PREPARE_FROZEN
:
6641 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6644 kthread_bind(p
, cpu
);
6645 /* Must be high prio: stop_machine expects to yield to it. */
6646 rq
= task_rq_lock(p
, &flags
);
6647 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6648 task_rq_unlock(rq
, &flags
);
6649 cpu_rq(cpu
)->migration_thread
= p
;
6653 case CPU_ONLINE_FROZEN
:
6654 /* Strictly unnecessary, as first user will wake it. */
6655 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6657 /* Update our root-domain */
6659 spin_lock_irqsave(&rq
->lock
, flags
);
6661 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6665 spin_unlock_irqrestore(&rq
->lock
, flags
);
6668 #ifdef CONFIG_HOTPLUG_CPU
6669 case CPU_UP_CANCELED
:
6670 case CPU_UP_CANCELED_FROZEN
:
6671 if (!cpu_rq(cpu
)->migration_thread
)
6673 /* Unbind it from offline cpu so it can run. Fall thru. */
6674 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6675 cpumask_any(cpu_online_mask
));
6676 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6677 cpu_rq(cpu
)->migration_thread
= NULL
;
6681 case CPU_DEAD_FROZEN
:
6682 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6683 migrate_live_tasks(cpu
);
6685 kthread_stop(rq
->migration_thread
);
6686 rq
->migration_thread
= NULL
;
6687 /* Idle task back to normal (off runqueue, low prio) */
6688 spin_lock_irq(&rq
->lock
);
6689 update_rq_clock(rq
);
6690 deactivate_task(rq
, rq
->idle
, 0);
6691 rq
->idle
->static_prio
= MAX_PRIO
;
6692 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6693 rq
->idle
->sched_class
= &idle_sched_class
;
6694 migrate_dead_tasks(cpu
);
6695 spin_unlock_irq(&rq
->lock
);
6697 migrate_nr_uninterruptible(rq
);
6698 BUG_ON(rq
->nr_running
!= 0);
6701 * No need to migrate the tasks: it was best-effort if
6702 * they didn't take sched_hotcpu_mutex. Just wake up
6705 spin_lock_irq(&rq
->lock
);
6706 while (!list_empty(&rq
->migration_queue
)) {
6707 struct migration_req
*req
;
6709 req
= list_entry(rq
->migration_queue
.next
,
6710 struct migration_req
, list
);
6711 list_del_init(&req
->list
);
6712 spin_unlock_irq(&rq
->lock
);
6713 complete(&req
->done
);
6714 spin_lock_irq(&rq
->lock
);
6716 spin_unlock_irq(&rq
->lock
);
6720 case CPU_DYING_FROZEN
:
6721 /* Update our root-domain */
6723 spin_lock_irqsave(&rq
->lock
, flags
);
6725 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6728 spin_unlock_irqrestore(&rq
->lock
, flags
);
6735 /* Register at highest priority so that task migration (migrate_all_tasks)
6736 * happens before everything else.
6738 static struct notifier_block __cpuinitdata migration_notifier
= {
6739 .notifier_call
= migration_call
,
6743 static int __init
migration_init(void)
6745 void *cpu
= (void *)(long)smp_processor_id();
6748 /* Start one for the boot CPU: */
6749 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6750 BUG_ON(err
== NOTIFY_BAD
);
6751 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6752 register_cpu_notifier(&migration_notifier
);
6756 early_initcall(migration_init
);
6761 #ifdef CONFIG_SCHED_DEBUG
6763 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6764 struct cpumask
*groupmask
)
6766 struct sched_group
*group
= sd
->groups
;
6769 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6770 cpumask_clear(groupmask
);
6772 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6774 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6775 printk("does not load-balance\n");
6777 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6782 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6784 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6785 printk(KERN_ERR
"ERROR: domain->span does not contain "
6788 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6789 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6793 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6797 printk(KERN_ERR
"ERROR: group is NULL\n");
6801 if (!group
->__cpu_power
) {
6802 printk(KERN_CONT
"\n");
6803 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6808 if (!cpumask_weight(sched_group_cpus(group
))) {
6809 printk(KERN_CONT
"\n");
6810 printk(KERN_ERR
"ERROR: empty group\n");
6814 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6815 printk(KERN_CONT
"\n");
6816 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6820 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6822 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6823 printk(KERN_CONT
" %s", str
);
6825 group
= group
->next
;
6826 } while (group
!= sd
->groups
);
6827 printk(KERN_CONT
"\n");
6829 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6830 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6833 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6834 printk(KERN_ERR
"ERROR: parent span is not a superset "
6835 "of domain->span\n");
6839 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6841 cpumask_var_t groupmask
;
6845 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6849 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6851 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6852 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6857 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6864 free_cpumask_var(groupmask
);
6866 #else /* !CONFIG_SCHED_DEBUG */
6867 # define sched_domain_debug(sd, cpu) do { } while (0)
6868 #endif /* CONFIG_SCHED_DEBUG */
6870 static int sd_degenerate(struct sched_domain
*sd
)
6872 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6875 /* Following flags need at least 2 groups */
6876 if (sd
->flags
& (SD_LOAD_BALANCE
|
6877 SD_BALANCE_NEWIDLE
|
6881 SD_SHARE_PKG_RESOURCES
)) {
6882 if (sd
->groups
!= sd
->groups
->next
)
6886 /* Following flags don't use groups */
6887 if (sd
->flags
& (SD_WAKE_IDLE
|
6896 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6898 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6900 if (sd_degenerate(parent
))
6903 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6906 /* Does parent contain flags not in child? */
6907 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6908 if (cflags
& SD_WAKE_AFFINE
)
6909 pflags
&= ~SD_WAKE_BALANCE
;
6910 /* Flags needing groups don't count if only 1 group in parent */
6911 if (parent
->groups
== parent
->groups
->next
) {
6912 pflags
&= ~(SD_LOAD_BALANCE
|
6913 SD_BALANCE_NEWIDLE
|
6917 SD_SHARE_PKG_RESOURCES
);
6918 if (nr_node_ids
== 1)
6919 pflags
&= ~SD_SERIALIZE
;
6921 if (~cflags
& pflags
)
6927 static void free_rootdomain(struct root_domain
*rd
)
6929 cpupri_cleanup(&rd
->cpupri
);
6931 free_cpumask_var(rd
->rto_mask
);
6932 free_cpumask_var(rd
->online
);
6933 free_cpumask_var(rd
->span
);
6937 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6939 unsigned long flags
;
6941 spin_lock_irqsave(&rq
->lock
, flags
);
6944 struct root_domain
*old_rd
= rq
->rd
;
6946 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6949 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6951 if (atomic_dec_and_test(&old_rd
->refcount
))
6952 free_rootdomain(old_rd
);
6955 atomic_inc(&rd
->refcount
);
6958 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6959 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
6962 spin_unlock_irqrestore(&rq
->lock
, flags
);
6965 static int __init_refok
init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6967 memset(rd
, 0, sizeof(*rd
));
6970 alloc_bootmem_cpumask_var(&def_root_domain
.span
);
6971 alloc_bootmem_cpumask_var(&def_root_domain
.online
);
6972 alloc_bootmem_cpumask_var(&def_root_domain
.rto_mask
);
6973 cpupri_init(&rd
->cpupri
, true);
6977 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6979 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6981 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6984 if (cpupri_init(&rd
->cpupri
, false) != 0)
6989 free_cpumask_var(rd
->rto_mask
);
6991 free_cpumask_var(rd
->online
);
6993 free_cpumask_var(rd
->span
);
6998 static void init_defrootdomain(void)
7000 init_rootdomain(&def_root_domain
, true);
7002 atomic_set(&def_root_domain
.refcount
, 1);
7005 static struct root_domain
*alloc_rootdomain(void)
7007 struct root_domain
*rd
;
7009 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7013 if (init_rootdomain(rd
, false) != 0) {
7022 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7023 * hold the hotplug lock.
