2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
55 * Array of node states.
57 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
58 [N_POSSIBLE
] = NODE_MASK_ALL
,
59 [N_ONLINE
] = { { [0] = 1UL } },
61 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
63 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
65 [N_CPU
] = { { [0] = 1UL } },
68 EXPORT_SYMBOL(node_states
);
70 unsigned long totalram_pages __read_mostly
;
71 unsigned long totalreserve_pages __read_mostly
;
73 int percpu_pagelist_fraction
;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly
;
79 static void __free_pages_ok(struct page
*page
, unsigned int order
);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
93 #ifdef CONFIG_ZONE_DMA
96 #ifdef CONFIG_ZONE_DMA32
105 EXPORT_SYMBOL(totalram_pages
);
107 static char * const zone_names
[MAX_NR_ZONES
] = {
108 #ifdef CONFIG_ZONE_DMA
111 #ifdef CONFIG_ZONE_DMA32
115 #ifdef CONFIG_HIGHMEM
121 int min_free_kbytes
= 1024;
123 unsigned long __meminitdata nr_kernel_pages
;
124 unsigned long __meminitdata nr_all_pages
;
125 static unsigned long __meminitdata dma_reserve
;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
148 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
149 static int __meminitdata nr_nodemap_entries
;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
154 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore
;
157 static unsigned long __initdata required_movablecore
;
158 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 EXPORT_SYMBOL(movable_zone
);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
167 EXPORT_SYMBOL(nr_node_ids
);
170 int page_group_by_mobility_disabled __read_mostly
;
172 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
174 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
175 PB_migrate
, PB_migrate_end
);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
183 unsigned long pfn
= page_to_pfn(page
);
186 seq
= zone_span_seqbegin(zone
);
187 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
189 else if (pfn
< zone
->zone_start_pfn
)
191 } while (zone_span_seqretry(zone
, seq
));
196 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
198 if (!pfn_valid_within(page_to_pfn(page
)))
200 if (zone
!= page_zone(page
))
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone
*zone
, struct page
*page
)
210 if (page_outside_zone_boundaries(zone
, page
))
212 if (!page_is_consistent(zone
, page
))
218 static inline int bad_range(struct zone
*zone
, struct page
*page
)
224 static void bad_page(struct page
*page
)
226 void *pc
= page_get_page_cgroup(page
);
228 printk(KERN_EMERG
"Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page
->flags
, page
->mapping
,
232 page_mapcount(page
), page_count(page
));
234 printk(KERN_EMERG
"cgroup:%p\n", pc
);
235 page_reset_bad_cgroup(page
);
237 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG
"Backtrace:\n");
240 page
->flags
&= ~PAGE_FLAGS_CLEAR_WHEN_BAD
;
241 set_page_count(page
, 0);
242 reset_page_mapcount(page
);
243 page
->mapping
= NULL
;
244 add_taint(TAINT_BAD_PAGE
);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page
*page
)
264 __free_pages_ok(page
, compound_order(page
));
267 void prep_compound_page(struct page
*page
, unsigned long order
)
270 int nr_pages
= 1 << order
;
272 set_compound_page_dtor(page
, free_compound_page
);
273 set_compound_order(page
, order
);
275 for (i
= 1; i
< nr_pages
; i
++) {
276 struct page
*p
= page
+ i
;
279 p
->first_page
= page
;
283 static void destroy_compound_page(struct page
*page
, unsigned long order
)
286 int nr_pages
= 1 << order
;
288 if (unlikely(compound_order(page
) != order
))
291 if (unlikely(!PageHead(page
)))
293 __ClearPageHead(page
);
294 for (i
= 1; i
< nr_pages
; i
++) {
295 struct page
*p
= page
+ i
;
297 if (unlikely(!PageTail(p
) |
298 (p
->first_page
!= page
)))
304 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
313 for (i
= 0; i
< (1 << order
); i
++)
314 clear_highpage(page
+ i
);
317 static inline void set_page_order(struct page
*page
, int order
)
319 set_page_private(page
, order
);
320 __SetPageBuddy(page
);
323 static inline void rmv_page_order(struct page
*page
)
325 __ClearPageBuddy(page
);
326 set_page_private(page
, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
336 * For example, if the starting buddy (buddy2) is #8 its order
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page
*
347 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
349 unsigned long buddy_idx
= page_idx
^ (1 << order
);
351 return page
+ (buddy_idx
- page_idx
);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx
, unsigned int order
)
357 return (page_idx
& ~(1 << order
));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
376 if (!pfn_valid_within(page_to_pfn(buddy
)))
379 if (page_zone_id(page
) != page_zone_id(buddy
))
382 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
383 BUG_ON(page_count(buddy
) != 0);
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
413 static inline void __free_one_page(struct page
*page
,
414 struct zone
*zone
, unsigned int order
)
416 unsigned long page_idx
;
417 int order_size
= 1 << order
;
418 int migratetype
= get_pageblock_migratetype(page
);
420 if (unlikely(PageCompound(page
)))
421 destroy_compound_page(page
, order
);
423 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
425 VM_BUG_ON(page_idx
& (order_size
- 1));
426 VM_BUG_ON(bad_range(zone
, page
));
428 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
429 while (order
< MAX_ORDER
-1) {
430 unsigned long combined_idx
;
433 buddy
= __page_find_buddy(page
, page_idx
, order
);
434 if (!page_is_buddy(page
, buddy
, order
))
437 /* Our buddy is free, merge with it and move up one order. */
438 list_del(&buddy
->lru
);
439 zone
->free_area
[order
].nr_free
--;
440 rmv_page_order(buddy
);
441 combined_idx
= __find_combined_index(page_idx
, order
);
442 page
= page
+ (combined_idx
- page_idx
);
443 page_idx
= combined_idx
;
446 set_page_order(page
, order
);
448 &zone
->free_area
[order
].free_list
[migratetype
]);
449 zone
->free_area
[order
].nr_free
++;
452 static inline int free_pages_check(struct page
*page
)
454 if (unlikely(page_mapcount(page
) |
455 (page
->mapping
!= NULL
) |
456 (page_get_page_cgroup(page
) != NULL
) |
457 (page_count(page
) != 0) |
458 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)))
461 __ClearPageDirty(page
);
463 * For now, we report if PG_reserved was found set, but do not
464 * clear it, and do not free the page. But we shall soon need
465 * to do more, for when the ZERO_PAGE count wraps negative.
467 return PageReserved(page
);
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
473 * count is the number of pages to free.
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
481 static void free_pages_bulk(struct zone
*zone
, int count
,
482 struct list_head
*list
, int order
)
484 spin_lock(&zone
->lock
);
485 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
486 zone
->pages_scanned
= 0;
490 VM_BUG_ON(list_empty(list
));
491 page
= list_entry(list
->prev
, struct page
, lru
);
492 /* have to delete it as __free_one_page list manipulates */
493 list_del(&page
->lru
);
494 __free_one_page(page
, zone
, order
);
496 spin_unlock(&zone
->lock
);
499 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
501 spin_lock(&zone
->lock
);
502 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
503 zone
->pages_scanned
= 0;
504 __free_one_page(page
, zone
, order
);
505 spin_unlock(&zone
->lock
);
508 static void __free_pages_ok(struct page
*page
, unsigned int order
)
514 for (i
= 0 ; i
< (1 << order
) ; ++i
)
515 reserved
+= free_pages_check(page
+ i
);
519 if (!PageHighMem(page
)) {
520 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
521 debug_check_no_obj_freed(page_address(page
),
524 arch_free_page(page
, order
);
525 kernel_map_pages(page
, 1 << order
, 0);
527 local_irq_save(flags
);
528 __count_vm_events(PGFREE
, 1 << order
);
529 free_one_page(page_zone(page
), page
, order
);
530 local_irq_restore(flags
);
534 * permit the bootmem allocator to evade page validation on high-order frees
536 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
539 __ClearPageReserved(page
);
540 set_page_count(page
, 0);
541 set_page_refcounted(page
);
547 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
548 struct page
*p
= &page
[loop
];
550 if (loop
+ 1 < BITS_PER_LONG
)
552 __ClearPageReserved(p
);
553 set_page_count(p
, 0);
556 set_page_refcounted(page
);
557 __free_pages(page
, order
);
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
576 static inline void expand(struct zone
*zone
, struct page
*page
,
577 int low
, int high
, struct free_area
*area
,
580 unsigned long size
= 1 << high
;
586 VM_BUG_ON(bad_range(zone
, &page
[size
]));
587 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
589 set_page_order(&page
[size
], high
);
594 * This page is about to be returned from the page allocator
596 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
598 if (unlikely(page_mapcount(page
) |
599 (page
->mapping
!= NULL
) |
600 (page_get_page_cgroup(page
) != NULL
) |
601 (page_count(page
) != 0) |
602 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)))
606 * For now, we report if PG_reserved was found set, but do not
607 * clear it, and do not allocate the page: as a safety net.
609 if (PageReserved(page
))
612 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_reclaim
|
613 1 << PG_referenced
| 1 << PG_arch_1
|
614 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
615 set_page_private(page
, 0);
616 set_page_refcounted(page
);
618 arch_alloc_page(page
, order
);
619 kernel_map_pages(page
, 1 << order
, 1);
621 if (gfp_flags
& __GFP_ZERO
)
622 prep_zero_page(page
, order
, gfp_flags
);
624 if (order
&& (gfp_flags
& __GFP_COMP
))
625 prep_compound_page(page
, order
);
631 * Go through the free lists for the given migratetype and remove
632 * the smallest available page from the freelists
634 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
637 unsigned int current_order
;
638 struct free_area
* area
;
641 /* Find a page of the appropriate size in the preferred list */
642 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
643 area
= &(zone
->free_area
[current_order
]);
644 if (list_empty(&area
->free_list
[migratetype
]))
647 page
= list_entry(area
->free_list
[migratetype
].next
,
649 list_del(&page
->lru
);
650 rmv_page_order(page
);
652 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
653 expand(zone
, page
, order
, current_order
, area
, migratetype
);
662 * This array describes the order lists are fallen back to when
663 * the free lists for the desirable migrate type are depleted
665 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
666 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
667 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
668 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
669 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
673 * Move the free pages in a range to the free lists of the requested type.
674 * Note that start_page and end_pages are not aligned on a pageblock
675 * boundary. If alignment is required, use move_freepages_block()
677 static int move_freepages(struct zone
*zone
,
678 struct page
*start_page
, struct page
*end_page
,
685 #ifndef CONFIG_HOLES_IN_ZONE
687 * page_zone is not safe to call in this context when
688 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 * anyway as we check zone boundaries in move_freepages_block().
690 * Remove at a later date when no bug reports exist related to
691 * grouping pages by mobility
693 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
696 for (page
= start_page
; page
<= end_page
;) {
697 if (!pfn_valid_within(page_to_pfn(page
))) {
702 if (!PageBuddy(page
)) {
707 order
= page_order(page
);
708 list_del(&page
->lru
);
710 &zone
->free_area
[order
].free_list
[migratetype
]);
712 pages_moved
+= 1 << order
;
718 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
721 unsigned long start_pfn
, end_pfn
;
722 struct page
*start_page
, *end_page
;
724 start_pfn
= page_to_pfn(page
);
725 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
726 start_page
= pfn_to_page(start_pfn
);
727 end_page
= start_page
+ pageblock_nr_pages
- 1;
728 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
730 /* Do not cross zone boundaries */
731 if (start_pfn
< zone
->zone_start_pfn
)
733 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
736 return move_freepages(zone
, start_page
, end_page
, migratetype
);
739 /* Remove an element from the buddy allocator from the fallback list */
740 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
741 int start_migratetype
)
743 struct free_area
* area
;
748 /* Find the largest possible block of pages in the other list */
749 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
751 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
752 migratetype
= fallbacks
[start_migratetype
][i
];
754 /* MIGRATE_RESERVE handled later if necessary */
755 if (migratetype
== MIGRATE_RESERVE
)
758 area
= &(zone
->free_area
[current_order
]);
759 if (list_empty(&area
->free_list
[migratetype
]))
762 page
= list_entry(area
->free_list
[migratetype
].next
,
767 * If breaking a large block of pages, move all free
768 * pages to the preferred allocation list. If falling
769 * back for a reclaimable kernel allocation, be more
770 * agressive about taking ownership of free pages
772 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
773 start_migratetype
== MIGRATE_RECLAIMABLE
) {
775 pages
= move_freepages_block(zone
, page
,
778 /* Claim the whole block if over half of it is free */
779 if (pages
>= (1 << (pageblock_order
-1)))
780 set_pageblock_migratetype(page
,
783 migratetype
= start_migratetype
;
786 /* Remove the page from the freelists */
787 list_del(&page
->lru
);
788 rmv_page_order(page
);
789 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
792 if (current_order
== pageblock_order
)
793 set_pageblock_migratetype(page
,
796 expand(zone
, page
, order
, current_order
, area
, migratetype
);
801 /* Use MIGRATE_RESERVE rather than fail an allocation */
802 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
806 * Do the hard work of removing an element from the buddy allocator.
