semaphore: __down_common: use signal_pending_state()
[linux-2.6/mini2440.git] / fs / ext4 / inode.c
blob59fbbe899acc24a5817befbc67fda67ba427b3d1
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45 loff_t new_size)
47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48 new_size);
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54 * Test whether an inode is a fast symlink.
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
58 int ea_blocks = EXT4_I(inode)->i_file_acl ?
59 (inode->i_sb->s_blocksize >> 9) : 0;
61 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 * The ext4 forget function must perform a revoke if we are freeing data
66 * which has been journaled. Metadata (eg. indirect blocks) must be
67 * revoked in all cases.
69 * "bh" may be NULL: a metadata block may have been freed from memory
70 * but there may still be a record of it in the journal, and that record
71 * still needs to be revoked.
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74 struct buffer_head *bh, ext4_fsblk_t blocknr)
76 int err;
78 might_sleep();
80 BUFFER_TRACE(bh, "enter");
82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83 "data mode %lx\n",
84 bh, is_metadata, inode->i_mode,
85 test_opt(inode->i_sb, DATA_FLAGS));
87 /* Never use the revoke function if we are doing full data
88 * journaling: there is no need to, and a V1 superblock won't
89 * support it. Otherwise, only skip the revoke on un-journaled
90 * data blocks. */
92 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93 (!is_metadata && !ext4_should_journal_data(inode))) {
94 if (bh) {
95 BUFFER_TRACE(bh, "call jbd2_journal_forget");
96 return ext4_journal_forget(handle, bh);
98 return 0;
102 * data!=journal && (is_metadata || should_journal_data(inode))
104 BUFFER_TRACE(bh, "call ext4_journal_revoke");
105 err = ext4_journal_revoke(handle, blocknr, bh);
106 if (err)
107 ext4_abort(inode->i_sb, __func__,
108 "error %d when attempting revoke", err);
109 BUFFER_TRACE(bh, "exit");
110 return err;
114 * Work out how many blocks we need to proceed with the next chunk of a
115 * truncate transaction.
117 static unsigned long blocks_for_truncate(struct inode *inode)
119 ext4_lblk_t needed;
121 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
123 /* Give ourselves just enough room to cope with inodes in which
124 * i_blocks is corrupt: we've seen disk corruptions in the past
125 * which resulted in random data in an inode which looked enough
126 * like a regular file for ext4 to try to delete it. Things
127 * will go a bit crazy if that happens, but at least we should
128 * try not to panic the whole kernel. */
129 if (needed < 2)
130 needed = 2;
132 /* But we need to bound the transaction so we don't overflow the
133 * journal. */
134 if (needed > EXT4_MAX_TRANS_DATA)
135 needed = EXT4_MAX_TRANS_DATA;
137 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 * Truncate transactions can be complex and absolutely huge. So we need to
142 * be able to restart the transaction at a conventient checkpoint to make
143 * sure we don't overflow the journal.
145 * start_transaction gets us a new handle for a truncate transaction,
146 * and extend_transaction tries to extend the existing one a bit. If
147 * extend fails, we need to propagate the failure up and restart the
148 * transaction in the top-level truncate loop. --sct
150 static handle_t *start_transaction(struct inode *inode)
152 handle_t *result;
154 result = ext4_journal_start(inode, blocks_for_truncate(inode));
155 if (!IS_ERR(result))
156 return result;
158 ext4_std_error(inode->i_sb, PTR_ERR(result));
159 return result;
163 * Try to extend this transaction for the purposes of truncation.
165 * Returns 0 if we managed to create more room. If we can't create more
166 * room, and the transaction must be restarted we return 1.
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
170 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171 return 0;
172 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173 return 0;
174 return 1;
178 * Restart the transaction associated with *handle. This does a commit,
179 * so before we call here everything must be consistently dirtied against
180 * this transaction.
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
184 jbd_debug(2, "restarting handle %p\n", handle);
185 return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 * Called at the last iput() if i_nlink is zero.
191 void ext4_delete_inode (struct inode * inode)
193 handle_t *handle;
194 int err;
196 if (ext4_should_order_data(inode))
197 ext4_begin_ordered_truncate(inode, 0);
198 truncate_inode_pages(&inode->i_data, 0);
200 if (is_bad_inode(inode))
201 goto no_delete;
203 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
204 if (IS_ERR(handle)) {
205 ext4_std_error(inode->i_sb, PTR_ERR(handle));
207 * If we're going to skip the normal cleanup, we still need to
208 * make sure that the in-core orphan linked list is properly
209 * cleaned up.
211 ext4_orphan_del(NULL, inode);
212 goto no_delete;
215 if (IS_SYNC(inode))
216 handle->h_sync = 1;
217 inode->i_size = 0;
218 err = ext4_mark_inode_dirty(handle, inode);
219 if (err) {
220 ext4_warning(inode->i_sb, __func__,
221 "couldn't mark inode dirty (err %d)", err);
222 goto stop_handle;
224 if (inode->i_blocks)
225 ext4_truncate(inode);
228 * ext4_ext_truncate() doesn't reserve any slop when it
229 * restarts journal transactions; therefore there may not be
230 * enough credits left in the handle to remove the inode from
231 * the orphan list and set the dtime field.
233 if (handle->h_buffer_credits < 3) {
234 err = ext4_journal_extend(handle, 3);
235 if (err > 0)
236 err = ext4_journal_restart(handle, 3);
237 if (err != 0) {
238 ext4_warning(inode->i_sb, __func__,
239 "couldn't extend journal (err %d)", err);
240 stop_handle:
241 ext4_journal_stop(handle);
242 goto no_delete;
247 * Kill off the orphan record which ext4_truncate created.
248 * AKPM: I think this can be inside the above `if'.
249 * Note that ext4_orphan_del() has to be able to cope with the
250 * deletion of a non-existent orphan - this is because we don't
251 * know if ext4_truncate() actually created an orphan record.
252 * (Well, we could do this if we need to, but heck - it works)
254 ext4_orphan_del(handle, inode);
255 EXT4_I(inode)->i_dtime = get_seconds();
258 * One subtle ordering requirement: if anything has gone wrong
259 * (transaction abort, IO errors, whatever), then we can still
260 * do these next steps (the fs will already have been marked as
261 * having errors), but we can't free the inode if the mark_dirty
262 * fails.
264 if (ext4_mark_inode_dirty(handle, inode))
265 /* If that failed, just do the required in-core inode clear. */
266 clear_inode(inode);
267 else
268 ext4_free_inode(handle, inode);
269 ext4_journal_stop(handle);
270 return;
271 no_delete:
272 clear_inode(inode); /* We must guarantee clearing of inode... */
275 typedef struct {
276 __le32 *p;
277 __le32 key;
278 struct buffer_head *bh;
279 } Indirect;
281 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
283 p->key = *(p->p = v);
284 p->bh = bh;
288 * ext4_block_to_path - parse the block number into array of offsets
289 * @inode: inode in question (we are only interested in its superblock)
290 * @i_block: block number to be parsed
291 * @offsets: array to store the offsets in
292 * @boundary: set this non-zero if the referred-to block is likely to be
293 * followed (on disk) by an indirect block.
295 * To store the locations of file's data ext4 uses a data structure common
296 * for UNIX filesystems - tree of pointers anchored in the inode, with
297 * data blocks at leaves and indirect blocks in intermediate nodes.
298 * This function translates the block number into path in that tree -
299 * return value is the path length and @offsets[n] is the offset of
300 * pointer to (n+1)th node in the nth one. If @block is out of range
301 * (negative or too large) warning is printed and zero returned.
303 * Note: function doesn't find node addresses, so no IO is needed. All
304 * we need to know is the capacity of indirect blocks (taken from the
305 * inode->i_sb).
309 * Portability note: the last comparison (check that we fit into triple
310 * indirect block) is spelled differently, because otherwise on an
311 * architecture with 32-bit longs and 8Kb pages we might get into trouble
312 * if our filesystem had 8Kb blocks. We might use long long, but that would
313 * kill us on x86. Oh, well, at least the sign propagation does not matter -
314 * i_block would have to be negative in the very beginning, so we would not
315 * get there at all.
318 static int ext4_block_to_path(struct inode *inode,
319 ext4_lblk_t i_block,
320 ext4_lblk_t offsets[4], int *boundary)
322 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
323 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
324 const long direct_blocks = EXT4_NDIR_BLOCKS,
325 indirect_blocks = ptrs,
326 double_blocks = (1 << (ptrs_bits * 2));
327 int n = 0;
328 int final = 0;
330 if (i_block < 0) {
331 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
332 } else if (i_block < direct_blocks) {
333 offsets[n++] = i_block;
334 final = direct_blocks;
335 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336 offsets[n++] = EXT4_IND_BLOCK;
337 offsets[n++] = i_block;
338 final = ptrs;
339 } else if ((i_block -= indirect_blocks) < double_blocks) {
340 offsets[n++] = EXT4_DIND_BLOCK;
341 offsets[n++] = i_block >> ptrs_bits;
342 offsets[n++] = i_block & (ptrs - 1);
343 final = ptrs;
344 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345 offsets[n++] = EXT4_TIND_BLOCK;
346 offsets[n++] = i_block >> (ptrs_bits * 2);
347 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348 offsets[n++] = i_block & (ptrs - 1);
349 final = ptrs;
350 } else {
351 ext4_warning(inode->i_sb, "ext4_block_to_path",
352 "block %lu > max",
353 i_block + direct_blocks +
354 indirect_blocks + double_blocks);
356 if (boundary)
357 *boundary = final - 1 - (i_block & (ptrs - 1));
358 return n;
362 * ext4_get_branch - read the chain of indirect blocks leading to data
363 * @inode: inode in question
364 * @depth: depth of the chain (1 - direct pointer, etc.)
365 * @offsets: offsets of pointers in inode/indirect blocks
366 * @chain: place to store the result
367 * @err: here we store the error value
369 * Function fills the array of triples <key, p, bh> and returns %NULL
370 * if everything went OK or the pointer to the last filled triple
371 * (incomplete one) otherwise. Upon the return chain[i].key contains
372 * the number of (i+1)-th block in the chain (as it is stored in memory,
373 * i.e. little-endian 32-bit), chain[i].p contains the address of that
374 * number (it points into struct inode for i==0 and into the bh->b_data
375 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376 * block for i>0 and NULL for i==0. In other words, it holds the block
377 * numbers of the chain, addresses they were taken from (and where we can
378 * verify that chain did not change) and buffer_heads hosting these
379 * numbers.
381 * Function stops when it stumbles upon zero pointer (absent block)
382 * (pointer to last triple returned, *@err == 0)
383 * or when it gets an IO error reading an indirect block
384 * (ditto, *@err == -EIO)
385 * or when it reads all @depth-1 indirect blocks successfully and finds
386 * the whole chain, all way to the data (returns %NULL, *err == 0).
388 * Need to be called with
389 * down_read(&EXT4_I(inode)->i_data_sem)
391 static Indirect *ext4_get_branch(struct inode *inode, int depth,
392 ext4_lblk_t *offsets,
393 Indirect chain[4], int *err)
395 struct super_block *sb = inode->i_sb;
396 Indirect *p = chain;
397 struct buffer_head *bh;
399 *err = 0;
400 /* i_data is not going away, no lock needed */
401 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
402 if (!p->key)
403 goto no_block;
404 while (--depth) {
405 bh = sb_bread(sb, le32_to_cpu(p->key));
406 if (!bh)
407 goto failure;
408 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
409 /* Reader: end */
410 if (!p->key)
411 goto no_block;
413 return NULL;
415 failure:
416 *err = -EIO;
417 no_block:
418 return p;
422 * ext4_find_near - find a place for allocation with sufficient locality
423 * @inode: owner
424 * @ind: descriptor of indirect block.
426 * This function returns the preferred place for block allocation.
427 * It is used when heuristic for sequential allocation fails.
428 * Rules are:
429 * + if there is a block to the left of our position - allocate near it.
430 * + if pointer will live in indirect block - allocate near that block.
431 * + if pointer will live in inode - allocate in the same
432 * cylinder group.
434 * In the latter case we colour the starting block by the callers PID to
435 * prevent it from clashing with concurrent allocations for a different inode
436 * in the same block group. The PID is used here so that functionally related
437 * files will be close-by on-disk.
439 * Caller must make sure that @ind is valid and will stay that way.
441 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
443 struct ext4_inode_info *ei = EXT4_I(inode);
444 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
445 __le32 *p;
446 ext4_fsblk_t bg_start;
447 ext4_fsblk_t last_block;
448 ext4_grpblk_t colour;
450 /* Try to find previous block */
451 for (p = ind->p - 1; p >= start; p--) {
452 if (*p)
453 return le32_to_cpu(*p);
456 /* No such thing, so let's try location of indirect block */
457 if (ind->bh)
458 return ind->bh->b_blocknr;
461 * It is going to be referred to from the inode itself? OK, just put it
462 * into the same cylinder group then.
464 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
465 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
467 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
468 colour = (current->pid % 16) *
469 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
470 else
471 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
472 return bg_start + colour;
476 * ext4_find_goal - find a preferred place for allocation.
477 * @inode: owner
478 * @block: block we want
479 * @partial: pointer to the last triple within a chain
481 * Normally this function find the preferred place for block allocation,
482 * returns it.
484 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
485 Indirect *partial)
487 struct ext4_block_alloc_info *block_i;
489 block_i = EXT4_I(inode)->i_block_alloc_info;
492 * try the heuristic for sequential allocation,
493 * failing that at least try to get decent locality.
495 if (block_i && (block == block_i->last_alloc_logical_block + 1)
496 && (block_i->last_alloc_physical_block != 0)) {
497 return block_i->last_alloc_physical_block + 1;
500 return ext4_find_near(inode, partial);
504 * ext4_blks_to_allocate: Look up the block map and count the number
505 * of direct blocks need to be allocated for the given branch.
507 * @branch: chain of indirect blocks
508 * @k: number of blocks need for indirect blocks
509 * @blks: number of data blocks to be mapped.
510 * @blocks_to_boundary: the offset in the indirect block
512 * return the total number of blocks to be allocate, including the
513 * direct and indirect blocks.
515 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
516 int blocks_to_boundary)
518 unsigned long count = 0;
521 * Simple case, [t,d]Indirect block(s) has not allocated yet
522 * then it's clear blocks on that path have not allocated
524 if (k > 0) {
525 /* right now we don't handle cross boundary allocation */
526 if (blks < blocks_to_boundary + 1)
527 count += blks;
528 else
529 count += blocks_to_boundary + 1;
530 return count;
533 count++;
534 while (count < blks && count <= blocks_to_boundary &&
535 le32_to_cpu(*(branch[0].p + count)) == 0) {
536 count++;
538 return count;
542 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
543 * @indirect_blks: the number of blocks need to allocate for indirect
544 * blocks
546 * @new_blocks: on return it will store the new block numbers for
547 * the indirect blocks(if needed) and the first direct block,
548 * @blks: on return it will store the total number of allocated
549 * direct blocks
551 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
552 ext4_lblk_t iblock, ext4_fsblk_t goal,
553 int indirect_blks, int blks,
554 ext4_fsblk_t new_blocks[4], int *err)
556 int target, i;
557 unsigned long count = 0, blk_allocated = 0;
558 int index = 0;
559 ext4_fsblk_t current_block = 0;
560 int ret = 0;
563 * Here we try to allocate the requested multiple blocks at once,
564 * on a best-effort basis.
565 * To build a branch, we should allocate blocks for
566 * the indirect blocks(if not allocated yet), and at least
567 * the first direct block of this branch. That's the
568 * minimum number of blocks need to allocate(required)
570 /* first we try to allocate the indirect blocks */
571 target = indirect_blks;
572 while (target > 0) {
573 count = target;
574 /* allocating blocks for indirect blocks and direct blocks */
575 current_block = ext4_new_meta_blocks(handle, inode,
576 goal, &count, err);
577 if (*err)
578 goto failed_out;
580 target -= count;
581 /* allocate blocks for indirect blocks */
582 while (index < indirect_blks && count) {
583 new_blocks[index++] = current_block++;
584 count--;
586 if (count > 0) {
588 * save the new block number
589 * for the first direct block
591 new_blocks[index] = current_block;
592 printk(KERN_INFO "%s returned more blocks than "
593 "requested\n", __func__);
594 WARN_ON(1);
595 break;
599 target = blks - count ;
600 blk_allocated = count;
601 if (!target)
602 goto allocated;
603 /* Now allocate data blocks */
604 count = target;
605 /* allocating blocks for data blocks */
606 current_block = ext4_new_blocks(handle, inode, iblock,
607 goal, &count, err);
608 if (*err && (target == blks)) {
610 * if the allocation failed and we didn't allocate
611 * any blocks before
613 goto failed_out;
615 if (!*err) {
616 if (target == blks) {
618 * save the new block number
619 * for the first direct block
621 new_blocks[index] = current_block;
623 blk_allocated += count;
625 allocated:
626 /* total number of blocks allocated for direct blocks */
627 ret = blk_allocated;
628 *err = 0;
629 return ret;
630 failed_out:
631 for (i = 0; i <index; i++)
632 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
633 return ret;
637 * ext4_alloc_branch - allocate and set up a chain of blocks.
