2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
32 static struct vfsmount
*shm_mnt
;
36 * This virtual memory filesystem is heavily based on the ramfs. It
37 * extends ramfs by the ability to use swap and honor resource limits
38 * which makes it a completely usable filesystem.
41 #include <linux/xattr.h>
42 #include <linux/exportfs.h>
43 #include <linux/generic_acl.h>
44 #include <linux/mman.h>
45 #include <linux/pagemap.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/backing-dev.h>
49 #include <linux/shmem_fs.h>
50 #include <linux/writeback.h>
51 #include <linux/vfs.h>
52 #include <linux/blkdev.h>
53 #include <linux/security.h>
54 #include <linux/swapops.h>
55 #include <linux/mempolicy.h>
56 #include <linux/namei.h>
57 #include <linux/ctype.h>
58 #include <linux/migrate.h>
59 #include <linux/highmem.h>
60 #include <linux/seq_file.h>
61 #include <linux/magic.h>
63 #include <asm/uaccess.h>
64 #include <asm/div64.h>
65 #include <asm/pgtable.h>
67 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
68 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
69 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
71 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
72 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
77 #define SHMEM_PAGEIN VM_READ
78 #define SHMEM_TRUNCATE VM_WRITE
80 /* Definition to limit shmem_truncate's steps between cond_rescheds */
81 #define LATENCY_LIMIT 64
83 /* Pretend that each entry is of this size in directory's i_size */
84 #define BOGO_DIRENT_SIZE 20
86 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
88 SGP_READ
, /* don't exceed i_size, don't allocate page */
89 SGP_CACHE
, /* don't exceed i_size, may allocate page */
90 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
91 SGP_WRITE
, /* may exceed i_size, may allocate page */
95 static unsigned long shmem_default_max_blocks(void)
97 return totalram_pages
/ 2;
100 static unsigned long shmem_default_max_inodes(void)
102 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
106 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
107 struct page
**pagep
, enum sgp_type sgp
, int *type
);
109 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
112 * The above definition of ENTRIES_PER_PAGE, and the use of
113 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
114 * might be reconsidered if it ever diverges from PAGE_SIZE.
116 * Mobility flags are masked out as swap vectors cannot move
118 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
119 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
122 static inline void shmem_dir_free(struct page
*page
)
124 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
127 static struct page
**shmem_dir_map(struct page
*page
)
129 return (struct page
**)kmap_atomic(page
, KM_USER0
);
132 static inline void shmem_dir_unmap(struct page
**dir
)
134 kunmap_atomic(dir
, KM_USER0
);
137 static swp_entry_t
*shmem_swp_map(struct page
*page
)
139 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
142 static inline void shmem_swp_balance_unmap(void)
145 * When passing a pointer to an i_direct entry, to code which
146 * also handles indirect entries and so will shmem_swp_unmap,
147 * we must arrange for the preempt count to remain in balance.
148 * What kmap_atomic of a lowmem page does depends on config
149 * and architecture, so pretend to kmap_atomic some lowmem page.
151 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
154 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
156 kunmap_atomic(entry
, KM_USER1
);
159 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
161 return sb
->s_fs_info
;
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
170 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
172 return (flags
& VM_ACCOUNT
) ?
173 security_vm_enough_memory_kern(VM_ACCT(size
)) : 0;
176 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
178 if (flags
& VM_ACCOUNT
)
179 vm_unacct_memory(VM_ACCT(size
));
183 * ... whereas tmpfs objects are accounted incrementally as
184 * pages are allocated, in order to allow huge sparse files.
185 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
186 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
188 static inline int shmem_acct_block(unsigned long flags
)
190 return (flags
& VM_ACCOUNT
) ?
191 0 : security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE
));
194 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
196 if (!(flags
& VM_ACCOUNT
))
197 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
200 static const struct super_operations shmem_ops
;
201 static const struct address_space_operations shmem_aops
;
202 static const struct file_operations shmem_file_operations
;
203 static const struct inode_operations shmem_inode_operations
;
204 static const struct inode_operations shmem_dir_inode_operations
;
205 static const struct inode_operations shmem_special_inode_operations
;
206 static struct vm_operations_struct shmem_vm_ops
;
208 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
209 .ra_pages
= 0, /* No readahead */
210 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
211 .unplug_io_fn
= default_unplug_io_fn
,
214 static LIST_HEAD(shmem_swaplist
);
215 static DEFINE_MUTEX(shmem_swaplist_mutex
);
217 static void shmem_free_blocks(struct inode
*inode
, long pages
)
219 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
220 if (sbinfo
->max_blocks
) {
221 spin_lock(&sbinfo
->stat_lock
);
222 sbinfo
->free_blocks
+= pages
;
223 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
224 spin_unlock(&sbinfo
->stat_lock
);
228 static int shmem_reserve_inode(struct super_block
*sb
)
230 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
231 if (sbinfo
->max_inodes
) {
232 spin_lock(&sbinfo
->stat_lock
);
233 if (!sbinfo
->free_inodes
) {
234 spin_unlock(&sbinfo
->stat_lock
);
237 sbinfo
->free_inodes
--;
238 spin_unlock(&sbinfo
->stat_lock
);
243 static void shmem_free_inode(struct super_block
*sb
)
245 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
246 if (sbinfo
->max_inodes
) {
247 spin_lock(&sbinfo
->stat_lock
);
248 sbinfo
->free_inodes
++;
249 spin_unlock(&sbinfo
->stat_lock
);
254 * shmem_recalc_inode - recalculate the size of an inode
255 * @inode: inode to recalc
257 * We have to calculate the free blocks since the mm can drop
258 * undirtied hole pages behind our back.
260 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
261 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
263 * It has to be called with the spinlock held.
265 static void shmem_recalc_inode(struct inode
*inode
)
267 struct shmem_inode_info
*info
= SHMEM_I(inode
);
270 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
272 info
->alloced
-= freed
;
273 shmem_unacct_blocks(info
->flags
, freed
);
274 shmem_free_blocks(inode
, freed
);
279 * shmem_swp_entry - find the swap vector position in the info structure
280 * @info: info structure for the inode
281 * @index: index of the page to find
282 * @page: optional page to add to the structure. Has to be preset to
285 * If there is no space allocated yet it will return NULL when
286 * page is NULL, else it will use the page for the needed block,
287 * setting it to NULL on return to indicate that it has been used.
289 * The swap vector is organized the following way:
291 * There are SHMEM_NR_DIRECT entries directly stored in the
292 * shmem_inode_info structure. So small files do not need an addional
295 * For pages with index > SHMEM_NR_DIRECT there is the pointer
296 * i_indirect which points to a page which holds in the first half
297 * doubly indirect blocks, in the second half triple indirect blocks:
299 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
300 * following layout (for SHMEM_NR_DIRECT == 16):
302 * i_indirect -> dir --> 16-19
315 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
317 unsigned long offset
;
321 if (index
< SHMEM_NR_DIRECT
) {
322 shmem_swp_balance_unmap();
323 return info
->i_direct
+index
;
325 if (!info
->i_indirect
) {
327 info
->i_indirect
= *page
;
330 return NULL
; /* need another page */
333 index
-= SHMEM_NR_DIRECT
;
334 offset
= index
% ENTRIES_PER_PAGE
;
335 index
/= ENTRIES_PER_PAGE
;
336 dir
= shmem_dir_map(info
->i_indirect
);
338 if (index
>= ENTRIES_PER_PAGE
/2) {
339 index
-= ENTRIES_PER_PAGE
/2;
340 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
341 index
%= ENTRIES_PER_PAGE
;
348 shmem_dir_unmap(dir
);
349 return NULL
; /* need another page */
351 shmem_dir_unmap(dir
);
352 dir
= shmem_dir_map(subdir
);
358 if (!page
|| !(subdir
= *page
)) {
359 shmem_dir_unmap(dir
);
360 return NULL
; /* need a page */
365 shmem_dir_unmap(dir
);
366 return shmem_swp_map(subdir
) + offset
;
369 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
371 long incdec
= value
? 1: -1;
374 info
->swapped
+= incdec
;
375 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
376 struct page
*page
= kmap_atomic_to_page(entry
);
377 set_page_private(page
, page_private(page
) + incdec
);
382 * shmem_swp_alloc - get the position of the swap entry for the page.