807 * Call me with the zone->lock already held.
809 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
814 page
= __rmqueue_smallest(zone
, order
, migratetype
);
817 page
= __rmqueue_fallback(zone
, order
, migratetype
);
823 * Obtain a specified number of elements from the buddy allocator, all under
824 * a single hold of the lock, for efficiency. Add them to the supplied list.
825 * Returns the number of new pages which were placed at *list.
827 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
828 unsigned long count
, struct list_head
*list
,
833 spin_lock(&zone
->lock
);
834 for (i
= 0; i
< count
; ++i
) {
835 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
836 if (unlikely(page
== NULL
))
840 * Split buddy pages returned by expand() are received here
841 * in physical page order. The page is added to the callers and
842 * list and the list head then moves forward. From the callers
843 * perspective, the linked list is ordered by page number in
844 * some conditions. This is useful for IO devices that can
845 * merge IO requests if the physical pages are ordered
848 list_add(&page
->lru
, list
);
849 set_page_private(page
, migratetype
);
852 spin_unlock(&zone
->lock
);
858 * Called from the vmstat counter updater to drain pagesets of this
859 * currently executing processor on remote nodes after they have
862 * Note that this function must be called with the thread pinned to
863 * a single processor.
865 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
870 local_irq_save(flags
);
871 if (pcp
->count
>= pcp
->batch
)
872 to_drain
= pcp
->batch
;
874 to_drain
= pcp
->count
;
875 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
876 pcp
->count
-= to_drain
;
877 local_irq_restore(flags
);
882 * Drain pages of the indicated processor.
884 * The processor must either be the current processor and the
885 * thread pinned to the current processor or a processor that
888 static void drain_pages(unsigned int cpu
)
893 for_each_zone(zone
) {
894 struct per_cpu_pageset
*pset
;
895 struct per_cpu_pages
*pcp
;
897 if (!populated_zone(zone
))
900 pset
= zone_pcp(zone
, cpu
);
903 local_irq_save(flags
);
904 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
906 local_irq_restore(flags
);
911 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
913 void drain_local_pages(void *arg
)
915 drain_pages(smp_processor_id());
919 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
921 void drain_all_pages(void)
923 on_each_cpu(drain_local_pages
, NULL
, 1);
926 #ifdef CONFIG_HIBERNATION
928 void mark_free_pages(struct zone
*zone
)
930 unsigned long pfn
, max_zone_pfn
;
933 struct list_head
*curr
;
935 if (!zone
->spanned_pages
)
938 spin_lock_irqsave(&zone
->lock
, flags
);
940 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
941 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
942 if (pfn_valid(pfn
)) {
943 struct page
*page
= pfn_to_page(pfn
);
945 if (!swsusp_page_is_forbidden(page
))
946 swsusp_unset_page_free(page
);
949 for_each_migratetype_order(order
, t
) {
950 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
953 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
954 for (i
= 0; i
< (1UL << order
); i
++)
955 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
958 spin_unlock_irqrestore(&zone
->lock
, flags
);
960 #endif /* CONFIG_PM */
963 * Free a 0-order page
965 static void free_hot_cold_page(struct page
*page
, int cold
)
967 struct zone
*zone
= page_zone(page
);
968 struct per_cpu_pages
*pcp
;
972 page
->mapping
= NULL
;
973 if (free_pages_check(page
))
976 if (!PageHighMem(page
)) {
977 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
978 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
980 arch_free_page(page
, 0);
981 kernel_map_pages(page
, 1, 0);
983 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
984 local_irq_save(flags
);
985 __count_vm_event(PGFREE
);
987 list_add_tail(&page
->lru
, &pcp
->list
);
989 list_add(&page
->lru
, &pcp
->list
);
990 set_page_private(page
, get_pageblock_migratetype(page
));
992 if (pcp
->count
>= pcp
->high
) {
993 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
994 pcp
->count
-= pcp
->batch
;
996 local_irq_restore(flags
);
1000 void free_hot_page(struct page
*page
)
1002 free_hot_cold_page(page
, 0);
1005 void free_cold_page(struct page
*page
)
1007 free_hot_cold_page(page
, 1);
1011 * split_page takes a non-compound higher-order page, and splits it into
1012 * n (1<<order) sub-pages: page[0..n]
1013 * Each sub-page must be freed individually.
1015 * Note: this is probably too low level an operation for use in drivers.
1016 * Please consult with lkml before using this in your driver.
1018 void split_page(struct page
*page
, unsigned int order
)
1022 VM_BUG_ON(PageCompound(page
));
1023 VM_BUG_ON(!page_count(page
));
1024 for (i
= 1; i
< (1 << order
); i
++)
1025 set_page_refcounted(page
+ i
);
1029 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1030 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1033 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1034 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1036 unsigned long flags
;
1038 int cold
= !!(gfp_flags
& __GFP_COLD
);
1040 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1044 if (likely(order
== 0)) {
1045 struct per_cpu_pages
*pcp
;
1047 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1048 local_irq_save(flags
);
1050 pcp
->count
= rmqueue_bulk(zone
, 0,
1051 pcp
->batch
, &pcp
->list
, migratetype
);
1052 if (unlikely(!pcp
->count
))
1056 /* Find a page of the appropriate migrate type */
1058 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1059 if (page_private(page
) == migratetype
)
1062 list_for_each_entry(page
, &pcp
->list
, lru
)
1063 if (page_private(page
) == migratetype
)
1067 /* Allocate more to the pcp list if necessary */
1068 if (unlikely(&page
->lru
== &pcp
->list
)) {
1069 pcp
->count
+= rmqueue_bulk(zone
, 0,
1070 pcp
->batch
, &pcp
->list
, migratetype
);
1071 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1074 list_del(&page
->lru
);
1077 spin_lock_irqsave(&zone
->lock
, flags
);
1078 page
= __rmqueue(zone
, order
, migratetype
);
1079 spin_unlock(&zone
->lock
);
1084 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1085 zone_statistics(preferred_zone
, zone
);
1086 local_irq_restore(flags
);
1089 VM_BUG_ON(bad_range(zone
, page
));
1090 if (prep_new_page(page
, order
, gfp_flags
))
1095 local_irq_restore(flags
);
1100 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1101 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1102 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1103 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1104 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1105 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1106 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1108 #ifdef CONFIG_FAIL_PAGE_ALLOC
1110 static struct fail_page_alloc_attr
{
1111 struct fault_attr attr
;
1113 u32 ignore_gfp_highmem
;
1114 u32 ignore_gfp_wait
;
1117 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1119 struct dentry
*ignore_gfp_highmem_file
;
1120 struct dentry
*ignore_gfp_wait_file
;
1121 struct dentry
*min_order_file
;
1123 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1125 } fail_page_alloc
= {
1126 .attr
= FAULT_ATTR_INITIALIZER
,
1127 .ignore_gfp_wait
= 1,
1128 .ignore_gfp_highmem
= 1,
1132 static int __init
setup_fail_page_alloc(char *str
)
1134 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1136 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1138 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1140 if (order
< fail_page_alloc
.min_order
)
1142 if (gfp_mask
& __GFP_NOFAIL
)
1144 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1146 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1149 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1152 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1154 static int __init
fail_page_alloc_debugfs(void)
1156 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1160 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1164 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1166 fail_page_alloc
.ignore_gfp_wait_file
=
1167 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1168 &fail_page_alloc
.ignore_gfp_wait
);
1170 fail_page_alloc
.ignore_gfp_highmem_file
=
1171 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1172 &fail_page_alloc
.ignore_gfp_highmem
);
1173 fail_page_alloc
.min_order_file
=
1174 debugfs_create_u32("min-order", mode
, dir
,
1175 &fail_page_alloc
.min_order
);
1177 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1178 !fail_page_alloc
.ignore_gfp_highmem_file
||
1179 !fail_page_alloc
.min_order_file
) {
1181 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1182 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1183 debugfs_remove(fail_page_alloc
.min_order_file
);
1184 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1190 late_initcall(fail_page_alloc_debugfs
);
1192 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1194 #else /* CONFIG_FAIL_PAGE_ALLOC */
1196 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1201 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1204 * Return 1 if free pages are above 'mark'. This takes into account the order
1205 * of the allocation.
1207 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1208 int classzone_idx
, int alloc_flags
)
1210 /* free_pages my go negative - that's OK */
1212 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1215 if (alloc_flags
& ALLOC_HIGH
)
1217 if (alloc_flags
& ALLOC_HARDER
)
1220 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1222 for (o
= 0; o
< order
; o
++) {
1223 /* At the next order, this order's pages become unavailable */
1224 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1226 /* Require fewer higher order pages to be free */
1229 if (free_pages
<= min
)
1237 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1238 * skip over zones that are not allowed by the cpuset, or that have
1239 * been recently (in last second) found to be nearly full. See further
1240 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1241 * that have to skip over a lot of full or unallowed zones.
1243 * If the zonelist cache is present in the passed in zonelist, then
1244 * returns a pointer to the allowed node mask (either the current
1245 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1247 * If the zonelist cache is not available for this zonelist, does
1248 * nothing and returns NULL.
1250 * If the fullzones BITMAP in the zonelist cache is stale (more than
1251 * a second since last zap'd) then we zap it out (clear its bits.)
1253 * We hold off even calling zlc_setup, until after we've checked the
1254 * first zone in the zonelist, on the theory that most allocations will
1255 * be satisfied from that first zone, so best to examine that zone as
1256 * quickly as we can.
1258 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1260 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1261 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1263 zlc
= zonelist
->zlcache_ptr
;
1267 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1268 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1269 zlc
->last_full_zap
= jiffies
;
1272 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1273 &cpuset_current_mems_allowed
:
1274 &node_states
[N_HIGH_MEMORY
];
1275 return allowednodes
;
1279 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1280 * if it is worth looking at further for free memory:
1281 * 1) Check that the zone isn't thought to be full (doesn't have its
1282 * bit set in the zonelist_cache fullzones BITMAP).
1283 * 2) Check that the zones node (obtained from the zonelist_cache
1284 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1285 * Return true (non-zero) if zone is worth looking at further, or
1286 * else return false (zero) if it is not.
1288 * This check -ignores- the distinction between various watermarks,
1289 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1290 * found to be full for any variation of these watermarks, it will
1291 * be considered full for up to one second by all requests, unless
1292 * we are so low on memory on all allowed nodes that we are forced
1293 * into the second scan of the zonelist.
1295 * In the second scan we ignore this zonelist cache and exactly
1296 * apply the watermarks to all zones, even it is slower to do so.
1297 * We are low on memory in the second scan, and should leave no stone
1298 * unturned looking for a free page.
1300 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1301 nodemask_t
*allowednodes
)
1303 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1304 int i
; /* index of *z in zonelist zones */
1305 int n
; /* node that zone *z is on */
1307 zlc
= zonelist
->zlcache_ptr
;
1311 i
= z
- zonelist
->_zonerefs
;
1314 /* This zone is worth trying if it is allowed but not full */
1315 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1319 * Given 'z' scanning a zonelist, set the corresponding bit in
1320 * zlc->fullzones, so that subsequent attempts to allocate a page
1321 * from that zone don't waste time re-examining it.
1323 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1325 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1326 int i
; /* index of *z in zonelist zones */
1328 zlc
= zonelist
->zlcache_ptr
;
1332 i
= z
- zonelist
->_zonerefs
;
1334 set_bit(i
, zlc
->fullzones
);
1337 #else /* CONFIG_NUMA */
1339 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1344 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1345 nodemask_t
*allowednodes
)
1350 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1353 #endif /* CONFIG_NUMA */
1356 * get_page_from_freelist goes through the zonelist trying to allocate
1359 static struct page
*
1360 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1361 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
)
1364 struct page
*page
= NULL
;
1366 struct zone
*zone
, *preferred_zone
;
1367 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1368 int zlc_active
= 0; /* set if using zonelist_cache */
1369 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1371 (void)first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
,
1373 if (!preferred_zone
)
1376 classzone_idx
= zone_idx(preferred_zone
);
1380 * Scan zonelist, looking for a zone with enough free.