638 * @inode: owner
639 * @indirect_blks: number of allocated indirect blocks
640 * @blks: number of allocated direct blocks
641 * @offsets: offsets (in the blocks) to store the pointers to next.
642 * @branch: place to store the chain in.
644 * This function allocates blocks, zeroes out all but the last one,
645 * links them into chain and (if we are synchronous) writes them to disk.
646 * In other words, it prepares a branch that can be spliced onto the
647 * inode. It stores the information about that chain in the branch[], in
648 * the same format as ext4_get_branch() would do. We are calling it after
649 * we had read the existing part of chain and partial points to the last
650 * triple of that (one with zero ->key). Upon the exit we have the same
651 * picture as after the successful ext4_get_block(), except that in one
652 * place chain is disconnected - *branch->p is still zero (we did not
653 * set the last link), but branch->key contains the number that should
654 * be placed into *branch->p to fill that gap.
656 * If allocation fails we free all blocks we've allocated (and forget
657 * their buffer_heads) and return the error value the from failed
658 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659 * as described above and return 0.
661 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
662 ext4_lblk_t iblock, int indirect_blks,
663 int *blks, ext4_fsblk_t goal,
664 ext4_lblk_t *offsets, Indirect *branch)
666 int blocksize = inode->i_sb->s_blocksize;
667 int i, n = 0;
668 int err = 0;
669 struct buffer_head *bh;
670 int num;
671 ext4_fsblk_t new_blocks[4];
672 ext4_fsblk_t current_block;
674 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
675 *blks, new_blocks, &err);
676 if (err)
677 return err;
679 branch[0].key = cpu_to_le32(new_blocks[0]);
681 * metadata blocks and data blocks are allocated.
683 for (n = 1; n <= indirect_blks; n++) {
685 * Get buffer_head for parent block, zero it out
686 * and set the pointer to new one, then send
687 * parent to disk.
689 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
690 branch[n].bh = bh;
691 lock_buffer(bh);
692 BUFFER_TRACE(bh, "call get_create_access");
693 err = ext4_journal_get_create_access(handle, bh);
694 if (err) {
695 unlock_buffer(bh);
696 brelse(bh);
697 goto failed;
700 memset(bh->b_data, 0, blocksize);
701 branch[n].p = (__le32 *) bh->b_data + offsets[n];
702 branch[n].key = cpu_to_le32(new_blocks[n]);
703 *branch[n].p = branch[n].key;
704 if ( n == indirect_blks) {
705 current_block = new_blocks[n];
707 * End of chain, update the last new metablock of
708 * the chain to point to the new allocated
709 * data blocks numbers
711 for (i=1; i < num; i++)
712 *(branch[n].p + i) = cpu_to_le32(++current_block);
714 BUFFER_TRACE(bh, "marking uptodate");
715 set_buffer_uptodate(bh);
716 unlock_buffer(bh);
718 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
719 err = ext4_journal_dirty_metadata(handle, bh);
720 if (err)
721 goto failed;
723 *blks = num;
724 return err;
725 failed:
726 /* Allocation failed, free what we already allocated */
727 for (i = 1; i <= n ; i++) {
728 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
729 ext4_journal_forget(handle, branch[i].bh);
731 for (i = 0; i <indirect_blks; i++)
732 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
734 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
736 return err;
740 * ext4_splice_branch - splice the allocated branch onto inode.
741 * @inode: owner
742 * @block: (logical) number of block we are adding
743 * @chain: chain of indirect blocks (with a missing link - see
744 * ext4_alloc_branch)
745 * @where: location of missing link
746 * @num: number of indirect blocks we are adding
747 * @blks: number of direct blocks we are adding
749 * This function fills the missing link and does all housekeeping needed in
750 * inode (->i_blocks, etc.). In case of success we end up with the full
751 * chain to new block and return 0.
753 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
754 ext4_lblk_t block, Indirect *where, int num, int blks)
756 int i;
757 int err = 0;
758 struct ext4_block_alloc_info *block_i;
759 ext4_fsblk_t current_block;
761 block_i = EXT4_I(inode)->i_block_alloc_info;
763 * If we're splicing into a [td]indirect block (as opposed to the
764 * inode) then we need to get write access to the [td]indirect block
765 * before the splice.
767 if (where->bh) {
768 BUFFER_TRACE(where->bh, "get_write_access");
769 err = ext4_journal_get_write_access(handle, where->bh);
770 if (err)
771 goto err_out;
773 /* That's it */
775 *where->p = where->key;
778 * Update the host buffer_head or inode to point to more just allocated
779 * direct blocks blocks
781 if (num == 0 && blks > 1) {
782 current_block = le32_to_cpu(where->key) + 1;
783 for (i = 1; i < blks; i++)
784 *(where->p + i ) = cpu_to_le32(current_block++);
788 * update the most recently allocated logical & physical block
789 * in i_block_alloc_info, to assist find the proper goal block for next
790 * allocation
792 if (block_i) {
793 block_i->last_alloc_logical_block = block + blks - 1;
794 block_i->last_alloc_physical_block =
795 le32_to_cpu(where[num].key) + blks - 1;
798 /* We are done with atomic stuff, now do the rest of housekeeping */
800 inode->i_ctime = ext4_current_time(inode);
801 ext4_mark_inode_dirty(handle, inode);
803 /* had we spliced it onto indirect block? */
804 if (where->bh) {
806 * If we spliced it onto an indirect block, we haven't
807 * altered the inode. Note however that if it is being spliced
808 * onto an indirect block at the very end of the file (the
809 * file is growing) then we *will* alter the inode to reflect
810 * the new i_size. But that is not done here - it is done in
811 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
813 jbd_debug(5, "splicing indirect only\n");
814 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
815 err = ext4_journal_dirty_metadata(handle, where->bh);
816 if (err)
817 goto err_out;
818 } else {
820 * OK, we spliced it into the inode itself on a direct block.
821 * Inode was dirtied above.
823 jbd_debug(5, "splicing direct\n");
825 return err;
827 err_out:
828 for (i = 1; i <= num; i++) {
829 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
830 ext4_journal_forget(handle, where[i].bh);
831 ext4_free_blocks(handle, inode,
832 le32_to_cpu(where[i-1].key), 1, 0);
834 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
836 return err;
840 * Allocation strategy is simple: if we have to allocate something, we will
841 * have to go the whole way to leaf. So let's do it before attaching anything
842 * to tree, set linkage between the newborn blocks, write them if sync is
843 * required, recheck the path, free and repeat if check fails, otherwise
844 * set the last missing link (that will protect us from any truncate-generated
845 * removals - all blocks on the path are immune now) and possibly force the
846 * write on the parent block.
847 * That has a nice additional property: no special recovery from the failed
848 * allocations is needed - we simply release blocks and do not touch anything
849 * reachable from inode.
851 * `handle' can be NULL if create == 0.
853 * return > 0, # of blocks mapped or allocated.
854 * return = 0, if plain lookup failed.
855 * return < 0, error case.
858 * Need to be called with
859 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
860 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
862 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
863 ext4_lblk_t iblock, unsigned long maxblocks,
864 struct buffer_head *bh_result,
865 int create, int extend_disksize)
867 int err = -EIO;
868 ext4_lblk_t offsets[4];
869 Indirect chain[4];
870 Indirect *partial;
871 ext4_fsblk_t goal;
872 int indirect_blks;
873 int blocks_to_boundary = 0;
874 int depth;
875 struct ext4_inode_info *ei = EXT4_I(inode);
876 int count = 0;
877 ext4_fsblk_t first_block = 0;
878 loff_t disksize;
881 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
882 J_ASSERT(handle != NULL || create == 0);
883 depth = ext4_block_to_path(inode, iblock, offsets,
884 &blocks_to_boundary);
886 if (depth == 0)
887 goto out;
889 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
891 /* Simplest case - block found, no allocation needed */
892 if (!partial) {
893 first_block = le32_to_cpu(chain[depth - 1].key);
894 clear_buffer_new(bh_result);
895 count++;
896 /*map more blocks*/
897 while (count < maxblocks && count <= blocks_to_boundary) {
898 ext4_fsblk_t blk;
900 blk = le32_to_cpu(*(chain[depth-1].p + count));
902 if (blk == first_block + count)
903 count++;
904 else
905 break;
907 goto got_it;
910 /* Next simple case - plain lookup or failed read of indirect block */
911 if (!create || err == -EIO)
912 goto cleanup;
915 * Okay, we need to do block allocation. Lazily initialize the block
916 * allocation info here if necessary
918 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
919 ext4_init_block_alloc_info(inode);
921 goal = ext4_find_goal(inode, iblock, partial);
923 /* the number of blocks need to allocate for [d,t]indirect blocks */
924 indirect_blks = (chain + depth) - partial - 1;
927 * Next look up the indirect map to count the totoal number of
928 * direct blocks to allocate for this branch.
930 count = ext4_blks_to_allocate(partial, indirect_blks,
931 maxblocks, blocks_to_boundary);
933 * Block out ext4_truncate while we alter the tree
935 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
936 &count, goal,
937 offsets + (partial - chain), partial);
940 * The ext4_splice_branch call will free and forget any buffers
941 * on the new chain if there is a failure, but that risks using
942 * up transaction credits, especially for bitmaps where the
943 * credits cannot be returned. Can we handle this somehow? We
944 * may need to return -EAGAIN upwards in the worst case. --sct
946 if (!err)
947 err = ext4_splice_branch(handle, inode, iblock,
948 partial, indirect_blks, count);
950 * i_disksize growing is protected by i_data_sem. Don't forget to
951 * protect it if you're about to implement concurrent
952 * ext4_get_block() -bzzz
954 if (!err && extend_disksize) {
955 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
956 if (disksize > i_size_read(inode))
957 disksize = i_size_read(inode);
958 if (disksize > ei->i_disksize)
959 ei->i_disksize = disksize;
961 if (err)
962 goto cleanup;
964 set_buffer_new(bh_result);
965 got_it:
966 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
967 if (count > blocks_to_boundary)
968 set_buffer_boundary(bh_result);
969 err = count;
970 /* Clean up and exit */
971 partial = chain + depth - 1; /* the whole chain */
972 cleanup:
973 while (partial > chain) {
974 BUFFER_TRACE(partial->bh, "call brelse");
975 brelse(partial->bh);
976 partial--;
978 BUFFER_TRACE(bh_result, "returned");
979 out:
980 return err;
984 * Calculate the number of metadata blocks need to reserve
985 * to allocate @blocks for non extent file based file
987 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
989 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
990 int ind_blks, dind_blks, tind_blks;
992 /* number of new indirect blocks needed */
993 ind_blks = (blocks + icap - 1) / icap;
995 dind_blks = (ind_blks + icap - 1) / icap;
997 tind_blks = 1;
999 return ind_blks + dind_blks + tind_blks;
1003 * Calculate the number of metadata blocks need to reserve
1004 * to allocate given number of blocks
1006 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1008 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1009 return ext4_ext_calc_metadata_amount(inode, blocks);
1011 return ext4_indirect_calc_metadata_amount(inode, blocks);
1014 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1016 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1017 int total, mdb, mdb_free;
1019 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1020 /* recalculate the number of metablocks still need to be reserved */
1021 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1022 mdb = ext4_calc_metadata_amount(inode, total);
1024 /* figure out how many metablocks to release */
1025 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1026 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1028 /* Account for allocated meta_blocks */
1029 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1031 /* update fs free blocks counter for truncate case */
1032 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1034 /* update per-inode reservations */
1035 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1036 EXT4_I(inode)->i_reserved_data_blocks -= used;
1038 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1039 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1040 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1044 /* Maximum number of blocks we map for direct IO at once. */
1045 #define DIO_MAX_BLOCKS 4096
1047 * Number of credits we need for writing DIO_MAX_BLOCKS:
1048 * We need sb + group descriptor + bitmap + inode -> 4
1049 * For B blocks with A block pointers per block we need:
1050 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1051 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1053 #define DIO_CREDITS 25
1057 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1058 * and returns if the blocks are already mapped.
1060 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1061 * and store the allocated blocks in the result buffer head and mark it
1062 * mapped.
1064 * If file type is extents based, it will call ext4_ext_get_blocks(),
1065 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1066 * based files
1068 * On success, it returns the number of blocks being mapped or allocate.
1069 * if create==0 and the blocks are pre-allocated and uninitialized block,
1070 * the result buffer head is unmapped. If the create ==1, it will make sure
1071 * the buffer head is mapped.
1073 * It returns 0 if plain look up failed (blocks have not been allocated), in
1074 * that casem, buffer head is unmapped
1076 * It returns the error in case of allocation failure.
1078 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1079 unsigned long max_blocks, struct buffer_head *bh,
1080 int create, int extend_disksize, int flag)
1082 int retval;
1084 clear_buffer_mapped(bh);
1087 * Try to see if we can get the block without requesting
1088 * for new file system block.
1090 down_read((&EXT4_I(inode)->i_data_sem));
1091 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1092 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1093 bh, 0, 0);
1094 } else {
1095 retval = ext4_get_blocks_handle(handle,
1096 inode, block, max_blocks, bh, 0, 0);
1098 up_read((&EXT4_I(inode)->i_data_sem));
1100 /* If it is only a block(s) look up */
1101 if (!create)
1102 return retval;
1105 * Returns if the blocks have already allocated
1107 * Note that if blocks have been preallocated
1108 * ext4_ext_get_block() returns th create = 0
1109 * with buffer head unmapped.
1111 if (retval > 0 && buffer_mapped(bh))
1112 return retval;
1115 * New blocks allocate and/or writing to uninitialized extent
1116 * will possibly result in updating i_data, so we take
1117 * the write lock of i_data_sem, and call get_blocks()
1118 * with create == 1 flag.
1120 down_write((&EXT4_I(inode)->i_data_sem));
1123 * if the caller is from delayed allocation writeout path
1124 * we have already reserved fs blocks for allocation
1125 * let the underlying get_block() function know to
1126 * avoid double accounting
1128 if (flag)
1129 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1131 * We need to check for EXT4 here because migrate
1132 * could have changed the inode type in between
1134 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1135 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1136 bh, create, extend_disksize);
1137 } else {
1138 retval = ext4_get_blocks_handle(handle, inode, block,
1139 max_blocks, bh, create, extend_disksize);
1141 if (retval > 0 && buffer_new(bh)) {
1143 * We allocated new blocks which will result in
1144 * i_data's format changing. Force the migrate
1145 * to fail by clearing migrate flags
1147 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1148 ~EXT4_EXT_MIGRATE;
1152 if (flag) {
1153 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1155 * Update reserved blocks/metadata blocks
1156 * after successful block allocation
1157 * which were deferred till now
1159 if ((retval > 0) && buffer_delay(bh))
1160 ext4_da_update_reserve_space(inode, retval);
1163 up_write((&EXT4_I(inode)->i_data_sem));
1164 return retval;
1167 static int ext4_get_block(struct inode *inode, sector_t iblock,
1168 struct buffer_head *bh_result, int create)
1170 handle_t *handle = ext4_journal_current_handle();
1171 int ret = 0, started = 0;
1172 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1174 if (create && !handle) {
1175 /* Direct IO write... */
1176 if (max_blocks > DIO_MAX_BLOCKS)
1177 max_blocks = DIO_MAX_BLOCKS;
1178 handle = ext4_journal_start(inode, DIO_CREDITS +
1179 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1180 if (IS_ERR(handle)) {
1181 ret = PTR_ERR(handle);
1182 goto out;
1184 started = 1;
1187 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1188 max_blocks, bh_result, create, 0, 0);
1189 if (ret > 0) {
1190 bh_result->b_size = (ret << inode->i_blkbits);
1191 ret = 0;
1193 if (started)
1194 ext4_journal_stop(handle);
1195 out:
1196 return ret;
1200 * `handle' can be NULL if create is zero
1202 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1203 ext4_lblk_t block, int create, int *errp)
1205 struct buffer_head dummy;
1206 int fatal = 0, err;
1208 J_ASSERT(handle != NULL || create == 0);
1210 dummy.b_state = 0;
1211 dummy.b_blocknr = -1000;
1212 buffer_trace_init(&dummy.b_history);
1213 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1214 &dummy, create, 1, 0);
1216 * ext4_get_blocks_handle() returns number of blocks
1217 * mapped. 0 in case of a HOLE.
