4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <trace/sched.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
82 * Convert user-nice values [ -20 ... 0 ... 19 ]
83 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
87 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
88 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91 * 'User priority' is the nice value converted to something we
92 * can work with better when scaling various scheduler parameters,
93 * it's a [ 0 ... 39 ] range.
95 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
96 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
97 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100 * Helpers for converting nanosecond timing to jiffy resolution
102 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
116 * single value that denotes runtime == period, ie unlimited time.
118 #define RUNTIME_INF ((u64)~0ULL)
122 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
123 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
127 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
131 * Each time a sched group cpu_power is changed,
132 * we must compute its reciprocal value
134 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
136 sg
->__cpu_power
+= val
;
137 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
141 static inline int rt_policy(int policy
)
143 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
148 static inline int task_has_rt_policy(struct task_struct
*p
)
150 return rt_policy(p
->policy
);
154 * This is the priority-queue data structure of the RT scheduling class:
156 struct rt_prio_array
{
157 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
158 struct list_head queue
[MAX_RT_PRIO
];
161 struct rt_bandwidth
{
162 /* nests inside the rq lock: */
163 spinlock_t rt_runtime_lock
;
166 struct hrtimer rt_period_timer
;
169 static struct rt_bandwidth def_rt_bandwidth
;
171 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
173 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
175 struct rt_bandwidth
*rt_b
=
176 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
182 now
= hrtimer_cb_get_time(timer
);
183 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
188 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
191 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
195 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
197 rt_b
->rt_period
= ns_to_ktime(period
);
198 rt_b
->rt_runtime
= runtime
;
200 spin_lock_init(&rt_b
->rt_runtime_lock
);
202 hrtimer_init(&rt_b
->rt_period_timer
,
203 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
204 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
205 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_UNLOCKED
;
208 static inline int rt_bandwidth_enabled(void)
210 return sysctl_sched_rt_runtime
>= 0;
213 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
217 if (rt_bandwidth_enabled() && rt_b
->rt_runtime
== RUNTIME_INF
)
220 if (hrtimer_active(&rt_b
->rt_period_timer
))
223 spin_lock(&rt_b
->rt_runtime_lock
);
225 if (hrtimer_active(&rt_b
->rt_period_timer
))
228 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
229 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
230 hrtimer_start(&rt_b
->rt_period_timer
,
231 rt_b
->rt_period_timer
.expires
,
234 spin_unlock(&rt_b
->rt_runtime_lock
);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
240 hrtimer_cancel(&rt_b
->rt_period_timer
);
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex
);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
256 static LIST_HEAD(task_groups
);
258 /* task group related information */
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css
;
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity
**se
;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq
**cfs_rq
;
269 unsigned long shares
;
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity
**rt_se
;
274 struct rt_rq
**rt_rq
;
276 struct rt_bandwidth rt_bandwidth
;
280 struct list_head list
;
282 struct task_group
*parent
;
283 struct list_head siblings
;
284 struct list_head children
;
287 #ifdef CONFIG_USER_SCHED
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group
;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
305 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock
);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group
;
342 /* return group to which a task belongs */
343 static inline struct task_group
*task_group(struct task_struct
*p
)
345 struct task_group
*tg
;
347 #ifdef CONFIG_USER_SCHED
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
351 struct task_group
, css
);
353 tg
= &init_task_group
;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
363 p
->se
.parent
= task_group(p
)->se
[cpu
];
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
368 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
374 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
375 static inline struct task_group
*task_group(struct task_struct
*p
)
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
384 struct load_weight load
;
385 unsigned long nr_running
;
391 struct rb_root tasks_timeline
;
392 struct rb_node
*rb_leftmost
;
394 struct list_head tasks
;
395 struct list_head
*balance_iterator
;
398 * 'curr' points to currently running entity on this cfs_rq.
399 * It is set to NULL otherwise (i.e when none are currently running).
401 struct sched_entity
*curr
, *next
;
403 unsigned long nr_spread_over
;
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
409 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
410 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
411 * (like users, containers etc.)
413 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
414 * list is used during load balance.