1381 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1383 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1384 high_zoneidx
, nodemask
) {
1385 if (NUMA_BUILD
&& zlc_active
&&
1386 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1388 if ((alloc_flags
& ALLOC_CPUSET
) &&
1389 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1392 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1394 if (alloc_flags
& ALLOC_WMARK_MIN
)
1395 mark
= zone
->pages_min
;
1396 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1397 mark
= zone
->pages_low
;
1399 mark
= zone
->pages_high
;
1400 if (!zone_watermark_ok(zone
, order
, mark
,
1401 classzone_idx
, alloc_flags
)) {
1402 if (!zone_reclaim_mode
||
1403 !zone_reclaim(zone
, gfp_mask
, order
))
1404 goto this_zone_full
;
1408 page
= buffered_rmqueue(preferred_zone
, zone
, order
, gfp_mask
);
1413 zlc_mark_zone_full(zonelist
, z
);
1415 if (NUMA_BUILD
&& !did_zlc_setup
) {
1416 /* we do zlc_setup after the first zone is tried */
1417 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1423 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1424 /* Disable zlc cache for second zonelist scan */
1432 * This is the 'heart' of the zoned buddy allocator.
1435 __alloc_pages_internal(gfp_t gfp_mask
, unsigned int order
,
1436 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1438 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1439 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1443 struct reclaim_state reclaim_state
;
1444 struct task_struct
*p
= current
;
1447 unsigned long did_some_progress
;
1448 unsigned long pages_reclaimed
= 0;
1450 might_sleep_if(wait
);
1452 if (should_fail_alloc_page(gfp_mask
, order
))
1456 z
= zonelist
->_zonerefs
; /* the list of zones suitable for gfp_mask */
1458 if (unlikely(!z
->zone
)) {
1460 * Happens if we have an empty zonelist as a result of
1461 * GFP_THISNODE being used on a memoryless node
1466 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1467 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1472 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1473 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1474 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1475 * using a larger set of nodes after it has established that the
1476 * allowed per node queues are empty and that nodes are
1479 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1482 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1483 wakeup_kswapd(zone
, order
);
1486 * OK, we're below the kswapd watermark and have kicked background
1487 * reclaim. Now things get more complex, so set up alloc_flags according
1488 * to how we want to proceed.
1490 * The caller may dip into page reserves a bit more if the caller
1491 * cannot run direct reclaim, or if the caller has realtime scheduling
1492 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1493 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1495 alloc_flags
= ALLOC_WMARK_MIN
;
1496 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1497 alloc_flags
|= ALLOC_HARDER
;
1498 if (gfp_mask
& __GFP_HIGH
)
1499 alloc_flags
|= ALLOC_HIGH
;
1501 alloc_flags
|= ALLOC_CPUSET
;
1504 * Go through the zonelist again. Let __GFP_HIGH and allocations
1505 * coming from realtime tasks go deeper into reserves.
1507 * This is the last chance, in general, before the goto nopage.
1508 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1509 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1511 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1512 high_zoneidx
, alloc_flags
);
1516 /* This allocation should allow future memory freeing. */
1519 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1520 && !in_interrupt()) {
1521 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1523 /* go through the zonelist yet again, ignoring mins */
1524 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1525 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
);
1528 if (gfp_mask
& __GFP_NOFAIL
) {
1529 congestion_wait(WRITE
, HZ
/50);
1536 /* Atomic allocations - we can't balance anything */
1542 /* We now go into synchronous reclaim */
1543 cpuset_memory_pressure_bump();
1544 p
->flags
|= PF_MEMALLOC
;
1545 reclaim_state
.reclaimed_slab
= 0;
1546 p
->reclaim_state
= &reclaim_state
;
1548 did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
);
1550 p
->reclaim_state
= NULL
;
1551 p
->flags
&= ~PF_MEMALLOC
;
1558 if (likely(did_some_progress
)) {
1559 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1560 zonelist
, high_zoneidx
, alloc_flags
);
1563 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1564 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1565 schedule_timeout_uninterruptible(1);
1570 * Go through the zonelist yet one more time, keep
1571 * very high watermark here, this is only to catch
1572 * a parallel oom killing, we must fail if we're still
1573 * under heavy pressure.
1575 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1576 order
, zonelist
, high_zoneidx
,
1577 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1579 clear_zonelist_oom(zonelist
, gfp_mask
);
1583 /* The OOM killer will not help higher order allocs so fail */
1584 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1585 clear_zonelist_oom(zonelist
, gfp_mask
);
1589 out_of_memory(zonelist
, gfp_mask
, order
);
1590 clear_zonelist_oom(zonelist
, gfp_mask
);
1595 * Don't let big-order allocations loop unless the caller explicitly
1596 * requests that. Wait for some write requests to complete then retry.
1598 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1599 * means __GFP_NOFAIL, but that may not be true in other
1602 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1603 * specified, then we retry until we no longer reclaim any pages
1604 * (above), or we've reclaimed an order of pages at least as
1605 * large as the allocation's order. In both cases, if the
1606 * allocation still fails, we stop retrying.
1608 pages_reclaimed
+= did_some_progress
;
1610 if (!(gfp_mask
& __GFP_NORETRY
)) {
1611 if (order
<= PAGE_ALLOC_COSTLY_ORDER
) {
1614 if (gfp_mask
& __GFP_REPEAT
&&
1615 pages_reclaimed
< (1 << order
))
1618 if (gfp_mask
& __GFP_NOFAIL
)
1622 congestion_wait(WRITE
, HZ
/50);
1627 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1628 printk(KERN_WARNING
"%s: page allocation failure."
1629 " order:%d, mode:0x%x\n",
1630 p
->comm
, order
, gfp_mask
);
1637 EXPORT_SYMBOL(__alloc_pages_internal
);
1640 * Common helper functions.
1642 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1645 page
= alloc_pages(gfp_mask
, order
);
1648 return (unsigned long) page_address(page
);
1651 EXPORT_SYMBOL(__get_free_pages
);
1653 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1658 * get_zeroed_page() returns a 32-bit address, which cannot represent
1661 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1663 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1665 return (unsigned long) page_address(page
);
1669 EXPORT_SYMBOL(get_zeroed_page
);
1671 void __pagevec_free(struct pagevec
*pvec
)
1673 int i
= pagevec_count(pvec
);
1676 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1679 void __free_pages(struct page
*page
, unsigned int order
)
1681 if (put_page_testzero(page
)) {
1683 free_hot_page(page
);
1685 __free_pages_ok(page
, order
);
1689 EXPORT_SYMBOL(__free_pages
);
1691 void free_pages(unsigned long addr
, unsigned int order
)
1694 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1695 __free_pages(virt_to_page((void *)addr
), order
);
1699 EXPORT_SYMBOL(free_pages
);
1702 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1703 * @size: the number of bytes to allocate
1704 * @gfp_mask: GFP flags for the allocation
1706 * This function is similar to alloc_pages(), except that it allocates the
1707 * minimum number of pages to satisfy the request. alloc_pages() can only
1708 * allocate memory in power-of-two pages.
1710 * This function is also limited by MAX_ORDER.
1712 * Memory allocated by this function must be released by free_pages_exact().
1714 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
1716 unsigned int order
= get_order(size
);
1719 addr
= __get_free_pages(gfp_mask
, order
);
1721 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
1722 unsigned long used
= addr
+ PAGE_ALIGN(size
);
1724 split_page(virt_to_page(addr
), order
);
1725 while (used
< alloc_end
) {
1731 return (void *)addr
;
1733 EXPORT_SYMBOL(alloc_pages_exact
);
1736 * free_pages_exact - release memory allocated via alloc_pages_exact()
1737 * @virt: the value returned by alloc_pages_exact.
1738 * @size: size of allocation, same value as passed to alloc_pages_exact().
1740 * Release the memory allocated by a previous call to alloc_pages_exact.
1742 void free_pages_exact(void *virt
, size_t size
)
1744 unsigned long addr
= (unsigned long)virt
;
1745 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1747 while (addr
< end
) {
1752 EXPORT_SYMBOL(free_pages_exact
);
1754 static unsigned int nr_free_zone_pages(int offset
)
1759 /* Just pick one node, since fallback list is circular */
1760 unsigned int sum
= 0;
1762 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1764 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1765 unsigned long size
= zone
->present_pages
;
1766 unsigned long high
= zone
->pages_high
;
1775 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1777 unsigned int nr_free_buffer_pages(void)
1779 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1781 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1784 * Amount of free RAM allocatable within all zones
1786 unsigned int nr_free_pagecache_pages(void)
1788 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1791 static inline void show_node(struct zone
*zone
)
1794 printk("Node %d ", zone_to_nid(zone
));
1797 void si_meminfo(struct sysinfo
*val
)
1799 val
->totalram
= totalram_pages
;
1801 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1802 val
->bufferram
= nr_blockdev_pages();
1803 val
->totalhigh
= totalhigh_pages
;
1804 val
->freehigh
= nr_free_highpages();
1805 val
->mem_unit
= PAGE_SIZE
;
1808 EXPORT_SYMBOL(si_meminfo
);
1811 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1813 pg_data_t
*pgdat
= NODE_DATA(nid
);
1815 val
->totalram
= pgdat
->node_present_pages
;
1816 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1817 #ifdef CONFIG_HIGHMEM
1818 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1819 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1825 val
->mem_unit
= PAGE_SIZE
;
1829 #define K(x) ((x) << (PAGE_SHIFT-10))
1832 * Show free area list (used inside shift_scroll-lock stuff)
1833 * We also calculate the percentage fragmentation. We do this by counting the
1834 * memory on each free list with the exception of the first item on the list.
1836 void show_free_areas(void)
1841 for_each_zone(zone
) {
1842 if (!populated_zone(zone
))
1846 printk("%s per-cpu:\n", zone
->name
);
1848 for_each_online_cpu(cpu
) {
1849 struct per_cpu_pageset
*pageset
;
1851 pageset
= zone_pcp(zone
, cpu
);
1853 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1854 cpu
, pageset
->pcp
.high
,
1855 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1859 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1860 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1861 global_page_state(NR_ACTIVE
),
1862 global_page_state(NR_INACTIVE
),
1863 global_page_state(NR_FILE_DIRTY
),
1864 global_page_state(NR_WRITEBACK
),
1865 global_page_state(NR_UNSTABLE_NFS
),
1866 global_page_state(NR_FREE_PAGES
),
1867 global_page_state(NR_SLAB_RECLAIMABLE
) +
1868 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1869 global_page_state(NR_FILE_MAPPED
),
1870 global_page_state(NR_PAGETABLE
),
1871 global_page_state(NR_BOUNCE
));
1873 for_each_zone(zone
) {
1876 if (!populated_zone(zone
))
1888 " pages_scanned:%lu"
1889 " all_unreclaimable? %s"
1892 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1895 K(zone
->pages_high
),
1896 K(zone_page_state(zone
, NR_ACTIVE
)),
1897 K(zone_page_state(zone
, NR_INACTIVE
)),
1898 K(zone
->present_pages
),
1899 zone
->pages_scanned
,
1900 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1902 printk("lowmem_reserve[]:");
1903 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1904 printk(" %lu", zone
->lowmem_reserve
[i
]);
1908 for_each_zone(zone
) {
1909 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1911 if (!populated_zone(zone
))
1915 printk("%s: ", zone
->name
);
1917 spin_lock_irqsave(&zone
->lock
, flags
);
1918 for (order
= 0; order
< MAX_ORDER
; order
++) {
1919 nr
[order
] = zone
->free_area
[order
].nr_free
;
1920 total
+= nr
[order
] << order
;
1922 spin_unlock_irqrestore(&zone
->lock
, flags
);
1923 for (order
= 0; order
< MAX_ORDER
; order
++)
1924 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1925 printk("= %lukB\n", K(total
));
1928 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1930 show_swap_cache_info();
1933 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
1935 zoneref
->zone
= zone
;
1936 zoneref
->zone_idx
= zone_idx(zone
);
1940 * Builds allocation fallback zone lists.
1942 * Add all populated zones of a node to the zonelist.
1944 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1945 int nr_zones
, enum zone_type zone_type
)
1949 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1954 zone
= pgdat
->node_zones
+ zone_type
;
1955 if (populated_zone(zone
)) {
1956 zoneref_set_zone(zone
,
1957 &zonelist
->_zonerefs
[nr_zones
++]);
1958 check_highest_zone(zone_type
);
1961 } while (zone_type
);
1968 * 0 = automatic detection of better ordering.
1969 * 1 = order by ([node] distance, -zonetype)
1970 * 2 = order by (-zonetype, [node] distance)
1972 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1973 * the same zonelist. So only NUMA can configure this param.
1975 #define ZONELIST_ORDER_DEFAULT 0
1976 #define ZONELIST_ORDER_NODE 1
1977 #define ZONELIST_ORDER_ZONE 2
1979 /* zonelist order in the kernel.
1980 * set_zonelist_order() will set this to NODE or ZONE.
1982 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1983 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1987 /* The value user specified ....changed by config */
1988 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1989 /* string for sysctl */
1990 #define NUMA_ZONELIST_ORDER_LEN 16
1991 char numa_zonelist_order
[16] = "default";
1994 * interface for configure zonelist ordering.