7026 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7028 struct rq
*rq
= cpu_rq(cpu
);
7029 struct sched_domain
*tmp
;
7031 /* Remove the sched domains which do not contribute to scheduling. */
7032 for (tmp
= sd
; tmp
; ) {
7033 struct sched_domain
*parent
= tmp
->parent
;
7037 if (sd_parent_degenerate(tmp
, parent
)) {
7038 tmp
->parent
= parent
->parent
;
7040 parent
->parent
->child
= tmp
;
7045 if (sd
&& sd_degenerate(sd
)) {
7051 sched_domain_debug(sd
, cpu
);
7053 rq_attach_root(rq
, rd
);
7054 rcu_assign_pointer(rq
->sd
, sd
);
7057 /* cpus with isolated domains */
7058 static cpumask_var_t cpu_isolated_map
;
7060 /* Setup the mask of cpus configured for isolated domains */
7061 static int __init
isolated_cpu_setup(char *str
)
7063 cpulist_parse(str
, cpu_isolated_map
);
7067 __setup("isolcpus=", isolated_cpu_setup
);
7070 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7071 * to a function which identifies what group(along with sched group) a CPU
7072 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7073 * (due to the fact that we keep track of groups covered with a struct cpumask).
7075 * init_sched_build_groups will build a circular linked list of the groups
7076 * covered by the given span, and will set each group's ->cpumask correctly,
7077 * and ->cpu_power to 0.
7080 init_sched_build_groups(const struct cpumask
*span
,
7081 const struct cpumask
*cpu_map
,
7082 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7083 struct sched_group
**sg
,
7084 struct cpumask
*tmpmask
),
7085 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7087 struct sched_group
*first
= NULL
, *last
= NULL
;
7090 cpumask_clear(covered
);
7092 for_each_cpu(i
, span
) {
7093 struct sched_group
*sg
;
7094 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7097 if (cpumask_test_cpu(i
, covered
))
7100 cpumask_clear(sched_group_cpus(sg
));
7101 sg
->__cpu_power
= 0;
7103 for_each_cpu(j
, span
) {
7104 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7107 cpumask_set_cpu(j
, covered
);
7108 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7119 #define SD_NODES_PER_DOMAIN 16
7124 * find_next_best_node - find the next node to include in a sched_domain
7125 * @node: node whose sched_domain we're building
7126 * @used_nodes: nodes already in the sched_domain
7128 * Find the next node to include in a given scheduling domain. Simply
7129 * finds the closest node not already in the @used_nodes map.
7131 * Should use nodemask_t.
7133 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7135 int i
, n
, val
, min_val
, best_node
= 0;
7139 for (i
= 0; i
< nr_node_ids
; i
++) {
7140 /* Start at @node */
7141 n
= (node
+ i
) % nr_node_ids
;
7143 if (!nr_cpus_node(n
))
7146 /* Skip already used nodes */
7147 if (node_isset(n
, *used_nodes
))
7150 /* Simple min distance search */
7151 val
= node_distance(node
, n
);
7153 if (val
< min_val
) {
7159 node_set(best_node
, *used_nodes
);
7164 * sched_domain_node_span - get a cpumask for a node's sched_domain
7165 * @node: node whose cpumask we're constructing
7166 * @span: resulting cpumask
7168 * Given a node, construct a good cpumask for its sched_domain to span. It
7169 * should be one that prevents unnecessary balancing, but also spreads tasks
7172 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7174 nodemask_t used_nodes
;
7177 cpumask_clear(span
);
7178 nodes_clear(used_nodes
);
7180 cpumask_or(span
, span
, cpumask_of_node(node
));
7181 node_set(node
, used_nodes
);
7183 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7184 int next_node
= find_next_best_node(node
, &used_nodes
);
7186 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7189 #endif /* CONFIG_NUMA */
7191 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7194 * The cpus mask in sched_group and sched_domain hangs off the end.
7195 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7196 * for nr_cpu_ids < CONFIG_NR_CPUS.
7198 struct static_sched_group
{
7199 struct sched_group sg
;
7200 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
7203 struct static_sched_domain
{
7204 struct sched_domain sd
;
7205 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
7209 * SMT sched-domains:
7211 #ifdef CONFIG_SCHED_SMT
7212 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
7213 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
7216 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
7217 struct sched_group
**sg
, struct cpumask
*unused
)
7220 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
7223 #endif /* CONFIG_SCHED_SMT */
7226 * multi-core sched-domains:
7228 #ifdef CONFIG_SCHED_MC
7229 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
7230 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
7231 #endif /* CONFIG_SCHED_MC */
7233 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7235 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7236 struct sched_group
**sg
, struct cpumask
*mask
)
7240 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7241 group
= cpumask_first(mask
);
7243 *sg
= &per_cpu(sched_group_core
, group
).sg
;
7246 #elif defined(CONFIG_SCHED_MC)
7248 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7249 struct sched_group
**sg
, struct cpumask
*unused
)
7252 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
7257 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
7258 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
7261 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
7262 struct sched_group
**sg
, struct cpumask
*mask
)
7265 #ifdef CONFIG_SCHED_MC
7266 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
7267 group
= cpumask_first(mask
);
7268 #elif defined(CONFIG_SCHED_SMT)
7269 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7270 group
= cpumask_first(mask
);
7275 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
7281 * The init_sched_build_groups can't handle what we want to do with node
7282 * groups, so roll our own. Now each node has its own list of groups which
7283 * gets dynamically allocated.
7285 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7286 static struct sched_group
***sched_group_nodes_bycpu
;
7288 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7289 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
7291 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
7292 struct sched_group
**sg
,
7293 struct cpumask
*nodemask
)
7297 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
7298 group
= cpumask_first(nodemask
);
7301 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7305 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7307 struct sched_group
*sg
= group_head
;
7313 for_each_cpu(j
, sched_group_cpus(sg
)) {
7314 struct sched_domain
*sd
;
7316 sd
= &per_cpu(phys_domains
, j
).sd
;
7317 if (j
!= cpumask_first(sched_group_cpus(sd
->groups
))) {
7319 * Only add "power" once for each
7325 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7328 } while (sg
!= group_head
);
7330 #endif /* CONFIG_NUMA */
7333 /* Free memory allocated for various sched_group structures */
7334 static void free_sched_groups(const struct cpumask
*cpu_map
,
7335 struct cpumask
*nodemask
)
7339 for_each_cpu(cpu
, cpu_map
) {
7340 struct sched_group
**sched_group_nodes
7341 = sched_group_nodes_bycpu
[cpu
];
7343 if (!sched_group_nodes
)
7346 for (i
= 0; i
< nr_node_ids
; i
++) {
7347 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7349 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7350 if (cpumask_empty(nodemask
))
7360 if (oldsg
!= sched_group_nodes
[i
])
7363 kfree(sched_group_nodes
);
7364 sched_group_nodes_bycpu
[cpu
] = NULL
;
7367 #else /* !CONFIG_NUMA */
7368 static void free_sched_groups(const struct cpumask
*cpu_map
,
7369 struct cpumask
*nodemask
)
7372 #endif /* CONFIG_NUMA */
7375 * Initialize sched groups cpu_power.
7377 * cpu_power indicates the capacity of sched group, which is used while
7378 * distributing the load between different sched groups in a sched domain.
7379 * Typically cpu_power for all the groups in a sched domain will be same unless
7380 * there are asymmetries in the topology. If there are asymmetries, group
7381 * having more cpu_power will pickup more load compared to the group having
7384 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7385 * the maximum number of tasks a group can handle in the presence of other idle
7386 * or lightly loaded groups in the same sched domain.
7388 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7390 struct sched_domain
*child
;
7391 struct sched_group
*group
;
7393 WARN_ON(!sd
|| !sd
->groups
);
7395 if (cpu
!= cpumask_first(sched_group_cpus(sd
->groups
)))
7400 sd
->groups
->__cpu_power
= 0;
7403 * For perf policy, if the groups in child domain share resources
7404 * (for example cores sharing some portions of the cache hierarchy
7405 * or SMT), then set this domain groups cpu_power such that each group
7406 * can handle only one task, when there are other idle groups in the
7407 * same sched domain.