383 * @info: info structure for the inode
384 * @index: index of the page to find
385 * @sgp: check and recheck i_size? skip allocation?
387 * If the entry does not exist, allocate it.
389 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
391 struct inode
*inode
= &info
->vfs_inode
;
392 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
393 struct page
*page
= NULL
;
396 if (sgp
!= SGP_WRITE
&&
397 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
398 return ERR_PTR(-EINVAL
);
400 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
402 return shmem_swp_map(ZERO_PAGE(0));
404 * Test free_blocks against 1 not 0, since we have 1 data
405 * page (and perhaps indirect index pages) yet to allocate:
406 * a waste to allocate index if we cannot allocate data.
408 if (sbinfo
->max_blocks
) {
409 spin_lock(&sbinfo
->stat_lock
);
410 if (sbinfo
->free_blocks
<= 1) {
411 spin_unlock(&sbinfo
->stat_lock
);
412 return ERR_PTR(-ENOSPC
);
414 sbinfo
->free_blocks
--;
415 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
416 spin_unlock(&sbinfo
->stat_lock
);
419 spin_unlock(&info
->lock
);
420 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
422 set_page_private(page
, 0);
423 spin_lock(&info
->lock
);
426 shmem_free_blocks(inode
, 1);
427 return ERR_PTR(-ENOMEM
);
429 if (sgp
!= SGP_WRITE
&&
430 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
431 entry
= ERR_PTR(-EINVAL
);
434 if (info
->next_index
<= index
)
435 info
->next_index
= index
+ 1;
438 /* another task gave its page, or truncated the file */
439 shmem_free_blocks(inode
, 1);
440 shmem_dir_free(page
);
442 if (info
->next_index
<= index
&& !IS_ERR(entry
))
443 info
->next_index
= index
+ 1;
448 * shmem_free_swp - free some swap entries in a directory
449 * @dir: pointer to the directory
450 * @edir: pointer after last entry of the directory
451 * @punch_lock: pointer to spinlock when needed for the holepunch case
453 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
454 spinlock_t
*punch_lock
)
456 spinlock_t
*punch_unlock
= NULL
;
460 for (ptr
= dir
; ptr
< edir
; ptr
++) {
462 if (unlikely(punch_lock
)) {
463 punch_unlock
= punch_lock
;
465 spin_lock(punch_unlock
);
469 free_swap_and_cache(*ptr
);
470 *ptr
= (swp_entry_t
){0};
475 spin_unlock(punch_unlock
);
479 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
480 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
485 ptr
= shmem_swp_map(subdir
);
486 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
487 int size
= limit
- offset
;
488 if (size
> LATENCY_LIMIT
)
489 size
= LATENCY_LIMIT
;
490 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
492 if (need_resched()) {
493 shmem_swp_unmap(ptr
);
495 shmem_dir_unmap(*dir
);
499 ptr
= shmem_swp_map(subdir
);
502 shmem_swp_unmap(ptr
);
506 static void shmem_free_pages(struct list_head
*next
)
512 page
= container_of(next
, struct page
, lru
);
514 shmem_dir_free(page
);
516 if (freed
>= LATENCY_LIMIT
) {
523 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
525 struct shmem_inode_info
*info
= SHMEM_I(inode
);
530 unsigned long diroff
;
536 LIST_HEAD(pages_to_free
);
537 long nr_pages_to_free
= 0;
538 long nr_swaps_freed
= 0;
542 spinlock_t
*needs_lock
;
543 spinlock_t
*punch_lock
;
544 unsigned long upper_limit
;
546 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
547 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
548 if (idx
>= info
->next_index
)
551 spin_lock(&info
->lock
);
552 info
->flags
|= SHMEM_TRUNCATE
;
553 if (likely(end
== (loff_t
) -1)) {
554 limit
= info
->next_index
;
555 upper_limit
= SHMEM_MAX_INDEX
;
556 info
->next_index
= idx
;
560 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
561 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
563 upper_limit
= SHMEM_MAX_INDEX
;
565 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
568 needs_lock
= &info
->lock
;
572 topdir
= info
->i_indirect
;
573 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
574 info
->i_indirect
= NULL
;
576 list_add(&topdir
->lru
, &pages_to_free
);
578 spin_unlock(&info
->lock
);
580 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
581 ptr
= info
->i_direct
;
583 if (size
> SHMEM_NR_DIRECT
)
584 size
= SHMEM_NR_DIRECT
;
585 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
589 * If there are no indirect blocks or we are punching a hole
590 * below indirect blocks, nothing to be done.
592 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
596 * The truncation case has already dropped info->lock, and we're safe
597 * because i_size and next_index have already been lowered, preventing
598 * access beyond. But in the punch_hole case, we still need to take
599 * the lock when updating the swap directory, because there might be
600 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
601 * shmem_writepage. However, whenever we find we can remove a whole
602 * directory page (not at the misaligned start or end of the range),
603 * we first NULLify its pointer in the level above, and then have no
604 * need to take the lock when updating its contents: needs_lock and
605 * punch_lock (either pointing to info->lock or NULL) manage this.
608 upper_limit
-= SHMEM_NR_DIRECT
;
609 limit
-= SHMEM_NR_DIRECT
;
610 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
611 offset
= idx
% ENTRIES_PER_PAGE
;
614 dir
= shmem_dir_map(topdir
);
615 stage
= ENTRIES_PER_PAGEPAGE
/2;
616 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
618 diroff
= idx
/ENTRIES_PER_PAGE
;
620 dir
+= ENTRIES_PER_PAGE
/2;
621 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
623 stage
+= ENTRIES_PER_PAGEPAGE
;
626 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
627 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
628 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
630 spin_lock(needs_lock
);
632 spin_unlock(needs_lock
);
637 list_add(&middir
->lru
, &pages_to_free
);
639 shmem_dir_unmap(dir
);
640 dir
= shmem_dir_map(middir
);
648 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
649 if (unlikely(idx
== stage
)) {
650 shmem_dir_unmap(dir
);
651 dir
= shmem_dir_map(topdir
) +
652 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
655 idx
+= ENTRIES_PER_PAGEPAGE
;
659 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
662 needs_lock
= &info
->lock
;
663 if (upper_limit
>= stage
) {
665 spin_lock(needs_lock
);
667 spin_unlock(needs_lock
);
672 list_add(&middir
->lru
, &pages_to_free
);
674 shmem_dir_unmap(dir
);
676 dir
= shmem_dir_map(middir
);
679 punch_lock
= needs_lock
;
680 subdir
= dir
[diroff
];
681 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
683 spin_lock(needs_lock
);
685 spin_unlock(needs_lock
);
690 list_add(&subdir
->lru
, &pages_to_free
);
692 if (subdir
&& page_private(subdir
) /* has swap entries */) {
694 if (size
> ENTRIES_PER_PAGE
)
695 size
= ENTRIES_PER_PAGE
;
696 freed
= shmem_map_and_free_swp(subdir
,
697 offset
, size
, &dir
, punch_lock
);
699 dir
= shmem_dir_map(middir
);
700 nr_swaps_freed
+= freed
;
701 if (offset
|| punch_lock
) {
702 spin_lock(&info
->lock
);
703 set_page_private(subdir
,
704 page_private(subdir
) - freed
);
705 spin_unlock(&info
->lock
);
707 BUG_ON(page_private(subdir
) != freed
);
712 shmem_dir_unmap(dir
);
714 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
716 * Call truncate_inode_pages again: racing shmem_unuse_inode
717 * may have swizzled a page in from swap since vmtruncate or
718 * generic_delete_inode did it, before we lowered next_index.
