4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/div64.h>
43 #include <asm/timex.h>
46 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
48 EXPORT_SYMBOL(jiffies_64
);
51 * per-CPU timer vector definitions:
53 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55 #define TVN_SIZE (1 << TVN_BITS)
56 #define TVR_SIZE (1 << TVR_BITS)
57 #define TVN_MASK (TVN_SIZE - 1)
58 #define TVR_MASK (TVR_SIZE - 1)
60 typedef struct tvec_s
{
61 struct list_head vec
[TVN_SIZE
];
64 typedef struct tvec_root_s
{
65 struct list_head vec
[TVR_SIZE
];
68 struct tvec_t_base_s
{
70 struct timer_list
*running_timer
;
71 unsigned long timer_jiffies
;
77 } ____cacheline_aligned
;
79 typedef struct tvec_t_base_s tvec_base_t
;
81 tvec_base_t boot_tvec_bases
;
82 EXPORT_SYMBOL(boot_tvec_bases
);
83 static DEFINE_PER_CPU(tvec_base_t
*, tvec_bases
) = &boot_tvec_bases
;
86 * Note that all tvec_bases is 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
90 #define TBASE_DEFERRABLE_FLAG (0x1)
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(tvec_base_t
*base
)
95 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
98 static inline tvec_base_t
*tbase_get_base(tvec_base_t
*base
)
100 return ((tvec_base_t
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
103 static inline void timer_set_deferrable(struct timer_list
*timer
)
105 timer
->base
= ((tvec_base_t
*)((unsigned long)(timer
->base
) |
106 TBASE_DEFERRABLE_FLAG
));
110 timer_set_base(struct timer_list
*timer
, tvec_base_t
*new_base
)
112 timer
->base
= (tvec_base_t
*)((unsigned long)(new_base
) |
113 tbase_get_deferrable(timer
->base
));
117 * __round_jiffies - function to round jiffies to a full second
118 * @j: the time in (absolute) jiffies that should be rounded
119 * @cpu: the processor number on which the timeout will happen
121 * __round_jiffies() rounds an absolute time in the future (in jiffies)
122 * up or down to (approximately) full seconds. This is useful for timers
123 * for which the exact time they fire does not matter too much, as long as
124 * they fire approximately every X seconds.
126 * By rounding these timers to whole seconds, all such timers will fire
127 * at the same time, rather than at various times spread out. The goal
128 * of this is to have the CPU wake up less, which saves power.
130 * The exact rounding is skewed for each processor to avoid all
131 * processors firing at the exact same time, which could lead
132 * to lock contention or spurious cache line bouncing.
134 * The return value is the rounded version of the @j parameter.
136 unsigned long __round_jiffies(unsigned long j
, int cpu
)
139 unsigned long original
= j
;
142 * We don't want all cpus firing their timers at once hitting the
143 * same lock or cachelines, so we skew each extra cpu with an extra
144 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
146 * The skew is done by adding 3*cpunr, then round, then subtract this
147 * extra offset again.
154 * If the target jiffie is just after a whole second (which can happen
155 * due to delays of the timer irq, long irq off times etc etc) then
156 * we should round down to the whole second, not up. Use 1/4th second
157 * as cutoff for this rounding as an extreme upper bound for this.
159 if (rem
< HZ
/4) /* round down */
164 /* now that we have rounded, subtract the extra skew again */
167 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
171 EXPORT_SYMBOL_GPL(__round_jiffies
);
174 * __round_jiffies_relative - function to round jiffies to a full second
175 * @j: the time in (relative) jiffies that should be rounded
176 * @cpu: the processor number on which the timeout will happen
178 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
187 * The exact rounding is skewed for each processor to avoid all
188 * processors firing at the exact same time, which could lead
189 * to lock contention or spurious cache line bouncing.
191 * The return value is the rounded version of the @j parameter.
193 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
196 * In theory the following code can skip a jiffy in case jiffies
197 * increments right between the addition and the later subtraction.
198 * However since the entire point of this function is to use approximate
199 * timeouts, it's entirely ok to not handle that.
201 return __round_jiffies(j
+ jiffies
, cpu
) - jiffies
;
203 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
206 * round_jiffies - function to round jiffies to a full second
207 * @j: the time in (absolute) jiffies that should be rounded
209 * round_jiffies() rounds an absolute time in the future (in jiffies)
210 * up or down to (approximately) full seconds. This is useful for timers
211 * for which the exact time they fire does not matter too much, as long as
212 * they fire approximately every X seconds.
214 * By rounding these timers to whole seconds, all such timers will fire
215 * at the same time, rather than at various times spread out. The goal
216 * of this is to have the CPU wake up less, which saves power.
218 * The return value is the rounded version of the @j parameter.
220 unsigned long round_jiffies(unsigned long j
)
222 return __round_jiffies(j
, raw_smp_processor_id());
224 EXPORT_SYMBOL_GPL(round_jiffies
);
227 * round_jiffies_relative - function to round jiffies to a full second
228 * @j: the time in (relative) jiffies that should be rounded
230 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
231 * up or down to (approximately) full seconds. This is useful for timers
232 * for which the exact time they fire does not matter too much, as long as
233 * they fire approximately every X seconds.