7409 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7411 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7412 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7417 * add cpu_power of each child group to this groups cpu_power
7419 group
= child
->groups
;
7421 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7422 group
= group
->next
;
7423 } while (group
!= child
->groups
);
7427 * Initializers for schedule domains
7428 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7431 #ifdef CONFIG_SCHED_DEBUG
7432 # define SD_INIT_NAME(sd, type) sd->name = #type
7434 # define SD_INIT_NAME(sd, type) do { } while (0)
7437 #define SD_INIT(sd, type) sd_init_##type(sd)
7439 #define SD_INIT_FUNC(type) \
7440 static noinline void sd_init_##type(struct sched_domain *sd) \
7442 memset(sd, 0, sizeof(*sd)); \
7443 *sd = SD_##type##_INIT; \
7444 sd->level = SD_LV_##type; \
7445 SD_INIT_NAME(sd, type); \
7450 SD_INIT_FUNC(ALLNODES
)
7453 #ifdef CONFIG_SCHED_SMT
7454 SD_INIT_FUNC(SIBLING
)
7456 #ifdef CONFIG_SCHED_MC
7460 static int default_relax_domain_level
= -1;
7462 static int __init
setup_relax_domain_level(char *str
)
7466 val
= simple_strtoul(str
, NULL
, 0);
7467 if (val
< SD_LV_MAX
)
7468 default_relax_domain_level
= val
;
7472 __setup("relax_domain_level=", setup_relax_domain_level
);
7474 static void set_domain_attribute(struct sched_domain
*sd
,
7475 struct sched_domain_attr
*attr
)
7479 if (!attr
|| attr
->relax_domain_level
< 0) {
7480 if (default_relax_domain_level
< 0)
7483 request
= default_relax_domain_level
;
7485 request
= attr
->relax_domain_level
;
7486 if (request
< sd
->level
) {
7487 /* turn off idle balance on this domain */
7488 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7490 /* turn on idle balance on this domain */
7491 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7496 * Build sched domains for a given set of cpus and attach the sched domains
7497 * to the individual cpus
7499 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7500 struct sched_domain_attr
*attr
)
7502 int i
, err
= -ENOMEM
;
7503 struct root_domain
*rd
;
7504 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
7507 cpumask_var_t domainspan
, covered
, notcovered
;
7508 struct sched_group
**sched_group_nodes
= NULL
;
7509 int sd_allnodes
= 0;
7511 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
7513 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
7514 goto free_domainspan
;
7515 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
7519 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
7520 goto free_notcovered
;
7521 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
7523 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
7524 goto free_this_sibling_map
;
7525 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
7526 goto free_this_core_map
;
7527 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
7528 goto free_send_covered
;
7532 * Allocate the per-node list of sched groups
7534 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7536 if (!sched_group_nodes
) {
7537 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7542 rd
= alloc_rootdomain();
7544 printk(KERN_WARNING
"Cannot alloc root domain\n");
7545 goto free_sched_groups
;
7549 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
7553 * Set up domains for cpus specified by the cpu_map.
7555 for_each_cpu(i
, cpu_map
) {
7556 struct sched_domain
*sd
= NULL
, *p
;
7558 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(i
)), cpu_map
);
7561 if (cpumask_weight(cpu_map
) >
7562 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
7563 sd
= &per_cpu(allnodes_domains
, i
);
7564 SD_INIT(sd
, ALLNODES
);
7565 set_domain_attribute(sd
, attr
);
7566 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7567 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7573 sd
= &per_cpu(node_domains
, i
);
7575 set_domain_attribute(sd
, attr
);
7576 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7580 cpumask_and(sched_domain_span(sd
),
7581 sched_domain_span(sd
), cpu_map
);
7585 sd
= &per_cpu(phys_domains
, i
).sd
;
7587 set_domain_attribute(sd
, attr
);
7588 cpumask_copy(sched_domain_span(sd
), nodemask
);
7592 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7594 #ifdef CONFIG_SCHED_MC
7596 sd
= &per_cpu(core_domains
, i
).sd
;
7598 set_domain_attribute(sd
, attr
);
7599 cpumask_and(sched_domain_span(sd
), cpu_map
,
7600 cpu_coregroup_mask(i
));
7603 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7606 #ifdef CONFIG_SCHED_SMT
7608 sd
= &per_cpu(cpu_domains
, i
).sd
;
7609 SD_INIT(sd
, SIBLING
);
7610 set_domain_attribute(sd
, attr
);
7611 cpumask_and(sched_domain_span(sd
),
7612 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7615 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7619 #ifdef CONFIG_SCHED_SMT
7620 /* Set up CPU (sibling) groups */
7621 for_each_cpu(i
, cpu_map
) {
7622 cpumask_and(this_sibling_map
,
7623 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7624 if (i
!= cpumask_first(this_sibling_map
))
7627 init_sched_build_groups(this_sibling_map
, cpu_map
,
7629 send_covered
, tmpmask
);
7633 #ifdef CONFIG_SCHED_MC
7634 /* Set up multi-core groups */
7635 for_each_cpu(i
, cpu_map
) {
7636 cpumask_and(this_core_map
, cpu_coregroup_mask(i
), cpu_map
);
7637 if (i
!= cpumask_first(this_core_map
))
7640 init_sched_build_groups(this_core_map
, cpu_map
,
7642 send_covered
, tmpmask
);
7646 /* Set up physical groups */
7647 for (i
= 0; i
< nr_node_ids
; i
++) {
7648 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7649 if (cpumask_empty(nodemask
))
7652 init_sched_build_groups(nodemask
, cpu_map
,
7654 send_covered
, tmpmask
);
7658 /* Set up node groups */
7660 init_sched_build_groups(cpu_map
, cpu_map
,
7661 &cpu_to_allnodes_group
,
7662 send_covered
, tmpmask
);
7665 for (i
= 0; i
< nr_node_ids
; i
++) {
7666 /* Set up node groups */
7667 struct sched_group
*sg
, *prev
;
7670 cpumask_clear(covered
);
7671 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7672 if (cpumask_empty(nodemask
)) {
7673 sched_group_nodes
[i
] = NULL
;
7677 sched_domain_node_span(i
, domainspan
);
7678 cpumask_and(domainspan
, domainspan
, cpu_map
);
7680 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7683 printk(KERN_WARNING
"Can not alloc domain group for "
7687 sched_group_nodes
[i
] = sg
;
7688 for_each_cpu(j
, nodemask
) {
7689 struct sched_domain
*sd
;
7691 sd
= &per_cpu(node_domains
, j
);
7694 sg
->__cpu_power
= 0;
7695 cpumask_copy(sched_group_cpus(sg
), nodemask
);
7697 cpumask_or(covered
, covered
, nodemask
);
7700 for (j
= 0; j
< nr_node_ids
; j
++) {
7701 int n
= (i
+ j
) % nr_node_ids
;
7703 cpumask_complement(notcovered
, covered
);
7704 cpumask_and(tmpmask
, notcovered
, cpu_map
);
7705 cpumask_and(tmpmask
, tmpmask
, domainspan
);
7706 if (cpumask_empty(tmpmask
))
7709 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(n
));
7710 if (cpumask_empty(tmpmask
))
7713 sg
= kmalloc_node(sizeof(struct sched_group
) +
7718 "Can not alloc domain group for node %d\n", j
);
7721 sg
->__cpu_power
= 0;
7722 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
7723 sg
->next
= prev
->next
;
7724 cpumask_or(covered
, covered
, tmpmask
);
7731 /* Calculate CPU power for physical packages and nodes */
7732 #ifdef CONFIG_SCHED_SMT
7733 for_each_cpu(i
, cpu_map
) {
7734 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
7736 init_sched_groups_power(i
, sd
);
7739 #ifdef CONFIG_SCHED_MC
7740 for_each_cpu(i
, cpu_map
) {
7741 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
7743 init_sched_groups_power(i
, sd
);
7747 for_each_cpu(i
, cpu_map
) {
7748 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
7750 init_sched_groups_power(i
, sd
);
7754 for (i
= 0; i
< nr_node_ids
; i
++)
7755 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7758 struct sched_group
*sg
;
7760 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7762 init_numa_sched_groups_power(sg
);
7766 /* Attach the domains */
7767 for_each_cpu(i
, cpu_map
) {
7768 struct sched_domain
*sd
;
7769 #ifdef CONFIG_SCHED_SMT
7770 sd
= &per_cpu(cpu_domains
, i
).sd
;
7771 #elif defined(CONFIG_SCHED_MC)
7772 sd
= &per_cpu(core_domains
, i
).sd
;
7774 sd
= &per_cpu(phys_domains
, i
).sd
;
7776 cpu_attach_domain(sd
, rd
, i
);
7782 free_cpumask_var(tmpmask
);
7784 free_cpumask_var(send_covered
);
7786 free_cpumask_var(this_core_map
);
7787 free_this_sibling_map
:
7788 free_cpumask_var(this_sibling_map
);
7790 free_cpumask_var(nodemask
);
7793 free_cpumask_var(notcovered
);
7795 free_cpumask_var(covered
);
7797 free_cpumask_var(domainspan
);
7804 kfree(sched_group_nodes
);
7810 free_sched_groups(cpu_map
, tmpmask
);
7811 free_rootdomain(rd
);
7816 static int build_sched_domains(const struct cpumask
*cpu_map
)
7818 return __build_sched_domains(cpu_map
, NULL
);
7821 static struct cpumask
*doms_cur
; /* current sched domains */
7822 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7823 static struct sched_domain_attr
*dattr_cur
;
7824 /* attribues of custom domains in 'doms_cur' */
7827 * Special case: If a kmalloc of a doms_cur partition (array of
7828 * cpumask) fails, then fallback to a single sched domain,
7829 * as determined by the single cpumask fallback_doms.