1995 * command line option "numa_zonelist_order"
1996 * = "[dD]efault - default, automatic configuration.
1997 * = "[nN]ode - order by node locality, then by zone within node
1998 * = "[zZ]one - order by zone, then by locality within zone
2001 static int __parse_numa_zonelist_order(char *s
)
2003 if (*s
== 'd' || *s
== 'D') {
2004 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2005 } else if (*s
== 'n' || *s
== 'N') {
2006 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2007 } else if (*s
== 'z' || *s
== 'Z') {
2008 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2011 "Ignoring invalid numa_zonelist_order value: "
2018 static __init
int setup_numa_zonelist_order(char *s
)
2021 return __parse_numa_zonelist_order(s
);
2024 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2027 * sysctl handler for numa_zonelist_order
2029 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2030 struct file
*file
, void __user
*buffer
, size_t *length
,
2033 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2037 strncpy(saved_string
, (char*)table
->data
,
2038 NUMA_ZONELIST_ORDER_LEN
);
2039 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2043 int oldval
= user_zonelist_order
;
2044 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2046 * bogus value. restore saved string
2048 strncpy((char*)table
->data
, saved_string
,
2049 NUMA_ZONELIST_ORDER_LEN
);
2050 user_zonelist_order
= oldval
;
2051 } else if (oldval
!= user_zonelist_order
)
2052 build_all_zonelists();
2058 #define MAX_NODE_LOAD (num_online_nodes())
2059 static int node_load
[MAX_NUMNODES
];
2062 * find_next_best_node - find the next node that should appear in a given node's fallback list
2063 * @node: node whose fallback list we're appending
2064 * @used_node_mask: nodemask_t of already used nodes
2066 * We use a number of factors to determine which is the next node that should
2067 * appear on a given node's fallback list. The node should not have appeared
2068 * already in @node's fallback list, and it should be the next closest node
2069 * according to the distance array (which contains arbitrary distance values
2070 * from each node to each node in the system), and should also prefer nodes
2071 * with no CPUs, since presumably they'll have very little allocation pressure
2072 * on them otherwise.
2073 * It returns -1 if no node is found.
2075 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2078 int min_val
= INT_MAX
;
2080 node_to_cpumask_ptr(tmp
, 0);
2082 /* Use the local node if we haven't already */
2083 if (!node_isset(node
, *used_node_mask
)) {
2084 node_set(node
, *used_node_mask
);
2088 for_each_node_state(n
, N_HIGH_MEMORY
) {
2090 /* Don't want a node to appear more than once */
2091 if (node_isset(n
, *used_node_mask
))
2094 /* Use the distance array to find the distance */
2095 val
= node_distance(node
, n
);
2097 /* Penalize nodes under us ("prefer the next node") */
2100 /* Give preference to headless and unused nodes */
2101 node_to_cpumask_ptr_next(tmp
, n
);
2102 if (!cpus_empty(*tmp
))
2103 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2105 /* Slight preference for less loaded node */
2106 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2107 val
+= node_load
[n
];
2109 if (val
< min_val
) {
2116 node_set(best_node
, *used_node_mask
);
2123 * Build zonelists ordered by node and zones within node.
2124 * This results in maximum locality--normal zone overflows into local
2125 * DMA zone, if any--but risks exhausting DMA zone.
2127 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2130 struct zonelist
*zonelist
;
2132 zonelist
= &pgdat
->node_zonelists
[0];
2133 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2135 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2137 zonelist
->_zonerefs
[j
].zone
= NULL
;
2138 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2142 * Build gfp_thisnode zonelists
2144 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2147 struct zonelist
*zonelist
;
2149 zonelist
= &pgdat
->node_zonelists
[1];
2150 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2151 zonelist
->_zonerefs
[j
].zone
= NULL
;
2152 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2156 * Build zonelists ordered by zone and nodes within zones.
2157 * This results in conserving DMA zone[s] until all Normal memory is
2158 * exhausted, but results in overflowing to remote node while memory
2159 * may still exist in local DMA zone.
2161 static int node_order
[MAX_NUMNODES
];
2163 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2166 int zone_type
; /* needs to be signed */
2168 struct zonelist
*zonelist
;
2170 zonelist
= &pgdat
->node_zonelists
[0];
2172 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2173 for (j
= 0; j
< nr_nodes
; j
++) {
2174 node
= node_order
[j
];
2175 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2176 if (populated_zone(z
)) {
2178 &zonelist
->_zonerefs
[pos
++]);
2179 check_highest_zone(zone_type
);
2183 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2184 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2187 static int default_zonelist_order(void)
2190 unsigned long low_kmem_size
,total_size
;
2194 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2195 * If they are really small and used heavily, the system can fall
2196 * into OOM very easily.
2197 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2199 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2202 for_each_online_node(nid
) {
2203 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2204 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2205 if (populated_zone(z
)) {
2206 if (zone_type
< ZONE_NORMAL
)
2207 low_kmem_size
+= z
->present_pages
;
2208 total_size
+= z
->present_pages
;
2212 if (!low_kmem_size
|| /* there are no DMA area. */
2213 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2214 return ZONELIST_ORDER_NODE
;
2216 * look into each node's config.
2217 * If there is a node whose DMA/DMA32 memory is very big area on
2218 * local memory, NODE_ORDER may be suitable.
2220 average_size
= total_size
/
2221 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2222 for_each_online_node(nid
) {
2225 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2226 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2227 if (populated_zone(z
)) {
2228 if (zone_type
< ZONE_NORMAL
)
2229 low_kmem_size
+= z
->present_pages
;
2230 total_size
+= z
->present_pages
;
2233 if (low_kmem_size
&&
2234 total_size
> average_size
&& /* ignore small node */
2235 low_kmem_size
> total_size
* 70/100)
2236 return ZONELIST_ORDER_NODE
;
2238 return ZONELIST_ORDER_ZONE
;
2241 static void set_zonelist_order(void)
2243 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2244 current_zonelist_order
= default_zonelist_order();
2246 current_zonelist_order
= user_zonelist_order
;
2249 static void build_zonelists(pg_data_t
*pgdat
)
2253 nodemask_t used_mask
;
2254 int local_node
, prev_node
;
2255 struct zonelist
*zonelist
;
2256 int order
= current_zonelist_order
;
2258 /* initialize zonelists */
2259 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2260 zonelist
= pgdat
->node_zonelists
+ i
;
2261 zonelist
->_zonerefs
[0].zone
= NULL
;
2262 zonelist
->_zonerefs
[0].zone_idx
= 0;
2265 /* NUMA-aware ordering of nodes */
2266 local_node
= pgdat
->node_id
;
2267 load
= num_online_nodes();
2268 prev_node
= local_node
;
2269 nodes_clear(used_mask
);
2271 memset(node_load
, 0, sizeof(node_load
));
2272 memset(node_order
, 0, sizeof(node_order
));
2275 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2276 int distance
= node_distance(local_node
, node
);
2279 * If another node is sufficiently far away then it is better
2280 * to reclaim pages in a zone before going off node.
2282 if (distance
> RECLAIM_DISTANCE
)
2283 zone_reclaim_mode
= 1;
2286 * We don't want to pressure a particular node.
2287 * So adding penalty to the first node in same
2288 * distance group to make it round-robin.
2290 if (distance
!= node_distance(local_node
, prev_node
))
2291 node_load
[node
] = load
;
2295 if (order
== ZONELIST_ORDER_NODE
)
2296 build_zonelists_in_node_order(pgdat
, node
);
2298 node_order
[j
++] = node
; /* remember order */
2301 if (order
== ZONELIST_ORDER_ZONE
) {
2302 /* calculate node order -- i.e., DMA last! */
2303 build_zonelists_in_zone_order(pgdat
, j
);
2306 build_thisnode_zonelists(pgdat
);
2309 /* Construct the zonelist performance cache - see further mmzone.h */
2310 static void build_zonelist_cache(pg_data_t
*pgdat
)
2312 struct zonelist
*zonelist
;
2313 struct zonelist_cache
*zlc
;
2316 zonelist
= &pgdat
->node_zonelists
[0];
2317 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2318 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2319 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2320 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2324 #else /* CONFIG_NUMA */
2326 static void set_zonelist_order(void)
2328 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2331 static void build_zonelists(pg_data_t
*pgdat
)
2333 int node
, local_node
;
2335 struct zonelist
*zonelist
;
2337 local_node
= pgdat
->node_id
;
2339 zonelist
= &pgdat
->node_zonelists
[0];
2340 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2343 * Now we build the zonelist so that it contains the zones
2344 * of all the other nodes.
2345 * We don't want to pressure a particular node, so when
2346 * building the zones for node N, we make sure that the
2347 * zones coming right after the local ones are those from
2348 * node N+1 (modulo N)
2350 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2351 if (!node_online(node
))
2353 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2356 for (node
= 0; node
< local_node
; node
++) {
2357 if (!node_online(node
))
2359 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2363 zonelist
->_zonerefs
[j
].zone
= NULL
;
2364 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2367 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2368 static void build_zonelist_cache(pg_data_t
*pgdat
)
2370 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2373 #endif /* CONFIG_NUMA */
2375 /* return values int ....just for stop_machine() */
2376 static int __build_all_zonelists(void *dummy
)
2380 for_each_online_node(nid
) {
2381 pg_data_t
*pgdat
= NODE_DATA(nid
);
2383 build_zonelists(pgdat
);
2384 build_zonelist_cache(pgdat
);
2389 void build_all_zonelists(void)
2391 set_zonelist_order();
2393 if (system_state
== SYSTEM_BOOTING
) {
2394 __build_all_zonelists(NULL
);
2395 mminit_verify_zonelist();
2396 cpuset_init_current_mems_allowed();
2398 /* we have to stop all cpus to guarantee there is no user
2400 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2401 /* cpuset refresh routine should be here */
2403 vm_total_pages
= nr_free_pagecache_pages();
2405 * Disable grouping by mobility if the number of pages in the
2406 * system is too low to allow the mechanism to work. It would be
2407 * more accurate, but expensive to check per-zone. This check is
2408 * made on memory-hotadd so a system can start with mobility
2409 * disabled and enable it later
2411 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2412 page_group_by_mobility_disabled
= 1;
2414 page_group_by_mobility_disabled
= 0;
2416 printk("Built %i zonelists in %s order, mobility grouping %s. "
2417 "Total pages: %ld\n",
2419 zonelist_order_name
[current_zonelist_order
],
2420 page_group_by_mobility_disabled
? "off" : "on",
2423 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2428 * Helper functions to size the waitqueue hash table.
2429 * Essentially these want to choose hash table sizes sufficiently
2430 * large so that collisions trying to wait on pages are rare.
2431 * But in fact, the number of active page waitqueues on typical
2432 * systems is ridiculously low, less than 200. So this is even
2433 * conservative, even though it seems large.
2435 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2436 * waitqueues, i.e. the size of the waitq table given the number of pages.
2438 #define PAGES_PER_WAITQUEUE 256
2440 #ifndef CONFIG_MEMORY_HOTPLUG
2441 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2443 unsigned long size
= 1;
2445 pages
/= PAGES_PER_WAITQUEUE
;
2447 while (size
< pages
)
2451 * Once we have dozens or even hundreds of threads sleeping
2452 * on IO we've got bigger problems than wait queue collision.
2453 * Limit the size of the wait table to a reasonable size.
2455 size
= min(size
, 4096UL);
2457 return max(size
, 4UL);
2461 * A zone's size might be changed by hot-add, so it is not possible to determine
2462 * a suitable size for its wait_table. So we use the maximum size now.
2464 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2466 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2467 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2468 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2470 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2471 * or more by the traditional way. (See above). It equals:
2473 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2474 * ia64(16K page size) : = ( 8G + 4M)byte.
2475 * powerpc (64K page size) : = (32G +16M)byte.
2477 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2484 * This is an integer logarithm so that shifts can be used later
2485 * to extract the more random high bits from the multiplicative
2486 * hash function before the remainder is taken.
2488 static inline unsigned long wait_table_bits(unsigned long size
)
2493 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2496 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2497 * of blocks reserved is based on zone->pages_min. The memory within the
2498 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2499 * higher will lead to a bigger reserve which will get freed as contiguous
2500 * blocks as reclaim kicks in
2502 static void setup_zone_migrate_reserve(struct zone
*zone
)
2504 unsigned long start_pfn
, pfn
, end_pfn
;
2506 unsigned long reserve
, block_migratetype
;
2508 /* Get the start pfn, end pfn and the number of blocks to reserve */
2509 start_pfn
= zone
->zone_start_pfn
;
2510 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2511 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2514 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2515 if (!pfn_valid(pfn
))
2517 page
= pfn_to_page(pfn
);
2519 /* Blocks with reserved pages will never free, skip them. */
2520 if (PageReserved(page
))
2523 block_migratetype
= get_pageblock_migratetype(page
);
2525 /* If this block is reserved, account for it */
2526 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2531 /* Suitable for reserving if this block is movable */
2532 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2533 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2534 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2540 * If the reserve is met and this is a previous reserved block,
2543 if (block_migratetype
== MIGRATE_RESERVE
) {
2544 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2545 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2551 * Initially all pages are reserved - free ones are freed
2552 * up by free_all_bootmem() once the early boot process is
2553 * done. Non-atomic initialization, single-pass.