719 * Also, though shmem_getpage checks i_size before adding to
720 * cache, no recheck after: so fix the narrow window there too.
722 * Recalling truncate_inode_pages_range and unmap_mapping_range
723 * every time for punch_hole (which never got a chance to clear
724 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
725 * yet hardly ever necessary: try to optimize them out later.
727 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
729 unmap_mapping_range(inode
->i_mapping
, start
,
733 spin_lock(&info
->lock
);
734 info
->flags
&= ~SHMEM_TRUNCATE
;
735 info
->swapped
-= nr_swaps_freed
;
736 if (nr_pages_to_free
)
737 shmem_free_blocks(inode
, nr_pages_to_free
);
738 shmem_recalc_inode(inode
);
739 spin_unlock(&info
->lock
);
742 * Empty swap vector directory pages to be freed?
744 if (!list_empty(&pages_to_free
)) {
745 pages_to_free
.prev
->next
= NULL
;
746 shmem_free_pages(pages_to_free
.next
);
750 static void shmem_truncate(struct inode
*inode
)
752 shmem_truncate_range(inode
, inode
->i_size
, (loff_t
)-1);
755 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
757 struct inode
*inode
= dentry
->d_inode
;
758 struct page
*page
= NULL
;
761 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
762 if (attr
->ia_size
< inode
->i_size
) {
764 * If truncating down to a partial page, then
765 * if that page is already allocated, hold it
766 * in memory until the truncation is over, so
767 * truncate_partial_page cannnot miss it were
768 * it assigned to swap.
770 if (attr
->ia_size
& (PAGE_CACHE_SIZE
-1)) {
771 (void) shmem_getpage(inode
,
772 attr
->ia_size
>>PAGE_CACHE_SHIFT
,
773 &page
, SGP_READ
, NULL
);
778 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
779 * detect if any pages might have been added to cache
780 * after truncate_inode_pages. But we needn't bother
781 * if it's being fully truncated to zero-length: the
782 * nrpages check is efficient enough in that case.
785 struct shmem_inode_info
*info
= SHMEM_I(inode
);
786 spin_lock(&info
->lock
);
787 info
->flags
&= ~SHMEM_PAGEIN
;
788 spin_unlock(&info
->lock
);
793 error
= inode_change_ok(inode
, attr
);
795 error
= inode_setattr(inode
, attr
);
796 #ifdef CONFIG_TMPFS_POSIX_ACL
797 if (!error
&& (attr
->ia_valid
& ATTR_MODE
))
798 error
= generic_acl_chmod(inode
, &shmem_acl_ops
);
801 page_cache_release(page
);
805 static void shmem_delete_inode(struct inode
*inode
)
807 struct shmem_inode_info
*info
= SHMEM_I(inode
);
809 if (inode
->i_op
->truncate
== shmem_truncate
) {
810 truncate_inode_pages(inode
->i_mapping
, 0);
811 shmem_unacct_size(info
->flags
, inode
->i_size
);
813 shmem_truncate(inode
);
814 if (!list_empty(&info
->swaplist
)) {
815 mutex_lock(&shmem_swaplist_mutex
);
816 list_del_init(&info
->swaplist
);
817 mutex_unlock(&shmem_swaplist_mutex
);
820 BUG_ON(inode
->i_blocks
);
821 shmem_free_inode(inode
->i_sb
);
825 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
829 for (ptr
= dir
; ptr
< edir
; ptr
++) {
830 if (ptr
->val
== entry
.val
)
836 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
850 ptr
= info
->i_direct
;
851 spin_lock(&info
->lock
);
852 if (!info
->swapped
) {
853 list_del_init(&info
->swaplist
);
856 limit
= info
->next_index
;
858 if (size
> SHMEM_NR_DIRECT
)
859 size
= SHMEM_NR_DIRECT
;
860 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
863 if (!info
->i_indirect
)
866 dir
= shmem_dir_map(info
->i_indirect
);
867 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
869 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
870 if (unlikely(idx
== stage
)) {
871 shmem_dir_unmap(dir
-1);
872 if (cond_resched_lock(&info
->lock
)) {
873 /* check it has not been truncated */
874 if (limit
> info
->next_index
) {
875 limit
= info
->next_index
;
880 dir
= shmem_dir_map(info
->i_indirect
) +
881 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
884 idx
+= ENTRIES_PER_PAGEPAGE
;
888 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
890 shmem_dir_unmap(dir
);
891 dir
= shmem_dir_map(subdir
);
894 if (subdir
&& page_private(subdir
)) {
895 ptr
= shmem_swp_map(subdir
);
897 if (size
> ENTRIES_PER_PAGE
)
898 size
= ENTRIES_PER_PAGE
;
899 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
900 shmem_swp_unmap(ptr
);
902 shmem_dir_unmap(dir
);
908 shmem_dir_unmap(dir
-1);
910 spin_unlock(&info
->lock
);
914 inode
= igrab(&info
->vfs_inode
);
915 spin_unlock(&info
->lock
);
918 * Move _head_ to start search for next from here.
919 * But be careful: shmem_delete_inode checks list_empty without taking
920 * mutex, and there's an instant in list_move_tail when info->swaplist
921 * would appear empty, if it were the only one on shmem_swaplist. We
922 * could avoid doing it if inode NULL; or use this minor optimization.
924 if (shmem_swaplist
.next
!= &info
->swaplist
)
925 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
926 mutex_unlock(&shmem_swaplist_mutex
);
931 /* Precharge page using GFP_KERNEL while we can wait */
932 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
935 error
= radix_tree_preload(GFP_KERNEL
);
937 mem_cgroup_uncharge_cache_page(page
);
942 spin_lock(&info
->lock
);
943 ptr
= shmem_swp_entry(info
, idx
, NULL
);
944 if (ptr
&& ptr
->val
== entry
.val
) {
945 error
= add_to_page_cache_locked(page
, inode
->i_mapping
,
947 /* does mem_cgroup_uncharge_cache_page on error */
948 } else /* we must compensate for our precharge above */
949 mem_cgroup_uncharge_cache_page(page
);
951 if (error
== -EEXIST
) {
952 struct page
*filepage
= find_get_page(inode
->i_mapping
, idx
);
956 * There might be a more uptodate page coming down
957 * from a stacked writepage: forget our swappage if so.
959 if (PageUptodate(filepage
))
961 page_cache_release(filepage
);
965 delete_from_swap_cache(page
);
966 set_page_dirty(page
);
967 info
->flags
|= SHMEM_PAGEIN
;
968 shmem_swp_set(info
, ptr
, 0);
970 error
= 1; /* not an error, but entry was found */
973 shmem_swp_unmap(ptr
);
974 spin_unlock(&info
->lock
);
975 radix_tree_preload_end();
978 page_cache_release(page
);
979 iput(inode
); /* allows for NULL */
984 * shmem_unuse() search for an eventually swapped out shmem page.
986 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
988 struct list_head
*p
, *next
;
989 struct shmem_inode_info
*info
;
992 mutex_lock(&shmem_swaplist_mutex
);
993 list_for_each_safe(p
, next
, &shmem_swaplist
) {
994 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
995 found
= shmem_unuse_inode(info
, entry
, page
);
1000 mutex_unlock(&shmem_swaplist_mutex
);
1001 out
: return found
; /* 0 or 1 or -ENOMEM */
1005 * Move the page from the page cache to the swap cache.