235 * By rounding these timers to whole seconds, all such timers will fire
236 * at the same time, rather than at various times spread out. The goal
237 * of this is to have the CPU wake up less, which saves power.
239 * The return value is the rounded version of the @j parameter.
241 unsigned long round_jiffies_relative(unsigned long j
)
243 return __round_jiffies_relative(j
, raw_smp_processor_id());
245 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
248 static inline void set_running_timer(tvec_base_t
*base
,
249 struct timer_list
*timer
)
252 base
->running_timer
= timer
;
256 static void internal_add_timer(tvec_base_t
*base
, struct timer_list
*timer
)
258 unsigned long expires
= timer
->expires
;
259 unsigned long idx
= expires
- base
->timer_jiffies
;
260 struct list_head
*vec
;
262 if (idx
< TVR_SIZE
) {
263 int i
= expires
& TVR_MASK
;
264 vec
= base
->tv1
.vec
+ i
;
265 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
266 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
267 vec
= base
->tv2
.vec
+ i
;
268 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
269 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
270 vec
= base
->tv3
.vec
+ i
;
271 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
272 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
273 vec
= base
->tv4
.vec
+ i
;
274 } else if ((signed long) idx
< 0) {
276 * Can happen if you add a timer with expires == jiffies,
277 * or you set a timer to go off in the past
279 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
282 /* If the timeout is larger than 0xffffffff on 64-bit
283 * architectures then we use the maximum timeout:
285 if (idx
> 0xffffffffUL
) {
287 expires
= idx
+ base
->timer_jiffies
;
289 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
290 vec
= base
->tv5
.vec
+ i
;
295 list_add_tail(&timer
->entry
, vec
);
298 #ifdef CONFIG_TIMER_STATS
299 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
301 if (timer
->start_site
)
304 timer
->start_site
= addr
;
305 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
306 timer
->start_pid
= current
->pid
;
309 static void timer_stats_account_timer(struct timer_list
*timer
)
311 unsigned int flag
= 0;
313 if (unlikely(tbase_get_deferrable(timer
->base
)))
314 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
316 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
317 timer
->function
, timer
->start_comm
, flag
);
321 static void timer_stats_account_timer(struct timer_list
*timer
) {}
325 * init_timer - initialize a timer.
326 * @timer: the timer to be initialized
328 * init_timer() must be done to a timer prior calling *any* of the
329 * other timer functions.
331 void fastcall
init_timer(struct timer_list
*timer
)
333 timer
->entry
.next
= NULL
;
334 timer
->base
= __raw_get_cpu_var(tvec_bases
);
335 #ifdef CONFIG_TIMER_STATS
336 timer
->start_site
= NULL
;
337 timer
->start_pid
= -1;
338 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
341 EXPORT_SYMBOL(init_timer
);
343 void fastcall
init_timer_deferrable(struct timer_list
*timer
)
346 timer_set_deferrable(timer
);
348 EXPORT_SYMBOL(init_timer_deferrable
);
350 static inline void detach_timer(struct timer_list
*timer
,
353 struct list_head
*entry
= &timer
->entry
;
355 __list_del(entry
->prev
, entry
->next
);
358 entry
->prev
= LIST_POISON2
;
362 * We are using hashed locking: holding per_cpu(tvec_bases).lock
363 * means that all timers which are tied to this base via timer->base are
364 * locked, and the base itself is locked too.
366 * So __run_timers/migrate_timers can safely modify all timers which could
367 * be found on ->tvX lists.
369 * When the timer's base is locked, and the timer removed from list, it is
370 * possible to set timer->base = NULL and drop the lock: the timer remains
373 static tvec_base_t
*lock_timer_base(struct timer_list
*timer
,
374 unsigned long *flags
)
375 __acquires(timer
->base
->lock
)
380 tvec_base_t
*prelock_base
= timer
->base
;
381 base
= tbase_get_base(prelock_base
);
382 if (likely(base
!= NULL
)) {
383 spin_lock_irqsave(&base
->lock
, *flags
);
384 if (likely(prelock_base
== timer
->base
))
386 /* The timer has migrated to another CPU */
387 spin_unlock_irqrestore(&base
->lock
, *flags
);
393 int __mod_timer(struct timer_list
*timer
, unsigned long expires
)
395 tvec_base_t
*base
, *new_base
;
399 timer_stats_timer_set_start_info(timer
);
400 BUG_ON(!timer
->function
);
402 base
= lock_timer_base(timer
, &flags
);
404 if (timer_pending(timer
)) {
405 detach_timer(timer
, 0);
409 new_base
= __get_cpu_var(tvec_bases
);
411 if (base
!= new_base
) {
413 * We are trying to schedule the timer on the local CPU.