2555 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2556 unsigned long start_pfn
, enum memmap_context context
)
2559 unsigned long end_pfn
= start_pfn
+ size
;
2563 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2564 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2566 * There can be holes in boot-time mem_map[]s
2567 * handed to this function. They do not
2568 * exist on hotplugged memory.
2570 if (context
== MEMMAP_EARLY
) {
2571 if (!early_pfn_valid(pfn
))
2573 if (!early_pfn_in_nid(pfn
, nid
))
2576 page
= pfn_to_page(pfn
);
2577 set_page_links(page
, zone
, nid
, pfn
);
2578 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2579 init_page_count(page
);
2580 reset_page_mapcount(page
);
2581 SetPageReserved(page
);
2583 * Mark the block movable so that blocks are reserved for
2584 * movable at startup. This will force kernel allocations
2585 * to reserve their blocks rather than leaking throughout
2586 * the address space during boot when many long-lived
2587 * kernel allocations are made. Later some blocks near
2588 * the start are marked MIGRATE_RESERVE by
2589 * setup_zone_migrate_reserve()
2591 * bitmap is created for zone's valid pfn range. but memmap
2592 * can be created for invalid pages (for alignment)
2593 * check here not to call set_pageblock_migratetype() against
2596 if ((z
->zone_start_pfn
<= pfn
)
2597 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2598 && !(pfn
& (pageblock_nr_pages
- 1)))
2599 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2601 INIT_LIST_HEAD(&page
->lru
);
2602 #ifdef WANT_PAGE_VIRTUAL
2603 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2604 if (!is_highmem_idx(zone
))
2605 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2610 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2613 for_each_migratetype_order(order
, t
) {
2614 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2615 zone
->free_area
[order
].nr_free
= 0;
2619 #ifndef __HAVE_ARCH_MEMMAP_INIT
2620 #define memmap_init(size, nid, zone, start_pfn) \
2621 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2624 static int zone_batchsize(struct zone
*zone
)
2629 * The per-cpu-pages pools are set to around 1000th of the
2630 * size of the zone. But no more than 1/2 of a meg.
2632 * OK, so we don't know how big the cache is. So guess.
2634 batch
= zone
->present_pages
/ 1024;
2635 if (batch
* PAGE_SIZE
> 512 * 1024)
2636 batch
= (512 * 1024) / PAGE_SIZE
;
2637 batch
/= 4; /* We effectively *= 4 below */
2642 * Clamp the batch to a 2^n - 1 value. Having a power
2643 * of 2 value was found to be more likely to have
2644 * suboptimal cache aliasing properties in some cases.
2646 * For example if 2 tasks are alternately allocating
2647 * batches of pages, one task can end up with a lot
2648 * of pages of one half of the possible page colors
2649 * and the other with pages of the other colors.
2651 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2656 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2658 struct per_cpu_pages
*pcp
;
2660 memset(p
, 0, sizeof(*p
));
2664 pcp
->high
= 6 * batch
;
2665 pcp
->batch
= max(1UL, 1 * batch
);
2666 INIT_LIST_HEAD(&pcp
->list
);
2670 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2671 * to the value high for the pageset p.
2674 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2677 struct per_cpu_pages
*pcp
;
2681 pcp
->batch
= max(1UL, high
/4);
2682 if ((high
/4) > (PAGE_SHIFT
* 8))
2683 pcp
->batch
= PAGE_SHIFT
* 8;
2689 * Boot pageset table. One per cpu which is going to be used for all
2690 * zones and all nodes. The parameters will be set in such a way
2691 * that an item put on a list will immediately be handed over to
2692 * the buddy list. This is safe since pageset manipulation is done
2693 * with interrupts disabled.
2695 * Some NUMA counter updates may also be caught by the boot pagesets.
2697 * The boot_pagesets must be kept even after bootup is complete for
2698 * unused processors and/or zones. They do play a role for bootstrapping
2699 * hotplugged processors.
2701 * zoneinfo_show() and maybe other functions do
2702 * not check if the processor is online before following the pageset pointer.
2703 * Other parts of the kernel may not check if the zone is available.
2705 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2708 * Dynamically allocate memory for the
2709 * per cpu pageset array in struct zone.
2711 static int __cpuinit
process_zones(int cpu
)
2713 struct zone
*zone
, *dzone
;
2714 int node
= cpu_to_node(cpu
);
2716 node_set_state(node
, N_CPU
); /* this node has a cpu */
2718 for_each_zone(zone
) {
2720 if (!populated_zone(zone
))
2723 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2725 if (!zone_pcp(zone
, cpu
))
2728 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2730 if (percpu_pagelist_fraction
)
2731 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2732 (zone
->present_pages
/ percpu_pagelist_fraction
));
2737 for_each_zone(dzone
) {
2738 if (!populated_zone(dzone
))
2742 kfree(zone_pcp(dzone
, cpu
));
2743 zone_pcp(dzone
, cpu
) = NULL
;
2748 static inline void free_zone_pagesets(int cpu
)
2752 for_each_zone(zone
) {
2753 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2755 /* Free per_cpu_pageset if it is slab allocated */
2756 if (pset
!= &boot_pageset
[cpu
])
2758 zone_pcp(zone
, cpu
) = NULL
;
2762 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2763 unsigned long action
,
2766 int cpu
= (long)hcpu
;
2767 int ret
= NOTIFY_OK
;
2770 case CPU_UP_PREPARE
:
2771 case CPU_UP_PREPARE_FROZEN
:
2772 if (process_zones(cpu
))
2775 case CPU_UP_CANCELED
:
2776 case CPU_UP_CANCELED_FROZEN
:
2778 case CPU_DEAD_FROZEN
:
2779 free_zone_pagesets(cpu
);
2787 static struct notifier_block __cpuinitdata pageset_notifier
=
2788 { &pageset_cpuup_callback
, NULL
, 0 };
2790 void __init
setup_per_cpu_pageset(void)
2794 /* Initialize per_cpu_pageset for cpu 0.
2795 * A cpuup callback will do this for every cpu
2796 * as it comes online
2798 err
= process_zones(smp_processor_id());
2800 register_cpu_notifier(&pageset_notifier
);
2805 static noinline __init_refok
2806 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2809 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2813 * The per-page waitqueue mechanism uses hashed waitqueues
2816 zone
->wait_table_hash_nr_entries
=
2817 wait_table_hash_nr_entries(zone_size_pages
);
2818 zone
->wait_table_bits
=
2819 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2820 alloc_size
= zone
->wait_table_hash_nr_entries
2821 * sizeof(wait_queue_head_t
);
2823 if (!slab_is_available()) {
2824 zone
->wait_table
= (wait_queue_head_t
*)
2825 alloc_bootmem_node(pgdat
, alloc_size
);
2828 * This case means that a zone whose size was 0 gets new memory
2829 * via memory hot-add.
2830 * But it may be the case that a new node was hot-added. In
2831 * this case vmalloc() will not be able to use this new node's
2832 * memory - this wait_table must be initialized to use this new
2833 * node itself as well.
2834 * To use this new node's memory, further consideration will be
2837 zone
->wait_table
= vmalloc(alloc_size
);
2839 if (!zone
->wait_table
)
2842 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2843 init_waitqueue_head(zone
->wait_table
+ i
);
2848 static __meminit
void zone_pcp_init(struct zone
*zone
)
2851 unsigned long batch
= zone_batchsize(zone
);
2853 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2855 /* Early boot. Slab allocator not functional yet */
2856 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2857 setup_pageset(&boot_pageset
[cpu
],0);
2859 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2862 if (zone
->present_pages
)
2863 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2864 zone
->name
, zone
->present_pages
, batch
);
2867 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2868 unsigned long zone_start_pfn
,
2870 enum memmap_context context
)
2872 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2874 ret
= zone_wait_table_init(zone
, size
);
2877 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2879 zone
->zone_start_pfn
= zone_start_pfn
;
2881 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
2882 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2884 (unsigned long)zone_idx(zone
),
2885 zone_start_pfn
, (zone_start_pfn
+ size
));
2887 zone_init_free_lists(zone
);
2892 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2894 * Basic iterator support. Return the first range of PFNs for a node
2895 * Note: nid == MAX_NUMNODES returns first region regardless of node
2897 static int __meminit
first_active_region_index_in_nid(int nid
)
2901 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2902 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2909 * Basic iterator support. Return the next active range of PFNs for a node
2910 * Note: nid == MAX_NUMNODES returns next region regardless of node
2912 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2914 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2915 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2921 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2923 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2924 * Architectures may implement their own version but if add_active_range()
2925 * was used and there are no special requirements, this is a convenient
2928 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2932 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2933 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2934 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2936 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2937 return early_node_map
[i
].nid
;
2942 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2944 /* Basic iterator support to walk early_node_map[] */
2945 #define for_each_active_range_index_in_nid(i, nid) \
2946 for (i = first_active_region_index_in_nid(nid); i != -1; \
2947 i = next_active_region_index_in_nid(i, nid))
2950 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2951 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2952 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2954 * If an architecture guarantees that all ranges registered with
2955 * add_active_ranges() contain no holes and may be freed, this
2956 * this function may be used instead of calling free_bootmem() manually.
2958 void __init
free_bootmem_with_active_regions(int nid
,
2959 unsigned long max_low_pfn
)
2963 for_each_active_range_index_in_nid(i
, nid
) {
2964 unsigned long size_pages
= 0;
2965 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2967 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2970 if (end_pfn
> max_low_pfn
)
2971 end_pfn
= max_low_pfn
;
2973 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2974 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2975 PFN_PHYS(early_node_map
[i
].start_pfn
),
2976 size_pages
<< PAGE_SHIFT
);
2980 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
2985 for_each_active_range_index_in_nid(i
, nid
) {
2986 ret
= work_fn(early_node_map
[i
].start_pfn
,
2987 early_node_map
[i
].end_pfn
, data
);
2993 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2994 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2996 * If an architecture guarantees that all ranges registered with
2997 * add_active_ranges() contain no holes and may be freed, this
2998 * function may be used instead of calling memory_present() manually.