1219 if (err > 0) {
1220 if (err > 1)
1221 WARN_ON(1);
1222 err = 0;
1224 *errp = err;
1225 if (!err && buffer_mapped(&dummy)) {
1226 struct buffer_head *bh;
1227 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1228 if (!bh) {
1229 *errp = -EIO;
1230 goto err;
1232 if (buffer_new(&dummy)) {
1233 J_ASSERT(create != 0);
1234 J_ASSERT(handle != NULL);
1237 * Now that we do not always journal data, we should
1238 * keep in mind whether this should always journal the
1239 * new buffer as metadata. For now, regular file
1240 * writes use ext4_get_block instead, so it's not a
1241 * problem.
1243 lock_buffer(bh);
1244 BUFFER_TRACE(bh, "call get_create_access");
1245 fatal = ext4_journal_get_create_access(handle, bh);
1246 if (!fatal && !buffer_uptodate(bh)) {
1247 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1248 set_buffer_uptodate(bh);
1250 unlock_buffer(bh);
1251 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1252 err = ext4_journal_dirty_metadata(handle, bh);
1253 if (!fatal)
1254 fatal = err;
1255 } else {
1256 BUFFER_TRACE(bh, "not a new buffer");
1258 if (fatal) {
1259 *errp = fatal;
1260 brelse(bh);
1261 bh = NULL;
1263 return bh;
1265 err:
1266 return NULL;
1269 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1270 ext4_lblk_t block, int create, int *err)
1272 struct buffer_head * bh;
1274 bh = ext4_getblk(handle, inode, block, create, err);
1275 if (!bh)
1276 return bh;
1277 if (buffer_uptodate(bh))
1278 return bh;
1279 ll_rw_block(READ_META, 1, &bh);
1280 wait_on_buffer(bh);
1281 if (buffer_uptodate(bh))
1282 return bh;
1283 put_bh(bh);
1284 *err = -EIO;
1285 return NULL;
1288 static int walk_page_buffers( handle_t *handle,
1289 struct buffer_head *head,
1290 unsigned from,
1291 unsigned to,
1292 int *partial,
1293 int (*fn)( handle_t *handle,
1294 struct buffer_head *bh))
1296 struct buffer_head *bh;
1297 unsigned block_start, block_end;
1298 unsigned blocksize = head->b_size;
1299 int err, ret = 0;
1300 struct buffer_head *next;
1302 for ( bh = head, block_start = 0;
1303 ret == 0 && (bh != head || !block_start);
1304 block_start = block_end, bh = next)
1306 next = bh->b_this_page;
1307 block_end = block_start + blocksize;
1308 if (block_end <= from || block_start >= to) {
1309 if (partial && !buffer_uptodate(bh))
1310 *partial = 1;
1311 continue;
1313 err = (*fn)(handle, bh);
1314 if (!ret)
1315 ret = err;
1317 return ret;
1321 * To preserve ordering, it is essential that the hole instantiation and
1322 * the data write be encapsulated in a single transaction. We cannot
1323 * close off a transaction and start a new one between the ext4_get_block()
1324 * and the commit_write(). So doing the jbd2_journal_start at the start of
1325 * prepare_write() is the right place.
1327 * Also, this function can nest inside ext4_writepage() ->
1328 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1329 * has generated enough buffer credits to do the whole page. So we won't
1330 * block on the journal in that case, which is good, because the caller may
1331 * be PF_MEMALLOC.
1333 * By accident, ext4 can be reentered when a transaction is open via
1334 * quota file writes. If we were to commit the transaction while thus
1335 * reentered, there can be a deadlock - we would be holding a quota
1336 * lock, and the commit would never complete if another thread had a
1337 * transaction open and was blocking on the quota lock - a ranking
1338 * violation.
1340 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1341 * will _not_ run commit under these circumstances because handle->h_ref
1342 * is elevated. We'll still have enough credits for the tiny quotafile
1343 * write.
1345 static int do_journal_get_write_access(handle_t *handle,
1346 struct buffer_head *bh)
1348 if (!buffer_mapped(bh) || buffer_freed(bh))
1349 return 0;
1350 return ext4_journal_get_write_access(handle, bh);
1353 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1354 loff_t pos, unsigned len, unsigned flags,
1355 struct page **pagep, void **fsdata)
1357 struct inode *inode = mapping->host;
1358 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1359 handle_t *handle;
1360 int retries = 0;
1361 struct page *page;
1362 pgoff_t index;
1363 unsigned from, to;
1365 index = pos >> PAGE_CACHE_SHIFT;
1366 from = pos & (PAGE_CACHE_SIZE - 1);
1367 to = from + len;
1369 retry:
1370 handle = ext4_journal_start(inode, needed_blocks);
1371 if (IS_ERR(handle)) {
1372 ret = PTR_ERR(handle);
1373 goto out;
1376 page = __grab_cache_page(mapping, index);
1377 if (!page) {
1378 ext4_journal_stop(handle);
1379 ret = -ENOMEM;
1380 goto out;
1382 *pagep = page;
1384 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1385 ext4_get_block);
1387 if (!ret && ext4_should_journal_data(inode)) {
1388 ret = walk_page_buffers(handle, page_buffers(page),
1389 from, to, NULL, do_journal_get_write_access);
1392 if (ret) {
1393 unlock_page(page);
1394 ext4_journal_stop(handle);
1395 page_cache_release(page);
1398 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1399 goto retry;
1400 out:
1401 return ret;
1404 /* For write_end() in data=journal mode */
1405 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1407 if (!buffer_mapped(bh) || buffer_freed(bh))
1408 return 0;
1409 set_buffer_uptodate(bh);
1410 return ext4_journal_dirty_metadata(handle, bh);
1414 * We need to pick up the new inode size which generic_commit_write gave us
1415 * `file' can be NULL - eg, when called from page_symlink().
1417 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1418 * buffers are managed internally.
1420 static int ext4_ordered_write_end(struct file *file,
1421 struct address_space *mapping,
1422 loff_t pos, unsigned len, unsigned copied,
1423 struct page *page, void *fsdata)
1425 handle_t *handle = ext4_journal_current_handle();
1426 struct inode *inode = mapping->host;
1427 int ret = 0, ret2;
1429 ret = ext4_jbd2_file_inode(handle, inode);
1431 if (ret == 0) {
1433 * generic_write_end() will run mark_inode_dirty() if i_size
1434 * changes. So let's piggyback the i_disksize mark_inode_dirty
1435 * into that.
1437 loff_t new_i_size;
1439 new_i_size = pos + copied;
1440 if (new_i_size > EXT4_I(inode)->i_disksize)
1441 EXT4_I(inode)->i_disksize = new_i_size;
1442 ret2 = generic_write_end(file, mapping, pos, len, copied,
1443 page, fsdata);
1444 copied = ret2;
1445 if (ret2 < 0)
1446 ret = ret2;
1448 ret2 = ext4_journal_stop(handle);
1449 if (!ret)
1450 ret = ret2;
1452 return ret ? ret : copied;
1455 static int ext4_writeback_write_end(struct file *file,
1456 struct address_space *mapping,
1457 loff_t pos, unsigned len, unsigned copied,
1458 struct page *page, void *fsdata)
1460 handle_t *handle = ext4_journal_current_handle();
1461 struct inode *inode = mapping->host;
1462 int ret = 0, ret2;
1463 loff_t new_i_size;
1465 new_i_size = pos + copied;
1466 if (new_i_size > EXT4_I(inode)->i_disksize)
1467 EXT4_I(inode)->i_disksize = new_i_size;
1469 ret2 = generic_write_end(file, mapping, pos, len, copied,
1470 page, fsdata);
1471 copied = ret2;
1472 if (ret2 < 0)
1473 ret = ret2;
1475 ret2 = ext4_journal_stop(handle);
1476 if (!ret)
1477 ret = ret2;
1479 return ret ? ret : copied;
1482 static int ext4_journalled_write_end(struct file *file,
1483 struct address_space *mapping,
1484 loff_t pos, unsigned len, unsigned copied,
1485 struct page *page, void *fsdata)
1487 handle_t *handle = ext4_journal_current_handle();
1488 struct inode *inode = mapping->host;
1489 int ret = 0, ret2;
1490 int partial = 0;
1491 unsigned from, to;
1493 from = pos & (PAGE_CACHE_SIZE - 1);
1494 to = from + len;
1496 if (copied < len) {
1497 if (!PageUptodate(page))
1498 copied = 0;
1499 page_zero_new_buffers(page, from+copied, to);
1502 ret = walk_page_buffers(handle, page_buffers(page), from,
1503 to, &partial, write_end_fn);
1504 if (!partial)
1505 SetPageUptodate(page);
1506 if (pos+copied > inode->i_size)
1507 i_size_write(inode, pos+copied);
1508 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1509 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1510 EXT4_I(inode)->i_disksize = inode->i_size;
1511 ret2 = ext4_mark_inode_dirty(handle, inode);
1512 if (!ret)
1513 ret = ret2;
1516 unlock_page(page);
1517 ret2 = ext4_journal_stop(handle);
1518 if (!ret)
1519 ret = ret2;
1520 page_cache_release(page);
1522 return ret ? ret : copied;
1525 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1528 unsigned long md_needed, mdblocks, total = 0;
1531 * recalculate the amount of metadata blocks to reserve
1532 * in order to allocate nrblocks
1533 * worse case is one extent per block
1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 mdblocks = ext4_calc_metadata_amount(inode, total);
1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 total = md_needed + nrblocks;
1543 if (ext4_has_free_blocks(sbi, total) < total) {
1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 return -ENOSPC;
1547 /* reduce fs free blocks counter */
1548 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1550 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1551 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1554 return 0; /* success */
1557 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 int total, mdb, mdb_free, release;
1562 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1563 /* recalculate the number of metablocks still need to be reserved */
1564 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1565 mdb = ext4_calc_metadata_amount(inode, total);
1567 /* figure out how many metablocks to release */
1568 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1569 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1571 release = to_free + mdb_free;
1573 /* update fs free blocks counter for truncate case */
1574 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1576 /* update per-inode reservations */
1577 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1578 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1580 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1581 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1582 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1585 static void ext4_da_page_release_reservation(struct page *page,
1586 unsigned long offset)
1588 int to_release = 0;
1589 struct buffer_head *head, *bh;
1590 unsigned int curr_off = 0;
1592 head = page_buffers(page);
1593 bh = head;
1594 do {
1595 unsigned int next_off = curr_off + bh->b_size;
1597 if ((offset <= curr_off) && (buffer_delay(bh))) {
1598 to_release++;
1599 clear_buffer_delay(bh);
1601 curr_off = next_off;
1602 } while ((bh = bh->b_this_page) != head);
1603 ext4_da_release_space(page->mapping->host, to_release);
1607 * Delayed allocation stuff
1610 struct mpage_da_data {
1611 struct inode *inode;
1612 struct buffer_head lbh; /* extent of blocks */
1613 unsigned long first_page, next_page; /* extent of pages */
1614 get_block_t *get_block;
1615 struct writeback_control *wbc;
1619 * mpage_da_submit_io - walks through extent of pages and try to write
1620 * them with __mpage_writepage()
1622 * @mpd->inode: inode
1623 * @mpd->first_page: first page of the extent
1624 * @mpd->next_page: page after the last page of the extent
1625 * @mpd->get_block: the filesystem's block mapper function
1627 * By the time mpage_da_submit_io() is called we expect all blocks
1628 * to be allocated. this may be wrong if allocation failed.
1630 * As pages are already locked by write_cache_pages(), we can't use it
1632 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1634 struct address_space *mapping = mpd->inode->i_mapping;
1635 struct mpage_data mpd_pp = {
1636 .bio = NULL,
1637 .last_block_in_bio = 0,
1638 .get_block = mpd->get_block,
1639 .use_writepage = 1,
1641 int ret = 0, err, nr_pages, i;
1642 unsigned long index, end;
1643 struct pagevec pvec;
1645 BUG_ON(mpd->next_page <= mpd->first_page);
1647 pagevec_init(&pvec, 0);
1648 index = mpd->first_page;
1649 end = mpd->next_page - 1;
1651 while (index <= end) {
1652 /* XXX: optimize tail */
1653 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1654 if (nr_pages == 0)
1655 break;
1656 for (i = 0; i < nr_pages; i++) {
1657 struct page *page = pvec.pages[i];
1659 index = page->index;
1660 if (index > end)
1661 break;
1662 index++;
1664 err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1667 * In error case, we have to continue because
1668 * remaining pages are still locked
1669 * XXX: unlock and re-dirty them?
1671 if (ret == 0)
1672 ret = err;
1674 pagevec_release(&pvec);
1676 if (mpd_pp.bio)
1677 mpage_bio_submit(WRITE, mpd_pp.bio);
1679 return ret;
1683 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1685 * @mpd->inode - inode to walk through
1686 * @exbh->b_blocknr - first block on a disk
1687 * @exbh->b_size - amount of space in bytes
1688 * @logical - first logical block to start assignment with
1690 * the function goes through all passed space and put actual disk
1691 * block numbers into buffer heads, dropping BH_Delay
1693 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1694 struct buffer_head *exbh)
1696 struct inode *inode = mpd->inode;
1697 struct address_space *mapping = inode->i_mapping;
1698 int blocks = exbh->b_size >> inode->i_blkbits;
1699 sector_t pblock = exbh->b_blocknr, cur_logical;
1700 struct buffer_head *head, *bh;
1701 unsigned long index, end;
1702 struct pagevec pvec;
1703 int nr_pages, i;
1705 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1706 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1707 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1709 pagevec_init(&pvec, 0);
1711 while (index <= end) {
1712 /* XXX: optimize tail */
1713 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1714 if (nr_pages == 0)
1715 break;
1716 for (i = 0; i < nr_pages; i++) {
1717 struct page *page = pvec.pages[i];
1719 index = page->index;
1720 if (index > end)
1721 break;
1722 index++;
1724 BUG_ON(!PageLocked(page));
1725 BUG_ON(PageWriteback(page));
1726 BUG_ON(!page_has_buffers(page));
1728 bh = page_buffers(page);
1729 head = bh;
1731 /* skip blocks out of the range */
1732 do {
1733 if (cur_logical >= logical)
1734 break;
1735 cur_logical++;
1736 } while ((bh = bh->b_this_page) != head);
1738 do {
1739 if (cur_logical >= logical + blocks)
1740 break;
1741 if (buffer_delay(bh)) {
1742 bh->b_blocknr = pblock;
1743 clear_buffer_delay(bh);
1744 } else if (buffer_mapped(bh))
1745 BUG_ON(bh->b_blocknr != pblock);
1747 cur_logical++;
1748 pblock++;
1749 } while ((bh = bh->b_this_page) != head);
1751 pagevec_release(&pvec);
1757 * __unmap_underlying_blocks - just a helper function to unmap
1758 * set of blocks described by @bh
1760 static inline void __unmap_underlying_blocks(struct inode *inode,
1761 struct buffer_head *bh)
1763 struct block_device *bdev = inode->i_sb->s_bdev;
1764 int blocks, i;
1766 blocks = bh->b_size >> inode->i_blkbits;
1767 for (i = 0; i < blocks; i++)
1768 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1772 * mpage_da_map_blocks - go through given space
1774 * @mpd->lbh - bh describing space
1775 * @mpd->get_block - the filesystem's block mapper function
1777 * The function skips space we know is already mapped to disk blocks.
1779 * The function ignores errors ->get_block() returns, thus real
1780 * error handling is postponed to __mpage_writepage()
1782 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1784 struct buffer_head *lbh = &mpd->lbh;
1785 int err = 0, remain = lbh->b_size;
1786 sector_t next = lbh->b_blocknr;
1787 struct buffer_head new;
1790 * We consider only non-mapped and non-allocated blocks
1792 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1793 return;
1795 while (remain) {
1796 new.b_state = lbh->b_state;
1797 new.b_blocknr = 0;
1798 new.b_size = remain;
1799 err = mpd->get_block(mpd->inode, next, &new, 1);
1800 if (err) {
1802 * Rather than implement own error handling
1803 * here, we just leave remaining blocks
1804 * unallocated and try again with ->writepage()
1806 break;
1808 BUG_ON(new.b_size == 0);
1810 if (buffer_new(&new))
1811 __unmap_underlying_blocks(mpd->inode, &new);
1814 * If blocks are delayed marked, we need to
1815 * put actual blocknr and drop delayed bit
1817 if (buffer_delay(lbh))
1818 mpage_put_bnr_to_bhs(mpd, next, &new);
1820 /* go for the remaining blocks */
1821 next += new.b_size >> mpd->inode->i_blkbits;
1822 remain -= new.b_size;
1826 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1829 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1831 * @mpd->lbh - extent of blocks
1832 * @logical - logical number of the block in the file
1833 * @bh - bh of the block (used to access block's state)
1835 * the function is used to collect contig. blocks in same state
1837 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1838 sector_t logical, struct buffer_head *bh)
1840 struct buffer_head *lbh = &mpd->lbh;
1841 sector_t next;
1843 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1846 * First block in the extent
1848 if (lbh->b_size == 0) {
1849 lbh->b_blocknr = logical;
1850 lbh->b_size = bh->b_size;
1851 lbh->b_state = bh->b_state & BH_FLAGS;
1852 return;
1856 * Can we merge the block to our big extent?