414 * However we can't change timer's base while it is running,
415 * otherwise del_timer_sync() can't detect that the timer's
416 * handler yet has not finished. This also guarantees that
417 * the timer is serialized wrt itself.
419 if (likely(base
->running_timer
!= timer
)) {
420 /* See the comment in lock_timer_base() */
421 timer_set_base(timer
, NULL
);
422 spin_unlock(&base
->lock
);
424 spin_lock(&base
->lock
);
425 timer_set_base(timer
, base
);
429 timer
->expires
= expires
;
430 internal_add_timer(base
, timer
);
431 spin_unlock_irqrestore(&base
->lock
, flags
);
436 EXPORT_SYMBOL(__mod_timer
);
439 * add_timer_on - start a timer on a particular CPU
440 * @timer: the timer to be added
441 * @cpu: the CPU to start it on
443 * This is not very scalable on SMP. Double adds are not possible.
445 void add_timer_on(struct timer_list
*timer
, int cpu
)
447 tvec_base_t
*base
= per_cpu(tvec_bases
, cpu
);
450 timer_stats_timer_set_start_info(timer
);
451 BUG_ON(timer_pending(timer
) || !timer
->function
);
452 spin_lock_irqsave(&base
->lock
, flags
);
453 timer_set_base(timer
, base
);
454 internal_add_timer(base
, timer
);
455 spin_unlock_irqrestore(&base
->lock
, flags
);
460 * mod_timer - modify a timer's timeout
461 * @timer: the timer to be modified
462 * @expires: new timeout in jiffies
464 * mod_timer() is a more efficient way to update the expire field of an
465 * active timer (if the timer is inactive it will be activated)
467 * mod_timer(timer, expires) is equivalent to:
469 * del_timer(timer); timer->expires = expires; add_timer(timer);
471 * Note that if there are multiple unserialized concurrent users of the
472 * same timer, then mod_timer() is the only safe way to modify the timeout,
473 * since add_timer() cannot modify an already running timer.
475 * The function returns whether it has modified a pending timer or not.
476 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
477 * active timer returns 1.)
479 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
481 BUG_ON(!timer
->function
);
483 timer_stats_timer_set_start_info(timer
);
485 * This is a common optimization triggered by the
486 * networking code - if the timer is re-modified
487 * to be the same thing then just return:
489 if (timer
->expires
== expires
&& timer_pending(timer
))
492 return __mod_timer(timer
, expires
);
495 EXPORT_SYMBOL(mod_timer
);
498 * del_timer - deactive a timer.
499 * @timer: the timer to be deactivated
501 * del_timer() deactivates a timer - this works on both active and inactive
504 * The function returns whether it has deactivated a pending timer or not.
505 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
506 * active timer returns 1.)
508 int del_timer(struct timer_list
*timer
)
514 timer_stats_timer_clear_start_info(timer
);
515 if (timer_pending(timer
)) {
516 base
= lock_timer_base(timer
, &flags
);
517 if (timer_pending(timer
)) {
518 detach_timer(timer
, 1);
521 spin_unlock_irqrestore(&base
->lock
, flags
);
527 EXPORT_SYMBOL(del_timer
);
531 * try_to_del_timer_sync - Try to deactivate a timer
532 * @timer: timer do del
534 * This function tries to deactivate a timer. Upon successful (ret >= 0)
535 * exit the timer is not queued and the handler is not running on any CPU.
537 * It must not be called from interrupt contexts.
539 int try_to_del_timer_sync(struct timer_list
*timer
)
545 base
= lock_timer_base(timer
, &flags
);
547 if (base
->running_timer
== timer
)
551 if (timer_pending(timer
)) {
552 detach_timer(timer
, 1);
556 spin_unlock_irqrestore(&base
->lock
, flags
);
561 EXPORT_SYMBOL(try_to_del_timer_sync
);
564 * del_timer_sync - deactivate a timer and wait for the handler to finish.
565 * @timer: the timer to be deactivated
567 * This function only differs from del_timer() on SMP: besides deactivating
568 * the timer it also makes sure the handler has finished executing on other
571 * Synchronization rules: Callers must prevent restarting of the timer,
572 * otherwise this function is meaningless. It must not be called from
573 * interrupt contexts. The caller must not hold locks which would prevent
574 * completion of the timer's handler. The timer's handler must not call
575 * add_timer_on(). Upon exit the timer is not queued and the handler is
576 * not running on any CPU.
578 * The function returns whether it has deactivated a pending timer or not.
580 int del_timer_sync(struct timer_list
*timer
)
583 int ret
= try_to_del_timer_sync(timer
);
590 EXPORT_SYMBOL(del_timer_sync
);
593 static int cascade(tvec_base_t
*base
, tvec_t
*tv
, int index
)
595 /* cascade all the timers from tv up one level */
596 struct timer_list
*timer
, *tmp
;
597 struct list_head tv_list
;
599 list_replace_init(tv
->vec
+ index
, &tv_list
);
602 * We are removing _all_ timers from the list, so we
603 * don't have to detach them individually.