1007 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1009 struct shmem_inode_info
*info
;
1010 swp_entry_t
*entry
, swap
;
1011 struct address_space
*mapping
;
1012 unsigned long index
;
1013 struct inode
*inode
;
1015 BUG_ON(!PageLocked(page
));
1016 mapping
= page
->mapping
;
1017 index
= page
->index
;
1018 inode
= mapping
->host
;
1019 info
= SHMEM_I(inode
);
1020 if (info
->flags
& VM_LOCKED
)
1022 if (!total_swap_pages
)
1026 * shmem_backing_dev_info's capabilities prevent regular writeback or
1027 * sync from ever calling shmem_writepage; but a stacking filesystem
1028 * may use the ->writepage of its underlying filesystem, in which case
1029 * tmpfs should write out to swap only in response to memory pressure,
1030 * and not for pdflush or sync. However, in those cases, we do still
1031 * want to check if there's a redundant swappage to be discarded.
1033 if (wbc
->for_reclaim
)
1034 swap
= get_swap_page();
1038 spin_lock(&info
->lock
);
1039 if (index
>= info
->next_index
) {
1040 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1043 entry
= shmem_swp_entry(info
, index
, NULL
);
1046 * The more uptodate page coming down from a stacked
1047 * writepage should replace our old swappage.
1049 free_swap_and_cache(*entry
);
1050 shmem_swp_set(info
, entry
, 0);
1052 shmem_recalc_inode(inode
);
1054 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1055 remove_from_page_cache(page
);
1056 shmem_swp_set(info
, entry
, swap
.val
);
1057 shmem_swp_unmap(entry
);
1058 if (list_empty(&info
->swaplist
))
1059 inode
= igrab(inode
);
1062 spin_unlock(&info
->lock
);
1063 swap_duplicate(swap
);
1064 BUG_ON(page_mapped(page
));
1065 page_cache_release(page
); /* pagecache ref */
1066 set_page_dirty(page
);
1069 mutex_lock(&shmem_swaplist_mutex
);
1070 /* move instead of add in case we're racing */
1071 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
1072 mutex_unlock(&shmem_swaplist_mutex
);
1078 shmem_swp_unmap(entry
);
1080 spin_unlock(&info
->lock
);
1083 set_page_dirty(page
);
1084 if (wbc
->for_reclaim
)
1085 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1092 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1096 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1097 return; /* show nothing */
1099 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
1101 seq_printf(seq
, ",mpol=%s", buffer
);
1104 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1106 struct mempolicy
*mpol
= NULL
;
1108 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1109 mpol
= sbinfo
->mpol
;
1111 spin_unlock(&sbinfo
->stat_lock
);
1115 #endif /* CONFIG_TMPFS */
1117 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1118 struct shmem_inode_info
*info
, unsigned long idx
)
1120 struct mempolicy mpol
, *spol
;
1121 struct vm_area_struct pvma
;
1124 spol
= mpol_cond_copy(&mpol
,
1125 mpol_shared_policy_lookup(&info
->policy
, idx
));
1127 /* Create a pseudo vma that just contains the policy */
1129 pvma
.vm_pgoff
= idx
;
1131 pvma
.vm_policy
= spol
;
1132 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1136 static struct page
*shmem_alloc_page(gfp_t gfp
,
1137 struct shmem_inode_info
*info
, unsigned long idx
)
1139 struct vm_area_struct pvma
;
1141 /* Create a pseudo vma that just contains the policy */
1143 pvma
.vm_pgoff
= idx
;
1145 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1148 * alloc_page_vma() will drop the shared policy reference
1150 return alloc_page_vma(gfp
, &pvma
, 0);
1152 #else /* !CONFIG_NUMA */
1154 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*p
)
1157 #endif /* CONFIG_TMPFS */
1159 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1160 struct shmem_inode_info
*info
, unsigned long idx
)
1162 return swapin_readahead(entry
, gfp
, NULL
, 0);
1165 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1166 struct shmem_inode_info
*info
, unsigned long idx
)
1168 return alloc_page(gfp
);
1170 #endif /* CONFIG_NUMA */
1172 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1173 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1180 * shmem_getpage - either get the page from swap or allocate a new one
1182 * If we allocate a new one we do not mark it dirty. That's up to the
1183 * vm. If we swap it in we mark it dirty since we also free the swap
1184 * entry since a page cannot live in both the swap and page cache
1186 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1187 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1189 struct address_space
*mapping
= inode
->i_mapping
;
1190 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1191 struct shmem_sb_info
*sbinfo
;
1192 struct page
*filepage
= *pagep
;
1193 struct page
*swappage
;
1199 if (idx
>= SHMEM_MAX_INDEX
)
1206 * Normally, filepage is NULL on entry, and either found
1207 * uptodate immediately, or allocated and zeroed, or read
1208 * in under swappage, which is then assigned to filepage.
1209 * But shmem_readpage (required for splice) passes in a locked
1210 * filepage, which may be found not uptodate by other callers
1211 * too, and may need to be copied from the swappage read in.
1215 filepage
= find_lock_page(mapping
, idx
);
1216 if (filepage
&& PageUptodate(filepage
))
1219 gfp
= mapping_gfp_mask(mapping
);
1222 * Try to preload while we can wait, to not make a habit of
1223 * draining atomic reserves; but don't latch on to this cpu.
1225 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1228 radix_tree_preload_end();
1231 spin_lock(&info
->lock
);
1232 shmem_recalc_inode(inode
);
1233 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1234 if (IS_ERR(entry
)) {
1235 spin_unlock(&info
->lock
);
1236 error
= PTR_ERR(entry
);
1242 /* Look it up and read it in.. */
1243 swappage
= lookup_swap_cache(swap
);
1245 shmem_swp_unmap(entry
);
1246 /* here we actually do the io */
1247 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1248 __count_vm_event(PGMAJFAULT
);
1249 *type
|= VM_FAULT_MAJOR
;
1251 spin_unlock(&info
->lock
);
1252 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1254 spin_lock(&info
->lock
);
1255 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1257 error
= PTR_ERR(entry
);
1259 if (entry
->val
== swap
.val
)
1261 shmem_swp_unmap(entry
);
1263 spin_unlock(&info
->lock
);
1268 wait_on_page_locked(swappage
);
1269 page_cache_release(swappage
);
1273 /* We have to do this with page locked to prevent races */
1274 if (!trylock_page(swappage
)) {
1275 shmem_swp_unmap(entry
);
1276 spin_unlock(&info
->lock
);
1277 wait_on_page_locked(swappage
);
1278 page_cache_release(swappage
);
1281 if (PageWriteback(swappage
)) {
1282 shmem_swp_unmap(entry
);
1283 spin_unlock(&info
->lock
);
1284 wait_on_page_writeback(swappage
);
1285 unlock_page(swappage
);
1286 page_cache_release(swappage
);
1289 if (!PageUptodate(swappage
)) {
1290 shmem_swp_unmap(entry
);
1291 spin_unlock(&info
->lock
);
1292 unlock_page(swappage
);
1293 page_cache_release(swappage
);
1299 shmem_swp_set(info
, entry
, 0);
1300 shmem_swp_unmap(entry
);
1301 delete_from_swap_cache(swappage
);
1302 spin_unlock(&info
->lock
);
1303 copy_highpage(filepage
, swappage
);
1304 unlock_page(swappage
);
1305 page_cache_release(swappage
);
1306 flush_dcache_page(filepage
);
1307 SetPageUptodate(filepage
);
1308 set_page_dirty(filepage
);
1310 } else if (!(error
= add_to_page_cache_locked(swappage
, mapping
,
1311 idx
, GFP_NOWAIT
))) {
1312 info
->flags
|= SHMEM_PAGEIN
;
1313 shmem_swp_set(info
, entry
, 0);
1314 shmem_swp_unmap(entry
);
1315 delete_from_swap_cache(swappage
);
1316 spin_unlock(&info
->lock
);
1317 filepage
= swappage
;
1318 set_page_dirty(filepage
);
1321 shmem_swp_unmap(entry
);
1322 spin_unlock(&info
->lock
);
1323 unlock_page(swappage
);
1324 page_cache_release(swappage
);
1325 if (error
== -ENOMEM
) {
1326 /* allow reclaim from this memory cgroup */
1327 error
= mem_cgroup_shrink_usage(current
->mm
,
1334 } else if (sgp
== SGP_READ
&& !filepage
) {
1335 shmem_swp_unmap(entry
);
1336 filepage
= find_get_page(mapping
, idx
);
1338 (!PageUptodate(filepage
) || !trylock_page(filepage
))) {
1339 spin_unlock(&info
->lock
);
1340 wait_on_page_locked(filepage
);
1341 page_cache_release(filepage
);
1345 spin_unlock(&info
->lock
);
1347 shmem_swp_unmap(entry
);
1348 sbinfo
= SHMEM_SB(inode
->i_sb
);
1349 if (sbinfo
->max_blocks
) {
1350 spin_lock(&sbinfo
->stat_lock
);
1351 if (sbinfo
->free_blocks
== 0 ||
1352 shmem_acct_block(info
->flags
)) {
1353 spin_unlock(&sbinfo
->stat_lock
);
1354 spin_unlock(&info
->lock
);
1358 sbinfo
->free_blocks
--;
1359 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1360 spin_unlock(&sbinfo
->stat_lock
);
1361 } else if (shmem_acct_block(info
->flags
)) {
1362 spin_unlock(&info
->lock
);
1370 spin_unlock(&info
->lock
);
1371 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1373 shmem_unacct_blocks(info
->flags
, 1);
1374 shmem_free_blocks(inode
, 1);
1378 SetPageSwapBacked(filepage
);
1380 /* Precharge page while we can wait, compensate after */
1381 error
= mem_cgroup_cache_charge(filepage
, current
->mm
,
1382 gfp
& ~__GFP_HIGHMEM
);
1384 page_cache_release(filepage
);
1385 shmem_unacct_blocks(info
->flags
, 1);
1386 shmem_free_blocks(inode
, 1);
1391 spin_lock(&info
->lock
);
1392 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1394 error
= PTR_ERR(entry
);
1397 shmem_swp_unmap(entry
);
1399 ret
= error
|| swap
.val
;
1401 mem_cgroup_uncharge_cache_page(filepage
);
1403 ret
= add_to_page_cache_lru(filepage
, mapping
,
1406 * At add_to_page_cache_lru() failure, uncharge will
1407 * be done automatically.