1858 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1859 lbh->b_size += bh->b_size;
1860 return;
1864 * We couldn't merge the block to our extent, so we
1865 * need to flush current extent and start new one
1867 mpage_da_map_blocks(mpd);
1870 * Now start a new extent
1872 lbh->b_size = bh->b_size;
1873 lbh->b_state = bh->b_state & BH_FLAGS;
1874 lbh->b_blocknr = logical;
1878 * __mpage_da_writepage - finds extent of pages and blocks
1880 * @page: page to consider
1881 * @wbc: not used, we just follow rules
1882 * @data: context
1884 * The function finds extents of pages and scan them for all blocks.
1886 static int __mpage_da_writepage(struct page *page,
1887 struct writeback_control *wbc, void *data)
1889 struct mpage_da_data *mpd = data;
1890 struct inode *inode = mpd->inode;
1891 struct buffer_head *bh, *head, fake;
1892 sector_t logical;
1895 * Can we merge this page to current extent?
1897 if (mpd->next_page != page->index) {
1899 * Nope, we can't. So, we map non-allocated blocks
1900 * and start IO on them using __mpage_writepage()
1902 if (mpd->next_page != mpd->first_page) {
1903 mpage_da_map_blocks(mpd);
1904 mpage_da_submit_io(mpd);
1908 * Start next extent of pages ...
1910 mpd->first_page = page->index;
1913 * ... and blocks
1915 mpd->lbh.b_size = 0;
1916 mpd->lbh.b_state = 0;
1917 mpd->lbh.b_blocknr = 0;
1920 mpd->next_page = page->index + 1;
1921 logical = (sector_t) page->index <<
1922 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1924 if (!page_has_buffers(page)) {
1926 * There is no attached buffer heads yet (mmap?)
1927 * we treat the page asfull of dirty blocks
1929 bh = &fake;
1930 bh->b_size = PAGE_CACHE_SIZE;
1931 bh->b_state = 0;
1932 set_buffer_dirty(bh);
1933 set_buffer_uptodate(bh);
1934 mpage_add_bh_to_extent(mpd, logical, bh);
1935 } else {
1937 * Page with regular buffer heads, just add all dirty ones
1939 head = page_buffers(page);
1940 bh = head;
1941 do {
1942 BUG_ON(buffer_locked(bh));
1943 if (buffer_dirty(bh))
1944 mpage_add_bh_to_extent(mpd, logical, bh);
1945 logical++;
1946 } while ((bh = bh->b_this_page) != head);
1949 return 0;
1953 * mpage_da_writepages - walk the list of dirty pages of the given
1954 * address space, allocates non-allocated blocks, maps newly-allocated
1955 * blocks to existing bhs and issue IO them
1957 * @mapping: address space structure to write
1958 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1959 * @get_block: the filesystem's block mapper function.
1961 * This is a library function, which implements the writepages()
1962 * address_space_operation.
1964 * In order to avoid duplication of logic that deals with partial pages,
1965 * multiple bio per page, etc, we find non-allocated blocks, allocate
1966 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1968 * It's important that we call __mpage_writepage() only once for each
1969 * involved page, otherwise we'd have to implement more complicated logic
1970 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1972 * See comments to mpage_writepages()
1974 static int mpage_da_writepages(struct address_space *mapping,
1975 struct writeback_control *wbc,
1976 get_block_t get_block)
1978 struct mpage_da_data mpd;
1979 int ret;
1981 if (!get_block)
1982 return generic_writepages(mapping, wbc);
1984 mpd.wbc = wbc;
1985 mpd.inode = mapping->host;
1986 mpd.lbh.b_size = 0;
1987 mpd.lbh.b_state = 0;
1988 mpd.lbh.b_blocknr = 0;
1989 mpd.first_page = 0;
1990 mpd.next_page = 0;
1991 mpd.get_block = get_block;
1993 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1996 * Handle last extent of pages
1998 if (mpd.next_page != mpd.first_page) {
1999 mpage_da_map_blocks(&mpd);
2000 mpage_da_submit_io(&mpd);
2003 return ret;
2007 * this is a special callback for ->write_begin() only
2008 * it's intention is to return mapped block or reserve space
2010 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2011 struct buffer_head *bh_result, int create)
2013 int ret = 0;
2015 BUG_ON(create == 0);
2016 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2019 * first, we need to know whether the block is allocated already
2020 * preallocated blocks are unmapped but should treated
2021 * the same as allocated blocks.
2023 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2024 if ((ret == 0) && !buffer_delay(bh_result)) {
2025 /* the block isn't (pre)allocated yet, let's reserve space */
2027 * XXX: __block_prepare_write() unmaps passed block,
2028 * is it OK?
2030 ret = ext4_da_reserve_space(inode, 1);
2031 if (ret)
2032 /* not enough space to reserve */
2033 return ret;
2035 map_bh(bh_result, inode->i_sb, 0);
2036 set_buffer_new(bh_result);
2037 set_buffer_delay(bh_result);
2038 } else if (ret > 0) {
2039 bh_result->b_size = (ret << inode->i_blkbits);
2040 ret = 0;
2043 return ret;
2045 #define EXT4_DELALLOC_RSVED 1
2046 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2047 struct buffer_head *bh_result, int create)
2049 int ret;
2050 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2051 loff_t disksize = EXT4_I(inode)->i_disksize;
2052 handle_t *handle = NULL;
2054 handle = ext4_journal_current_handle();
2055 if (!handle) {
2056 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2057 bh_result, 0, 0, 0);
2058 BUG_ON(!ret);
2059 } else {
2060 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2061 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2064 if (ret > 0) {
2065 bh_result->b_size = (ret << inode->i_blkbits);
2068 * Update on-disk size along with block allocation
2069 * we don't use 'extend_disksize' as size may change
2070 * within already allocated block -bzzz
2072 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2073 if (disksize > i_size_read(inode))
2074 disksize = i_size_read(inode);
2075 if (disksize > EXT4_I(inode)->i_disksize) {
2077 * XXX: replace with spinlock if seen contended -bzzz
2079 down_write(&EXT4_I(inode)->i_data_sem);
2080 if (disksize > EXT4_I(inode)->i_disksize)
2081 EXT4_I(inode)->i_disksize = disksize;
2082 up_write(&EXT4_I(inode)->i_data_sem);
2084 if (EXT4_I(inode)->i_disksize == disksize) {
2085 ret = ext4_mark_inode_dirty(handle, inode);
2086 return ret;
2089 ret = 0;
2091 return ret;
2094 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2097 * unmapped buffer is possible for holes.
2098 * delay buffer is possible with delayed allocation
2100 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2103 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2104 struct buffer_head *bh_result, int create)
2106 int ret = 0;
2107 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2110 * we don't want to do block allocation in writepage
2111 * so call get_block_wrap with create = 0
2113 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2114 bh_result, 0, 0, 0);
2115 if (ret > 0) {
2116 bh_result->b_size = (ret << inode->i_blkbits);
2117 ret = 0;
2119 return ret;
2123 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2124 * get called via journal_submit_inode_data_buffers (no journal handle)
2125 * get called via shrink_page_list via pdflush (no journal handle)
2126 * or grab_page_cache when doing write_begin (have journal handle)
2128 static int ext4_da_writepage(struct page *page,
2129 struct writeback_control *wbc)
2131 int ret = 0;
2132 loff_t size;
2133 unsigned long len;
2134 struct buffer_head *page_bufs;
2135 struct inode *inode = page->mapping->host;
2137 size = i_size_read(inode);
2138 if (page->index == size >> PAGE_CACHE_SHIFT)
2139 len = size & ~PAGE_CACHE_MASK;
2140 else
2141 len = PAGE_CACHE_SIZE;
2143 if (page_has_buffers(page)) {
2144 page_bufs = page_buffers(page);
2145 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2146 ext4_bh_unmapped_or_delay)) {
2148 * We don't want to do block allocation
2149 * So redirty the page and return
2150 * We may reach here when we do a journal commit
2151 * via journal_submit_inode_data_buffers.
2152 * If we don't have mapping block we just ignore
2153 * them. We can also reach here via shrink_page_list
2155 redirty_page_for_writepage(wbc, page);
2156 unlock_page(page);
2157 return 0;
2159 } else {
2161 * The test for page_has_buffers() is subtle:
2162 * We know the page is dirty but it lost buffers. That means
2163 * that at some moment in time after write_begin()/write_end()
2164 * has been called all buffers have been clean and thus they
2165 * must have been written at least once. So they are all
2166 * mapped and we can happily proceed with mapping them
2167 * and writing the page.
2169 * Try to initialize the buffer_heads and check whether
2170 * all are mapped and non delay. We don't want to
2171 * do block allocation here.
2173 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2174 ext4_normal_get_block_write);
2175 if (!ret) {
2176 page_bufs = page_buffers(page);
2177 /* check whether all are mapped and non delay */
2178 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2179 ext4_bh_unmapped_or_delay)) {
2180 redirty_page_for_writepage(wbc, page);
2181 unlock_page(page);
2182 return 0;
2184 } else {
2186 * We can't do block allocation here
2187 * so just redity the page and unlock
2188 * and return
2190 redirty_page_for_writepage(wbc, page);
2191 unlock_page(page);
2192 return 0;
2196 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2197 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2198 else
2199 ret = block_write_full_page(page,
2200 ext4_normal_get_block_write,
2201 wbc);
2203 return ret;
2207 * For now just follow the DIO way to estimate the max credits
2208 * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2209 * todo: need to calculate the max credits need for
2210 * extent based files, currently the DIO credits is based on
2211 * indirect-blocks mapping way.
2213 * Probably should have a generic way to calculate credits
2214 * for DIO, writepages, and truncate
2216 #define EXT4_MAX_WRITEBACK_PAGES DIO_MAX_BLOCKS
2217 #define EXT4_MAX_WRITEBACK_CREDITS DIO_CREDITS
2219 static int ext4_da_writepages(struct address_space *mapping,
2220 struct writeback_control *wbc)
2222 struct inode *inode = mapping->host;
2223 handle_t *handle = NULL;
2224 int needed_blocks;
2225 int ret = 0;
2226 long to_write;
2227 loff_t range_start = 0;
2230 * No pages to write? This is mainly a kludge to avoid starting
2231 * a transaction for special inodes like journal inode on last iput()
2232 * because that could violate lock ordering on umount
2234 if (!mapping->nrpages)
2235 return 0;
2238 * Estimate the worse case needed credits to write out
2239 * EXT4_MAX_BUF_BLOCKS pages
2241 needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2243 to_write = wbc->nr_to_write;
2244 if (!wbc->range_cyclic) {
2246 * If range_cyclic is not set force range_cont
2247 * and save the old writeback_index
2249 wbc->range_cont = 1;
2250 range_start = wbc->range_start;
2253 while (!ret && to_write) {
2254 /* start a new transaction*/
2255 handle = ext4_journal_start(inode, needed_blocks);
2256 if (IS_ERR(handle)) {
2257 ret = PTR_ERR(handle);
2258 goto out_writepages;
2260 if (ext4_should_order_data(inode)) {
2262 * With ordered mode we need to add
2263 * the inode to the journal handle
2264 * when we do block allocation.
2266 ret = ext4_jbd2_file_inode(handle, inode);
2267 if (ret) {
2268 ext4_journal_stop(handle);
2269 goto out_writepages;
2274 * set the max dirty pages could be write at a time
2275 * to fit into the reserved transaction credits
2277 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2278 wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2280 to_write -= wbc->nr_to_write;
2281 ret = mpage_da_writepages(mapping, wbc,
2282 ext4_da_get_block_write);
2283 ext4_journal_stop(handle);
2284 if (wbc->nr_to_write) {
2286 * There is no more writeout needed
2287 * or we requested for a noblocking writeout
2288 * and we found the device congested
2290 to_write += wbc->nr_to_write;
2291 break;
2293 wbc->nr_to_write = to_write;
2296 out_writepages:
2297 wbc->nr_to_write = to_write;
2298 if (range_start)
2299 wbc->range_start = range_start;
2300 return ret;
2303 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2304 loff_t pos, unsigned len, unsigned flags,
2305 struct page **pagep, void **fsdata)
2307 int ret, retries = 0;
2308 struct page *page;
2309 pgoff_t index;
2310 unsigned from, to;
2311 struct inode *inode = mapping->host;
2312 handle_t *handle;
2314 index = pos >> PAGE_CACHE_SHIFT;
2315 from = pos & (PAGE_CACHE_SIZE - 1);
2316 to = from + len;
2318 retry:
2320 * With delayed allocation, we don't log the i_disksize update
2321 * if there is delayed block allocation. But we still need
2322 * to journalling the i_disksize update if writes to the end
2323 * of file which has an already mapped buffer.
2325 handle = ext4_journal_start(inode, 1);
2326 if (IS_ERR(handle)) {
2327 ret = PTR_ERR(handle);
2328 goto out;
2331 page = __grab_cache_page(mapping, index);
2332 if (!page) {
2333 ext4_journal_stop(handle);
2334 ret = -ENOMEM;
2335 goto out;
2337 *pagep = page;
2339 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2340 ext4_da_get_block_prep);
2341 if (ret < 0) {
2342 unlock_page(page);
2343 ext4_journal_stop(handle);
2344 page_cache_release(page);
2347 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2348 goto retry;
2349 out:
2350 return ret;
2354 * Check if we should update i_disksize
2355 * when write to the end of file but not require block allocation
2357 static int ext4_da_should_update_i_disksize(struct page *page,
2358 unsigned long offset)
2360 struct buffer_head *bh;
2361 struct inode *inode = page->mapping->host;
2362 unsigned int idx;
2363 int i;
2365 bh = page_buffers(page);
2366 idx = offset >> inode->i_blkbits;
2368 for (i=0; i < idx; i++)
2369 bh = bh->b_this_page;
2371 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2372 return 0;
2373 return 1;
2376 static int ext4_da_write_end(struct file *file,
2377 struct address_space *mapping,
2378 loff_t pos, unsigned len, unsigned copied,
2379 struct page *page, void *fsdata)
2381 struct inode *inode = mapping->host;
2382 int ret = 0, ret2;
2383 handle_t *handle = ext4_journal_current_handle();
2384 loff_t new_i_size;
2385 unsigned long start, end;
2387 start = pos & (PAGE_CACHE_SIZE - 1);
2388 end = start + copied -1;
2391 * generic_write_end() will run mark_inode_dirty() if i_size
2392 * changes. So let's piggyback the i_disksize mark_inode_dirty
2393 * into that.
2396 new_i_size = pos + copied;
2397 if (new_i_size > EXT4_I(inode)->i_disksize) {
2398 if (ext4_da_should_update_i_disksize(page, end)) {
2399 down_write(&EXT4_I(inode)->i_data_sem);
2400 if (new_i_size > EXT4_I(inode)->i_disksize) {
2402 * Updating i_disksize when extending file
2403 * without needing block allocation
2405 if (ext4_should_order_data(inode))
2406 ret = ext4_jbd2_file_inode(handle,
2407 inode);
2409 EXT4_I(inode)->i_disksize = new_i_size;
2411 up_write(&EXT4_I(inode)->i_data_sem);
2414 ret2 = generic_write_end(file, mapping, pos, len, copied,
2415 page, fsdata);
2416 copied = ret2;
2417 if (ret2 < 0)
2418 ret = ret2;
2419 ret2 = ext4_journal_stop(handle);
2420 if (!ret)
2421 ret = ret2;
2423 return ret ? ret : copied;
2426 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2429 * Drop reserved blocks
2431 BUG_ON(!PageLocked(page));
2432 if (!page_has_buffers(page))
2433 goto out;
2435 ext4_da_page_release_reservation(page, offset);
2437 out:
2438 ext4_invalidatepage(page, offset);
2440 return;
2445 * bmap() is special. It gets used by applications such as lilo and by
2446 * the swapper to find the on-disk block of a specific piece of data.
2448 * Naturally, this is dangerous if the block concerned is still in the
2449 * journal. If somebody makes a swapfile on an ext4 data-journaling
2450 * filesystem and enables swap, then they may get a nasty shock when the
2451 * data getting swapped to that swapfile suddenly gets overwritten by
2452 * the original zero's written out previously to the journal and
2453 * awaiting writeback in the kernel's buffer cache.
2455 * So, if we see any bmap calls here on a modified, data-journaled file,
2456 * take extra steps to flush any blocks which might be in the cache.