605 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
606 BUG_ON(tbase_get_base(timer
->base
) != base
);
607 internal_add_timer(base
, timer
);
613 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
616 * __run_timers - run all expired timers (if any) on this CPU.
617 * @base: the timer vector to be processed.
619 * This function cascades all vectors and executes all expired timer
622 static inline void __run_timers(tvec_base_t
*base
)
624 struct timer_list
*timer
;
626 spin_lock_irq(&base
->lock
);
627 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
628 struct list_head work_list
;
629 struct list_head
*head
= &work_list
;
630 int index
= base
->timer_jiffies
& TVR_MASK
;
636 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
637 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
638 !cascade(base
, &base
->tv4
, INDEX(2)))
639 cascade(base
, &base
->tv5
, INDEX(3));
640 ++base
->timer_jiffies
;
641 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
642 while (!list_empty(head
)) {
643 void (*fn
)(unsigned long);
646 timer
= list_first_entry(head
, struct timer_list
,entry
);
647 fn
= timer
->function
;
650 timer_stats_account_timer(timer
);
652 set_running_timer(base
, timer
);
653 detach_timer(timer
, 1);
654 spin_unlock_irq(&base
->lock
);
656 int preempt_count
= preempt_count();
658 if (preempt_count
!= preempt_count()) {
659 printk(KERN_WARNING
"huh, entered %p "
660 "with preempt_count %08x, exited"
667 spin_lock_irq(&base
->lock
);
670 set_running_timer(base
, NULL
);
671 spin_unlock_irq(&base
->lock
);
674 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
676 * Find out when the next timer event is due to happen. This
677 * is used on S/390 to stop all activity when a cpus is idle.
678 * This functions needs to be called disabled.
680 static unsigned long __next_timer_interrupt(tvec_base_t
*base
)
682 unsigned long timer_jiffies
= base
->timer_jiffies
;
683 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
684 int index
, slot
, array
, found
= 0;
685 struct timer_list
*nte
;
688 /* Look for timer events in tv1. */
689 index
= slot
= timer_jiffies
& TVR_MASK
;
691 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
692 if (tbase_get_deferrable(nte
->base
))
696 expires
= nte
->expires
;
697 /* Look at the cascade bucket(s)? */
698 if (!index
|| slot
< index
)
702 slot
= (slot
+ 1) & TVR_MASK
;
703 } while (slot
!= index
);
706 /* Calculate the next cascade event */
708 timer_jiffies
+= TVR_SIZE
- index
;
709 timer_jiffies
>>= TVR_BITS
;
712 varray
[0] = &base
->tv2
;
713 varray
[1] = &base
->tv3
;
714 varray
[2] = &base
->tv4
;
715 varray
[3] = &base
->tv5
;
717 for (array
= 0; array
< 4; array
++) {
718 tvec_t
*varp
= varray
[array
];
720 index
= slot
= timer_jiffies
& TVN_MASK
;
722 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
724 if (time_before(nte
->expires
, expires
))
725 expires
= nte
->expires
;
728 * Do we still search for the first timer or are
729 * we looking up the cascade buckets ?
732 /* Look at the cascade bucket(s)? */
733 if (!index
|| slot
< index
)
737 slot
= (slot
+ 1) & TVN_MASK
;
738 } while (slot
!= index
);
741 timer_jiffies
+= TVN_SIZE
- index
;
742 timer_jiffies
>>= TVN_BITS
;
748 * Check, if the next hrtimer event is before the next timer wheel
751 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
752 unsigned long expires
)
754 ktime_t hr_delta
= hrtimer_get_next_event();
755 struct timespec tsdelta
;
758 if (hr_delta
.tv64
== KTIME_MAX
)
762 * Expired timer available, let it expire in the next tick
764 if (hr_delta
.tv64
<= 0)
767 tsdelta
= ktime_to_timespec(hr_delta
);
768 delta
= timespec_to_jiffies(&tsdelta
);
771 * Limit the delta to the max value, which is checked in
772 * tick_nohz_stop_sched_tick():
774 if (delta
> NEXT_TIMER_MAX_DELTA
)
775 delta
= NEXT_TIMER_MAX_DELTA
;
778 * Take rounding errors in to account and make sure, that it
779 * expires in the next tick. Otherwise we go into an endless
780 * ping pong due to tick_nohz_stop_sched_tick() retriggering
786 if (time_before(now
, expires
))
792 * next_timer_interrupt - return the jiffy of the next pending timer
793 * @now: current time (in jiffies)
795 unsigned long get_next_timer_interrupt(unsigned long now
)
797 tvec_base_t
*base
= __get_cpu_var(tvec_bases
);
798 unsigned long expires
;
800 spin_lock(&base
->lock
);
801 expires
= __next_timer_interrupt(base
);
802 spin_unlock(&base
->lock
);
804 if (time_before_eq(expires
, now
))
807 return cmp_next_hrtimer_event(now
, expires
);
810 #ifdef CONFIG_NO_IDLE_HZ
811 unsigned long next_timer_interrupt(void)
813 return get_next_timer_interrupt(jiffies
);
820 * Called from the timer interrupt handler to charge one tick to the current
821 * process. user_tick is 1 if the tick is user time, 0 for system.