416 struct list_head leaf_cfs_rq_list
;
417 struct task_group
*tg
; /* group that "owns" this runqueue */
421 * the part of load.weight contributed by tasks
423 unsigned long task_weight
;
426 * h_load = weight * f(tg)
428 * Where f(tg) is the recursive weight fraction assigned to
431 unsigned long h_load
;
434 * this cpu's part of tg->shares
436 unsigned long shares
;
439 * load.weight at the time we set shares
441 unsigned long rq_weight
;
446 /* Real-Time classes' related field in a runqueue: */
448 struct rt_prio_array active
;
449 unsigned long rt_nr_running
;
450 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
451 int highest_prio
; /* highest queued rt task prio */
454 unsigned long rt_nr_migratory
;
460 /* Nests inside the rq lock: */
461 spinlock_t rt_runtime_lock
;
463 #ifdef CONFIG_RT_GROUP_SCHED
464 unsigned long rt_nr_boosted
;
467 struct list_head leaf_rt_rq_list
;
468 struct task_group
*tg
;
469 struct sched_rt_entity
*rt_se
;
476 * We add the notion of a root-domain which will be used to define per-domain
477 * variables. Each exclusive cpuset essentially defines an island domain by
478 * fully partitioning the member cpus from any other cpuset. Whenever a new
479 * exclusive cpuset is created, we also create and attach a new root-domain
489 * The "RT overload" flag: it gets set if a CPU has more than
490 * one runnable RT task.
495 struct cpupri cpupri
;
500 * By default the system creates a single root-domain with all cpus as
501 * members (mimicking the global state we have today).
503 static struct root_domain def_root_domain
;
508 * This is the main, per-CPU runqueue data structure.
510 * Locking rule: those places that want to lock multiple runqueues
511 * (such as the load balancing or the thread migration code), lock
512 * acquire operations must be ordered by ascending &runqueue.
519 * nr_running and cpu_load should be in the same cacheline because
520 * remote CPUs use both these fields when doing load calculation.
522 unsigned long nr_running
;
523 #define CPU_LOAD_IDX_MAX 5
524 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
525 unsigned char idle_at_tick
;
527 unsigned long last_tick_seen
;
528 unsigned char in_nohz_recently
;
530 /* capture load from *all* tasks on this cpu: */
531 struct load_weight load
;
532 unsigned long nr_load_updates
;
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 /* list of leaf cfs_rq on this cpu: */
540 struct list_head leaf_cfs_rq_list
;
542 #ifdef CONFIG_RT_GROUP_SCHED
543 struct list_head leaf_rt_rq_list
;
547 * This is part of a global counter where only the total sum
548 * over all CPUs matters. A task can increase this counter on
549 * one CPU and if it got migrated afterwards it may decrease
550 * it on another CPU. Always updated under the runqueue lock:
552 unsigned long nr_uninterruptible
;
554 struct task_struct
*curr
, *idle
;
555 unsigned long next_balance
;
556 struct mm_struct
*prev_mm
;
563 struct root_domain
*rd
;
564 struct sched_domain
*sd
;
566 /* For active balancing */
569 /* cpu of this runqueue: */
573 unsigned long avg_load_per_task
;
575 struct task_struct
*migration_thread
;
576 struct list_head migration_queue
;
579 #ifdef CONFIG_SCHED_HRTICK
581 int hrtick_csd_pending
;
582 struct call_single_data hrtick_csd
;
584 struct hrtimer hrtick_timer
;
587 #ifdef CONFIG_SCHEDSTATS
589 struct sched_info rq_sched_info
;
591 /* sys_sched_yield() stats */
592 unsigned int yld_exp_empty
;
593 unsigned int yld_act_empty
;
594 unsigned int yld_both_empty
;
595 unsigned int yld_count
;
597 /* schedule() stats */
598 unsigned int sched_switch
;
599 unsigned int sched_count
;
600 unsigned int sched_goidle
;
602 /* try_to_wake_up() stats */
603 unsigned int ttwu_count
;
604 unsigned int ttwu_local
;
607 unsigned int bkl_count
;
611 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
613 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
615 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
618 static inline int cpu_of(struct rq
*rq
)
628 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
629 * See detach_destroy_domains: synchronize_sched for details.
631 * The domain tree of any CPU may only be accessed from within
632 * preempt-disabled sections.
634 #define for_each_domain(cpu, __sd) \
635 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
637 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
638 #define this_rq() (&__get_cpu_var(runqueues))
639 #define task_rq(p) cpu_rq(task_cpu(p))
640 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
642 static inline void update_rq_clock(struct rq
*rq
)
644 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
648 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
650 #ifdef CONFIG_SCHED_DEBUG
651 # define const_debug __read_mostly
653 # define const_debug static const
659 * Returns true if the current cpu runqueue is locked.
660 * This interface allows printk to be called with the runqueue lock
661 * held and know whether or not it is OK to wake up the klogd.