2458 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2460 struct inode *inode = mapping->host;
2461 journal_t *journal;
2462 int err;
2464 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2465 test_opt(inode->i_sb, DELALLOC)) {
2467 * With delalloc we want to sync the file
2468 * so that we can make sure we allocate
2469 * blocks for file
2471 filemap_write_and_wait(mapping);
2474 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2476 * This is a REALLY heavyweight approach, but the use of
2477 * bmap on dirty files is expected to be extremely rare:
2478 * only if we run lilo or swapon on a freshly made file
2479 * do we expect this to happen.
2481 * (bmap requires CAP_SYS_RAWIO so this does not
2482 * represent an unprivileged user DOS attack --- we'd be
2483 * in trouble if mortal users could trigger this path at
2484 * will.)
2486 * NB. EXT4_STATE_JDATA is not set on files other than
2487 * regular files. If somebody wants to bmap a directory
2488 * or symlink and gets confused because the buffer
2489 * hasn't yet been flushed to disk, they deserve
2490 * everything they get.
2493 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2494 journal = EXT4_JOURNAL(inode);
2495 jbd2_journal_lock_updates(journal);
2496 err = jbd2_journal_flush(journal);
2497 jbd2_journal_unlock_updates(journal);
2499 if (err)
2500 return 0;
2503 return generic_block_bmap(mapping,block,ext4_get_block);
2506 static int bget_one(handle_t *handle, struct buffer_head *bh)
2508 get_bh(bh);
2509 return 0;
2512 static int bput_one(handle_t *handle, struct buffer_head *bh)
2514 put_bh(bh);
2515 return 0;
2519 * Note that we don't need to start a transaction unless we're journaling data
2520 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2521 * need to file the inode to the transaction's list in ordered mode because if
2522 * we are writing back data added by write(), the inode is already there and if
2523 * we are writing back data modified via mmap(), noone guarantees in which
2524 * transaction the data will hit the disk. In case we are journaling data, we
2525 * cannot start transaction directly because transaction start ranks above page
2526 * lock so we have to do some magic.
2528 * In all journaling modes block_write_full_page() will start the I/O.
2530 * Problem:
2532 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2533 * ext4_writepage()
2535 * Similar for:
2537 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2539 * Same applies to ext4_get_block(). We will deadlock on various things like
2540 * lock_journal and i_data_sem
2542 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2543 * allocations fail.
2545 * 16May01: If we're reentered then journal_current_handle() will be
2546 * non-zero. We simply *return*.
2548 * 1 July 2001: @@@ FIXME:
2549 * In journalled data mode, a data buffer may be metadata against the
2550 * current transaction. But the same file is part of a shared mapping
2551 * and someone does a writepage() on it.
2553 * We will move the buffer onto the async_data list, but *after* it has
2554 * been dirtied. So there's a small window where we have dirty data on
2555 * BJ_Metadata.
2557 * Note that this only applies to the last partial page in the file. The
2558 * bit which block_write_full_page() uses prepare/commit for. (That's
2559 * broken code anyway: it's wrong for msync()).
2561 * It's a rare case: affects the final partial page, for journalled data
2562 * where the file is subject to bith write() and writepage() in the same
2563 * transction. To fix it we'll need a custom block_write_full_page().
2564 * We'll probably need that anyway for journalling writepage() output.
2566 * We don't honour synchronous mounts for writepage(). That would be
2567 * disastrous. Any write() or metadata operation will sync the fs for
2568 * us.
2571 static int __ext4_normal_writepage(struct page *page,
2572 struct writeback_control *wbc)
2574 struct inode *inode = page->mapping->host;
2576 if (test_opt(inode->i_sb, NOBH))
2577 return nobh_writepage(page,
2578 ext4_normal_get_block_write, wbc);
2579 else
2580 return block_write_full_page(page,
2581 ext4_normal_get_block_write,
2582 wbc);
2585 static int ext4_normal_writepage(struct page *page,
2586 struct writeback_control *wbc)
2588 struct inode *inode = page->mapping->host;
2589 loff_t size = i_size_read(inode);
2590 loff_t len;
2592 J_ASSERT(PageLocked(page));
2593 if (page->index == size >> PAGE_CACHE_SHIFT)
2594 len = size & ~PAGE_CACHE_MASK;
2595 else
2596 len = PAGE_CACHE_SIZE;
2598 if (page_has_buffers(page)) {
2599 /* if page has buffers it should all be mapped
2600 * and allocated. If there are not buffers attached
2601 * to the page we know the page is dirty but it lost
2602 * buffers. That means that at some moment in time
2603 * after write_begin() / write_end() has been called
2604 * all buffers have been clean and thus they must have been
2605 * written at least once. So they are all mapped and we can
2606 * happily proceed with mapping them and writing the page.
2608 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2609 ext4_bh_unmapped_or_delay));
2612 if (!ext4_journal_current_handle())
2613 return __ext4_normal_writepage(page, wbc);
2615 redirty_page_for_writepage(wbc, page);
2616 unlock_page(page);
2617 return 0;
2620 static int __ext4_journalled_writepage(struct page *page,
2621 struct writeback_control *wbc)
2623 struct address_space *mapping = page->mapping;
2624 struct inode *inode = mapping->host;
2625 struct buffer_head *page_bufs;
2626 handle_t *handle = NULL;
2627 int ret = 0;
2628 int err;
2630 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2631 ext4_normal_get_block_write);
2632 if (ret != 0)
2633 goto out_unlock;
2635 page_bufs = page_buffers(page);
2636 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2637 bget_one);
2638 /* As soon as we unlock the page, it can go away, but we have
2639 * references to buffers so we are safe */
2640 unlock_page(page);
2642 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2643 if (IS_ERR(handle)) {
2644 ret = PTR_ERR(handle);
2645 goto out;
2648 ret = walk_page_buffers(handle, page_bufs, 0,
2649 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2651 err = walk_page_buffers(handle, page_bufs, 0,
2652 PAGE_CACHE_SIZE, NULL, write_end_fn);
2653 if (ret == 0)
2654 ret = err;
2655 err = ext4_journal_stop(handle);
2656 if (!ret)
2657 ret = err;
2659 walk_page_buffers(handle, page_bufs, 0,
2660 PAGE_CACHE_SIZE, NULL, bput_one);
2661 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2662 goto out;
2664 out_unlock:
2665 unlock_page(page);
2666 out:
2667 return ret;
2670 static int ext4_journalled_writepage(struct page *page,
2671 struct writeback_control *wbc)
2673 struct inode *inode = page->mapping->host;
2674 loff_t size = i_size_read(inode);
2675 loff_t len;
2677 J_ASSERT(PageLocked(page));
2678 if (page->index == size >> PAGE_CACHE_SHIFT)
2679 len = size & ~PAGE_CACHE_MASK;
2680 else
2681 len = PAGE_CACHE_SIZE;
2683 if (page_has_buffers(page)) {
2684 /* if page has buffers it should all be mapped
2685 * and allocated. If there are not buffers attached
2686 * to the page we know the page is dirty but it lost
2687 * buffers. That means that at some moment in time
2688 * after write_begin() / write_end() has been called
2689 * all buffers have been clean and thus they must have been
2690 * written at least once. So they are all mapped and we can
2691 * happily proceed with mapping them and writing the page.
2693 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2694 ext4_bh_unmapped_or_delay));
2697 if (ext4_journal_current_handle())
2698 goto no_write;
2700 if (PageChecked(page)) {
2702 * It's mmapped pagecache. Add buffers and journal it. There
2703 * doesn't seem much point in redirtying the page here.
2705 ClearPageChecked(page);
2706 return __ext4_journalled_writepage(page, wbc);
2707 } else {
2709 * It may be a page full of checkpoint-mode buffers. We don't
2710 * really know unless we go poke around in the buffer_heads.
2711 * But block_write_full_page will do the right thing.
2713 return block_write_full_page(page,
2714 ext4_normal_get_block_write,
2715 wbc);
2717 no_write:
2718 redirty_page_for_writepage(wbc, page);
2719 unlock_page(page);
2720 return 0;
2723 static int ext4_readpage(struct file *file, struct page *page)
2725 return mpage_readpage(page, ext4_get_block);
2728 static int
2729 ext4_readpages(struct file *file, struct address_space *mapping,
2730 struct list_head *pages, unsigned nr_pages)
2732 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2735 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2737 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2740 * If it's a full truncate we just forget about the pending dirtying
2742 if (offset == 0)
2743 ClearPageChecked(page);
2745 jbd2_journal_invalidatepage(journal, page, offset);
2748 static int ext4_releasepage(struct page *page, gfp_t wait)
2750 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2752 WARN_ON(PageChecked(page));
2753 if (!page_has_buffers(page))
2754 return 0;
2755 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2759 * If the O_DIRECT write will extend the file then add this inode to the
2760 * orphan list. So recovery will truncate it back to the original size
2761 * if the machine crashes during the write.
2763 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2764 * crashes then stale disk data _may_ be exposed inside the file. But current
2765 * VFS code falls back into buffered path in that case so we are safe.
2767 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2768 const struct iovec *iov, loff_t offset,
2769 unsigned long nr_segs)
2771 struct file *file = iocb->ki_filp;
2772 struct inode *inode = file->f_mapping->host;
2773 struct ext4_inode_info *ei = EXT4_I(inode);
2774 handle_t *handle;
2775 ssize_t ret;
2776 int orphan = 0;
2777 size_t count = iov_length(iov, nr_segs);
2779 if (rw == WRITE) {
2780 loff_t final_size = offset + count;
2782 if (final_size > inode->i_size) {
2783 /* Credits for sb + inode write */
2784 handle = ext4_journal_start(inode, 2);
2785 if (IS_ERR(handle)) {
2786 ret = PTR_ERR(handle);
2787 goto out;
2789 ret = ext4_orphan_add(handle, inode);
2790 if (ret) {
2791 ext4_journal_stop(handle);
2792 goto out;
2794 orphan = 1;
2795 ei->i_disksize = inode->i_size;
2796 ext4_journal_stop(handle);
2800 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2801 offset, nr_segs,
2802 ext4_get_block, NULL);
2804 if (orphan) {
2805 int err;
2807 /* Credits for sb + inode write */
2808 handle = ext4_journal_start(inode, 2);
2809 if (IS_ERR(handle)) {
2810 /* This is really bad luck. We've written the data
2811 * but cannot extend i_size. Bail out and pretend
2812 * the write failed... */
2813 ret = PTR_ERR(handle);
2814 goto out;
2816 if (inode->i_nlink)
2817 ext4_orphan_del(handle, inode);
2818 if (ret > 0) {
2819 loff_t end = offset + ret;
2820 if (end > inode->i_size) {
2821 ei->i_disksize = end;
2822 i_size_write(inode, end);
2824 * We're going to return a positive `ret'
2825 * here due to non-zero-length I/O, so there's
2826 * no way of reporting error returns from
2827 * ext4_mark_inode_dirty() to userspace. So
2828 * ignore it.
2830 ext4_mark_inode_dirty(handle, inode);
2833 err = ext4_journal_stop(handle);
2834 if (ret == 0)
2835 ret = err;
2837 out:
2838 return ret;
2842 * Pages can be marked dirty completely asynchronously from ext4's journalling
2843 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2844 * much here because ->set_page_dirty is called under VFS locks. The page is
2845 * not necessarily locked.
2847 * We cannot just dirty the page and leave attached buffers clean, because the
2848 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2849 * or jbddirty because all the journalling code will explode.
2851 * So what we do is to mark the page "pending dirty" and next time writepage
2852 * is called, propagate that into the buffers appropriately.
2854 static int ext4_journalled_set_page_dirty(struct page *page)
2856 SetPageChecked(page);
2857 return __set_page_dirty_nobuffers(page);
2860 static const struct address_space_operations ext4_ordered_aops = {
2861 .readpage = ext4_readpage,
2862 .readpages = ext4_readpages,
2863 .writepage = ext4_normal_writepage,
2864 .sync_page = block_sync_page,
2865 .write_begin = ext4_write_begin,
2866 .write_end = ext4_ordered_write_end,
2867 .bmap = ext4_bmap,
2868 .invalidatepage = ext4_invalidatepage,
2869 .releasepage = ext4_releasepage,
2870 .direct_IO = ext4_direct_IO,
2871 .migratepage = buffer_migrate_page,
2872 .is_partially_uptodate = block_is_partially_uptodate,
2875 static const struct address_space_operations ext4_writeback_aops = {
2876 .readpage = ext4_readpage,
2877 .readpages = ext4_readpages,
2878 .writepage = ext4_normal_writepage,
2879 .sync_page = block_sync_page,
2880 .write_begin = ext4_write_begin,
2881 .write_end = ext4_writeback_write_end,
2882 .bmap = ext4_bmap,
2883 .invalidatepage = ext4_invalidatepage,
2884 .releasepage = ext4_releasepage,
2885 .direct_IO = ext4_direct_IO,
2886 .migratepage = buffer_migrate_page,
2887 .is_partially_uptodate = block_is_partially_uptodate,
2890 static const struct address_space_operations ext4_journalled_aops = {
2891 .readpage = ext4_readpage,
2892 .readpages = ext4_readpages,
2893 .writepage = ext4_journalled_writepage,
2894 .sync_page = block_sync_page,
2895 .write_begin = ext4_write_begin,
2896 .write_end = ext4_journalled_write_end,
2897 .set_page_dirty = ext4_journalled_set_page_dirty,
2898 .bmap = ext4_bmap,
2899 .invalidatepage = ext4_invalidatepage,
2900 .releasepage = ext4_releasepage,
2901 .is_partially_uptodate = block_is_partially_uptodate,
2904 static const struct address_space_operations ext4_da_aops = {
2905 .readpage = ext4_readpage,
2906 .readpages = ext4_readpages,
2907 .writepage = ext4_da_writepage,
2908 .writepages = ext4_da_writepages,
2909 .sync_page = block_sync_page,
2910 .write_begin = ext4_da_write_begin,
2911 .write_end = ext4_da_write_end,
2912 .bmap = ext4_bmap,
2913 .invalidatepage = ext4_da_invalidatepage,
2914 .releasepage = ext4_releasepage,
2915 .direct_IO = ext4_direct_IO,
2916 .migratepage = buffer_migrate_page,
2917 .is_partially_uptodate = block_is_partially_uptodate,
2920 void ext4_set_aops(struct inode *inode)
2922 if (ext4_should_order_data(inode) &&
2923 test_opt(inode->i_sb, DELALLOC))
2924 inode->i_mapping->a_ops = &ext4_da_aops;
2925 else if (ext4_should_order_data(inode))
2926 inode->i_mapping->a_ops = &ext4_ordered_aops;
2927 else if (ext4_should_writeback_data(inode) &&
2928 test_opt(inode->i_sb, DELALLOC))
2929 inode->i_mapping->a_ops = &ext4_da_aops;
2930 else if (ext4_should_writeback_data(inode))
2931 inode->i_mapping->a_ops = &ext4_writeback_aops;
2932 else
2933 inode->i_mapping->a_ops = &ext4_journalled_aops;
2937 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2938 * up to the end of the block which corresponds to `from'.
2939 * This required during truncate. We need to physically zero the tail end
2940 * of that block so it doesn't yield old data if the file is later grown.
2942 int ext4_block_truncate_page(handle_t *handle,
2943 struct address_space *mapping, loff_t from)
2945 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2946 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2947 unsigned blocksize, length, pos;
2948 ext4_lblk_t iblock;
2949 struct inode *inode = mapping->host;
2950 struct buffer_head *bh;
2951 struct page *page;
2952 int err = 0;
2954 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2955 if (!page)
2956 return -EINVAL;
2958 blocksize = inode->i_sb->s_blocksize;
2959 length = blocksize - (offset & (blocksize - 1));
2960 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2963 * For "nobh" option, we can only work if we don't need to
2964 * read-in the page - otherwise we create buffers to do the IO.