1410 spin_unlock(&info
->lock
);
1411 page_cache_release(filepage
);
1412 shmem_unacct_blocks(info
->flags
, 1);
1413 shmem_free_blocks(inode
, 1);
1419 info
->flags
|= SHMEM_PAGEIN
;
1423 spin_unlock(&info
->lock
);
1424 clear_highpage(filepage
);
1425 flush_dcache_page(filepage
);
1426 SetPageUptodate(filepage
);
1427 if (sgp
== SGP_DIRTY
)
1428 set_page_dirty(filepage
);
1435 if (*pagep
!= filepage
) {
1436 unlock_page(filepage
);
1437 page_cache_release(filepage
);
1442 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1444 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1448 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1449 return VM_FAULT_SIGBUS
;
1451 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1453 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1455 return ret
| VM_FAULT_LOCKED
;
1459 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1461 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1462 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1465 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1468 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1471 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1472 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1476 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1478 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1479 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1480 int retval
= -ENOMEM
;
1482 spin_lock(&info
->lock
);
1483 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1484 if (!user_shm_lock(inode
->i_size
, user
))
1486 info
->flags
|= VM_LOCKED
;
1487 mapping_set_unevictable(file
->f_mapping
);
1489 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1490 user_shm_unlock(inode
->i_size
, user
);
1491 info
->flags
&= ~VM_LOCKED
;
1492 mapping_clear_unevictable(file
->f_mapping
);
1493 scan_mapping_unevictable_pages(file
->f_mapping
);
1498 spin_unlock(&info
->lock
);
1502 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1504 file_accessed(file
);
1505 vma
->vm_ops
= &shmem_vm_ops
;
1506 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1510 static struct inode
*
1511 shmem_get_inode(struct super_block
*sb
, int mode
, dev_t dev
)
1513 struct inode
*inode
;
1514 struct shmem_inode_info
*info
;
1515 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1517 if (shmem_reserve_inode(sb
))
1520 inode
= new_inode(sb
);
1522 inode
->i_mode
= mode
;
1523 inode
->i_uid
= current_fsuid();
1524 inode
->i_gid
= current_fsgid();
1525 inode
->i_blocks
= 0;
1526 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1527 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1528 inode
->i_generation
= get_seconds();
1529 info
= SHMEM_I(inode
);
1530 memset(info
, 0, (char *)inode
- (char *)info
);
1531 spin_lock_init(&info
->lock
);
1532 INIT_LIST_HEAD(&info
->swaplist
);
1534 switch (mode
& S_IFMT
) {
1536 inode
->i_op
= &shmem_special_inode_operations
;
1537 init_special_inode(inode
, mode
, dev
);
1540 inode
->i_mapping
->a_ops
= &shmem_aops
;
1541 inode
->i_op
= &shmem_inode_operations
;
1542 inode
->i_fop
= &shmem_file_operations
;
1543 mpol_shared_policy_init(&info
->policy
,
1544 shmem_get_sbmpol(sbinfo
));
1548 /* Some things misbehave if size == 0 on a directory */
1549 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1550 inode
->i_op
= &shmem_dir_inode_operations
;
1551 inode
->i_fop
= &simple_dir_operations
;
1555 * Must not load anything in the rbtree,
1556 * mpol_free_shared_policy will not be called.
1558 mpol_shared_policy_init(&info
->policy
, NULL
);
1562 shmem_free_inode(sb
);
1567 static const struct inode_operations shmem_symlink_inode_operations
;
1568 static const struct inode_operations shmem_symlink_inline_operations
;
1571 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1572 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1573 * below the loop driver, in the generic fashion that many filesystems support.
1575 static int shmem_readpage(struct file
*file
, struct page
*page
)
1577 struct inode
*inode
= page
->mapping
->host
;
1578 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1584 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1585 loff_t pos
, unsigned len
, unsigned flags
,
1586 struct page
**pagep
, void **fsdata
)
1588 struct inode
*inode
= mapping
->host
;
1589 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1591 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1595 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1596 loff_t pos
, unsigned len
, unsigned copied
,
1597 struct page
*page
, void *fsdata
)
1599 struct inode
*inode
= mapping
->host
;
1601 if (pos
+ copied
> inode
->i_size
)
1602 i_size_write(inode
, pos
+ copied
);
1605 set_page_dirty(page
);
1606 page_cache_release(page
);
1611 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1613 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1614 struct address_space
*mapping
= inode
->i_mapping
;
1615 unsigned long index
, offset
;
1616 enum sgp_type sgp
= SGP_READ
;
1619 * Might this read be for a stacking filesystem? Then when reading
1620 * holes of a sparse file, we actually need to allocate those pages,
1621 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1623 if (segment_eq(get_fs(), KERNEL_DS
))
1626 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1627 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1630 struct page
*page
= NULL
;
1631 unsigned long end_index
, nr
, ret
;
1632 loff_t i_size
= i_size_read(inode
);
1634 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1635 if (index
> end_index
)
1637 if (index
== end_index
) {
1638 nr
= i_size
& ~PAGE_CACHE_MASK
;
1643 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1645 if (desc
->error
== -EINVAL
)
1653 * We must evaluate after, since reads (unlike writes)
1654 * are called without i_mutex protection against truncate
1656 nr
= PAGE_CACHE_SIZE
;
1657 i_size
= i_size_read(inode
);
1658 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1659 if (index
== end_index
) {
1660 nr
= i_size
& ~PAGE_CACHE_MASK
;
1663 page_cache_release(page
);
1671 * If users can be writing to this page using arbitrary
1672 * virtual addresses, take care about potential aliasing
1673 * before reading the page on the kernel side.