823 void update_process_times(int user_tick
)
825 struct task_struct
*p
= current
;
826 int cpu
= smp_processor_id();
828 /* Note: this timer irq context must be accounted for as well. */
830 account_user_time(p
, jiffies_to_cputime(1));
832 account_system_time(p
, HARDIRQ_OFFSET
, jiffies_to_cputime(1));
834 if (rcu_pending(cpu
))
835 rcu_check_callbacks(cpu
, user_tick
);
837 run_posix_cpu_timers(p
);
841 * Nr of active tasks - counted in fixed-point numbers
843 static unsigned long count_active_tasks(void)
845 return nr_active() * FIXED_1
;
849 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
850 * imply that avenrun[] is the standard name for this kind of thing.
851 * Nothing else seems to be standardized: the fractional size etc
852 * all seem to differ on different machines.
854 * Requires xtime_lock to access.
856 unsigned long avenrun
[3];
858 EXPORT_SYMBOL(avenrun
);
861 * calc_load - given tick count, update the avenrun load estimates.
862 * This is called while holding a write_lock on xtime_lock.
864 static inline void calc_load(unsigned long ticks
)
866 unsigned long active_tasks
; /* fixed-point */
867 static int count
= LOAD_FREQ
;
870 if (unlikely(count
< 0)) {
871 active_tasks
= count_active_tasks();
873 CALC_LOAD(avenrun
[0], EXP_1
, active_tasks
);
874 CALC_LOAD(avenrun
[1], EXP_5
, active_tasks
);
875 CALC_LOAD(avenrun
[2], EXP_15
, active_tasks
);
882 * This function runs timers and the timer-tq in bottom half context.
884 static void run_timer_softirq(struct softirq_action
*h
)
886 tvec_base_t
*base
= __get_cpu_var(tvec_bases
);
888 hrtimer_run_queues();
890 if (time_after_eq(jiffies
, base
->timer_jiffies
))
895 * Called by the local, per-CPU timer interrupt on SMP.
897 void run_local_timers(void)
899 raise_softirq(TIMER_SOFTIRQ
);
904 * Called by the timer interrupt. xtime_lock must already be taken
907 static inline void update_times(unsigned long ticks
)
914 * The 64-bit jiffies value is not atomic - you MUST NOT read it
915 * without sampling the sequence number in xtime_lock.
916 * jiffies is defined in the linker script...
919 void do_timer(unsigned long ticks
)
925 #ifdef __ARCH_WANT_SYS_ALARM
928 * For backwards compatibility? This can be done in libc so Alpha
929 * and all newer ports shouldn't need it.
931 asmlinkage
unsigned long sys_alarm(unsigned int seconds
)
933 return alarm_setitimer(seconds
);
941 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
942 * should be moved into arch/i386 instead?
946 * sys_getpid - return the thread group id of the current process
948 * Note, despite the name, this returns the tgid not the pid. The tgid and
949 * the pid are identical unless CLONE_THREAD was specified on clone() in
950 * which case the tgid is the same in all threads of the same group.
952 * This is SMP safe as current->tgid does not change.
954 asmlinkage
long sys_getpid(void)
956 return current
->tgid
;
960 * Accessing ->real_parent is not SMP-safe, it could
961 * change from under us. However, we can use a stale
962 * value of ->real_parent under rcu_read_lock(), see
963 * release_task()->call_rcu(delayed_put_task_struct).
965 asmlinkage
long sys_getppid(void)
970 pid
= rcu_dereference(current
->real_parent
)->tgid
;
976 asmlinkage
long sys_getuid(void)
978 /* Only we change this so SMP safe */
982 asmlinkage
long sys_geteuid(void)
984 /* Only we change this so SMP safe */
985 return current
->euid
;
988 asmlinkage
long sys_getgid(void)
990 /* Only we change this so SMP safe */
994 asmlinkage
long sys_getegid(void)
996 /* Only we change this so SMP safe */
997 return current
->egid
;
1002 static void process_timeout(unsigned long __data
)
1004 wake_up_process((struct task_struct
*)__data
);
1008 * schedule_timeout - sleep until timeout
1009 * @timeout: timeout value in jiffies
1011 * Make the current task sleep until @timeout jiffies have
1012 * elapsed. The routine will return immediately unless
1013 * the current task state has been set (see set_current_state()).
1015 * You can set the task state as follows -
1017 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1018 * pass before the routine returns. The routine will return 0
1020 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1021 * delivered to the current task. In this case the remaining time
1022 * in jiffies will be returned, or 0 if the timer expired in time
1024 * The current task state is guaranteed to be TASK_RUNNING when this
1027 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1028 * the CPU away without a bound on the timeout. In this case the return
1029 * value will be %MAX_SCHEDULE_TIMEOUT.
1031 * In all cases the return value is guaranteed to be non-negative.