7831 static cpumask_var_t fallback_doms
;
7834 * arch_update_cpu_topology lets virtualized architectures update the
7835 * cpu core maps. It is supposed to return 1 if the topology changed
7836 * or 0 if it stayed the same.
7838 int __attribute__((weak
)) arch_update_cpu_topology(void)
7844 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7845 * For now this just excludes isolated cpus, but could be used to
7846 * exclude other special cases in the future.
7848 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7852 arch_update_cpu_topology();
7854 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
7856 doms_cur
= fallback_doms
;
7857 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
7859 err
= build_sched_domains(doms_cur
);
7860 register_sched_domain_sysctl();
7865 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7866 struct cpumask
*tmpmask
)
7868 free_sched_groups(cpu_map
, tmpmask
);
7872 * Detach sched domains from a group of cpus specified in cpu_map
7873 * These cpus will now be attached to the NULL domain
7875 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7877 /* Save because hotplug lock held. */
7878 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7881 for_each_cpu(i
, cpu_map
)
7882 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7883 synchronize_sched();
7884 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7887 /* handle null as "default" */
7888 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7889 struct sched_domain_attr
*new, int idx_new
)
7891 struct sched_domain_attr tmp
;
7898 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7899 new ? (new + idx_new
) : &tmp
,
7900 sizeof(struct sched_domain_attr
));
7904 * Partition sched domains as specified by the 'ndoms_new'
7905 * cpumasks in the array doms_new[] of cpumasks. This compares
7906 * doms_new[] to the current sched domain partitioning, doms_cur[].
7907 * It destroys each deleted domain and builds each new domain.
7909 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7910 * The masks don't intersect (don't overlap.) We should setup one
7911 * sched domain for each mask. CPUs not in any of the cpumasks will
7912 * not be load balanced. If the same cpumask appears both in the
7913 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7916 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7917 * ownership of it and will kfree it when done with it. If the caller
7918 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7919 * ndoms_new == 1, and partition_sched_domains() will fallback to
7920 * the single partition 'fallback_doms', it also forces the domains
7923 * If doms_new == NULL it will be replaced with cpu_online_mask.
7924 * ndoms_new == 0 is a special case for destroying existing domains,
7925 * and it will not create the default domain.
7927 * Call with hotplug lock held
7929 /* FIXME: Change to struct cpumask *doms_new[] */
7930 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
7931 struct sched_domain_attr
*dattr_new
)
7936 mutex_lock(&sched_domains_mutex
);
7938 /* always unregister in case we don't destroy any domains */
7939 unregister_sched_domain_sysctl();
7941 /* Let architecture update cpu core mappings. */
7942 new_topology
= arch_update_cpu_topology();
7944 n
= doms_new
? ndoms_new
: 0;
7946 /* Destroy deleted domains */
7947 for (i
= 0; i
< ndoms_cur
; i
++) {
7948 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7949 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
7950 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7953 /* no match - a current sched domain not in new doms_new[] */
7954 detach_destroy_domains(doms_cur
+ i
);
7959 if (doms_new
== NULL
) {
7961 doms_new
= fallback_doms
;
7962 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
7963 WARN_ON_ONCE(dattr_new
);
7966 /* Build new domains */
7967 for (i
= 0; i
< ndoms_new
; i
++) {
7968 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7969 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
7970 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7973 /* no match - add a new doms_new */
7974 __build_sched_domains(doms_new
+ i
,
7975 dattr_new
? dattr_new
+ i
: NULL
);
7980 /* Remember the new sched domains */
7981 if (doms_cur
!= fallback_doms
)
7983 kfree(dattr_cur
); /* kfree(NULL) is safe */
7984 doms_cur
= doms_new
;
7985 dattr_cur
= dattr_new
;
7986 ndoms_cur
= ndoms_new
;
7988 register_sched_domain_sysctl();
7990 mutex_unlock(&sched_domains_mutex
);
7993 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7994 static void arch_reinit_sched_domains(void)
7998 /* Destroy domains first to force the rebuild */
7999 partition_sched_domains(0, NULL
, NULL
);
8001 rebuild_sched_domains();
8005 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8007 unsigned int level
= 0;
8009 if (sscanf(buf
, "%u", &level
) != 1)
8013 * level is always be positive so don't check for
8014 * level < POWERSAVINGS_BALANCE_NONE which is 0
8015 * What happens on 0 or 1 byte write,
8016 * need to check for count as well?
8019 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8023 sched_smt_power_savings
= level
;
8025 sched_mc_power_savings
= level
;
8027 arch_reinit_sched_domains();
8032 #ifdef CONFIG_SCHED_MC
8033 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8036 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8038 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8039 const char *buf
, size_t count
)
8041 return sched_power_savings_store(buf
, count
, 0);
8043 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8044 sched_mc_power_savings_show
,
8045 sched_mc_power_savings_store
);
8048 #ifdef CONFIG_SCHED_SMT
8049 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8052 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8054 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8055 const char *buf
, size_t count
)
8057 return sched_power_savings_store(buf
, count
, 1);
8059 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8060 sched_smt_power_savings_show
,
8061 sched_smt_power_savings_store
);
8064 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8068 #ifdef CONFIG_SCHED_SMT
8070 err
= sysfs_create_file(&cls
->kset
.kobj
,
8071 &attr_sched_smt_power_savings
.attr
);
8073 #ifdef CONFIG_SCHED_MC
8074 if (!err
&& mc_capable())
8075 err
= sysfs_create_file(&cls
->kset
.kobj
,
8076 &attr_sched_mc_power_savings
.attr
);
8080 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8082 #ifndef CONFIG_CPUSETS
8084 * Add online and remove offline CPUs from the scheduler domains.
8085 * When cpusets are enabled they take over this function.