2966 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2967 ext4_should_writeback_data(inode) && PageUptodate(page)) {
2968 zero_user(page, offset, length);
2969 set_page_dirty(page);
2970 goto unlock;
2973 if (!page_has_buffers(page))
2974 create_empty_buffers(page, blocksize, 0);
2976 /* Find the buffer that contains "offset" */
2977 bh = page_buffers(page);
2978 pos = blocksize;
2979 while (offset >= pos) {
2980 bh = bh->b_this_page;
2981 iblock++;
2982 pos += blocksize;
2985 err = 0;
2986 if (buffer_freed(bh)) {
2987 BUFFER_TRACE(bh, "freed: skip");
2988 goto unlock;
2991 if (!buffer_mapped(bh)) {
2992 BUFFER_TRACE(bh, "unmapped");
2993 ext4_get_block(inode, iblock, bh, 0);
2994 /* unmapped? It's a hole - nothing to do */
2995 if (!buffer_mapped(bh)) {
2996 BUFFER_TRACE(bh, "still unmapped");
2997 goto unlock;
3001 /* Ok, it's mapped. Make sure it's up-to-date */
3002 if (PageUptodate(page))
3003 set_buffer_uptodate(bh);
3005 if (!buffer_uptodate(bh)) {
3006 err = -EIO;
3007 ll_rw_block(READ, 1, &bh);
3008 wait_on_buffer(bh);
3009 /* Uhhuh. Read error. Complain and punt. */
3010 if (!buffer_uptodate(bh))
3011 goto unlock;
3014 if (ext4_should_journal_data(inode)) {
3015 BUFFER_TRACE(bh, "get write access");
3016 err = ext4_journal_get_write_access(handle, bh);
3017 if (err)
3018 goto unlock;
3021 zero_user(page, offset, length);
3023 BUFFER_TRACE(bh, "zeroed end of block");
3025 err = 0;
3026 if (ext4_should_journal_data(inode)) {
3027 err = ext4_journal_dirty_metadata(handle, bh);
3028 } else {
3029 if (ext4_should_order_data(inode))
3030 err = ext4_jbd2_file_inode(handle, inode);
3031 mark_buffer_dirty(bh);
3034 unlock:
3035 unlock_page(page);
3036 page_cache_release(page);
3037 return err;
3041 * Probably it should be a library function... search for first non-zero word
3042 * or memcmp with zero_page, whatever is better for particular architecture.
3043 * Linus?
3045 static inline int all_zeroes(__le32 *p, __le32 *q)
3047 while (p < q)
3048 if (*p++)
3049 return 0;
3050 return 1;
3054 * ext4_find_shared - find the indirect blocks for partial truncation.
3055 * @inode: inode in question
3056 * @depth: depth of the affected branch
3057 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3058 * @chain: place to store the pointers to partial indirect blocks
3059 * @top: place to the (detached) top of branch
3061 * This is a helper function used by ext4_truncate().
3063 * When we do truncate() we may have to clean the ends of several
3064 * indirect blocks but leave the blocks themselves alive. Block is
3065 * partially truncated if some data below the new i_size is refered
3066 * from it (and it is on the path to the first completely truncated
3067 * data block, indeed). We have to free the top of that path along
3068 * with everything to the right of the path. Since no allocation
3069 * past the truncation point is possible until ext4_truncate()
3070 * finishes, we may safely do the latter, but top of branch may
3071 * require special attention - pageout below the truncation point
3072 * might try to populate it.
3074 * We atomically detach the top of branch from the tree, store the
3075 * block number of its root in *@top, pointers to buffer_heads of
3076 * partially truncated blocks - in @chain[].bh and pointers to
3077 * their last elements that should not be removed - in
3078 * @chain[].p. Return value is the pointer to last filled element
3079 * of @chain.
3081 * The work left to caller to do the actual freeing of subtrees:
3082 * a) free the subtree starting from *@top
3083 * b) free the subtrees whose roots are stored in
3084 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3085 * c) free the subtrees growing from the inode past the @chain[0].
3086 * (no partially truncated stuff there). */
3088 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3089 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3091 Indirect *partial, *p;
3092 int k, err;
3094 *top = 0;
3095 /* Make k index the deepest non-null offest + 1 */
3096 for (k = depth; k > 1 && !offsets[k-1]; k--)
3098 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3099 /* Writer: pointers */
3100 if (!partial)
3101 partial = chain + k-1;
3103 * If the branch acquired continuation since we've looked at it -
3104 * fine, it should all survive and (new) top doesn't belong to us.
3106 if (!partial->key && *partial->p)
3107 /* Writer: end */
3108 goto no_top;
3109 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3112 * OK, we've found the last block that must survive. The rest of our
3113 * branch should be detached before unlocking. However, if that rest
3114 * of branch is all ours and does not grow immediately from the inode
3115 * it's easier to cheat and just decrement partial->p.
3117 if (p == chain + k - 1 && p > chain) {
3118 p->p--;
3119 } else {
3120 *top = *p->p;
3121 /* Nope, don't do this in ext4. Must leave the tree intact */
3122 #if 0
3123 *p->p = 0;
3124 #endif
3126 /* Writer: end */
3128 while(partial > p) {
3129 brelse(partial->bh);
3130 partial--;
3132 no_top:
3133 return partial;
3137 * Zero a number of block pointers in either an inode or an indirect block.
3138 * If we restart the transaction we must again get write access to the
3139 * indirect block for further modification.
3141 * We release `count' blocks on disk, but (last - first) may be greater
3142 * than `count' because there can be holes in there.
3144 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3145 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3146 unsigned long count, __le32 *first, __le32 *last)
3148 __le32 *p;
3149 if (try_to_extend_transaction(handle, inode)) {
3150 if (bh) {
3151 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3152 ext4_journal_dirty_metadata(handle, bh);
3154 ext4_mark_inode_dirty(handle, inode);
3155 ext4_journal_test_restart(handle, inode);
3156 if (bh) {
3157 BUFFER_TRACE(bh, "retaking write access");
3158 ext4_journal_get_write_access(handle, bh);
3163 * Any buffers which are on the journal will be in memory. We find
3164 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3165 * on them. We've already detached each block from the file, so
3166 * bforget() in jbd2_journal_forget() should be safe.
3168 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3170 for (p = first; p < last; p++) {
3171 u32 nr = le32_to_cpu(*p);
3172 if (nr) {
3173 struct buffer_head *tbh;
3175 *p = 0;
3176 tbh = sb_find_get_block(inode->i_sb, nr);
3177 ext4_forget(handle, 0, inode, tbh, nr);
3181 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3185 * ext4_free_data - free a list of data blocks
3186 * @handle: handle for this transaction
3187 * @inode: inode we are dealing with
3188 * @this_bh: indirect buffer_head which contains *@first and *@last
3189 * @first: array of block numbers
3190 * @last: points immediately past the end of array
3192 * We are freeing all blocks refered from that array (numbers are stored as
3193 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3195 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3196 * blocks are contiguous then releasing them at one time will only affect one
3197 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3198 * actually use a lot of journal space.
3200 * @this_bh will be %NULL if @first and @last point into the inode's direct
3201 * block pointers.
3203 static void ext4_free_data(handle_t *handle, struct inode *inode,
3204 struct buffer_head *this_bh,
3205 __le32 *first, __le32 *last)
3207 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3208 unsigned long count = 0; /* Number of blocks in the run */
3209 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3210 corresponding to
3211 block_to_free */
3212 ext4_fsblk_t nr; /* Current block # */
3213 __le32 *p; /* Pointer into inode/ind
3214 for current block */
3215 int err;
3217 if (this_bh) { /* For indirect block */
3218 BUFFER_TRACE(this_bh, "get_write_access");
3219 err = ext4_journal_get_write_access(handle, this_bh);
3220 /* Important: if we can't update the indirect pointers
3221 * to the blocks, we can't free them. */
3222 if (err)
3223 return;
3226 for (p = first; p < last; p++) {
3227 nr = le32_to_cpu(*p);
3228 if (nr) {
3229 /* accumulate blocks to free if they're contiguous */
3230 if (count == 0) {
3231 block_to_free = nr;
3232 block_to_free_p = p;
3233 count = 1;
3234 } else if (nr == block_to_free + count) {
3235 count++;
3236 } else {
3237 ext4_clear_blocks(handle, inode, this_bh,
3238 block_to_free,
3239 count, block_to_free_p, p);
3240 block_to_free = nr;
3241 block_to_free_p = p;
3242 count = 1;
3247 if (count > 0)
3248 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3249 count, block_to_free_p, p);
3251 if (this_bh) {
3252 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3255 * The buffer head should have an attached journal head at this
3256 * point. However, if the data is corrupted and an indirect
3257 * block pointed to itself, it would have been detached when
3258 * the block was cleared. Check for this instead of OOPSing.
3260 if (bh2jh(this_bh))
3261 ext4_journal_dirty_metadata(handle, this_bh);
3262 else
3263 ext4_error(inode->i_sb, __func__,
3264 "circular indirect block detected, "
3265 "inode=%lu, block=%llu",
3266 inode->i_ino,
3267 (unsigned long long) this_bh->b_blocknr);
3272 * ext4_free_branches - free an array of branches
3273 * @handle: JBD handle for this transaction
3274 * @inode: inode we are dealing with
3275 * @parent_bh: the buffer_head which contains *@first and *@last
3276 * @first: array of block numbers
3277 * @last: pointer immediately past the end of array
3278 * @depth: depth of the branches to free
3280 * We are freeing all blocks refered from these branches (numbers are
3281 * stored as little-endian 32-bit) and updating @inode->i_blocks
3282 * appropriately.
3284 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3285 struct buffer_head *parent_bh,
3286 __le32 *first, __le32 *last, int depth)
3288 ext4_fsblk_t nr;
3289 __le32 *p;
3291 if (is_handle_aborted(handle))
3292 return;
3294 if (depth--) {
3295 struct buffer_head *bh;
3296 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3297 p = last;
3298 while (--p >= first) {
3299 nr = le32_to_cpu(*p);
3300 if (!nr)
3301 continue; /* A hole */
3303 /* Go read the buffer for the next level down */
3304 bh = sb_bread(inode->i_sb, nr);
3307 * A read failure? Report error and clear slot
3308 * (should be rare).
3310 if (!bh) {
3311 ext4_error(inode->i_sb, "ext4_free_branches",
3312 "Read failure, inode=%lu, block=%llu",
3313 inode->i_ino, nr);
3314 continue;
3317 /* This zaps the entire block. Bottom up. */
3318 BUFFER_TRACE(bh, "free child branches");
3319 ext4_free_branches(handle, inode, bh,
3320 (__le32*)bh->b_data,
3321 (__le32*)bh->b_data + addr_per_block,
3322 depth);
3325 * We've probably journalled the indirect block several
3326 * times during the truncate. But it's no longer
3327 * needed and we now drop it from the transaction via
3328 * jbd2_journal_revoke().
3330 * That's easy if it's exclusively part of this
3331 * transaction. But if it's part of the committing
3332 * transaction then jbd2_journal_forget() will simply
3333 * brelse() it. That means that if the underlying
3334 * block is reallocated in ext4_get_block(),
3335 * unmap_underlying_metadata() will find this block
3336 * and will try to get rid of it. damn, damn.
3338 * If this block has already been committed to the
3339 * journal, a revoke record will be written. And
3340 * revoke records must be emitted *before* clearing
3341 * this block's bit in the bitmaps.
3343 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3346 * Everything below this this pointer has been
3347 * released. Now let this top-of-subtree go.
3349 * We want the freeing of this indirect block to be
3350 * atomic in the journal with the updating of the
3351 * bitmap block which owns it. So make some room in
3352 * the journal.
3354 * We zero the parent pointer *after* freeing its
3355 * pointee in the bitmaps, so if extend_transaction()
3356 * for some reason fails to put the bitmap changes and
3357 * the release into the same transaction, recovery
3358 * will merely complain about releasing a free block,
3359 * rather than leaking blocks.
3361 if (is_handle_aborted(handle))
3362 return;
3363 if (try_to_extend_transaction(handle, inode)) {
3364 ext4_mark_inode_dirty(handle, inode);
3365 ext4_journal_test_restart(handle, inode);
3368 ext4_free_blocks(handle, inode, nr, 1, 1);
3370 if (parent_bh) {
3372 * The block which we have just freed is
3373 * pointed to by an indirect block: journal it
3375 BUFFER_TRACE(parent_bh, "get_write_access");
3376 if (!ext4_journal_get_write_access(handle,
3377 parent_bh)){
3378 *p = 0;
3379 BUFFER_TRACE(parent_bh,
3380 "call ext4_journal_dirty_metadata");
3381 ext4_journal_dirty_metadata(handle,
3382 parent_bh);
3386 } else {
3387 /* We have reached the bottom of the tree. */
3388 BUFFER_TRACE(parent_bh, "free data blocks");
3389 ext4_free_data(handle, inode, parent_bh, first, last);
3393 int ext4_can_truncate(struct inode *inode)
3395 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3396 return 0;
3397 if (S_ISREG(inode->i_mode))
3398 return 1;
3399 if (S_ISDIR(inode->i_mode))
3400 return 1;
3401 if (S_ISLNK(inode->i_mode))
3402 return !ext4_inode_is_fast_symlink(inode);
3403 return 0;
3407 * ext4_truncate()
3409 * We block out ext4_get_block() block instantiations across the entire
3410 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3411 * simultaneously on behalf of the same inode.
3413 * As we work through the truncate and commmit bits of it to the journal there
3414 * is one core, guiding principle: the file's tree must always be consistent on
3415 * disk. We must be able to restart the truncate after a crash.
3417 * The file's tree may be transiently inconsistent in memory (although it
3418 * probably isn't), but whenever we close off and commit a journal transaction,
3419 * the contents of (the filesystem + the journal) must be consistent and
3420 * restartable. It's pretty simple, really: bottom up, right to left (although
3421 * left-to-right works OK too).
3423 * Note that at recovery time, journal replay occurs *before* the restart of
3424 * truncate against the orphan inode list.
3426 * The committed inode has the new, desired i_size (which is the same as
3427 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3428 * that this inode's truncate did not complete and it will again call
3429 * ext4_truncate() to have another go. So there will be instantiated blocks
3430 * to the right of the truncation point in a crashed ext4 filesystem. But
3431 * that's fine - as long as they are linked from the inode, the post-crash
3432 * ext4_truncate() run will find them and release them.
3434 void ext4_truncate(struct inode *inode)
3436 handle_t *handle;
3437 struct ext4_inode_info *ei = EXT4_I(inode);
3438 __le32 *i_data = ei->i_data;
3439 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3440 struct address_space *mapping = inode->i_mapping;
3441 ext4_lblk_t offsets[4];
3442 Indirect chain[4];
3443 Indirect *partial;
3444 __le32 nr = 0;
3445 int n;
3446 ext4_lblk_t last_block;
3447 unsigned blocksize = inode->i_sb->s_blocksize;
3449 if (!ext4_can_truncate(inode))
3450 return;
3452 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3453 ext4_ext_truncate(inode);
3454 return;
3457 handle = start_transaction(inode);
3458 if (IS_ERR(handle))
3459 return; /* AKPM: return what? */
3461 last_block = (inode->i_size + blocksize-1)
3462 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3464 if (inode->i_size & (blocksize - 1))
3465 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3466 goto out_stop;
3468 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3469 if (n == 0)
3470 goto out_stop; /* error */
3473 * OK. This truncate is going to happen. We add the inode to the
3474 * orphan list, so that if this truncate spans multiple transactions,
3475 * and we crash, we will resume the truncate when the filesystem
3476 * recovers. It also marks the inode dirty, to catch the new size.
3478 * Implication: the file must always be in a sane, consistent
3479 * truncatable state while each transaction commits.
3481 if (ext4_orphan_add(handle, inode))
3482 goto out_stop;
3485 * From here we block out all ext4_get_block() callers who want to
3486 * modify the block allocation tree.
3488 down_write(&ei->i_data_sem);
3490 * The orphan list entry will now protect us from any crash which
3491 * occurs before the truncate completes, so it is now safe to propagate
3492 * the new, shorter inode size (held for now in i_size) into the
3493 * on-disk inode. We do this via i_disksize, which is the value which
3494 * ext4 *really* writes onto the disk inode.
3496 ei->i_disksize = inode->i_size;
3498 if (n == 1) { /* direct blocks */
3499 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3500 i_data + EXT4_NDIR_BLOCKS);
3501 goto do_indirects;
3504 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3505 /* Kill the top of shared branch (not detached) */
3506 if (nr) {
3507 if (partial == chain) {
3508 /* Shared branch grows from the inode */
3509 ext4_free_branches(handle, inode, NULL,
3510 &nr, &nr+1, (chain+n-1) - partial);
3511 *partial->p = 0;
3513 * We mark the inode dirty prior to restart,
3514 * and prior to stop. No need for it here.
3516 } else {
3517 /* Shared branch grows from an indirect block */
3518 BUFFER_TRACE(partial->bh, "get_write_access");
3519 ext4_free_branches(handle, inode, partial->bh,
3520 partial->p,
3521 partial->p+1, (chain+n-1) - partial);
3524 /* Clear the ends of indirect blocks on the shared branch */
3525 while (partial > chain) {
3526 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3527 (__le32*)partial->bh->b_data+addr_per_block,
3528 (chain+n-1) - partial);
3529 BUFFER_TRACE(partial->bh, "call brelse");
3530 brelse (partial->bh);
3531 partial--;
3533 do_indirects:
3534 /* Kill the remaining (whole) subtrees */
3535 switch (offsets[0]) {
3536 default:
3537 nr = i_data[EXT4_IND_BLOCK];
3538 if (nr) {
3539 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3540 i_data[EXT4_IND_BLOCK] = 0;
3542 case EXT4_IND_BLOCK:
3543 nr = i_data[EXT4_DIND_BLOCK];
3544 if (nr) {
3545 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3546 i_data[EXT4_DIND_BLOCK] = 0;
3548 case EXT4_DIND_BLOCK:
3549 nr = i_data[EXT4_TIND_BLOCK];
3550 if (nr) {
3551 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3552 i_data[EXT4_TIND_BLOCK] = 0;
3554 case EXT4_TIND_BLOCK:
3558 ext4_discard_reservation(inode);
3560 up_write(&ei->i_data_sem);
3561 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3562 ext4_mark_inode_dirty(handle, inode);
3565 * In a multi-transaction truncate, we only make the final transaction
3566 * synchronous
3568 if (IS_SYNC(inode))
3569 handle->h_sync = 1;
3570 out_stop:
3572 * If this was a simple ftruncate(), and the file will remain alive
3573 * then we need to clear up the orphan record which we created above.