1033 fastcall
signed long __sched
schedule_timeout(signed long timeout
)
1035 struct timer_list timer
;
1036 unsigned long expire
;
1040 case MAX_SCHEDULE_TIMEOUT
:
1042 * These two special cases are useful to be comfortable
1043 * in the caller. Nothing more. We could take
1044 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1045 * but I' d like to return a valid offset (>=0) to allow
1046 * the caller to do everything it want with the retval.
1052 * Another bit of PARANOID. Note that the retval will be
1053 * 0 since no piece of kernel is supposed to do a check
1054 * for a negative retval of schedule_timeout() (since it
1055 * should never happens anyway). You just have the printk()
1056 * that will tell you if something is gone wrong and where.
1059 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1060 "value %lx\n", timeout
);
1062 current
->state
= TASK_RUNNING
;
1067 expire
= timeout
+ jiffies
;
1069 setup_timer(&timer
, process_timeout
, (unsigned long)current
);
1070 __mod_timer(&timer
, expire
);
1072 del_singleshot_timer_sync(&timer
);
1074 timeout
= expire
- jiffies
;
1077 return timeout
< 0 ? 0 : timeout
;
1079 EXPORT_SYMBOL(schedule_timeout
);
1082 * We can use __set_current_state() here because schedule_timeout() calls
1083 * schedule() unconditionally.
1085 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1087 __set_current_state(TASK_INTERRUPTIBLE
);
1088 return schedule_timeout(timeout
);
1090 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1092 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1094 __set_current_state(TASK_UNINTERRUPTIBLE
);
1095 return schedule_timeout(timeout
);
1097 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1099 /* Thread ID - the internal kernel "pid" */
1100 asmlinkage
long sys_gettid(void)
1102 return current
->pid
;
1106 * do_sysinfo - fill in sysinfo struct
1107 * @info: pointer to buffer to fill
1109 int do_sysinfo(struct sysinfo
*info
)
1111 unsigned long mem_total
, sav_total
;
1112 unsigned int mem_unit
, bitcount
;
1115 memset(info
, 0, sizeof(struct sysinfo
));
1119 seq
= read_seqbegin(&xtime_lock
);
1122 * This is annoying. The below is the same thing
1123 * posix_get_clock_monotonic() does, but it wants to
1124 * take the lock which we want to cover the loads stuff
1128 getnstimeofday(&tp
);
1129 tp
.tv_sec
+= wall_to_monotonic
.tv_sec
;
1130 tp
.tv_nsec
+= wall_to_monotonic
.tv_nsec
;
1131 monotonic_to_bootbased(&tp
);
1132 if (tp
.tv_nsec
- NSEC_PER_SEC
>= 0) {
1133 tp
.tv_nsec
= tp
.tv_nsec
- NSEC_PER_SEC
;
1136 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1138 info
->loads
[0] = avenrun
[0] << (SI_LOAD_SHIFT
- FSHIFT
);
1139 info
->loads
[1] = avenrun
[1] << (SI_LOAD_SHIFT
- FSHIFT
);
1140 info
->loads
[2] = avenrun
[2] << (SI_LOAD_SHIFT
- FSHIFT
);
1142 info
->procs
= nr_threads
;
1143 } while (read_seqretry(&xtime_lock
, seq
));
1149 * If the sum of all the available memory (i.e. ram + swap)
1150 * is less than can be stored in a 32 bit unsigned long then
1151 * we can be binary compatible with 2.2.x kernels. If not,
1152 * well, in that case 2.2.x was broken anyways...
1154 * -Erik Andersen <andersee@debian.org>
1157 mem_total
= info
->totalram
+ info
->totalswap
;
1158 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1161 mem_unit
= info
->mem_unit
;
1162 while (mem_unit
> 1) {
1165 sav_total
= mem_total
;
1167 if (mem_total
< sav_total
)
1172 * If mem_total did not overflow, multiply all memory values by
1173 * info->mem_unit and set it to 1. This leaves things compatible
1174 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1179 info
->totalram
<<= bitcount
;
1180 info
->freeram
<<= bitcount
;
1181 info
->sharedram
<<= bitcount
;
1182 info
->bufferram
<<= bitcount
;
1183 info
->totalswap
<<= bitcount
;
1184 info
->freeswap
<<= bitcount
;
1185 info
->totalhigh
<<= bitcount
;
1186 info
->freehigh
<<= bitcount
;
1192 asmlinkage
long sys_sysinfo(struct sysinfo __user
*info
)
1198 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1205 * lockdep: we want to track each per-CPU base as a separate lock-class,
1206 * but timer-bases are kmalloc()-ed, so we need to attach separate
1209 static struct lock_class_key base_lock_keys
[NR_CPUS
];
1211 static int __devinit
init_timers_cpu(int cpu
)
1215 static char __devinitdata tvec_base_done
[NR_CPUS
];
1217 if (!tvec_base_done
[cpu
]) {
1218 static char boot_done
;
1222 * The APs use this path later in boot
1224 base
= kmalloc_node(sizeof(*base
), GFP_KERNEL
,
1229 /* Make sure that tvec_base is 2 byte aligned */
1230 if (tbase_get_deferrable(base
)) {
1235 memset(base
, 0, sizeof(*base
));
1236 per_cpu(tvec_bases
, cpu
) = base
;
1239 * This is for the boot CPU - we use compile-time
1240 * static initialisation because per-cpu memory isn't
1241 * ready yet and because the memory allocators are not
1242 * initialised either.