8087 static int update_sched_domains(struct notifier_block
*nfb
,
8088 unsigned long action
, void *hcpu
)
8092 case CPU_ONLINE_FROZEN
:
8094 case CPU_DEAD_FROZEN
:
8095 partition_sched_domains(1, NULL
, NULL
);
8104 static int update_runtime(struct notifier_block
*nfb
,
8105 unsigned long action
, void *hcpu
)
8107 int cpu
= (int)(long)hcpu
;
8110 case CPU_DOWN_PREPARE
:
8111 case CPU_DOWN_PREPARE_FROZEN
:
8112 disable_runtime(cpu_rq(cpu
));
8115 case CPU_DOWN_FAILED
:
8116 case CPU_DOWN_FAILED_FROZEN
:
8118 case CPU_ONLINE_FROZEN
:
8119 enable_runtime(cpu_rq(cpu
));
8127 void __init
sched_init_smp(void)
8129 cpumask_var_t non_isolated_cpus
;
8131 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8133 #if defined(CONFIG_NUMA)
8134 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8136 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8139 mutex_lock(&sched_domains_mutex
);
8140 arch_init_sched_domains(cpu_online_mask
);
8141 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8142 if (cpumask_empty(non_isolated_cpus
))
8143 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8144 mutex_unlock(&sched_domains_mutex
);
8147 #ifndef CONFIG_CPUSETS
8148 /* XXX: Theoretical race here - CPU may be hotplugged now */
8149 hotcpu_notifier(update_sched_domains
, 0);
8152 /* RT runtime code needs to handle some hotplug events */
8153 hotcpu_notifier(update_runtime
, 0);
8157 /* Move init over to a non-isolated CPU */
8158 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8160 sched_init_granularity();
8161 free_cpumask_var(non_isolated_cpus
);
8163 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8164 init_sched_rt_class();
8167 void __init
sched_init_smp(void)
8169 sched_init_granularity();
8171 #endif /* CONFIG_SMP */
8173 int in_sched_functions(unsigned long addr
)
8175 return in_lock_functions(addr
) ||
8176 (addr
>= (unsigned long)__sched_text_start
8177 && addr
< (unsigned long)__sched_text_end
);
8180 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8182 cfs_rq
->tasks_timeline
= RB_ROOT
;
8183 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8184 #ifdef CONFIG_FAIR_GROUP_SCHED
8187 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8190 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8192 struct rt_prio_array
*array
;
8195 array
= &rt_rq
->active
;
8196 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8197 INIT_LIST_HEAD(array
->queue
+ i
);
8198 __clear_bit(i
, array
->bitmap
);
8200 /* delimiter for bitsearch: */
8201 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8203 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8204 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8207 rt_rq
->rt_nr_migratory
= 0;
8208 rt_rq
->overloaded
= 0;
8212 rt_rq
->rt_throttled
= 0;
8213 rt_rq
->rt_runtime
= 0;
8214 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8216 #ifdef CONFIG_RT_GROUP_SCHED
8217 rt_rq
->rt_nr_boosted
= 0;
8222 #ifdef CONFIG_FAIR_GROUP_SCHED
8223 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8224 struct sched_entity
*se
, int cpu
, int add
,
8225 struct sched_entity
*parent
)
8227 struct rq
*rq
= cpu_rq(cpu
);
8228 tg
->cfs_rq
[cpu
] = cfs_rq
;
8229 init_cfs_rq(cfs_rq
, rq
);
8232 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8235 /* se could be NULL for init_task_group */
8240 se
->cfs_rq
= &rq
->cfs
;
8242 se
->cfs_rq
= parent
->my_q
;
8245 se
->load
.weight
= tg
->shares
;
8246 se
->load
.inv_weight
= 0;
8247 se
->parent
= parent
;
8251 #ifdef CONFIG_RT_GROUP_SCHED
8252 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8253 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8254 struct sched_rt_entity
*parent
)
8256 struct rq
*rq
= cpu_rq(cpu
);
8258 tg
->rt_rq
[cpu
] = rt_rq
;
8259 init_rt_rq(rt_rq
, rq
);
8261 rt_rq
->rt_se
= rt_se
;
8262 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8264 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8266 tg
->rt_se
[cpu
] = rt_se
;
8271 rt_se
->rt_rq
= &rq
->rt
;
8273 rt_se
->rt_rq
= parent
->my_q
;
8275 rt_se
->my_q
= rt_rq
;
8276 rt_se
->parent
= parent
;
8277 INIT_LIST_HEAD(&rt_se
->run_list
);
8281 void __init
sched_init(void)
8284 unsigned long alloc_size
= 0, ptr
;
8286 #ifdef CONFIG_FAIR_GROUP_SCHED
8287 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8289 #ifdef CONFIG_RT_GROUP_SCHED
8290 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8292 #ifdef CONFIG_USER_SCHED
8296 * As sched_init() is called before page_alloc is setup,
8297 * we use alloc_bootmem().
8300 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8302 #ifdef CONFIG_FAIR_GROUP_SCHED
8303 init_task_group
.se
= (struct sched_entity
**)ptr
;
8304 ptr
+= nr_cpu_ids
* sizeof(void **);
8306 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8307 ptr
+= nr_cpu_ids
* sizeof(void **);
8309 #ifdef CONFIG_USER_SCHED
8310 root_task_group
.se
= (struct sched_entity
**)ptr
;
8311 ptr
+= nr_cpu_ids
* sizeof(void **);
8313 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8314 ptr
+= nr_cpu_ids
* sizeof(void **);
8315 #endif /* CONFIG_USER_SCHED */
8316 #endif /* CONFIG_FAIR_GROUP_SCHED */
8317 #ifdef CONFIG_RT_GROUP_SCHED
8318 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8319 ptr
+= nr_cpu_ids
* sizeof(void **);
8321 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8322 ptr
+= nr_cpu_ids
* sizeof(void **);
8324 #ifdef CONFIG_USER_SCHED
8325 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8326 ptr
+= nr_cpu_ids
* sizeof(void **);
8328 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8329 ptr
+= nr_cpu_ids
* sizeof(void **);
8330 #endif /* CONFIG_USER_SCHED */
8331 #endif /* CONFIG_RT_GROUP_SCHED */
8335 init_defrootdomain();
8338 init_rt_bandwidth(&def_rt_bandwidth
,
8339 global_rt_period(), global_rt_runtime());
8341 #ifdef CONFIG_RT_GROUP_SCHED
8342 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8343 global_rt_period(), global_rt_runtime());
8344 #ifdef CONFIG_USER_SCHED
8345 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8346 global_rt_period(), RUNTIME_INF
);
8347 #endif /* CONFIG_USER_SCHED */
8348 #endif /* CONFIG_RT_GROUP_SCHED */
8350 #ifdef CONFIG_GROUP_SCHED
8351 list_add(&init_task_group
.list
, &task_groups
);
8352 INIT_LIST_HEAD(&init_task_group
.children
);
8354 #ifdef CONFIG_USER_SCHED
8355 INIT_LIST_HEAD(&root_task_group
.children
);
8356 init_task_group
.parent
= &root_task_group
;
8357 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8358 #endif /* CONFIG_USER_SCHED */
8359 #endif /* CONFIG_GROUP_SCHED */
8361 for_each_possible_cpu(i
) {
8365 spin_lock_init(&rq
->lock
);
8367 init_cfs_rq(&rq
->cfs
, rq
);
8368 init_rt_rq(&rq
->rt
, rq
);
8369 #ifdef CONFIG_FAIR_GROUP_SCHED
8370 init_task_group
.shares
= init_task_group_load
;
8371 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8372 #ifdef CONFIG_CGROUP_SCHED
8374 * How much cpu bandwidth does init_task_group get?
8376 * In case of task-groups formed thr' the cgroup filesystem, it
8377 * gets 100% of the cpu resources in the system. This overall
8378 * system cpu resource is divided among the tasks of
8379 * init_task_group and its child task-groups in a fair manner,
8380 * based on each entity's (task or task-group's) weight
8381 * (se->load.weight).