3574 * However, if this was a real unlink then we were called by
3575 * ext4_delete_inode(), and we allow that function to clean up the
3576 * orphan info for us.
3578 if (inode->i_nlink)
3579 ext4_orphan_del(handle, inode);
3581 ext4_journal_stop(handle);
3584 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3585 unsigned long ino, struct ext4_iloc *iloc)
3587 ext4_group_t block_group;
3588 unsigned long offset;
3589 ext4_fsblk_t block;
3590 struct ext4_group_desc *gdp;
3592 if (!ext4_valid_inum(sb, ino)) {
3594 * This error is already checked for in namei.c unless we are
3595 * looking at an NFS filehandle, in which case no error
3596 * report is needed
3598 return 0;
3601 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3602 gdp = ext4_get_group_desc(sb, block_group, NULL);
3603 if (!gdp)
3604 return 0;
3607 * Figure out the offset within the block group inode table
3609 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3610 EXT4_INODE_SIZE(sb);
3611 block = ext4_inode_table(sb, gdp) +
3612 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3614 iloc->block_group = block_group;
3615 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3616 return block;
3620 * ext4_get_inode_loc returns with an extra refcount against the inode's
3621 * underlying buffer_head on success. If 'in_mem' is true, we have all
3622 * data in memory that is needed to recreate the on-disk version of this
3623 * inode.
3625 static int __ext4_get_inode_loc(struct inode *inode,
3626 struct ext4_iloc *iloc, int in_mem)
3628 ext4_fsblk_t block;
3629 struct buffer_head *bh;
3631 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3632 if (!block)
3633 return -EIO;
3635 bh = sb_getblk(inode->i_sb, block);
3636 if (!bh) {
3637 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3638 "unable to read inode block - "
3639 "inode=%lu, block=%llu",
3640 inode->i_ino, block);
3641 return -EIO;
3643 if (!buffer_uptodate(bh)) {
3644 lock_buffer(bh);
3647 * If the buffer has the write error flag, we have failed
3648 * to write out another inode in the same block. In this
3649 * case, we don't have to read the block because we may
3650 * read the old inode data successfully.
3652 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3653 set_buffer_uptodate(bh);
3655 if (buffer_uptodate(bh)) {
3656 /* someone brought it uptodate while we waited */
3657 unlock_buffer(bh);
3658 goto has_buffer;
3662 * If we have all information of the inode in memory and this
3663 * is the only valid inode in the block, we need not read the
3664 * block.
3666 if (in_mem) {
3667 struct buffer_head *bitmap_bh;
3668 struct ext4_group_desc *desc;
3669 int inodes_per_buffer;
3670 int inode_offset, i;
3671 ext4_group_t block_group;
3672 int start;
3674 block_group = (inode->i_ino - 1) /
3675 EXT4_INODES_PER_GROUP(inode->i_sb);
3676 inodes_per_buffer = bh->b_size /
3677 EXT4_INODE_SIZE(inode->i_sb);
3678 inode_offset = ((inode->i_ino - 1) %
3679 EXT4_INODES_PER_GROUP(inode->i_sb));
3680 start = inode_offset & ~(inodes_per_buffer - 1);
3682 /* Is the inode bitmap in cache? */
3683 desc = ext4_get_group_desc(inode->i_sb,
3684 block_group, NULL);
3685 if (!desc)
3686 goto make_io;
3688 bitmap_bh = sb_getblk(inode->i_sb,
3689 ext4_inode_bitmap(inode->i_sb, desc));
3690 if (!bitmap_bh)
3691 goto make_io;
3694 * If the inode bitmap isn't in cache then the
3695 * optimisation may end up performing two reads instead
3696 * of one, so skip it.
3698 if (!buffer_uptodate(bitmap_bh)) {
3699 brelse(bitmap_bh);
3700 goto make_io;
3702 for (i = start; i < start + inodes_per_buffer; i++) {
3703 if (i == inode_offset)
3704 continue;
3705 if (ext4_test_bit(i, bitmap_bh->b_data))
3706 break;
3708 brelse(bitmap_bh);
3709 if (i == start + inodes_per_buffer) {
3710 /* all other inodes are free, so skip I/O */
3711 memset(bh->b_data, 0, bh->b_size);
3712 set_buffer_uptodate(bh);
3713 unlock_buffer(bh);
3714 goto has_buffer;
3718 make_io:
3720 * There are other valid inodes in the buffer, this inode
3721 * has in-inode xattrs, or we don't have this inode in memory.
3722 * Read the block from disk.
3724 get_bh(bh);
3725 bh->b_end_io = end_buffer_read_sync;
3726 submit_bh(READ_META, bh);
3727 wait_on_buffer(bh);
3728 if (!buffer_uptodate(bh)) {
3729 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3730 "unable to read inode block - "
3731 "inode=%lu, block=%llu",
3732 inode->i_ino, block);
3733 brelse(bh);
3734 return -EIO;
3737 has_buffer:
3738 iloc->bh = bh;
3739 return 0;
3742 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3744 /* We have all inode data except xattrs in memory here. */
3745 return __ext4_get_inode_loc(inode, iloc,
3746 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3749 void ext4_set_inode_flags(struct inode *inode)
3751 unsigned int flags = EXT4_I(inode)->i_flags;
3753 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3754 if (flags & EXT4_SYNC_FL)
3755 inode->i_flags |= S_SYNC;
3756 if (flags & EXT4_APPEND_FL)
3757 inode->i_flags |= S_APPEND;
3758 if (flags & EXT4_IMMUTABLE_FL)
3759 inode->i_flags |= S_IMMUTABLE;
3760 if (flags & EXT4_NOATIME_FL)
3761 inode->i_flags |= S_NOATIME;
3762 if (flags & EXT4_DIRSYNC_FL)
3763 inode->i_flags |= S_DIRSYNC;
3766 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3767 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3769 unsigned int flags = ei->vfs_inode.i_flags;
3771 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3772 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3773 if (flags & S_SYNC)
3774 ei->i_flags |= EXT4_SYNC_FL;
3775 if (flags & S_APPEND)
3776 ei->i_flags |= EXT4_APPEND_FL;
3777 if (flags & S_IMMUTABLE)
3778 ei->i_flags |= EXT4_IMMUTABLE_FL;
3779 if (flags & S_NOATIME)
3780 ei->i_flags |= EXT4_NOATIME_FL;
3781 if (flags & S_DIRSYNC)
3782 ei->i_flags |= EXT4_DIRSYNC_FL;
3784 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3785 struct ext4_inode_info *ei)
3787 blkcnt_t i_blocks ;
3788 struct inode *inode = &(ei->vfs_inode);
3789 struct super_block *sb = inode->i_sb;
3791 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3792 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3793 /* we are using combined 48 bit field */
3794 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3795 le32_to_cpu(raw_inode->i_blocks_lo);
3796 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3797 /* i_blocks represent file system block size */
3798 return i_blocks << (inode->i_blkbits - 9);
3799 } else {
3800 return i_blocks;
3802 } else {
3803 return le32_to_cpu(raw_inode->i_blocks_lo);
3807 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3809 struct ext4_iloc iloc;
3810 struct ext4_inode *raw_inode;
3811 struct ext4_inode_info *ei;
3812 struct buffer_head *bh;
3813 struct inode *inode;
3814 long ret;
3815 int block;
3817 inode = iget_locked(sb, ino);
3818 if (!inode)
3819 return ERR_PTR(-ENOMEM);
3820 if (!(inode->i_state & I_NEW))
3821 return inode;
3823 ei = EXT4_I(inode);
3824 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3825 ei->i_acl = EXT4_ACL_NOT_CACHED;
3826 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3827 #endif
3828 ei->i_block_alloc_info = NULL;
3830 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3831 if (ret < 0)
3832 goto bad_inode;
3833 bh = iloc.bh;
3834 raw_inode = ext4_raw_inode(&iloc);
3835 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3836 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3837 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3838 if(!(test_opt (inode->i_sb, NO_UID32))) {
3839 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3840 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3842 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3844 ei->i_state = 0;
3845 ei->i_dir_start_lookup = 0;
3846 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3847 /* We now have enough fields to check if the inode was active or not.
3848 * This is needed because nfsd might try to access dead inodes
3849 * the test is that same one that e2fsck uses
3850 * NeilBrown 1999oct15
3852 if (inode->i_nlink == 0) {
3853 if (inode->i_mode == 0 ||
3854 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3855 /* this inode is deleted */
3856 brelse (bh);
3857 ret = -ESTALE;
3858 goto bad_inode;
3860 /* The only unlinked inodes we let through here have
3861 * valid i_mode and are being read by the orphan
3862 * recovery code: that's fine, we're about to complete
3863 * the process of deleting those. */
3865 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3866 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3867 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3868 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3869 cpu_to_le32(EXT4_OS_HURD)) {
3870 ei->i_file_acl |=
3871 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3873 inode->i_size = ext4_isize(raw_inode);
3874 ei->i_disksize = inode->i_size;
3875 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3876 ei->i_block_group = iloc.block_group;
3878 * NOTE! The in-memory inode i_data array is in little-endian order
3879 * even on big-endian machines: we do NOT byteswap the block numbers!
3881 for (block = 0; block < EXT4_N_BLOCKS; block++)
3882 ei->i_data[block] = raw_inode->i_block[block];
3883 INIT_LIST_HEAD(&ei->i_orphan);
3885 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3886 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3887 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3888 EXT4_INODE_SIZE(inode->i_sb)) {
3889 brelse (bh);
3890 ret = -EIO;
3891 goto bad_inode;
3893 if (ei->i_extra_isize == 0) {
3894 /* The extra space is currently unused. Use it. */
3895 ei->i_extra_isize = sizeof(struct ext4_inode) -
3896 EXT4_GOOD_OLD_INODE_SIZE;
3897 } else {
3898 __le32 *magic = (void *)raw_inode +
3899 EXT4_GOOD_OLD_INODE_SIZE +
3900 ei->i_extra_isize;
3901 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3902 ei->i_state |= EXT4_STATE_XATTR;
3904 } else
3905 ei->i_extra_isize = 0;
3907 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3908 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3909 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3910 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3912 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3913 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3914 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3915 inode->i_version |=
3916 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3919 if (S_ISREG(inode->i_mode)) {
3920 inode->i_op = &ext4_file_inode_operations;
3921 inode->i_fop = &ext4_file_operations;
3922 ext4_set_aops(inode);
3923 } else if (S_ISDIR(inode->i_mode)) {
3924 inode->i_op = &ext4_dir_inode_operations;
3925 inode->i_fop = &ext4_dir_operations;
3926 } else if (S_ISLNK(inode->i_mode)) {
3927 if (ext4_inode_is_fast_symlink(inode))
3928 inode->i_op = &ext4_fast_symlink_inode_operations;
3929 else {
3930 inode->i_op = &ext4_symlink_inode_operations;
3931 ext4_set_aops(inode);
3933 } else {
3934 inode->i_op = &ext4_special_inode_operations;
3935 if (raw_inode->i_block[0])
3936 init_special_inode(inode, inode->i_mode,
3937 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3938 else
3939 init_special_inode(inode, inode->i_mode,
3940 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3942 brelse (iloc.bh);
3943 ext4_set_inode_flags(inode);
3944 unlock_new_inode(inode);
3945 return inode;
3947 bad_inode:
3948 iget_failed(inode);
3949 return ERR_PTR(ret);
3952 static int ext4_inode_blocks_set(handle_t *handle,
3953 struct ext4_inode *raw_inode,
3954 struct ext4_inode_info *ei)
3956 struct inode *inode = &(ei->vfs_inode);
3957 u64 i_blocks = inode->i_blocks;
3958 struct super_block *sb = inode->i_sb;
3959 int err = 0;
3961 if (i_blocks <= ~0U) {
3963 * i_blocks can be represnted in a 32 bit variable
3964 * as multiple of 512 bytes
3966 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3967 raw_inode->i_blocks_high = 0;
3968 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3969 } else if (i_blocks <= 0xffffffffffffULL) {
3971 * i_blocks can be represented in a 48 bit variable
3972 * as multiple of 512 bytes
3974 err = ext4_update_rocompat_feature(handle, sb,
3975 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3976 if (err)
3977 goto err_out;
3978 /* i_block is stored in the split 48 bit fields */
3979 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3980 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3981 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3982 } else {
3984 * i_blocks should be represented in a 48 bit variable
3985 * as multiple of file system block size
3987 err = ext4_update_rocompat_feature(handle, sb,
3988 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3989 if (err)
3990 goto err_out;
3991 ei->i_flags |= EXT4_HUGE_FILE_FL;
3992 /* i_block is stored in file system block size */
3993 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3994 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3995 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3997 err_out:
3998 return err;
4002 * Post the struct inode info into an on-disk inode location in the
4003 * buffer-cache. This gobbles the caller's reference to the
4004 * buffer_head in the inode location struct.
4006 * The caller must have write access to iloc->bh.
4008 static int ext4_do_update_inode(handle_t *handle,
4009 struct inode *inode,
4010 struct ext4_iloc *iloc)
4012 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4013 struct ext4_inode_info *ei = EXT4_I(inode);
4014 struct buffer_head *bh = iloc->bh;
4015 int err = 0, rc, block;
4017 /* For fields not not tracking in the in-memory inode,
4018 * initialise them to zero for new inodes. */
4019 if (ei->i_state & EXT4_STATE_NEW)
4020 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4022 ext4_get_inode_flags(ei);
4023 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4024 if(!(test_opt(inode->i_sb, NO_UID32))) {
4025 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4026 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4028 * Fix up interoperability with old kernels. Otherwise, old inodes get
4029 * re-used with the upper 16 bits of the uid/gid intact
4031 if(!ei->i_dtime) {
4032 raw_inode->i_uid_high =
4033 cpu_to_le16(high_16_bits(inode->i_uid));
4034 raw_inode->i_gid_high =
4035 cpu_to_le16(high_16_bits(inode->i_gid));
4036 } else {
4037 raw_inode->i_uid_high = 0;
4038 raw_inode->i_gid_high = 0;
4040 } else {
4041 raw_inode->i_uid_low =
4042 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4043 raw_inode->i_gid_low =
4044 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4045 raw_inode->i_uid_high = 0;
4046 raw_inode->i_gid_high = 0;
4048 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4050 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4051 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4052 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4053 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4055 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4056 goto out_brelse;
4057 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4058 /* clear the migrate flag in the raw_inode */
4059 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4060 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4061 cpu_to_le32(EXT4_OS_HURD))
4062 raw_inode->i_file_acl_high =
4063 cpu_to_le16(ei->i_file_acl >> 32);
4064 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4065 ext4_isize_set(raw_inode, ei->i_disksize);
4066 if (ei->i_disksize > 0x7fffffffULL) {
4067 struct super_block *sb = inode->i_sb;
4068 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4069 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4070 EXT4_SB(sb)->s_es->s_rev_level ==
4071 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4072 /* If this is the first large file
4073 * created, add a flag to the superblock.
4075 err = ext4_journal_get_write_access(handle,
4076 EXT4_SB(sb)->s_sbh);
4077 if (err)
4078 goto out_brelse;
4079 ext4_update_dynamic_rev(sb);
4080 EXT4_SET_RO_COMPAT_FEATURE(sb,
4081 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4082 sb->s_dirt = 1;
4083 handle->h_sync = 1;
4084 err = ext4_journal_dirty_metadata(handle,
4085 EXT4_SB(sb)->s_sbh);
4088 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4089 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4090 if (old_valid_dev(inode->i_rdev)) {
4091 raw_inode->i_block[0] =
4092 cpu_to_le32(old_encode_dev(inode->i_rdev));
4093 raw_inode->i_block[1] = 0;
4094 } else {
4095 raw_inode->i_block[0] = 0;
4096 raw_inode->i_block[1] =
4097 cpu_to_le32(new_encode_dev(inode->i_rdev));
4098 raw_inode->i_block[2] = 0;
4100 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4101 raw_inode->i_block[block] = ei->i_data[block];
4103 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4104 if (ei->i_extra_isize) {
4105 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4106 raw_inode->i_version_hi =
4107 cpu_to_le32(inode->i_version >> 32);
4108 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4112 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4113 rc = ext4_journal_dirty_metadata(handle, bh);
4114 if (!err)
4115 err = rc;
4116 ei->i_state &= ~EXT4_STATE_NEW;
4118 out_brelse:
4119 brelse (bh);
4120 ext4_std_error(inode->i_sb, err);
4121 return err;
4125 * ext4_write_inode()
4127 * We are called from a few places:
4129 * - Within generic_file_write() for O_SYNC files.