1675 if (mapping_writably_mapped(mapping
))
1676 flush_dcache_page(page
);
1678 * Mark the page accessed if we read the beginning.
1681 mark_page_accessed(page
);
1683 page
= ZERO_PAGE(0);
1684 page_cache_get(page
);
1688 * Ok, we have the page, and it's up-to-date, so
1689 * now we can copy it to user space...
1691 * The actor routine returns how many bytes were actually used..
1692 * NOTE! This may not be the same as how much of a user buffer
1693 * we filled up (we may be padding etc), so we can only update
1694 * "pos" here (the actor routine has to update the user buffer
1695 * pointers and the remaining count).
1697 ret
= actor(desc
, page
, offset
, nr
);
1699 index
+= offset
>> PAGE_CACHE_SHIFT
;
1700 offset
&= ~PAGE_CACHE_MASK
;
1702 page_cache_release(page
);
1703 if (ret
!= nr
|| !desc
->count
)
1709 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1710 file_accessed(filp
);
1713 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1714 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1716 struct file
*filp
= iocb
->ki_filp
;
1720 loff_t
*ppos
= &iocb
->ki_pos
;
1722 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1726 for (seg
= 0; seg
< nr_segs
; seg
++) {
1727 read_descriptor_t desc
;
1730 desc
.arg
.buf
= iov
[seg
].iov_base
;
1731 desc
.count
= iov
[seg
].iov_len
;
1732 if (desc
.count
== 0)
1735 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1736 retval
+= desc
.written
;
1738 retval
= retval
?: desc
.error
;
1747 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1749 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1751 buf
->f_type
= TMPFS_MAGIC
;
1752 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1753 buf
->f_namelen
= NAME_MAX
;
1754 spin_lock(&sbinfo
->stat_lock
);
1755 if (sbinfo
->max_blocks
) {
1756 buf
->f_blocks
= sbinfo
->max_blocks
;
1757 buf
->f_bavail
= buf
->f_bfree
= sbinfo
->free_blocks
;
1759 if (sbinfo
->max_inodes
) {
1760 buf
->f_files
= sbinfo
->max_inodes
;
1761 buf
->f_ffree
= sbinfo
->free_inodes
;
1763 /* else leave those fields 0 like simple_statfs */
1764 spin_unlock(&sbinfo
->stat_lock
);
1769 * File creation. Allocate an inode, and we're done..
1772 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1774 struct inode
*inode
= shmem_get_inode(dir
->i_sb
, mode
, dev
);
1775 int error
= -ENOSPC
;
1778 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1781 if (error
!= -EOPNOTSUPP
) {
1786 error
= shmem_acl_init(inode
, dir
);
1791 if (dir
->i_mode
& S_ISGID
) {
1792 inode
->i_gid
= dir
->i_gid
;
1794 inode
->i_mode
|= S_ISGID
;
1796 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1797 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1798 d_instantiate(dentry
, inode
);
1799 dget(dentry
); /* Extra count - pin the dentry in core */
1804 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1808 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1814 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1815 struct nameidata
*nd
)
1817 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1823 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1825 struct inode
*inode
= old_dentry
->d_inode
;
1829 * No ordinary (disk based) filesystem counts links as inodes;
1830 * but each new link needs a new dentry, pinning lowmem, and
1831 * tmpfs dentries cannot be pruned until they are unlinked.
1833 ret
= shmem_reserve_inode(inode
->i_sb
);
1837 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1838 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1840 atomic_inc(&inode
->i_count
); /* New dentry reference */
1841 dget(dentry
); /* Extra pinning count for the created dentry */
1842 d_instantiate(dentry
, inode
);
1847 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1849 struct inode
*inode
= dentry
->d_inode
;
1851 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1852 shmem_free_inode(inode
->i_sb
);
1854 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1855 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1857 dput(dentry
); /* Undo the count from "create" - this does all the work */
1861 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1863 if (!simple_empty(dentry
))
1866 drop_nlink(dentry
->d_inode
);
1868 return shmem_unlink(dir
, dentry
);
1872 * The VFS layer already does all the dentry stuff for rename,
1873 * we just have to decrement the usage count for the target if
1874 * it exists so that the VFS layer correctly free's it when it
1877 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1879 struct inode
*inode
= old_dentry
->d_inode
;
1880 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1882 if (!simple_empty(new_dentry
))
1885 if (new_dentry
->d_inode
) {
1886 (void) shmem_unlink(new_dir
, new_dentry
);
1888 drop_nlink(old_dir
);
1889 } else if (they_are_dirs
) {
1890 drop_nlink(old_dir
);
1894 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1895 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1896 old_dir
->i_ctime
= old_dir
->i_mtime
=
1897 new_dir
->i_ctime
= new_dir
->i_mtime
=
1898 inode
->i_ctime
= CURRENT_TIME
;
1902 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1906 struct inode
*inode
;
1907 struct page
*page
= NULL
;
1909 struct shmem_inode_info
*info
;
1911 len
= strlen(symname
) + 1;
1912 if (len
> PAGE_CACHE_SIZE
)
1913 return -ENAMETOOLONG
;
1915 inode
= shmem_get_inode(dir
->i_sb
, S_IFLNK
|S_IRWXUGO
, 0);
1919 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1922 if (error
!= -EOPNOTSUPP
) {
1929 info
= SHMEM_I(inode
);
1930 inode
->i_size
= len
-1;
1931 if (len
<= (char *)inode
- (char *)info
) {
1933 memcpy(info
, symname
, len
);
1934 inode
->i_op
= &shmem_symlink_inline_operations
;
1936 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
1942 inode
->i_mapping
->a_ops
= &shmem_aops
;
1943 inode
->i_op
= &shmem_symlink_inode_operations
;
1944 kaddr
= kmap_atomic(page
, KM_USER0
);
1945 memcpy(kaddr
, symname
, len
);
1946 kunmap_atomic(kaddr
, KM_USER0
);
1947 set_page_dirty(page
);
1948 page_cache_release(page
);
1950 if (dir
->i_mode
& S_ISGID
)
1951 inode
->i_gid
= dir
->i_gid
;
1952 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1953 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1954 d_instantiate(dentry
, inode
);
1959 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
1961 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
1965 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1967 struct page
*page
= NULL
;
1968 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
1969 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
1975 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
1977 if (!IS_ERR(nd_get_link(nd
))) {
1978 struct page
*page
= cookie
;
1980 mark_page_accessed(page
);
1981 page_cache_release(page
);
1985 static const struct inode_operations shmem_symlink_inline_operations
= {
1986 .readlink
= generic_readlink
,
1987 .follow_link
= shmem_follow_link_inline
,
1990 static const struct inode_operations shmem_symlink_inode_operations
= {
1991 .truncate
= shmem_truncate
,
1992 .readlink
= generic_readlink
,
1993 .follow_link
= shmem_follow_link
,
1994 .put_link
= shmem_put_link
,
1997 #ifdef CONFIG_TMPFS_POSIX_ACL
1999 * Superblocks without xattr inode operations will get security.* xattr
2000 * support from the VFS "for free". As soon as we have any other xattrs
2001 * like ACLs, we also need to implement the security.* handlers at
2002 * filesystem level, though.