3000 void __init
sparse_memory_present_with_active_regions(int nid
)
3004 for_each_active_range_index_in_nid(i
, nid
)
3005 memory_present(early_node_map
[i
].nid
,
3006 early_node_map
[i
].start_pfn
,
3007 early_node_map
[i
].end_pfn
);
3011 * push_node_boundaries - Push node boundaries to at least the requested boundary
3012 * @nid: The nid of the node to push the boundary for
3013 * @start_pfn: The start pfn of the node
3014 * @end_pfn: The end pfn of the node
3016 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3017 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3018 * be hotplugged even though no physical memory exists. This function allows
3019 * an arch to push out the node boundaries so mem_map is allocated that can
3022 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3023 void __init
push_node_boundaries(unsigned int nid
,
3024 unsigned long start_pfn
, unsigned long end_pfn
)
3026 mminit_dprintk(MMINIT_TRACE
, "zoneboundary",
3027 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3028 nid
, start_pfn
, end_pfn
);
3030 /* Initialise the boundary for this node if necessary */
3031 if (node_boundary_end_pfn
[nid
] == 0)
3032 node_boundary_start_pfn
[nid
] = -1UL;
3034 /* Update the boundaries */
3035 if (node_boundary_start_pfn
[nid
] > start_pfn
)
3036 node_boundary_start_pfn
[nid
] = start_pfn
;
3037 if (node_boundary_end_pfn
[nid
] < end_pfn
)
3038 node_boundary_end_pfn
[nid
] = end_pfn
;
3041 /* If necessary, push the node boundary out for reserve hotadd */
3042 static void __meminit
account_node_boundary(unsigned int nid
,
3043 unsigned long *start_pfn
, unsigned long *end_pfn
)
3045 mminit_dprintk(MMINIT_TRACE
, "zoneboundary",
3046 "Entering account_node_boundary(%u, %lu, %lu)\n",
3047 nid
, *start_pfn
, *end_pfn
);
3049 /* Return if boundary information has not been provided */
3050 if (node_boundary_end_pfn
[nid
] == 0)
3053 /* Check the boundaries and update if necessary */
3054 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
3055 *start_pfn
= node_boundary_start_pfn
[nid
];
3056 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3057 *end_pfn
= node_boundary_end_pfn
[nid
];
3060 void __init
push_node_boundaries(unsigned int nid
,
3061 unsigned long start_pfn
, unsigned long end_pfn
) {}
3063 static void __meminit
account_node_boundary(unsigned int nid
,
3064 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3069 * get_pfn_range_for_nid - Return the start and end page frames for a node
3070 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3071 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3072 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3074 * It returns the start and end page frame of a node based on information
3075 * provided by an arch calling add_active_range(). If called for a node
3076 * with no available memory, a warning is printed and the start and end
3079 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3080 unsigned long *start_pfn
, unsigned long *end_pfn
)
3086 for_each_active_range_index_in_nid(i
, nid
) {
3087 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3088 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3091 if (*start_pfn
== -1UL)
3094 /* Push the node boundaries out if requested */
3095 account_node_boundary(nid
, start_pfn
, end_pfn
);
3099 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3100 * assumption is made that zones within a node are ordered in monotonic
3101 * increasing memory addresses so that the "highest" populated zone is used
3103 static void __init
find_usable_zone_for_movable(void)
3106 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3107 if (zone_index
== ZONE_MOVABLE
)
3110 if (arch_zone_highest_possible_pfn
[zone_index
] >
3111 arch_zone_lowest_possible_pfn
[zone_index
])
3115 VM_BUG_ON(zone_index
== -1);
3116 movable_zone
= zone_index
;
3120 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3121 * because it is sized independant of architecture. Unlike the other zones,
3122 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3123 * in each node depending on the size of each node and how evenly kernelcore
3124 * is distributed. This helper function adjusts the zone ranges
3125 * provided by the architecture for a given node by using the end of the
3126 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3127 * zones within a node are in order of monotonic increases memory addresses
3129 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3130 unsigned long zone_type
,
3131 unsigned long node_start_pfn
,
3132 unsigned long node_end_pfn
,
3133 unsigned long *zone_start_pfn
,
3134 unsigned long *zone_end_pfn
)
3136 /* Only adjust if ZONE_MOVABLE is on this node */
3137 if (zone_movable_pfn
[nid
]) {
3138 /* Size ZONE_MOVABLE */
3139 if (zone_type
== ZONE_MOVABLE
) {
3140 *zone_start_pfn
= zone_movable_pfn
[nid
];
3141 *zone_end_pfn
= min(node_end_pfn
,
3142 arch_zone_highest_possible_pfn
[movable_zone
]);
3144 /* Adjust for ZONE_MOVABLE starting within this range */
3145 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3146 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3147 *zone_end_pfn
= zone_movable_pfn
[nid
];
3149 /* Check if this whole range is within ZONE_MOVABLE */
3150 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3151 *zone_start_pfn
= *zone_end_pfn
;
3156 * Return the number of pages a zone spans in a node, including holes
3157 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3159 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3160 unsigned long zone_type
,
3161 unsigned long *ignored
)
3163 unsigned long node_start_pfn
, node_end_pfn
;
3164 unsigned long zone_start_pfn
, zone_end_pfn
;
3166 /* Get the start and end of the node and zone */
3167 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3168 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3169 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3170 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3171 node_start_pfn
, node_end_pfn
,
3172 &zone_start_pfn
, &zone_end_pfn
);
3174 /* Check that this node has pages within the zone's required range */
3175 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3178 /* Move the zone boundaries inside the node if necessary */
3179 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3180 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3182 /* Return the spanned pages */
3183 return zone_end_pfn
- zone_start_pfn
;
3187 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3188 * then all holes in the requested range will be accounted for.
3190 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3191 unsigned long range_start_pfn
,
3192 unsigned long range_end_pfn
)
3195 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3196 unsigned long start_pfn
;
3198 /* Find the end_pfn of the first active range of pfns in the node */
3199 i
= first_active_region_index_in_nid(nid
);
3203 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3205 /* Account for ranges before physical memory on this node */
3206 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3207 hole_pages
= prev_end_pfn
- range_start_pfn
;
3209 /* Find all holes for the zone within the node */
3210 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3212 /* No need to continue if prev_end_pfn is outside the zone */
3213 if (prev_end_pfn
>= range_end_pfn
)
3216 /* Make sure the end of the zone is not within the hole */
3217 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3218 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3220 /* Update the hole size cound and move on */
3221 if (start_pfn
> range_start_pfn
) {
3222 BUG_ON(prev_end_pfn
> start_pfn
);
3223 hole_pages
+= start_pfn
- prev_end_pfn
;
3225 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3228 /* Account for ranges past physical memory on this node */
3229 if (range_end_pfn
> prev_end_pfn
)
3230 hole_pages
+= range_end_pfn
-
3231 max(range_start_pfn
, prev_end_pfn
);
3237 * absent_pages_in_range - Return number of page frames in holes within a range
3238 * @start_pfn: The start PFN to start searching for holes
3239 * @end_pfn: The end PFN to stop searching for holes
3241 * It returns the number of pages frames in memory holes within a range.
3243 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3244 unsigned long end_pfn
)
3246 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3249 /* Return the number of page frames in holes in a zone on a node */
3250 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3251 unsigned long zone_type
,
3252 unsigned long *ignored
)
3254 unsigned long node_start_pfn
, node_end_pfn
;
3255 unsigned long zone_start_pfn
, zone_end_pfn
;
3257 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3258 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3260 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3263 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3264 node_start_pfn
, node_end_pfn
,
3265 &zone_start_pfn
, &zone_end_pfn
);
3266 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3270 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3271 unsigned long zone_type
,
3272 unsigned long *zones_size
)
3274 return zones_size
[zone_type
];
3277 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3278 unsigned long zone_type
,
3279 unsigned long *zholes_size
)
3284 return zholes_size
[zone_type
];
3289 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3290 unsigned long *zones_size
, unsigned long *zholes_size
)
3292 unsigned long realtotalpages
, totalpages
= 0;
3295 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3296 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3298 pgdat
->node_spanned_pages
= totalpages
;
3300 realtotalpages
= totalpages
;
3301 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3303 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3305 pgdat
->node_present_pages
= realtotalpages
;
3306 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3310 #ifndef CONFIG_SPARSEMEM
3312 * Calculate the size of the zone->blockflags rounded to an unsigned long
3313 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3314 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3315 * round what is now in bits to nearest long in bits, then return it in
3318 static unsigned long __init
usemap_size(unsigned long zonesize
)
3320 unsigned long usemapsize
;
3322 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3323 usemapsize
= usemapsize
>> pageblock_order
;
3324 usemapsize
*= NR_PAGEBLOCK_BITS
;
3325 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3327 return usemapsize
/ 8;
3330 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3331 struct zone
*zone
, unsigned long zonesize
)
3333 unsigned long usemapsize
= usemap_size(zonesize
);
3334 zone
->pageblock_flags
= NULL
;
3336 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3337 memset(zone
->pageblock_flags
, 0, usemapsize
);
3341 static void inline setup_usemap(struct pglist_data
*pgdat
,
3342 struct zone
*zone
, unsigned long zonesize
) {}
3343 #endif /* CONFIG_SPARSEMEM */
3345 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3347 /* Return a sensible default order for the pageblock size. */
3348 static inline int pageblock_default_order(void)
3350 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3351 return HUGETLB_PAGE_ORDER
;
3356 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3357 static inline void __init
set_pageblock_order(unsigned int order
)
3359 /* Check that pageblock_nr_pages has not already been setup */
3360 if (pageblock_order
)
3364 * Assume the largest contiguous order of interest is a huge page.
3365 * This value may be variable depending on boot parameters on IA64
3367 pageblock_order
= order
;
3369 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3372 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3373 * and pageblock_default_order() are unused as pageblock_order is set
3374 * at compile-time. See include/linux/pageblock-flags.h for the values of
3375 * pageblock_order based on the kernel config
3377 static inline int pageblock_default_order(unsigned int order
)
3381 #define set_pageblock_order(x) do {} while (0)
3383 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3386 * Set up the zone data structures:
3387 * - mark all pages reserved
3388 * - mark all memory queues empty
3389 * - clear the memory bitmaps
3391 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3392 unsigned long *zones_size
, unsigned long *zholes_size
)
3395 int nid
= pgdat
->node_id
;
3396 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3399 pgdat_resize_init(pgdat
);
3400 pgdat
->nr_zones
= 0;
3401 init_waitqueue_head(&pgdat
->kswapd_wait
);
3402 pgdat
->kswapd_max_order
= 0;
3404 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3405 struct zone
*zone
= pgdat
->node_zones
+ j
;
3406 unsigned long size
, realsize
, memmap_pages
;
3408 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3409 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3413 * Adjust realsize so that it accounts for how much memory
3414 * is used by this zone for memmap. This affects the watermark
3415 * and per-cpu initialisations
3418 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3419 if (realsize
>= memmap_pages
) {
3420 realsize
-= memmap_pages
;
3421 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3422 "%s zone: %lu pages used for memmap\n",
3423 zone_names
[j
], memmap_pages
);
3426 " %s zone: %lu pages exceeds realsize %lu\n",
3427 zone_names
[j
], memmap_pages
, realsize
);
3429 /* Account for reserved pages */
3430 if (j
== 0 && realsize
> dma_reserve
) {
3431 realsize
-= dma_reserve
;
3432 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3433 "%s zone: %lu pages reserved\n",
3434 zone_names
[0], dma_reserve
);
3437 if (!is_highmem_idx(j
))
3438 nr_kernel_pages
+= realsize
;
3439 nr_all_pages
+= realsize
;
3441 zone
->spanned_pages
= size
;
3442 zone
->present_pages
= realsize
;
3445 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3447 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3449 zone
->name
= zone_names
[j
];
3450 spin_lock_init(&zone
->lock
);
3451 spin_lock_init(&zone
->lru_lock
);
3452 zone_seqlock_init(zone
);
3453 zone
->zone_pgdat
= pgdat
;
3455 zone
->prev_priority
= DEF_PRIORITY
;
3457 zone_pcp_init(zone
);
3458 INIT_LIST_HEAD(&zone
->active_list
);
3459 INIT_LIST_HEAD(&zone
->inactive_list
);
3460 zone
->nr_scan_active
= 0;
3461 zone
->nr_scan_inactive
= 0;
3462 zap_zone_vm_stats(zone
);
3467 set_pageblock_order(pageblock_default_order());
3468 setup_usemap(pgdat
, zone
, size
);
3469 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3470 size
, MEMMAP_EARLY
);
3472 memmap_init(size
, nid
, j
, zone_start_pfn
);
3473 zone_start_pfn
+= size
;
3477 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3479 /* Skip empty nodes */
3480 if (!pgdat
->node_spanned_pages
)
3483 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3484 /* ia64 gets its own node_mem_map, before this, without bootmem */
3485 if (!pgdat
->node_mem_map
) {
3486 unsigned long size
, start
, end
;
3490 * The zone's endpoints aren't required to be MAX_ORDER
3491 * aligned but the node_mem_map endpoints must be in order
3492 * for the buddy allocator to function correctly.
3494 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3495 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3496 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3497 size
= (end
- start
) * sizeof(struct page
);
3498 map
= alloc_remap(pgdat
->node_id
, size
);
3500 map
= alloc_bootmem_node(pgdat
, size
);
3501 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3503 #ifndef CONFIG_NEED_MULTIPLE_NODES
3505 * With no DISCONTIG, the global mem_map is just set as node 0's
3507 if (pgdat
== NODE_DATA(0)) {
3508 mem_map
= NODE_DATA(0)->node_mem_map
;
3509 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3510 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3511 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3512 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3515 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3518 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3519 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3521 pg_data_t
*pgdat
= NODE_DATA(nid
);
3523 pgdat
->node_id
= nid
;
3524 pgdat
->node_start_pfn
= node_start_pfn
;
3525 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3527 alloc_node_mem_map(pgdat
);
3528 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3529 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3530 nid
, (unsigned long)pgdat
,
3531 (unsigned long)pgdat
->node_mem_map
);
3534 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3537 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3539 #if MAX_NUMNODES > 1
3541 * Figure out the number of possible node ids.
3543 static void __init
setup_nr_node_ids(void)
3546 unsigned int highest
= 0;
3548 for_each_node_mask(node
, node_possible_map
)
3550 nr_node_ids
= highest
+ 1;
3553 static inline void setup_nr_node_ids(void)
3559 * add_active_range - Register a range of PFNs backed by physical memory
3560 * @nid: The node ID the range resides on
3561 * @start_pfn: The start PFN of the available physical memory
3562 * @end_pfn: The end PFN of the available physical memory
3564 * These ranges are stored in an early_node_map[] and later used by
3565 * free_area_init_nodes() to calculate zone sizes and holes. If the
3566 * range spans a memory hole, it is up to the architecture to ensure
3567 * the memory is not freed by the bootmem allocator. If possible
3568 * the range being registered will be merged with existing ranges.