663 int runqueue_is_locked(void)
666 struct rq
*rq
= cpu_rq(cpu
);
669 ret
= spin_is_locked(&rq
->lock
);
675 * Debugging: various feature bits
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
682 #include "sched_features.h"
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
690 const_debug
unsigned int sysctl_sched_features
=
691 #include "sched_features.h"
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
700 static __read_mostly
char *sched_feat_names
[] = {
701 #include "sched_features.h"
707 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
709 filp
->private_data
= inode
->i_private
;
714 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
715 size_t cnt
, loff_t
*ppos
)
722 for (i
= 0; sched_feat_names
[i
]; i
++) {
723 len
+= strlen(sched_feat_names
[i
]);
727 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
731 for (i
= 0; sched_feat_names
[i
]; i
++) {
732 if (sysctl_sched_features
& (1UL << i
))
733 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
735 r
+= sprintf(buf
+ r
, "NO_%s ", sched_feat_names
[i
]);
738 r
+= sprintf(buf
+ r
, "\n");
739 WARN_ON(r
>= len
+ 2);
741 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
749 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
750 size_t cnt
, loff_t
*ppos
)
760 if (copy_from_user(&buf
, ubuf
, cnt
))
765 if (strncmp(buf
, "NO_", 3) == 0) {
770 for (i
= 0; sched_feat_names
[i
]; i
++) {
771 int len
= strlen(sched_feat_names
[i
]);
773 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
775 sysctl_sched_features
&= ~(1UL << i
);
777 sysctl_sched_features
|= (1UL << i
);
782 if (!sched_feat_names
[i
])
790 static struct file_operations sched_feat_fops
= {
791 .open
= sched_feat_open
,
792 .read
= sched_feat_read
,
793 .write
= sched_feat_write
,
796 static __init
int sched_init_debug(void)
798 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
803 late_initcall(sched_init_debug
);
807 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
810 * Number of tasks to iterate in a single balance run.
811 * Limited because this is done with IRQs disabled.
813 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
816 * ratelimit for updating the group shares.
819 unsigned int sysctl_sched_shares_ratelimit
= 250000;
822 * period over which we measure -rt task cpu usage in us.
825 unsigned int sysctl_sched_rt_period
= 1000000;
827 static __read_mostly
int scheduler_running
;
830 * part of the period that we allow rt tasks to run in us.
833 int sysctl_sched_rt_runtime
= 950000;
835 static inline u64
global_rt_period(void)
837 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
840 static inline u64
global_rt_runtime(void)
842 if (sysctl_sched_rt_runtime
< 0)
845 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
848 #ifndef prepare_arch_switch
849 # define prepare_arch_switch(next) do { } while (0)
851 #ifndef finish_arch_switch
852 # define finish_arch_switch(prev) do { } while (0)
855 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
857 return rq
->curr
== p
;
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
863 return task_current(rq
, p
);
866 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
870 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
872 #ifdef CONFIG_DEBUG_SPINLOCK
873 /* this is a valid case when another task releases the spinlock */
874 rq
->lock
.owner
= current
;
877 * If we are tracking spinlock dependencies then we have to
878 * fix up the runqueue lock - which gets 'carried over' from
881 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
883 spin_unlock_irq(&rq
->lock
);
886 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
887 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
892 return task_current(rq
, p
);
896 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
906 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
907 spin_unlock_irq(&rq
->lock
);
909 spin_unlock(&rq
->lock
);
913 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
917 * After ->oncpu is cleared, the task can be moved to a different CPU.
918 * We must ensure this doesn't happen until the switch is completely
924 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
931 * __task_rq_lock - lock the runqueue a given task resides on.
932 * Must be called interrupts disabled.
934 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
938 struct rq
*rq
= task_rq(p
);
939 spin_lock(&rq
->lock
);
940 if (likely(rq
== task_rq(p
)))
942 spin_unlock(&rq
->lock
);
947 * task_rq_lock - lock the runqueue a given task resides on and disable
948 * interrupts. Note the ordering: we can safely lookup the task_rq without
949 * explicitly disabling preemption.
951 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
957 local_irq_save(*flags
);
959 spin_lock(&rq
->lock
);
960 if (likely(rq
== task_rq(p
)))
962 spin_unlock_irqrestore(&rq
->lock
, *flags
);
966 static void __task_rq_unlock(struct rq
*rq
)
969 spin_unlock(&rq
->lock
);
972 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
975 spin_unlock_irqrestore(&rq
->lock
, *flags
);
979 * this_rq_lock - lock this runqueue and disable interrupts.
981 static struct rq
*this_rq_lock(void)
988 spin_lock(&rq
->lock
);
993 #ifdef CONFIG_SCHED_HRTICK
995 * Use HR-timers to deliver accurate preemption points.