2005 static size_t shmem_xattr_security_list(struct inode
*inode
, char *list
,
2006 size_t list_len
, const char *name
,
2009 return security_inode_listsecurity(inode
, list
, list_len
);
2012 static int shmem_xattr_security_get(struct inode
*inode
, const char *name
,
2013 void *buffer
, size_t size
)
2015 if (strcmp(name
, "") == 0)
2017 return xattr_getsecurity(inode
, name
, buffer
, size
);
2020 static int shmem_xattr_security_set(struct inode
*inode
, const char *name
,
2021 const void *value
, size_t size
, int flags
)
2023 if (strcmp(name
, "") == 0)
2025 return security_inode_setsecurity(inode
, name
, value
, size
, flags
);
2028 static struct xattr_handler shmem_xattr_security_handler
= {
2029 .prefix
= XATTR_SECURITY_PREFIX
,
2030 .list
= shmem_xattr_security_list
,
2031 .get
= shmem_xattr_security_get
,
2032 .set
= shmem_xattr_security_set
,
2035 static struct xattr_handler
*shmem_xattr_handlers
[] = {
2036 &shmem_xattr_acl_access_handler
,
2037 &shmem_xattr_acl_default_handler
,
2038 &shmem_xattr_security_handler
,
2043 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2045 return ERR_PTR(-ESTALE
);
2048 static int shmem_match(struct inode
*ino
, void *vfh
)
2052 inum
= (inum
<< 32) | fh
[1];
2053 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2056 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2057 struct fid
*fid
, int fh_len
, int fh_type
)
2059 struct inode
*inode
;
2060 struct dentry
*dentry
= NULL
;
2061 u64 inum
= fid
->raw
[2];
2062 inum
= (inum
<< 32) | fid
->raw
[1];
2067 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2068 shmem_match
, fid
->raw
);
2070 dentry
= d_find_alias(inode
);
2077 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2080 struct inode
*inode
= dentry
->d_inode
;
2085 if (hlist_unhashed(&inode
->i_hash
)) {
2086 /* Unfortunately insert_inode_hash is not idempotent,
2087 * so as we hash inodes here rather than at creation
2088 * time, we need a lock to ensure we only try
2091 static DEFINE_SPINLOCK(lock
);
2093 if (hlist_unhashed(&inode
->i_hash
))
2094 __insert_inode_hash(inode
,
2095 inode
->i_ino
+ inode
->i_generation
);
2099 fh
[0] = inode
->i_generation
;
2100 fh
[1] = inode
->i_ino
;
2101 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2107 static const struct export_operations shmem_export_ops
= {
2108 .get_parent
= shmem_get_parent
,
2109 .encode_fh
= shmem_encode_fh
,
2110 .fh_to_dentry
= shmem_fh_to_dentry
,
2113 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2116 char *this_char
, *value
, *rest
;
2118 while (options
!= NULL
) {
2119 this_char
= options
;
2122 * NUL-terminate this option: unfortunately,
2123 * mount options form a comma-separated list,
2124 * but mpol's nodelist may also contain commas.
2126 options
= strchr(options
, ',');
2127 if (options
== NULL
)
2130 if (!isdigit(*options
)) {
2137 if ((value
= strchr(this_char
,'=')) != NULL
) {
2141 "tmpfs: No value for mount option '%s'\n",
2146 if (!strcmp(this_char
,"size")) {
2147 unsigned long long size
;
2148 size
= memparse(value
,&rest
);
2150 size
<<= PAGE_SHIFT
;
2151 size
*= totalram_pages
;
2157 sbinfo
->max_blocks
=
2158 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2159 } else if (!strcmp(this_char
,"nr_blocks")) {
2160 sbinfo
->max_blocks
= memparse(value
, &rest
);
2163 } else if (!strcmp(this_char
,"nr_inodes")) {
2164 sbinfo
->max_inodes
= memparse(value
, &rest
);
2167 } else if (!strcmp(this_char
,"mode")) {
2170 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2173 } else if (!strcmp(this_char
,"uid")) {
2176 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2179 } else if (!strcmp(this_char
,"gid")) {
2182 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2185 } else if (!strcmp(this_char
,"mpol")) {
2186 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2189 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2197 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2203 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2205 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2206 struct shmem_sb_info config
= *sbinfo
;
2207 unsigned long blocks
;
2208 unsigned long inodes
;
2209 int error
= -EINVAL
;
2211 if (shmem_parse_options(data
, &config
, true))
2214 spin_lock(&sbinfo
->stat_lock
);
2215 blocks
= sbinfo
->max_blocks
- sbinfo
->free_blocks
;
2216 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2217 if (config
.max_blocks
< blocks
)
2219 if (config
.max_inodes
< inodes
)
2222 * Those tests also disallow limited->unlimited while any are in
2223 * use, so i_blocks will always be zero when max_blocks is zero;
2224 * but we must separately disallow unlimited->limited, because
2225 * in that case we have no record of how much is already in use.
2227 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2229 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2233 sbinfo
->max_blocks
= config
.max_blocks
;
2234 sbinfo
->free_blocks
= config
.max_blocks
- blocks
;
2235 sbinfo
->max_inodes
= config
.max_inodes
;
2236 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2238 mpol_put(sbinfo
->mpol
);
2239 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2241 spin_unlock(&sbinfo
->stat_lock
);
2245 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2247 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2249 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2250 seq_printf(seq
, ",size=%luk",
2251 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2252 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2253 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2254 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2255 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2256 if (sbinfo
->uid
!= 0)
2257 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2258 if (sbinfo
->gid
!= 0)
2259 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2260 shmem_show_mpol(seq
, sbinfo
->mpol
);
2263 #endif /* CONFIG_TMPFS */
2265 static void shmem_put_super(struct super_block
*sb
)
2267 kfree(sb
->s_fs_info
);
2268 sb
->s_fs_info
= NULL
;
2271 static int shmem_fill_super(struct super_block
*sb
,
2272 void *data
, int silent
)
2274 struct inode
*inode
;
2275 struct dentry
*root
;
2276 struct shmem_sb_info
*sbinfo
;
2279 /* Round up to L1_CACHE_BYTES to resist false sharing */
2280 sbinfo
= kmalloc(max((int)sizeof(struct shmem_sb_info
),
2281 L1_CACHE_BYTES
), GFP_KERNEL
);
2285 sbinfo
->max_blocks
= 0;
2286 sbinfo
->max_inodes
= 0;
2287 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2288 sbinfo
->uid
= current_fsuid();
2289 sbinfo
->gid
= current_fsgid();
2290 sbinfo
->mpol
= NULL
;
2291 sb
->s_fs_info
= sbinfo
;
2295 * Per default we only allow half of the physical ram per
2296 * tmpfs instance, limiting inodes to one per page of lowmem;
2297 * but the internal instance is left unlimited.