3570 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3571 unsigned long end_pfn
)
3575 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3576 "Entering add_active_range(%d, %#lx, %#lx) "
3577 "%d entries of %d used\n",
3578 nid
, start_pfn
, end_pfn
,
3579 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3581 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3583 /* Merge with existing active regions if possible */
3584 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3585 if (early_node_map
[i
].nid
!= nid
)
3588 /* Skip if an existing region covers this new one */
3589 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3590 end_pfn
<= early_node_map
[i
].end_pfn
)
3593 /* Merge forward if suitable */
3594 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3595 end_pfn
> early_node_map
[i
].end_pfn
) {
3596 early_node_map
[i
].end_pfn
= end_pfn
;
3600 /* Merge backward if suitable */
3601 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3602 end_pfn
>= early_node_map
[i
].start_pfn
) {
3603 early_node_map
[i
].start_pfn
= start_pfn
;
3608 /* Check that early_node_map is large enough */
3609 if (i
>= MAX_ACTIVE_REGIONS
) {
3610 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3611 MAX_ACTIVE_REGIONS
);
3615 early_node_map
[i
].nid
= nid
;
3616 early_node_map
[i
].start_pfn
= start_pfn
;
3617 early_node_map
[i
].end_pfn
= end_pfn
;
3618 nr_nodemap_entries
= i
+ 1;
3622 * remove_active_range - Shrink an existing registered range of PFNs
3623 * @nid: The node id the range is on that should be shrunk
3624 * @start_pfn: The new PFN of the range
3625 * @end_pfn: The new PFN of the range
3627 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3628 * The map is kept near the end physical page range that has already been
3629 * registered. This function allows an arch to shrink an existing registered
3632 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
3633 unsigned long end_pfn
)
3638 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
3639 nid
, start_pfn
, end_pfn
);
3641 /* Find the old active region end and shrink */
3642 for_each_active_range_index_in_nid(i
, nid
) {
3643 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3644 early_node_map
[i
].end_pfn
<= end_pfn
) {
3646 early_node_map
[i
].start_pfn
= 0;
3647 early_node_map
[i
].end_pfn
= 0;
3651 if (early_node_map
[i
].start_pfn
< start_pfn
&&
3652 early_node_map
[i
].end_pfn
> start_pfn
) {
3653 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
3654 early_node_map
[i
].end_pfn
= start_pfn
;
3655 if (temp_end_pfn
> end_pfn
)
3656 add_active_range(nid
, end_pfn
, temp_end_pfn
);
3659 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3660 early_node_map
[i
].end_pfn
> end_pfn
&&
3661 early_node_map
[i
].start_pfn
< end_pfn
) {
3662 early_node_map
[i
].start_pfn
= end_pfn
;
3670 /* remove the blank ones */
3671 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
3672 if (early_node_map
[i
].nid
!= nid
)
3674 if (early_node_map
[i
].end_pfn
)
3676 /* we found it, get rid of it */
3677 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
3678 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
3679 sizeof(early_node_map
[j
]));
3680 j
= nr_nodemap_entries
- 1;
3681 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
3682 nr_nodemap_entries
--;
3687 * remove_all_active_ranges - Remove all currently registered regions
3689 * During discovery, it may be found that a table like SRAT is invalid
3690 * and an alternative discovery method must be used. This function removes
3691 * all currently registered regions.
3693 void __init
remove_all_active_ranges(void)
3695 memset(early_node_map
, 0, sizeof(early_node_map
));
3696 nr_nodemap_entries
= 0;
3697 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3698 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3699 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3700 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3703 /* Compare two active node_active_regions */
3704 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3706 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3707 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3709 /* Done this way to avoid overflows */
3710 if (arange
->start_pfn
> brange
->start_pfn
)
3712 if (arange
->start_pfn
< brange
->start_pfn
)
3718 /* sort the node_map by start_pfn */
3719 static void __init
sort_node_map(void)
3721 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3722 sizeof(struct node_active_region
),
3723 cmp_node_active_region
, NULL
);
3726 /* Find the lowest pfn for a node */
3727 static unsigned long __init
find_min_pfn_for_node(int nid
)
3730 unsigned long min_pfn
= ULONG_MAX
;
3732 /* Assuming a sorted map, the first range found has the starting pfn */
3733 for_each_active_range_index_in_nid(i
, nid
)
3734 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3736 if (min_pfn
== ULONG_MAX
) {
3738 "Could not find start_pfn for node %d\n", nid
);
3746 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3748 * It returns the minimum PFN based on information provided via
3749 * add_active_range().
3751 unsigned long __init
find_min_pfn_with_active_regions(void)
3753 return find_min_pfn_for_node(MAX_NUMNODES
);
3757 * early_calculate_totalpages()
3758 * Sum pages in active regions for movable zone.
3759 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3761 static unsigned long __init
early_calculate_totalpages(void)
3764 unsigned long totalpages
= 0;
3766 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3767 unsigned long pages
= early_node_map
[i
].end_pfn
-
3768 early_node_map
[i
].start_pfn
;
3769 totalpages
+= pages
;
3771 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3777 * Find the PFN the Movable zone begins in each node. Kernel memory
3778 * is spread evenly between nodes as long as the nodes have enough
3779 * memory. When they don't, some nodes will have more kernelcore than
3782 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3785 unsigned long usable_startpfn
;
3786 unsigned long kernelcore_node
, kernelcore_remaining
;
3787 unsigned long totalpages
= early_calculate_totalpages();
3788 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3791 * If movablecore was specified, calculate what size of
3792 * kernelcore that corresponds so that memory usable for
3793 * any allocation type is evenly spread. If both kernelcore
3794 * and movablecore are specified, then the value of kernelcore
3795 * will be used for required_kernelcore if it's greater than
3796 * what movablecore would have allowed.
3798 if (required_movablecore
) {
3799 unsigned long corepages
;
3802 * Round-up so that ZONE_MOVABLE is at least as large as what
3803 * was requested by the user
3805 required_movablecore
=
3806 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3807 corepages
= totalpages
- required_movablecore
;
3809 required_kernelcore
= max(required_kernelcore
, corepages
);
3812 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3813 if (!required_kernelcore
)
3816 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3817 find_usable_zone_for_movable();
3818 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3821 /* Spread kernelcore memory as evenly as possible throughout nodes */
3822 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3823 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3825 * Recalculate kernelcore_node if the division per node
3826 * now exceeds what is necessary to satisfy the requested
3827 * amount of memory for the kernel
3829 if (required_kernelcore
< kernelcore_node
)
3830 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3833 * As the map is walked, we track how much memory is usable
3834 * by the kernel using kernelcore_remaining. When it is
3835 * 0, the rest of the node is usable by ZONE_MOVABLE
3837 kernelcore_remaining
= kernelcore_node
;
3839 /* Go through each range of PFNs within this node */
3840 for_each_active_range_index_in_nid(i
, nid
) {
3841 unsigned long start_pfn
, end_pfn
;
3842 unsigned long size_pages
;
3844 start_pfn
= max(early_node_map
[i
].start_pfn
,
3845 zone_movable_pfn
[nid
]);
3846 end_pfn
= early_node_map
[i
].end_pfn
;
3847 if (start_pfn
>= end_pfn
)
3850 /* Account for what is only usable for kernelcore */
3851 if (start_pfn
< usable_startpfn
) {
3852 unsigned long kernel_pages
;
3853 kernel_pages
= min(end_pfn
, usable_startpfn
)
3856 kernelcore_remaining
-= min(kernel_pages
,
3857 kernelcore_remaining
);
3858 required_kernelcore
-= min(kernel_pages
,
3859 required_kernelcore
);
3861 /* Continue if range is now fully accounted */
3862 if (end_pfn
<= usable_startpfn
) {
3865 * Push zone_movable_pfn to the end so
3866 * that if we have to rebalance
3867 * kernelcore across nodes, we will
3868 * not double account here
3870 zone_movable_pfn
[nid
] = end_pfn
;
3873 start_pfn
= usable_startpfn
;
3877 * The usable PFN range for ZONE_MOVABLE is from
3878 * start_pfn->end_pfn. Calculate size_pages as the
3879 * number of pages used as kernelcore
3881 size_pages
= end_pfn
- start_pfn
;
3882 if (size_pages
> kernelcore_remaining
)
3883 size_pages
= kernelcore_remaining
;
3884 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3887 * Some kernelcore has been met, update counts and
3888 * break if the kernelcore for this node has been
3891 required_kernelcore
-= min(required_kernelcore
,
3893 kernelcore_remaining
-= size_pages
;
3894 if (!kernelcore_remaining
)
3900 * If there is still required_kernelcore, we do another pass with one
3901 * less node in the count. This will push zone_movable_pfn[nid] further
3902 * along on the nodes that still have memory until kernelcore is
3906 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3909 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3910 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3911 zone_movable_pfn
[nid
] =
3912 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3915 /* Any regular memory on that node ? */
3916 static void check_for_regular_memory(pg_data_t
*pgdat
)
3918 #ifdef CONFIG_HIGHMEM
3919 enum zone_type zone_type
;
3921 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3922 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3923 if (zone
->present_pages
)
3924 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3930 * free_area_init_nodes - Initialise all pg_data_t and zone data
3931 * @max_zone_pfn: an array of max PFNs for each zone
3933 * This will call free_area_init_node() for each active node in the system.
3934 * Using the page ranges provided by add_active_range(), the size of each
3935 * zone in each node and their holes is calculated. If the maximum PFN
3936 * between two adjacent zones match, it is assumed that the zone is empty.
3937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3939 * starts where the previous one ended. For example, ZONE_DMA32 starts
3940 * at arch_max_dma_pfn.
3942 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3947 /* Sort early_node_map as initialisation assumes it is sorted */
3950 /* Record where the zone boundaries are */
3951 memset(arch_zone_lowest_possible_pfn
, 0,
3952 sizeof(arch_zone_lowest_possible_pfn
));
3953 memset(arch_zone_highest_possible_pfn
, 0,
3954 sizeof(arch_zone_highest_possible_pfn
));
3955 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3956 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3957 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3958 if (i
== ZONE_MOVABLE
)
3960 arch_zone_lowest_possible_pfn
[i
] =
3961 arch_zone_highest_possible_pfn
[i
-1];
3962 arch_zone_highest_possible_pfn
[i
] =
3963 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3965 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3966 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3968 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3969 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3970 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3972 /* Print out the zone ranges */
3973 printk("Zone PFN ranges:\n");
3974 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3975 if (i
== ZONE_MOVABLE
)
3977 printk(" %-8s %0#10lx -> %0#10lx\n",
3979 arch_zone_lowest_possible_pfn
[i
],
3980 arch_zone_highest_possible_pfn
[i
]);
3983 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3984 printk("Movable zone start PFN for each node\n");
3985 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3986 if (zone_movable_pfn
[i
])
3987 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3990 /* Print out the early_node_map[] */
3991 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3992 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3993 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
3994 early_node_map
[i
].start_pfn
,
3995 early_node_map
[i
].end_pfn
);
3997 /* Initialise every node */
3998 mminit_verify_pageflags_layout();
3999 setup_nr_node_ids();
4000 for_each_online_node(nid
) {
4001 pg_data_t
*pgdat
= NODE_DATA(nid
);
4002 free_area_init_node(nid
, NULL
,
4003 find_min_pfn_for_node(nid
), NULL
);
4005 /* Any memory on that node */
4006 if (pgdat
->node_present_pages
)
4007 node_set_state(nid
, N_HIGH_MEMORY
);
4008 check_for_regular_memory(pgdat
);
4012 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4014 unsigned long long coremem
;
4018 coremem
= memparse(p
, &p
);
4019 *core
= coremem
>> PAGE_SHIFT
;
4021 /* Paranoid check that UL is enough for the coremem value */
4022 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4028 * kernelcore=size sets the amount of memory for use for allocations that
4029 * cannot be reclaimed or migrated.
4031 static int __init
cmdline_parse_kernelcore(char *p
)
4033 return cmdline_parse_core(p
, &required_kernelcore
);
4037 * movablecore=size sets the amount of memory for use for allocations that
4038 * can be reclaimed or migrated.
4040 static int __init
cmdline_parse_movablecore(char *p
)
4042 return cmdline_parse_core(p
, &required_movablecore
);
4045 early_param("kernelcore", cmdline_parse_kernelcore
);
4046 early_param("movablecore", cmdline_parse_movablecore
);
4048 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4051 * set_dma_reserve - set the specified number of pages reserved in the first zone
4052 * @new_dma_reserve: The number of pages to mark reserved
4054 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4055 * In the DMA zone, a significant percentage may be consumed by kernel image
4056 * and other unfreeable allocations which can skew the watermarks badly. This
4057 * function may optionally be used to account for unfreeable pages in the
4058 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4059 * smaller per-cpu batchsize.