8383 * In other words, if init_task_group has 10 tasks of weight
8384 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8385 * then A0's share of the cpu resource is:
8387 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8389 * We achieve this by letting init_task_group's tasks sit
8390 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8392 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8393 #elif defined CONFIG_USER_SCHED
8394 root_task_group
.shares
= NICE_0_LOAD
;
8395 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8397 * In case of task-groups formed thr' the user id of tasks,
8398 * init_task_group represents tasks belonging to root user.
8399 * Hence it forms a sibling of all subsequent groups formed.
8400 * In this case, init_task_group gets only a fraction of overall
8401 * system cpu resource, based on the weight assigned to root
8402 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8403 * by letting tasks of init_task_group sit in a separate cfs_rq
8404 * (init_cfs_rq) and having one entity represent this group of
8405 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8407 init_tg_cfs_entry(&init_task_group
,
8408 &per_cpu(init_cfs_rq
, i
),
8409 &per_cpu(init_sched_entity
, i
), i
, 1,
8410 root_task_group
.se
[i
]);
8413 #endif /* CONFIG_FAIR_GROUP_SCHED */
8415 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8416 #ifdef CONFIG_RT_GROUP_SCHED
8417 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8418 #ifdef CONFIG_CGROUP_SCHED
8419 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8420 #elif defined CONFIG_USER_SCHED
8421 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8422 init_tg_rt_entry(&init_task_group
,
8423 &per_cpu(init_rt_rq
, i
),
8424 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8425 root_task_group
.rt_se
[i
]);
8429 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8430 rq
->cpu_load
[j
] = 0;
8434 rq
->active_balance
= 0;
8435 rq
->next_balance
= jiffies
;
8439 rq
->migration_thread
= NULL
;
8440 INIT_LIST_HEAD(&rq
->migration_queue
);
8441 rq_attach_root(rq
, &def_root_domain
);
8444 atomic_set(&rq
->nr_iowait
, 0);
8447 set_load_weight(&init_task
);
8449 #ifdef CONFIG_PREEMPT_NOTIFIERS
8450 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8454 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8457 #ifdef CONFIG_RT_MUTEXES
8458 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8462 * The boot idle thread does lazy MMU switching as well:
8464 atomic_inc(&init_mm
.mm_count
);
8465 enter_lazy_tlb(&init_mm
, current
);
8468 * Make us the idle thread. Technically, schedule() should not be
8469 * called from this thread, however somewhere below it might be,
8470 * but because we are the idle thread, we just pick up running again
8471 * when this runqueue becomes "idle".
8473 init_idle(current
, smp_processor_id());
8475 * During early bootup we pretend to be a normal task:
8477 current
->sched_class
= &fair_sched_class
;
8479 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8480 alloc_bootmem_cpumask_var(&nohz_cpu_mask
);
8483 alloc_bootmem_cpumask_var(&nohz
.cpu_mask
);
8485 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8488 scheduler_running
= 1;
8491 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8492 void __might_sleep(char *file
, int line
)
8495 static unsigned long prev_jiffy
; /* ratelimiting */
8497 if ((!in_atomic() && !irqs_disabled()) ||
8498 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8500 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8502 prev_jiffy
= jiffies
;
8505 "BUG: sleeping function called from invalid context at %s:%d\n",
8508 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8509 in_atomic(), irqs_disabled(),
8510 current
->pid
, current
->comm
);
8512 debug_show_held_locks(current
);
8513 if (irqs_disabled())
8514 print_irqtrace_events(current
);
8518 EXPORT_SYMBOL(__might_sleep
);
8521 #ifdef CONFIG_MAGIC_SYSRQ
8522 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8526 update_rq_clock(rq
);
8527 on_rq
= p
->se
.on_rq
;
8529 deactivate_task(rq
, p
, 0);
8530 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8532 activate_task(rq
, p
, 0);
8533 resched_task(rq
->curr
);
8537 void normalize_rt_tasks(void)
8539 struct task_struct
*g
, *p
;
8540 unsigned long flags
;
8543 read_lock_irqsave(&tasklist_lock
, flags
);
8544 do_each_thread(g
, p
) {
8546 * Only normalize user tasks:
8551 p
->se
.exec_start
= 0;
8552 #ifdef CONFIG_SCHEDSTATS
8553 p
->se
.wait_start
= 0;
8554 p
->se
.sleep_start
= 0;
8555 p
->se
.block_start
= 0;
8560 * Renice negative nice level userspace
8563 if (TASK_NICE(p
) < 0 && p
->mm
)
8564 set_user_nice(p
, 0);
8568 spin_lock(&p
->pi_lock
);
8569 rq
= __task_rq_lock(p
);
8571 normalize_task(rq
, p
);
8573 __task_rq_unlock(rq
);
8574 spin_unlock(&p
->pi_lock
);
8575 } while_each_thread(g
, p
);
8577 read_unlock_irqrestore(&tasklist_lock
, flags
);
8580 #endif /* CONFIG_MAGIC_SYSRQ */
8584 * These functions are only useful for the IA64 MCA handling.
8586 * They can only be called when the whole system has been
8587 * stopped - every CPU needs to be quiescent, and no scheduling
8588 * activity can take place. Using them for anything else would
8589 * be a serious bug, and as a result, they aren't even visible
8590 * under any other configuration.
8594 * curr_task - return the current task for a given cpu.
8595 * @cpu: the processor in question.
8597 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8599 struct task_struct
*curr_task(int cpu
)
8601 return cpu_curr(cpu
);
8605 * set_curr_task - set the current task for a given cpu.
8606 * @cpu: the processor in question.
8607 * @p: the task pointer to set.
8609 * Description: This function must only be used when non-maskable interrupts
8610 * are serviced on a separate stack. It allows the architecture to switch the
8611 * notion of the current task on a cpu in a non-blocking manner. This function
8612 * must be called with all CPU's synchronized, and interrupts disabled, the
8613 * and caller must save the original value of the current task (see
8614 * curr_task() above) and restore that value before reenabling interrupts and
8615 * re-starting the system.
8617 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8619 void set_curr_task(int cpu
, struct task_struct
*p
)
8626 #ifdef CONFIG_FAIR_GROUP_SCHED
8627 static void free_fair_sched_group(struct task_group
*tg
)
8631 for_each_possible_cpu(i
) {
8633 kfree(tg
->cfs_rq
[i
]);
8643 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8645 struct cfs_rq
*cfs_rq
;
8646 struct sched_entity
*se
;
8650 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8653 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8657 tg
->shares
= NICE_0_LOAD
;
8659 for_each_possible_cpu(i
) {
8662 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8663 GFP_KERNEL
, cpu_to_node(i
));
8667 se
= kzalloc_node(sizeof(struct sched_entity
),
8668 GFP_KERNEL
, cpu_to_node(i
));
8672 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8681 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8683 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8684 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8687 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8689 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8691 #else /* !CONFG_FAIR_GROUP_SCHED */
8692 static inline void free_fair_sched_group(struct task_group
*tg
)
8697 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8702 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8706 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8709 #endif /* CONFIG_FAIR_GROUP_SCHED */
8711 #ifdef CONFIG_RT_GROUP_SCHED
8712 static void free_rt_sched_group(struct task_group
*tg
)
8716 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8718 for_each_possible_cpu(i
) {
8720 kfree(tg
->rt_rq
[i
]);
8722 kfree(tg
->rt_se
[i
]);
8730 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8732 struct rt_rq
*rt_rq
;
8733 struct sched_rt_entity
*rt_se
;
8737 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8740 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8744 init_rt_bandwidth(&tg
->rt_bandwidth
,
8745 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8747 for_each_possible_cpu(i
) {
8750 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8751 GFP_KERNEL
, cpu_to_node(i
));
8755 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8756 GFP_KERNEL
, cpu_to_node(i
));
8760 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8769 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8771 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8772 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8775 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8777 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8779 #else /* !CONFIG_RT_GROUP_SCHED */
8780 static inline void free_rt_sched_group(struct task_group
*tg
)
8785 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8790 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8794 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8797 #endif /* CONFIG_RT_GROUP_SCHED */
8799 #ifdef CONFIG_GROUP_SCHED
8800 static void free_sched_group(struct task_group
*tg
)
8802 free_fair_sched_group(tg
);
8803 free_rt_sched_group(tg
);
8807 /* allocate runqueue etc for a new task group */
8808 struct task_group
*sched_create_group(struct task_group
*parent
)
8810 struct task_group
*tg
;
8811 unsigned long flags
;
8814 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8816 return ERR_PTR(-ENOMEM
);
8818 if (!alloc_fair_sched_group(tg
, parent
))
8821 if (!alloc_rt_sched_group(tg
, parent
))
8824 spin_lock_irqsave(&task_group_lock
, flags
);
8825 for_each_possible_cpu(i
) {
8826 register_fair_sched_group(tg
, i
);
8827 register_rt_sched_group(tg
, i
);
8829 list_add_rcu(&tg
->list
, &task_groups
);
8831 WARN_ON(!parent
); /* root should already exist */
8833 tg
->parent
= parent
;
8834 INIT_LIST_HEAD(&tg
->children
);
8835 list_add_rcu(&tg
->siblings
, &parent
->children
);
8836 spin_unlock_irqrestore(&task_group_lock
, flags
);
8841 free_sched_group(tg
);
8842 return ERR_PTR(-ENOMEM
);
8845 /* rcu callback to free various structures associated with a task group */
8846 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8848 /* now it should be safe to free those cfs_rqs */
8849 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8852 /* Destroy runqueue etc associated with a task group */
8853 void sched_destroy_group(struct task_group
*tg
)
8855 unsigned long flags
;
8858 spin_lock_irqsave(&task_group_lock
, flags
);
8859 for_each_possible_cpu(i
) {
8860 unregister_fair_sched_group(tg
, i
);
8861 unregister_rt_sched_group(tg
, i
);
8863 list_del_rcu(&tg
->list
);
8864 list_del_rcu(&tg
->siblings
);
8865 spin_unlock_irqrestore(&task_group_lock
, flags
);
8867 /* wait for possible concurrent references to cfs_rqs complete */
8868 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8871 /* change task's runqueue when it moves between groups.