2299 if (!(sb
->s_flags
& MS_NOUSER
)) {
2300 sbinfo
->max_blocks
= shmem_default_max_blocks();
2301 sbinfo
->max_inodes
= shmem_default_max_inodes();
2302 if (shmem_parse_options(data
, sbinfo
, false)) {
2307 sb
->s_export_op
= &shmem_export_ops
;
2309 sb
->s_flags
|= MS_NOUSER
;
2312 spin_lock_init(&sbinfo
->stat_lock
);
2313 sbinfo
->free_blocks
= sbinfo
->max_blocks
;
2314 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2316 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2317 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2318 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2319 sb
->s_magic
= TMPFS_MAGIC
;
2320 sb
->s_op
= &shmem_ops
;
2321 sb
->s_time_gran
= 1;
2322 #ifdef CONFIG_TMPFS_POSIX_ACL
2323 sb
->s_xattr
= shmem_xattr_handlers
;
2324 sb
->s_flags
|= MS_POSIXACL
;
2327 inode
= shmem_get_inode(sb
, S_IFDIR
| sbinfo
->mode
, 0);
2330 inode
->i_uid
= sbinfo
->uid
;
2331 inode
->i_gid
= sbinfo
->gid
;
2332 root
= d_alloc_root(inode
);
2341 shmem_put_super(sb
);
2345 static struct kmem_cache
*shmem_inode_cachep
;
2347 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2349 struct shmem_inode_info
*p
;
2350 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2353 return &p
->vfs_inode
;
2356 static void shmem_destroy_inode(struct inode
*inode
)
2358 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2359 /* only struct inode is valid if it's an inline symlink */
2360 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2362 shmem_acl_destroy_inode(inode
);
2363 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2366 static void init_once(void *foo
)
2368 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2370 inode_init_once(&p
->vfs_inode
);
2371 #ifdef CONFIG_TMPFS_POSIX_ACL
2373 p
->i_default_acl
= NULL
;
2377 static int init_inodecache(void)
2379 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2380 sizeof(struct shmem_inode_info
),
2381 0, SLAB_PANIC
, init_once
);
2385 static void destroy_inodecache(void)
2387 kmem_cache_destroy(shmem_inode_cachep
);
2390 static const struct address_space_operations shmem_aops
= {
2391 .writepage
= shmem_writepage
,
2392 .set_page_dirty
= __set_page_dirty_no_writeback
,
2394 .readpage
= shmem_readpage
,
2395 .write_begin
= shmem_write_begin
,
2396 .write_end
= shmem_write_end
,
2398 .migratepage
= migrate_page
,
2401 static const struct file_operations shmem_file_operations
= {
2404 .llseek
= generic_file_llseek
,
2405 .read
= do_sync_read
,
2406 .write
= do_sync_write
,
2407 .aio_read
= shmem_file_aio_read
,
2408 .aio_write
= generic_file_aio_write
,
2409 .fsync
= simple_sync_file
,
2410 .splice_read
= generic_file_splice_read
,
2411 .splice_write
= generic_file_splice_write
,
2415 static const struct inode_operations shmem_inode_operations
= {
2416 .truncate
= shmem_truncate
,
2417 .setattr
= shmem_notify_change
,
2418 .truncate_range
= shmem_truncate_range
,
2419 #ifdef CONFIG_TMPFS_POSIX_ACL
2420 .setxattr
= generic_setxattr
,
2421 .getxattr
= generic_getxattr
,
2422 .listxattr
= generic_listxattr
,
2423 .removexattr
= generic_removexattr
,
2424 .permission
= shmem_permission
,
2429 static const struct inode_operations shmem_dir_inode_operations
= {
2431 .create
= shmem_create
,
2432 .lookup
= simple_lookup
,
2434 .unlink
= shmem_unlink
,
2435 .symlink
= shmem_symlink
,
2436 .mkdir
= shmem_mkdir
,
2437 .rmdir
= shmem_rmdir
,
2438 .mknod
= shmem_mknod
,
2439 .rename
= shmem_rename
,
2441 #ifdef CONFIG_TMPFS_POSIX_ACL
2442 .setattr
= shmem_notify_change
,
2443 .setxattr
= generic_setxattr
,
2444 .getxattr
= generic_getxattr
,
2445 .listxattr
= generic_listxattr
,
2446 .removexattr
= generic_removexattr
,
2447 .permission
= shmem_permission
,
2451 static const struct inode_operations shmem_special_inode_operations
= {
2452 #ifdef CONFIG_TMPFS_POSIX_ACL
2453 .setattr
= shmem_notify_change
,
2454 .setxattr
= generic_setxattr
,
2455 .getxattr
= generic_getxattr
,
2456 .listxattr
= generic_listxattr
,
2457 .removexattr
= generic_removexattr
,
2458 .permission
= shmem_permission
,
2462 static const struct super_operations shmem_ops
= {
2463 .alloc_inode
= shmem_alloc_inode
,
2464 .destroy_inode
= shmem_destroy_inode
,
2466 .statfs
= shmem_statfs
,
2467 .remount_fs
= shmem_remount_fs
,
2468 .show_options
= shmem_show_options
,
2470 .delete_inode
= shmem_delete_inode
,
2471 .drop_inode
= generic_delete_inode
,
2472 .put_super
= shmem_put_super
,
2475 static struct vm_operations_struct shmem_vm_ops
= {
2476 .fault
= shmem_fault
,
2478 .set_policy
= shmem_set_policy
,
2479 .get_policy
= shmem_get_policy
,
2484 static int shmem_get_sb(struct file_system_type
*fs_type
,
2485 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
2487 return get_sb_nodev(fs_type
, flags
, data
, shmem_fill_super
, mnt
);
2490 static struct file_system_type tmpfs_fs_type
= {
2491 .owner
= THIS_MODULE
,
2493 .get_sb
= shmem_get_sb
,
2494 .kill_sb
= kill_litter_super
,
2497 static int __init
init_tmpfs(void)
2501 error
= bdi_init(&shmem_backing_dev_info
);
2505 error
= init_inodecache();
2509 error
= register_filesystem(&tmpfs_fs_type
);
2511 printk(KERN_ERR
"Could not register tmpfs\n");
2515 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2516 tmpfs_fs_type
.name
, NULL
);
2517 if (IS_ERR(shm_mnt
)) {
2518 error
= PTR_ERR(shm_mnt
);
2519 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2525 unregister_filesystem(&tmpfs_fs_type
);
2527 destroy_inodecache();
2529 bdi_destroy(&shmem_backing_dev_info
);
2531 shm_mnt
= ERR_PTR(error
);
2535 #else /* !CONFIG_SHMEM */
2538 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2540 * This is intended for small system where the benefits of the full
2541 * shmem code (swap-backed and resource-limited) are outweighed by
2542 * their complexity. On systems without swap this code should be
2543 * effectively equivalent, but much lighter weight.
2546 #include <linux/ramfs.h>
2548 static struct file_system_type tmpfs_fs_type
= {
2550 .get_sb
= ramfs_get_sb
,
2551 .kill_sb
= kill_litter_super
,
2554 static int __init
init_tmpfs(void)
2556 BUG_ON(register_filesystem(&tmpfs_fs_type
) != 0);
2558 shm_mnt
= kern_mount(&tmpfs_fs_type
);
2559 BUG_ON(IS_ERR(shm_mnt
));
2564 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
2569 #define shmem_file_operations ramfs_file_operations
2570 #define shmem_vm_ops generic_file_vm_ops
2571 #define shmem_get_inode ramfs_get_inode
2572 #define shmem_acct_size(a, b) 0
2573 #define shmem_unacct_size(a, b) do {} while (0)
2574 #define SHMEM_MAX_BYTES LLONG_MAX
2576 #endif /* CONFIG_SHMEM */
2581 * shmem_file_setup - get an unlinked file living in tmpfs
2582 * @name: name for dentry (to be seen in /proc/<pid>/maps
2583 * @size: size to be set for the file
2586 struct file
*shmem_file_setup(char *name
, loff_t size
, unsigned long flags
)
2590 struct inode
*inode
;
2591 struct dentry
*dentry
, *root
;
2594 if (IS_ERR(shm_mnt
))
2595 return (void *)shm_mnt
;
2597 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2598 return ERR_PTR(-EINVAL
);
2600 if (shmem_acct_size(flags
, size
))
2601 return ERR_PTR(-ENOMEM
);
2605 this.len
= strlen(name
);
2606 this.hash
= 0; /* will go */
2607 root
= shm_mnt
->mnt_root
;
2608 dentry
= d_alloc(root
, &this);
2613 file
= get_empty_filp();
2618 inode
= shmem_get_inode(root
->d_sb
, S_IFREG
| S_IRWXUGO
, 0);
2623 SHMEM_I(inode
)->flags
= flags
& VM_ACCOUNT
;
2625 d_instantiate(dentry
, inode
);
2626 inode
->i_size
= size
;
2627 inode
->i_nlink
= 0; /* It is unlinked */
2628 init_file(file
, shm_mnt
, dentry
, FMODE_WRITE
| FMODE_READ
,
2629 &shmem_file_operations
);
2632 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2643 shmem_unacct_size(flags
, size
);
2644 return ERR_PTR(error
);
2646 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2649 * shmem_zero_setup - setup a shared anonymous mapping
2650 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2652 int shmem_zero_setup(struct vm_area_struct
*vma
)
2655 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2657 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2659 return PTR_ERR(file
);
2663 vma
->vm_file
= file
;
2664 vma
->vm_ops
= &shmem_vm_ops
;
2668 module_init(init_tmpfs
)