4061 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4063 dma_reserve
= new_dma_reserve
;
4066 #ifndef CONFIG_NEED_MULTIPLE_NODES
4067 struct pglist_data contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4068 EXPORT_SYMBOL(contig_page_data
);
4071 void __init
free_area_init(unsigned long *zones_size
)
4073 free_area_init_node(0, zones_size
,
4074 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4077 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4078 unsigned long action
, void *hcpu
)
4080 int cpu
= (unsigned long)hcpu
;
4082 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4086 * Spill the event counters of the dead processor
4087 * into the current processors event counters.
4088 * This artificially elevates the count of the current
4091 vm_events_fold_cpu(cpu
);
4094 * Zero the differential counters of the dead processor
4095 * so that the vm statistics are consistent.
4097 * This is only okay since the processor is dead and cannot
4098 * race with what we are doing.
4100 refresh_cpu_vm_stats(cpu
);
4105 void __init
page_alloc_init(void)
4107 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4111 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4112 * or min_free_kbytes changes.
4114 static void calculate_totalreserve_pages(void)
4116 struct pglist_data
*pgdat
;
4117 unsigned long reserve_pages
= 0;
4118 enum zone_type i
, j
;
4120 for_each_online_pgdat(pgdat
) {
4121 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4122 struct zone
*zone
= pgdat
->node_zones
+ i
;
4123 unsigned long max
= 0;
4125 /* Find valid and maximum lowmem_reserve in the zone */
4126 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4127 if (zone
->lowmem_reserve
[j
] > max
)
4128 max
= zone
->lowmem_reserve
[j
];
4131 /* we treat pages_high as reserved pages. */
4132 max
+= zone
->pages_high
;
4134 if (max
> zone
->present_pages
)
4135 max
= zone
->present_pages
;
4136 reserve_pages
+= max
;
4139 totalreserve_pages
= reserve_pages
;
4143 * setup_per_zone_lowmem_reserve - called whenever
4144 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4145 * has a correct pages reserved value, so an adequate number of
4146 * pages are left in the zone after a successful __alloc_pages().
4148 static void setup_per_zone_lowmem_reserve(void)
4150 struct pglist_data
*pgdat
;
4151 enum zone_type j
, idx
;
4153 for_each_online_pgdat(pgdat
) {
4154 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4155 struct zone
*zone
= pgdat
->node_zones
+ j
;
4156 unsigned long present_pages
= zone
->present_pages
;
4158 zone
->lowmem_reserve
[j
] = 0;
4162 struct zone
*lower_zone
;
4166 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4167 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4169 lower_zone
= pgdat
->node_zones
+ idx
;
4170 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4171 sysctl_lowmem_reserve_ratio
[idx
];
4172 present_pages
+= lower_zone
->present_pages
;
4177 /* update totalreserve_pages */
4178 calculate_totalreserve_pages();
4182 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4184 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4185 * with respect to min_free_kbytes.
4187 void setup_per_zone_pages_min(void)
4189 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4190 unsigned long lowmem_pages
= 0;
4192 unsigned long flags
;
4194 /* Calculate total number of !ZONE_HIGHMEM pages */
4195 for_each_zone(zone
) {
4196 if (!is_highmem(zone
))
4197 lowmem_pages
+= zone
->present_pages
;
4200 for_each_zone(zone
) {
4203 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4204 tmp
= (u64
)pages_min
* zone
->present_pages
;
4205 do_div(tmp
, lowmem_pages
);
4206 if (is_highmem(zone
)) {
4208 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4209 * need highmem pages, so cap pages_min to a small
4212 * The (pages_high-pages_low) and (pages_low-pages_min)
4213 * deltas controls asynch page reclaim, and so should
4214 * not be capped for highmem.
4218 min_pages
= zone
->present_pages
/ 1024;
4219 if (min_pages
< SWAP_CLUSTER_MAX
)
4220 min_pages
= SWAP_CLUSTER_MAX
;
4221 if (min_pages
> 128)
4223 zone
->pages_min
= min_pages
;
4226 * If it's a lowmem zone, reserve a number of pages
4227 * proportionate to the zone's size.
4229 zone
->pages_min
= tmp
;
4232 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4233 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4234 setup_zone_migrate_reserve(zone
);
4235 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4238 /* update totalreserve_pages */
4239 calculate_totalreserve_pages();
4243 * Initialise min_free_kbytes.
4245 * For small machines we want it small (128k min). For large machines
4246 * we want it large (64MB max). But it is not linear, because network
4247 * bandwidth does not increase linearly with machine size. We use
4249 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4250 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4266 static int __init
init_per_zone_pages_min(void)
4268 unsigned long lowmem_kbytes
;
4270 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4272 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4273 if (min_free_kbytes
< 128)
4274 min_free_kbytes
= 128;
4275 if (min_free_kbytes
> 65536)
4276 min_free_kbytes
= 65536;
4277 setup_per_zone_pages_min();
4278 setup_per_zone_lowmem_reserve();
4281 module_init(init_per_zone_pages_min
)
4284 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4285 * that we can call two helper functions whenever min_free_kbytes
4288 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4289 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4291 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4293 setup_per_zone_pages_min();
4298 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4299 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4304 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4309 zone
->min_unmapped_pages
= (zone
->present_pages
*
4310 sysctl_min_unmapped_ratio
) / 100;
4314 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4315 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4320 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4325 zone
->min_slab_pages
= (zone
->present_pages
*
4326 sysctl_min_slab_ratio
) / 100;
4332 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4333 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4334 * whenever sysctl_lowmem_reserve_ratio changes.
4336 * The reserve ratio obviously has absolutely no relation with the
4337 * pages_min watermarks. The lowmem reserve ratio can only make sense
4338 * if in function of the boot time zone sizes.
4340 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4341 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4343 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4344 setup_per_zone_lowmem_reserve();
4349 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4350 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4351 * can have before it gets flushed back to buddy allocator.
4354 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4355 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4361 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4362 if (!write
|| (ret
== -EINVAL
))
4364 for_each_zone(zone
) {
4365 for_each_online_cpu(cpu
) {
4367 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4368 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4374 int hashdist
= HASHDIST_DEFAULT
;
4377 static int __init
set_hashdist(char *str
)
4381 hashdist
= simple_strtoul(str
, &str
, 0);
4384 __setup("hashdist=", set_hashdist
);
4388 * allocate a large system hash table from bootmem
4389 * - it is assumed that the hash table must contain an exact power-of-2
4390 * quantity of entries
4391 * - limit is the number of hash buckets, not the total allocation size
4393 void *__init
alloc_large_system_hash(const char *tablename
,
4394 unsigned long bucketsize
,
4395 unsigned long numentries
,
4398 unsigned int *_hash_shift
,
4399 unsigned int *_hash_mask
,
4400 unsigned long limit
)
4402 unsigned long long max
= limit
;
4403 unsigned long log2qty
, size
;
4406 /* allow the kernel cmdline to have a say */
4408 /* round applicable memory size up to nearest megabyte */
4409 numentries
= nr_kernel_pages
;
4410 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4411 numentries
>>= 20 - PAGE_SHIFT
;
4412 numentries
<<= 20 - PAGE_SHIFT
;
4414 /* limit to 1 bucket per 2^scale bytes of low memory */
4415 if (scale
> PAGE_SHIFT
)
4416 numentries
>>= (scale
- PAGE_SHIFT
);
4418 numentries
<<= (PAGE_SHIFT
- scale
);
4420 /* Make sure we've got at least a 0-order allocation.. */
4421 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4422 numentries
= PAGE_SIZE
/ bucketsize
;
4424 numentries
= roundup_pow_of_two(numentries
);
4426 /* limit allocation size to 1/16 total memory by default */
4428 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4429 do_div(max
, bucketsize
);
4432 if (numentries
> max
)
4435 log2qty
= ilog2(numentries
);
4438 size
= bucketsize
<< log2qty
;
4439 if (flags
& HASH_EARLY
)
4440 table
= alloc_bootmem(size
);
4442 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4444 unsigned long order
= get_order(size
);
4445 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4447 * If bucketsize is not a power-of-two, we may free
4448 * some pages at the end of hash table.
4451 unsigned long alloc_end
= (unsigned long)table
+
4452 (PAGE_SIZE
<< order
);
4453 unsigned long used
= (unsigned long)table
+
4455 split_page(virt_to_page(table
), order
);
4456 while (used
< alloc_end
) {
4462 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4465 panic("Failed to allocate %s hash table\n", tablename
);
4467 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4470 ilog2(size
) - PAGE_SHIFT
,
4474 *_hash_shift
= log2qty
;
4476 *_hash_mask
= (1 << log2qty
) - 1;
4481 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4482 struct page
*pfn_to_page(unsigned long pfn
)
4484 return __pfn_to_page(pfn
);
4486 unsigned long page_to_pfn(struct page
*page
)
4488 return __page_to_pfn(page
);
4490 EXPORT_SYMBOL(pfn_to_page
);
4491 EXPORT_SYMBOL(page_to_pfn
);
4492 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4494 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4495 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4498 #ifdef CONFIG_SPARSEMEM
4499 return __pfn_to_section(pfn
)->pageblock_flags
;
4501 return zone
->pageblock_flags
;
4502 #endif /* CONFIG_SPARSEMEM */
4505 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4507 #ifdef CONFIG_SPARSEMEM
4508 pfn
&= (PAGES_PER_SECTION
-1);
4509 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4511 pfn
= pfn
- zone
->zone_start_pfn
;
4512 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4513 #endif /* CONFIG_SPARSEMEM */
4517 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4518 * @page: The page within the block of interest
4519 * @start_bitidx: The first bit of interest to retrieve
4520 * @end_bitidx: The last bit of interest
4521 * returns pageblock_bits flags
4523 unsigned long get_pageblock_flags_group(struct page
*page
,
4524 int start_bitidx
, int end_bitidx
)
4527 unsigned long *bitmap
;
4528 unsigned long pfn
, bitidx
;
4529 unsigned long flags
= 0;
4530 unsigned long value
= 1;
4532 zone
= page_zone(page
);
4533 pfn
= page_to_pfn(page
);
4534 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4535 bitidx
= pfn_to_bitidx(zone
, pfn
);
4537 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4538 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4545 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4546 * @page: The page within the block of interest
4547 * @start_bitidx: The first bit of interest
4548 * @end_bitidx: The last bit of interest
4549 * @flags: The flags to set
4551 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4552 int start_bitidx
, int end_bitidx
)
4555 unsigned long *bitmap
;
4556 unsigned long pfn
, bitidx
;
4557 unsigned long value
= 1;
4559 zone
= page_zone(page
);
4560 pfn
= page_to_pfn(page
);
4561 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4562 bitidx
= pfn_to_bitidx(zone
, pfn
);
4563 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4564 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4566 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4568 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4570 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4574 * This is designed as sub function...plz see page_isolation.c also.
4575 * set/clear page block's type to be ISOLATE.
4576 * page allocater never alloc memory from ISOLATE block.
4579 int set_migratetype_isolate(struct page
*page
)
4582 unsigned long flags
;
4585 zone
= page_zone(page
);
4586 spin_lock_irqsave(&zone
->lock
, flags
);
4588 * In future, more migrate types will be able to be isolation target.
4590 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4592 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4593 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4596 spin_unlock_irqrestore(&zone
->lock
, flags
);
4602 void unset_migratetype_isolate(struct page
*page
)
4605 unsigned long flags
;
4606 zone
= page_zone(page
);
4607 spin_lock_irqsave(&zone
->lock
, flags
);
4608 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4610 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4611 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4613 spin_unlock_irqrestore(&zone
->lock
, flags
);
4616 #ifdef CONFIG_MEMORY_HOTREMOVE
4618 * All pages in the range must be isolated before calling this.
4621 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4627 unsigned long flags
;
4628 /* find the first valid pfn */
4629 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4634 zone
= page_zone(pfn_to_page(pfn
));
4635 spin_lock_irqsave(&zone
->lock
, flags
);
4637 while (pfn
< end_pfn
) {
4638 if (!pfn_valid(pfn
)) {
4642 page
= pfn_to_page(pfn
);
4643 BUG_ON(page_count(page
));
4644 BUG_ON(!PageBuddy(page
));
4645 order
= page_order(page
);
4646 #ifdef CONFIG_DEBUG_VM
4647 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4648 pfn
, 1 << order
, end_pfn
);
4650 list_del(&page
->lru
);
4651 rmv_page_order(page
);
4652 zone
->free_area
[order
].nr_free
--;
4653 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4655 for (i
= 0; i
< (1 << order
); i
++)
4656 SetPageReserved((page
+i
));
4657 pfn
+= (1 << order
);
4659 spin_unlock_irqrestore(&zone
->lock
, flags
);