8872 * The caller of this function should have put the task in its new group
8873 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8874 * reflect its new group.
8876 void sched_move_task(struct task_struct
*tsk
)
8879 unsigned long flags
;
8882 rq
= task_rq_lock(tsk
, &flags
);
8884 update_rq_clock(rq
);
8886 running
= task_current(rq
, tsk
);
8887 on_rq
= tsk
->se
.on_rq
;
8890 dequeue_task(rq
, tsk
, 0);
8891 if (unlikely(running
))
8892 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8894 set_task_rq(tsk
, task_cpu(tsk
));
8896 #ifdef CONFIG_FAIR_GROUP_SCHED
8897 if (tsk
->sched_class
->moved_group
)
8898 tsk
->sched_class
->moved_group(tsk
);
8901 if (unlikely(running
))
8902 tsk
->sched_class
->set_curr_task(rq
);
8904 enqueue_task(rq
, tsk
, 0);
8906 task_rq_unlock(rq
, &flags
);
8908 #endif /* CONFIG_GROUP_SCHED */
8910 #ifdef CONFIG_FAIR_GROUP_SCHED
8911 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8913 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8918 dequeue_entity(cfs_rq
, se
, 0);
8920 se
->load
.weight
= shares
;
8921 se
->load
.inv_weight
= 0;
8924 enqueue_entity(cfs_rq
, se
, 0);
8927 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8929 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8930 struct rq
*rq
= cfs_rq
->rq
;
8931 unsigned long flags
;
8933 spin_lock_irqsave(&rq
->lock
, flags
);
8934 __set_se_shares(se
, shares
);
8935 spin_unlock_irqrestore(&rq
->lock
, flags
);
8938 static DEFINE_MUTEX(shares_mutex
);
8940 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8943 unsigned long flags
;
8946 * We can't change the weight of the root cgroup.
8951 if (shares
< MIN_SHARES
)
8952 shares
= MIN_SHARES
;
8953 else if (shares
> MAX_SHARES
)
8954 shares
= MAX_SHARES
;
8956 mutex_lock(&shares_mutex
);
8957 if (tg
->shares
== shares
)
8960 spin_lock_irqsave(&task_group_lock
, flags
);
8961 for_each_possible_cpu(i
)
8962 unregister_fair_sched_group(tg
, i
);
8963 list_del_rcu(&tg
->siblings
);
8964 spin_unlock_irqrestore(&task_group_lock
, flags
);
8966 /* wait for any ongoing reference to this group to finish */
8967 synchronize_sched();
8970 * Now we are free to modify the group's share on each cpu
8971 * w/o tripping rebalance_share or load_balance_fair.
8973 tg
->shares
= shares
;
8974 for_each_possible_cpu(i
) {
8978 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8979 set_se_shares(tg
->se
[i
], shares
);
8983 * Enable load balance activity on this group, by inserting it back on
8984 * each cpu's rq->leaf_cfs_rq_list.
8986 spin_lock_irqsave(&task_group_lock
, flags
);
8987 for_each_possible_cpu(i
)
8988 register_fair_sched_group(tg
, i
);
8989 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8990 spin_unlock_irqrestore(&task_group_lock
, flags
);
8992 mutex_unlock(&shares_mutex
);
8996 unsigned long sched_group_shares(struct task_group
*tg
)
9002 #ifdef CONFIG_RT_GROUP_SCHED
9004 * Ensure that the real time constraints are schedulable.
9006 static DEFINE_MUTEX(rt_constraints_mutex
);
9008 static unsigned long to_ratio(u64 period
, u64 runtime
)
9010 if (runtime
== RUNTIME_INF
)
9013 return div64_u64(runtime
<< 20, period
);
9016 /* Must be called with tasklist_lock held */
9017 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9019 struct task_struct
*g
, *p
;
9021 do_each_thread(g
, p
) {
9022 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9024 } while_each_thread(g
, p
);
9029 struct rt_schedulable_data
{
9030 struct task_group
*tg
;
9035 static int tg_schedulable(struct task_group
*tg
, void *data
)
9037 struct rt_schedulable_data
*d
= data
;
9038 struct task_group
*child
;
9039 unsigned long total
, sum
= 0;
9040 u64 period
, runtime
;
9042 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9043 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9046 period
= d
->rt_period
;
9047 runtime
= d
->rt_runtime
;
9051 * Cannot have more runtime than the period.
9053 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9057 * Ensure we don't starve existing RT tasks.
9059 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9062 total
= to_ratio(period
, runtime
);
9065 * Nobody can have more than the global setting allows.
9067 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9071 * The sum of our children's runtime should not exceed our own.
9073 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9074 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9075 runtime
= child
->rt_bandwidth
.rt_runtime
;
9077 if (child
== d
->tg
) {
9078 period
= d
->rt_period
;
9079 runtime
= d
->rt_runtime
;
9082 sum
+= to_ratio(period
, runtime
);
9091 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9093 struct rt_schedulable_data data
= {
9095 .rt_period
= period
,
9096 .rt_runtime
= runtime
,
9099 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9102 static int tg_set_bandwidth(struct task_group
*tg
,
9103 u64 rt_period
, u64 rt_runtime
)
9107 mutex_lock(&rt_constraints_mutex
);
9108 read_lock(&tasklist_lock
);
9109 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9113 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9114 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
9115 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
9117 for_each_possible_cpu(i
) {
9118 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
9120 spin_lock(&rt_rq
->rt_runtime_lock
);
9121 rt_rq
->rt_runtime
= rt_runtime
;
9122 spin_unlock(&rt_rq
->rt_runtime_lock
);
9124 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9126 read_unlock(&tasklist_lock
);
9127 mutex_unlock(&rt_constraints_mutex
);
9132 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
9134 u64 rt_runtime
, rt_period
;
9136 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9137 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
9138 if (rt_runtime_us
< 0)
9139 rt_runtime
= RUNTIME_INF
;
9141 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9144 long sched_group_rt_runtime(struct task_group
*tg
)
9148 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
9151 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
9152 do_div(rt_runtime_us
, NSEC_PER_USEC
);
9153 return rt_runtime_us
;
9156 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9158 u64 rt_runtime
, rt_period
;
9160 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9161 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9166 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9169 long sched_group_rt_period(struct task_group
*tg
)
9173 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9174 do_div(rt_period_us
, NSEC_PER_USEC
);
9175 return rt_period_us
;
9178 static int sched_rt_global_constraints(void)
9180 u64 runtime
, period
;
9183 if (sysctl_sched_rt_period
<= 0)
9186 runtime
= global_rt_runtime();
9187 period
= global_rt_period();
9190 * Sanity check on the sysctl variables.