4130 * Here, there will be no transaction running. We wait for any running
4131 * trasnaction to commit.
4133 * - Within sys_sync(), kupdate and such.
4134 * We wait on commit, if tol to.
4136 * - Within prune_icache() (PF_MEMALLOC == true)
4137 * Here we simply return. We can't afford to block kswapd on the
4138 * journal commit.
4140 * In all cases it is actually safe for us to return without doing anything,
4141 * because the inode has been copied into a raw inode buffer in
4142 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4143 * knfsd.
4145 * Note that we are absolutely dependent upon all inode dirtiers doing the
4146 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4147 * which we are interested.
4149 * It would be a bug for them to not do this. The code:
4151 * mark_inode_dirty(inode)
4152 * stuff();
4153 * inode->i_size = expr;
4155 * is in error because a kswapd-driven write_inode() could occur while
4156 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4157 * will no longer be on the superblock's dirty inode list.
4159 int ext4_write_inode(struct inode *inode, int wait)
4161 if (current->flags & PF_MEMALLOC)
4162 return 0;
4164 if (ext4_journal_current_handle()) {
4165 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4166 dump_stack();
4167 return -EIO;
4170 if (!wait)
4171 return 0;
4173 return ext4_force_commit(inode->i_sb);
4177 * ext4_setattr()
4179 * Called from notify_change.
4181 * We want to trap VFS attempts to truncate the file as soon as
4182 * possible. In particular, we want to make sure that when the VFS
4183 * shrinks i_size, we put the inode on the orphan list and modify
4184 * i_disksize immediately, so that during the subsequent flushing of
4185 * dirty pages and freeing of disk blocks, we can guarantee that any
4186 * commit will leave the blocks being flushed in an unused state on
4187 * disk. (On recovery, the inode will get truncated and the blocks will
4188 * be freed, so we have a strong guarantee that no future commit will
4189 * leave these blocks visible to the user.)
4191 * Another thing we have to assure is that if we are in ordered mode
4192 * and inode is still attached to the committing transaction, we must
4193 * we start writeout of all the dirty pages which are being truncated.
4194 * This way we are sure that all the data written in the previous
4195 * transaction are already on disk (truncate waits for pages under
4196 * writeback).
4198 * Called with inode->i_mutex down.
4200 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4202 struct inode *inode = dentry->d_inode;
4203 int error, rc = 0;
4204 const unsigned int ia_valid = attr->ia_valid;
4206 error = inode_change_ok(inode, attr);
4207 if (error)
4208 return error;
4210 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4211 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4212 handle_t *handle;
4214 /* (user+group)*(old+new) structure, inode write (sb,
4215 * inode block, ? - but truncate inode update has it) */
4216 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4217 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4218 if (IS_ERR(handle)) {
4219 error = PTR_ERR(handle);
4220 goto err_out;
4222 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4223 if (error) {
4224 ext4_journal_stop(handle);
4225 return error;
4227 /* Update corresponding info in inode so that everything is in
4228 * one transaction */
4229 if (attr->ia_valid & ATTR_UID)
4230 inode->i_uid = attr->ia_uid;
4231 if (attr->ia_valid & ATTR_GID)
4232 inode->i_gid = attr->ia_gid;
4233 error = ext4_mark_inode_dirty(handle, inode);
4234 ext4_journal_stop(handle);
4237 if (attr->ia_valid & ATTR_SIZE) {
4238 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4239 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4241 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4242 error = -EFBIG;
4243 goto err_out;
4248 if (S_ISREG(inode->i_mode) &&
4249 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4250 handle_t *handle;
4252 handle = ext4_journal_start(inode, 3);
4253 if (IS_ERR(handle)) {
4254 error = PTR_ERR(handle);
4255 goto err_out;
4258 error = ext4_orphan_add(handle, inode);
4259 EXT4_I(inode)->i_disksize = attr->ia_size;
4260 rc = ext4_mark_inode_dirty(handle, inode);
4261 if (!error)
4262 error = rc;
4263 ext4_journal_stop(handle);
4265 if (ext4_should_order_data(inode)) {
4266 error = ext4_begin_ordered_truncate(inode,
4267 attr->ia_size);
4268 if (error) {
4269 /* Do as much error cleanup as possible */
4270 handle = ext4_journal_start(inode, 3);
4271 if (IS_ERR(handle)) {
4272 ext4_orphan_del(NULL, inode);
4273 goto err_out;
4275 ext4_orphan_del(handle, inode);
4276 ext4_journal_stop(handle);
4277 goto err_out;
4282 rc = inode_setattr(inode, attr);
4284 /* If inode_setattr's call to ext4_truncate failed to get a
4285 * transaction handle at all, we need to clean up the in-core
4286 * orphan list manually. */
4287 if (inode->i_nlink)
4288 ext4_orphan_del(NULL, inode);
4290 if (!rc && (ia_valid & ATTR_MODE))
4291 rc = ext4_acl_chmod(inode);
4293 err_out:
4294 ext4_std_error(inode->i_sb, error);
4295 if (!error)
4296 error = rc;
4297 return error;
4300 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4301 struct kstat *stat)
4303 struct inode *inode;
4304 unsigned long delalloc_blocks;
4306 inode = dentry->d_inode;
4307 generic_fillattr(inode, stat);
4310 * We can't update i_blocks if the block allocation is delayed
4311 * otherwise in the case of system crash before the real block
4312 * allocation is done, we will have i_blocks inconsistent with
4313 * on-disk file blocks.
4314 * We always keep i_blocks updated together with real
4315 * allocation. But to not confuse with user, stat
4316 * will return the blocks that include the delayed allocation
4317 * blocks for this file.
4319 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4320 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4321 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4323 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4324 return 0;
4328 * How many blocks doth make a writepage()?
4330 * With N blocks per page, it may be:
4331 * N data blocks
4332 * 2 indirect block
4333 * 2 dindirect
4334 * 1 tindirect
4335 * N+5 bitmap blocks (from the above)
4336 * N+5 group descriptor summary blocks
4337 * 1 inode block
4338 * 1 superblock.
4339 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4341 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4343 * With ordered or writeback data it's the same, less the N data blocks.
4345 * If the inode's direct blocks can hold an integral number of pages then a
4346 * page cannot straddle two indirect blocks, and we can only touch one indirect
4347 * and dindirect block, and the "5" above becomes "3".
4349 * This still overestimates under most circumstances. If we were to pass the
4350 * start and end offsets in here as well we could do block_to_path() on each
4351 * block and work out the exact number of indirects which are touched. Pah.
4354 int ext4_writepage_trans_blocks(struct inode *inode)
4356 int bpp = ext4_journal_blocks_per_page(inode);
4357 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4358 int ret;
4360 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4361 return ext4_ext_writepage_trans_blocks(inode, bpp);
4363 if (ext4_should_journal_data(inode))
4364 ret = 3 * (bpp + indirects) + 2;
4365 else
4366 ret = 2 * (bpp + indirects) + 2;
4368 #ifdef CONFIG_QUOTA
4369 /* We know that structure was already allocated during DQUOT_INIT so
4370 * we will be updating only the data blocks + inodes */
4371 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4372 #endif
4374 return ret;
4378 * The caller must have previously called ext4_reserve_inode_write().
4379 * Give this, we know that the caller already has write access to iloc->bh.
4381 int ext4_mark_iloc_dirty(handle_t *handle,
4382 struct inode *inode, struct ext4_iloc *iloc)
4384 int err = 0;
4386 if (test_opt(inode->i_sb, I_VERSION))
4387 inode_inc_iversion(inode);
4389 /* the do_update_inode consumes one bh->b_count */
4390 get_bh(iloc->bh);
4392 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4393 err = ext4_do_update_inode(handle, inode, iloc);
4394 put_bh(iloc->bh);
4395 return err;
4399 * On success, We end up with an outstanding reference count against
4400 * iloc->bh. This _must_ be cleaned up later.
4404 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4405 struct ext4_iloc *iloc)
4407 int err = 0;
4408 if (handle) {
4409 err = ext4_get_inode_loc(inode, iloc);
4410 if (!err) {
4411 BUFFER_TRACE(iloc->bh, "get_write_access");
4412 err = ext4_journal_get_write_access(handle, iloc->bh);
4413 if (err) {
4414 brelse(iloc->bh);
4415 iloc->bh = NULL;
4419 ext4_std_error(inode->i_sb, err);
4420 return err;
4424 * Expand an inode by new_extra_isize bytes.
4425 * Returns 0 on success or negative error number on failure.
4427 static int ext4_expand_extra_isize(struct inode *inode,
4428 unsigned int new_extra_isize,
4429 struct ext4_iloc iloc,
4430 handle_t *handle)
4432 struct ext4_inode *raw_inode;
4433 struct ext4_xattr_ibody_header *header;
4434 struct ext4_xattr_entry *entry;
4436 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4437 return 0;
4439 raw_inode = ext4_raw_inode(&iloc);
4441 header = IHDR(inode, raw_inode);
4442 entry = IFIRST(header);
4444 /* No extended attributes present */
4445 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4446 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4447 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4448 new_extra_isize);
4449 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4450 return 0;
4453 /* try to expand with EAs present */
4454 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4455 raw_inode, handle);
4459 * What we do here is to mark the in-core inode as clean with respect to inode
4460 * dirtiness (it may still be data-dirty).
4461 * This means that the in-core inode may be reaped by prune_icache
4462 * without having to perform any I/O. This is a very good thing,
4463 * because *any* task may call prune_icache - even ones which
4464 * have a transaction open against a different journal.
4466 * Is this cheating? Not really. Sure, we haven't written the
4467 * inode out, but prune_icache isn't a user-visible syncing function.
4468 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4469 * we start and wait on commits.
4471 * Is this efficient/effective? Well, we're being nice to the system
4472 * by cleaning up our inodes proactively so they can be reaped
4473 * without I/O. But we are potentially leaving up to five seconds'
4474 * worth of inodes floating about which prune_icache wants us to
4475 * write out. One way to fix that would be to get prune_icache()
4476 * to do a write_super() to free up some memory. It has the desired
4477 * effect.
4479 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4481 struct ext4_iloc iloc;
4482 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4483 static unsigned int mnt_count;
4484 int err, ret;
4486 might_sleep();
4487 err = ext4_reserve_inode_write(handle, inode, &iloc);
4488 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4489 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4491 * We need extra buffer credits since we may write into EA block
4492 * with this same handle. If journal_extend fails, then it will
4493 * only result in a minor loss of functionality for that inode.
4494 * If this is felt to be critical, then e2fsck should be run to
4495 * force a large enough s_min_extra_isize.
4497 if ((jbd2_journal_extend(handle,
4498 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4499 ret = ext4_expand_extra_isize(inode,
4500 sbi->s_want_extra_isize,
4501 iloc, handle);
4502 if (ret) {
4503 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4504 if (mnt_count !=
4505 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4506 ext4_warning(inode->i_sb, __func__,
4507 "Unable to expand inode %lu. Delete"
4508 " some EAs or run e2fsck.",
4509 inode->i_ino);
4510 mnt_count =
4511 le16_to_cpu(sbi->s_es->s_mnt_count);
4516 if (!err)
4517 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4518 return err;
4522 * ext4_dirty_inode() is called from __mark_inode_dirty()
4524 * We're really interested in the case where a file is being extended.
4525 * i_size has been changed by generic_commit_write() and we thus need
4526 * to include the updated inode in the current transaction.
4528 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4529 * are allocated to the file.
4531 * If the inode is marked synchronous, we don't honour that here - doing
4532 * so would cause a commit on atime updates, which we don't bother doing.
4533 * We handle synchronous inodes at the highest possible level.
4535 void ext4_dirty_inode(struct inode *inode)
4537 handle_t *current_handle = ext4_journal_current_handle();
4538 handle_t *handle;
4540 handle = ext4_journal_start(inode, 2);
4541 if (IS_ERR(handle))
4542 goto out;
4543 if (current_handle &&
4544 current_handle->h_transaction != handle->h_transaction) {
4545 /* This task has a transaction open against a different fs */
4546 printk(KERN_EMERG "%s: transactions do not match!\n",
4547 __func__);
4548 } else {
4549 jbd_debug(5, "marking dirty. outer handle=%p\n",
4550 current_handle);
4551 ext4_mark_inode_dirty(handle, inode);
4553 ext4_journal_stop(handle);
4554 out:
4555 return;
4558 #if 0
4560 * Bind an inode's backing buffer_head into this transaction, to prevent
4561 * it from being flushed to disk early. Unlike
4562 * ext4_reserve_inode_write, this leaves behind no bh reference and
4563 * returns no iloc structure, so the caller needs to repeat the iloc
4564 * lookup to mark the inode dirty later.
4566 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4568 struct ext4_iloc iloc;
4570 int err = 0;
4571 if (handle) {
4572 err = ext4_get_inode_loc(inode, &iloc);
4573 if (!err) {
4574 BUFFER_TRACE(iloc.bh, "get_write_access");
4575 err = jbd2_journal_get_write_access(handle, iloc.bh);
4576 if (!err)
4577 err = ext4_journal_dirty_metadata(handle,
4578 iloc.bh);
4579 brelse(iloc.bh);
4582 ext4_std_error(inode->i_sb, err);
4583 return err;
4585 #endif
4587 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4589 journal_t *journal;
4590 handle_t *handle;
4591 int err;
4594 * We have to be very careful here: changing a data block's
4595 * journaling status dynamically is dangerous. If we write a
4596 * data block to the journal, change the status and then delete
4597 * that block, we risk forgetting to revoke the old log record
4598 * from the journal and so a subsequent replay can corrupt data.
4599 * So, first we make sure that the journal is empty and that
4600 * nobody is changing anything.
4603 journal = EXT4_JOURNAL(inode);
4604 if (is_journal_aborted(journal))
4605 return -EROFS;
4607 jbd2_journal_lock_updates(journal);
4608 jbd2_journal_flush(journal);
4611 * OK, there are no updates running now, and all cached data is
4612 * synced to disk. We are now in a completely consistent state
4613 * which doesn't have anything in the journal, and we know that
4614 * no filesystem updates are running, so it is safe to modify
4615 * the inode's in-core data-journaling state flag now.
4618 if (val)
4619 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4620 else
4621 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4622 ext4_set_aops(inode);
4624 jbd2_journal_unlock_updates(journal);
4626 /* Finally we can mark the inode as dirty. */
4628 handle = ext4_journal_start(inode, 1);
4629 if (IS_ERR(handle))
4630 return PTR_ERR(handle);
4632 err = ext4_mark_inode_dirty(handle, inode);
4633 handle->h_sync = 1;
4634 ext4_journal_stop(handle);
4635 ext4_std_error(inode->i_sb, err);
4637 return err;
4640 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4642 return !buffer_mapped(bh);
4645 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4647 loff_t size;
4648 unsigned long len;
4649 int ret = -EINVAL;
4650 struct file *file = vma->vm_file;
4651 struct inode *inode = file->f_path.dentry->d_inode;
4652 struct address_space *mapping = inode->i_mapping;
4655 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4656 * get i_mutex because we are already holding mmap_sem.
4658 down_read(&inode->i_alloc_sem);
4659 size = i_size_read(inode);
4660 if (page->mapping != mapping || size <= page_offset(page)
4661 || !PageUptodate(page)) {
4662 /* page got truncated from under us? */
4663 goto out_unlock;
4665 ret = 0;
4666 if (PageMappedToDisk(page))
4667 goto out_unlock;
4669 if (page->index == size >> PAGE_CACHE_SHIFT)
4670 len = size & ~PAGE_CACHE_MASK;
4671 else
4672 len = PAGE_CACHE_SIZE;
4674 if (page_has_buffers(page)) {
4675 /* return if we have all the buffers mapped */
4676 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4677 ext4_bh_unmapped))
4678 goto out_unlock;
4681 * OK, we need to fill the hole... Do write_begin write_end
4682 * to do block allocation/reservation.We are not holding
4683 * inode.i__mutex here. That allow * parallel write_begin,
4684 * write_end call. lock_page prevent this from happening
4685 * on the same page though
4687 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4688 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4689 if (ret < 0)
4690 goto out_unlock;
4691 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4692 len, len, page, NULL);
4693 if (ret < 0)
4694 goto out_unlock;
4695 ret = 0;
4696 out_unlock:
4697 up_read(&inode->i_alloc_sem);
4698 return ret;