1245 base
= &boot_tvec_bases
;
1247 tvec_base_done
[cpu
] = 1;
1249 base
= per_cpu(tvec_bases
, cpu
);
1252 spin_lock_init(&base
->lock
);
1253 lockdep_set_class(&base
->lock
, base_lock_keys
+ cpu
);
1255 for (j
= 0; j
< TVN_SIZE
; j
++) {
1256 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1257 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1258 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1259 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1261 for (j
= 0; j
< TVR_SIZE
; j
++)
1262 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1264 base
->timer_jiffies
= jiffies
;
1268 #ifdef CONFIG_HOTPLUG_CPU
1269 static void migrate_timer_list(tvec_base_t
*new_base
, struct list_head
*head
)
1271 struct timer_list
*timer
;
1273 while (!list_empty(head
)) {
1274 timer
= list_first_entry(head
, struct timer_list
, entry
);
1275 detach_timer(timer
, 0);
1276 timer_set_base(timer
, new_base
);
1277 internal_add_timer(new_base
, timer
);
1281 static void __devinit
migrate_timers(int cpu
)
1283 tvec_base_t
*old_base
;
1284 tvec_base_t
*new_base
;
1287 BUG_ON(cpu_online(cpu
));
1288 old_base
= per_cpu(tvec_bases
, cpu
);
1289 new_base
= get_cpu_var(tvec_bases
);
1291 local_irq_disable();
1292 double_spin_lock(&new_base
->lock
, &old_base
->lock
,
1293 smp_processor_id() < cpu
);
1295 BUG_ON(old_base
->running_timer
);
1297 for (i
= 0; i
< TVR_SIZE
; i
++)
1298 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1299 for (i
= 0; i
< TVN_SIZE
; i
++) {
1300 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1301 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1302 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1303 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1306 double_spin_unlock(&new_base
->lock
, &old_base
->lock
,
1307 smp_processor_id() < cpu
);
1309 put_cpu_var(tvec_bases
);
1311 #endif /* CONFIG_HOTPLUG_CPU */
1313 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1314 unsigned long action
, void *hcpu
)
1316 long cpu
= (long)hcpu
;
1318 case CPU_UP_PREPARE
:
1319 case CPU_UP_PREPARE_FROZEN
:
1320 if (init_timers_cpu(cpu
) < 0)
1323 #ifdef CONFIG_HOTPLUG_CPU
1325 case CPU_DEAD_FROZEN
:
1326 migrate_timers(cpu
);
1335 static struct notifier_block __cpuinitdata timers_nb
= {
1336 .notifier_call
= timer_cpu_notify
,
1340 void __init
init_timers(void)
1342 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1343 (void *)(long)smp_processor_id());
1347 BUG_ON(err
== NOTIFY_BAD
);
1348 register_cpu_notifier(&timers_nb
);
1349 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
, NULL
);
1352 #ifdef CONFIG_TIME_INTERPOLATION
1354 struct time_interpolator
*time_interpolator __read_mostly
;
1355 static struct time_interpolator
*time_interpolator_list __read_mostly
;
1356 static DEFINE_SPINLOCK(time_interpolator_lock
);
1358 static inline cycles_t
time_interpolator_get_cycles(unsigned int src
)
1360 unsigned long (*x
)(void);
1364 case TIME_SOURCE_FUNCTION
:
1365 x
= time_interpolator
->addr
;
1368 case TIME_SOURCE_MMIO64
:
1369 return readq_relaxed((void __iomem
*)time_interpolator
->addr
);
1371 case TIME_SOURCE_MMIO32
:
1372 return readl_relaxed((void __iomem
*)time_interpolator
->addr
);
1374 default: return get_cycles();
1378 static inline u64
time_interpolator_get_counter(int writelock
)
1380 unsigned int src
= time_interpolator
->source
;
1382 if (time_interpolator
->jitter
)
1388 lcycle
= time_interpolator
->last_cycle
;
1389 now
= time_interpolator_get_cycles(src
);
1390 if (lcycle
&& time_after(lcycle
, now
))
1393 /* When holding the xtime write lock, there's no need
1394 * to add the overhead of the cmpxchg. Readers are
1395 * force to retry until the write lock is released.
1398 time_interpolator
->last_cycle
= now
;
1401 /* Keep track of the last timer value returned. The use of cmpxchg here
1402 * will cause contention in an SMP environment.