9192 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9195 mutex_lock(&rt_constraints_mutex
);
9196 read_lock(&tasklist_lock
);
9197 ret
= __rt_schedulable(NULL
, 0, 0);
9198 read_unlock(&tasklist_lock
);
9199 mutex_unlock(&rt_constraints_mutex
);
9203 #else /* !CONFIG_RT_GROUP_SCHED */
9204 static int sched_rt_global_constraints(void)
9206 unsigned long flags
;
9209 if (sysctl_sched_rt_period
<= 0)
9212 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9213 for_each_possible_cpu(i
) {
9214 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9216 spin_lock(&rt_rq
->rt_runtime_lock
);
9217 rt_rq
->rt_runtime
= global_rt_runtime();
9218 spin_unlock(&rt_rq
->rt_runtime_lock
);
9220 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9224 #endif /* CONFIG_RT_GROUP_SCHED */
9226 int sched_rt_handler(struct ctl_table
*table
, int write
,
9227 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9231 int old_period
, old_runtime
;
9232 static DEFINE_MUTEX(mutex
);
9235 old_period
= sysctl_sched_rt_period
;
9236 old_runtime
= sysctl_sched_rt_runtime
;
9238 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9240 if (!ret
&& write
) {
9241 ret
= sched_rt_global_constraints();
9243 sysctl_sched_rt_period
= old_period
;
9244 sysctl_sched_rt_runtime
= old_runtime
;
9246 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9247 def_rt_bandwidth
.rt_period
=
9248 ns_to_ktime(global_rt_period());
9251 mutex_unlock(&mutex
);
9256 #ifdef CONFIG_CGROUP_SCHED
9258 /* return corresponding task_group object of a cgroup */
9259 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9261 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9262 struct task_group
, css
);
9265 static struct cgroup_subsys_state
*
9266 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9268 struct task_group
*tg
, *parent
;
9270 if (!cgrp
->parent
) {
9271 /* This is early initialization for the top cgroup */
9272 return &init_task_group
.css
;
9275 parent
= cgroup_tg(cgrp
->parent
);
9276 tg
= sched_create_group(parent
);
9278 return ERR_PTR(-ENOMEM
);
9284 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9286 struct task_group
*tg
= cgroup_tg(cgrp
);
9288 sched_destroy_group(tg
);
9292 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9293 struct task_struct
*tsk
)
9295 #ifdef CONFIG_RT_GROUP_SCHED
9296 /* Don't accept realtime tasks when there is no way for them to run */
9297 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9300 /* We don't support RT-tasks being in separate groups */
9301 if (tsk
->sched_class
!= &fair_sched_class
)
9309 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9310 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9312 sched_move_task(tsk
);
9315 #ifdef CONFIG_FAIR_GROUP_SCHED
9316 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9319 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9322 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9324 struct task_group
*tg
= cgroup_tg(cgrp
);
9326 return (u64
) tg
->shares
;
9328 #endif /* CONFIG_FAIR_GROUP_SCHED */
9330 #ifdef CONFIG_RT_GROUP_SCHED
9331 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9334 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9337 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9339 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9342 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9345 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9348 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9350 return sched_group_rt_period(cgroup_tg(cgrp
));
9352 #endif /* CONFIG_RT_GROUP_SCHED */
9354 static struct cftype cpu_files
[] = {
9355 #ifdef CONFIG_FAIR_GROUP_SCHED
9358 .read_u64
= cpu_shares_read_u64
,
9359 .write_u64
= cpu_shares_write_u64
,
9362 #ifdef CONFIG_RT_GROUP_SCHED
9364 .name
= "rt_runtime_us",
9365 .read_s64
= cpu_rt_runtime_read
,
9366 .write_s64
= cpu_rt_runtime_write
,
9369 .name
= "rt_period_us",
9370 .read_u64
= cpu_rt_period_read_uint
,
9371 .write_u64
= cpu_rt_period_write_uint
,
9376 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9378 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9381 struct cgroup_subsys cpu_cgroup_subsys
= {
9383 .create
= cpu_cgroup_create
,
9384 .destroy
= cpu_cgroup_destroy
,
9385 .can_attach
= cpu_cgroup_can_attach
,
9386 .attach
= cpu_cgroup_attach
,
9387 .populate
= cpu_cgroup_populate
,
9388 .subsys_id
= cpu_cgroup_subsys_id
,
9392 #endif /* CONFIG_CGROUP_SCHED */
9394 #ifdef CONFIG_CGROUP_CPUACCT
9397 * CPU accounting code for task groups.
9399 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9400 * (balbir@in.ibm.com).
9403 /* track cpu usage of a group of tasks and its child groups */
9405 struct cgroup_subsys_state css
;
9406 /* cpuusage holds pointer to a u64-type object on every cpu */
9408 struct cpuacct
*parent
;
9411 struct cgroup_subsys cpuacct_subsys
;
9413 /* return cpu accounting group corresponding to this container */
9414 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9416 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9417 struct cpuacct
, css
);
9420 /* return cpu accounting group to which this task belongs */
9421 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9423 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9424 struct cpuacct
, css
);
9427 /* create a new cpu accounting group */
9428 static struct cgroup_subsys_state
*cpuacct_create(
9429 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9431 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9434 return ERR_PTR(-ENOMEM
);
9436 ca
->cpuusage
= alloc_percpu(u64
);
9437 if (!ca
->cpuusage
) {
9439 return ERR_PTR(-ENOMEM
);
9443 ca
->parent
= cgroup_ca(cgrp
->parent
);
9448 /* destroy an existing cpu accounting group */
9450 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9452 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9454 free_percpu(ca
->cpuusage
);
9458 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9460 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9463 #ifndef CONFIG_64BIT
9465 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9467 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9469 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9477 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9479 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9481 #ifndef CONFIG_64BIT
9483 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9485 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9487 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9493 /* return total cpu usage (in nanoseconds) of a group */
9494 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9496 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9497 u64 totalcpuusage
= 0;
9500 for_each_present_cpu(i
)
9501 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9503 return totalcpuusage
;
9506 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9509 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9518 for_each_present_cpu(i
)
9519 cpuacct_cpuusage_write(ca
, i
, 0);
9525 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9528 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9532 for_each_present_cpu(i
) {
9533 percpu
= cpuacct_cpuusage_read(ca
, i
);
9534 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9536 seq_printf(m
, "\n");
9540 static struct cftype files
[] = {
9543 .read_u64
= cpuusage_read
,
9544 .write_u64
= cpuusage_write
,
9547 .name
= "usage_percpu",
9548 .read_seq_string
= cpuacct_percpu_seq_read
,
9553 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9555 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9559 * charge this task's execution time to its accounting group.
9561 * called with rq->lock held.
9563 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9568 if (!cpuacct_subsys
.active
)
9571 cpu
= task_cpu(tsk
);
9574 for (; ca
; ca
= ca
->parent
) {
9575 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9576 *cpuusage
+= cputime
;
9580 struct cgroup_subsys cpuacct_subsys
= {
9582 .create
= cpuacct_create
,
9583 .destroy
= cpuacct_destroy
,
9584 .populate
= cpuacct_populate
,
9585 .subsys_id
= cpuacct_subsys_id
,
9587 #endif /* CONFIG_CGROUP_CPUACCT */