1404 } while (unlikely(cmpxchg(&time_interpolator
->last_cycle
, lcycle
, now
) != lcycle
));
1408 return time_interpolator_get_cycles(src
);
1411 void time_interpolator_reset(void)
1413 time_interpolator
->offset
= 0;
1414 time_interpolator
->last_counter
= time_interpolator_get_counter(1);
1417 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1419 unsigned long time_interpolator_get_offset(void)
1421 /* If we do not have a time interpolator set up then just return zero */
1422 if (!time_interpolator
)
1425 return time_interpolator
->offset
+
1426 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator
);
1429 #define INTERPOLATOR_ADJUST 65536
1430 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1432 void time_interpolator_update(long delta_nsec
)
1435 unsigned long offset
;
1437 /* If there is no time interpolator set up then do nothing */
1438 if (!time_interpolator
)
1442 * The interpolator compensates for late ticks by accumulating the late
1443 * time in time_interpolator->offset. A tick earlier than expected will
1444 * lead to a reset of the offset and a corresponding jump of the clock
1445 * forward. Again this only works if the interpolator clock is running
1446 * slightly slower than the regular clock and the tuning logic insures
1450 counter
= time_interpolator_get_counter(1);
1451 offset
= time_interpolator
->offset
+
1452 GET_TI_NSECS(counter
, time_interpolator
);
1454 if (delta_nsec
< 0 || (unsigned long) delta_nsec
< offset
)
1455 time_interpolator
->offset
= offset
- delta_nsec
;
1457 time_interpolator
->skips
++;
1458 time_interpolator
->ns_skipped
+= delta_nsec
- offset
;
1459 time_interpolator
->offset
= 0;
1461 time_interpolator
->last_counter
= counter
;
1463 /* Tuning logic for time interpolator invoked every minute or so.
1464 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1465 * Increase interpolator clock speed if we skip too much time.
1467 if (jiffies
% INTERPOLATOR_ADJUST
== 0)
1469 if (time_interpolator
->skips
== 0 && time_interpolator
->offset
> tick_nsec
)
1470 time_interpolator
->nsec_per_cyc
--;
1471 if (time_interpolator
->ns_skipped
> INTERPOLATOR_MAX_SKIP
&& time_interpolator
->offset
== 0)
1472 time_interpolator
->nsec_per_cyc
++;
1473 time_interpolator
->skips
= 0;
1474 time_interpolator
->ns_skipped
= 0;
1479 is_better_time_interpolator(struct time_interpolator
*new)
1481 if (!time_interpolator
)
1483 return new->frequency
> 2*time_interpolator
->frequency
||
1484 (unsigned long)new->drift
< (unsigned long)time_interpolator
->drift
;
1488 register_time_interpolator(struct time_interpolator
*ti
)
1490 unsigned long flags
;
1493 BUG_ON(ti
->frequency
== 0 || ti
->mask
== 0);
1495 ti
->nsec_per_cyc
= ((u64
)NSEC_PER_SEC
<< ti
->shift
) / ti
->frequency
;
1496 spin_lock(&time_interpolator_lock
);
1497 write_seqlock_irqsave(&xtime_lock
, flags
);
1498 if (is_better_time_interpolator(ti
)) {
1499 time_interpolator
= ti
;
1500 time_interpolator_reset();
1502 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1504 ti
->next
= time_interpolator_list
;
1505 time_interpolator_list
= ti
;
1506 spin_unlock(&time_interpolator_lock
);
1510 unregister_time_interpolator(struct time_interpolator
*ti
)
1512 struct time_interpolator
*curr
, **prev
;
1513 unsigned long flags
;
1515 spin_lock(&time_interpolator_lock
);
1516 prev
= &time_interpolator_list
;
1517 for (curr
= *prev
; curr
; curr
= curr
->next
) {
1525 write_seqlock_irqsave(&xtime_lock
, flags
);
1526 if (ti
== time_interpolator
) {
1527 /* we lost the best time-interpolator: */
1528 time_interpolator
= NULL
;
1529 /* find the next-best interpolator */
1530 for (curr
= time_interpolator_list
; curr
; curr
= curr
->next
)
1531 if (is_better_time_interpolator(curr
))
1532 time_interpolator
= curr
;
1533 time_interpolator_reset();
1535 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1536 spin_unlock(&time_interpolator_lock
);
1538 #endif /* CONFIG_TIME_INTERPOLATION */
1541 * msleep - sleep safely even with waitqueue interruptions
1542 * @msecs: Time in milliseconds to sleep for
1544 void msleep(unsigned int msecs
)
1546 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1549 timeout
= schedule_timeout_uninterruptible(timeout
);
1552 EXPORT_SYMBOL(msleep
);
1555 * msleep_interruptible - sleep waiting for signals
1556 * @msecs: Time in milliseconds to sleep for
1558 unsigned long msleep_interruptible(unsigned int msecs
)
1560 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1562 while (timeout
&& !signal_pending(current
))
1563 timeout
= schedule_timeout_interruptible(timeout
);
1564 return jiffies_to_msecs(timeout
);
1567 EXPORT_SYMBOL(msleep_interruptible
);