997 * Its all a bit involved since we cannot program an hrt while holding the
998 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * - enabled by features
1008 * - hrtimer is actually high res
1010 static inline int hrtick_enabled(struct rq
*rq
)
1012 if (!sched_feat(HRTICK
))
1014 if (!cpu_active(cpu_of(rq
)))
1016 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1019 static void hrtick_clear(struct rq
*rq
)
1021 if (hrtimer_active(&rq
->hrtick_timer
))
1022 hrtimer_cancel(&rq
->hrtick_timer
);
1026 * High-resolution timer tick.
1027 * Runs from hardirq context with interrupts disabled.
1029 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1031 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1033 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1035 spin_lock(&rq
->lock
);
1036 update_rq_clock(rq
);
1037 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1038 spin_unlock(&rq
->lock
);
1040 return HRTIMER_NORESTART
;
1045 * called from hardirq (IPI) context
1047 static void __hrtick_start(void *arg
)
1049 struct rq
*rq
= arg
;
1051 spin_lock(&rq
->lock
);
1052 hrtimer_restart(&rq
->hrtick_timer
);
1053 rq
->hrtick_csd_pending
= 0;
1054 spin_unlock(&rq
->lock
);
1058 * Called to set the hrtick timer state.
1060 * called with rq->lock held and irqs disabled
1062 static void hrtick_start(struct rq
*rq
, u64 delay
)
1064 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1065 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1067 timer
->expires
= time
;
1069 if (rq
== this_rq()) {
1070 hrtimer_restart(timer
);
1071 } else if (!rq
->hrtick_csd_pending
) {
1072 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1073 rq
->hrtick_csd_pending
= 1;
1078 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1080 int cpu
= (int)(long)hcpu
;
1083 case CPU_UP_CANCELED
:
1084 case CPU_UP_CANCELED_FROZEN
:
1085 case CPU_DOWN_PREPARE
:
1086 case CPU_DOWN_PREPARE_FROZEN
:
1088 case CPU_DEAD_FROZEN
:
1089 hrtick_clear(cpu_rq(cpu
));
1096 static __init
void init_hrtick(void)
1098 hotcpu_notifier(hotplug_hrtick
, 0);
1102 * Called to set the hrtick timer state.
1104 * called with rq->lock held and irqs disabled
1106 static void hrtick_start(struct rq
*rq
, u64 delay
)
1108 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1111 static inline void init_hrtick(void)
1114 #endif /* CONFIG_SMP */
1116 static void init_rq_hrtick(struct rq
*rq
)
1119 rq
->hrtick_csd_pending
= 0;
1121 rq
->hrtick_csd
.flags
= 0;
1122 rq
->hrtick_csd
.func
= __hrtick_start
;
1123 rq
->hrtick_csd
.info
= rq
;
1126 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1127 rq
->hrtick_timer
.function
= hrtick
;
1128 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_PERCPU
;
1130 #else /* CONFIG_SCHED_HRTICK */
1131 static inline void hrtick_clear(struct rq
*rq
)
1135 static inline void init_rq_hrtick(struct rq
*rq
)
1139 static inline void init_hrtick(void)
1142 #endif /* CONFIG_SCHED_HRTICK */
1145 * resched_task - mark a task 'to be rescheduled now'.
1147 * On UP this means the setting of the need_resched flag, on SMP it
1148 * might also involve a cross-CPU call to trigger the scheduler on
1153 #ifndef tsk_is_polling
1154 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1157 static void resched_task(struct task_struct
*p
)
1161 assert_spin_locked(&task_rq(p
)->lock
);
1163 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1166 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1169 if (cpu
== smp_processor_id())
1172 /* NEED_RESCHED must be visible before we test polling */
1174 if (!tsk_is_polling(p
))
1175 smp_send_reschedule(cpu
);
1178 static void resched_cpu(int cpu
)
1180 struct rq
*rq
= cpu_rq(cpu
);
1181 unsigned long flags
;
1183 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1185 resched_task(cpu_curr(cpu
));
1186 spin_unlock_irqrestore(&rq
->lock
, flags
);
1191 * When add_timer_on() enqueues a timer into the timer wheel of an
1192 * idle CPU then this timer might expire before the next timer event
1193 * which is scheduled to wake up that CPU. In case of a completely
1194 * idle system the next event might even be infinite time into the
1195 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1196 * leaves the inner idle loop so the newly added timer is taken into
1197 * account when the CPU goes back to idle and evaluates the timer
1198 * wheel for the next timer event.
1200 void wake_up_idle_cpu(int cpu
)
1202 struct rq
*rq
= cpu_rq(cpu
);
1204 if (cpu
== smp_processor_id())
1208 * This is safe, as this function is called with the timer
1209 * wheel base lock of (cpu) held. When the CPU is on the way
1210 * to idle and has not yet set rq->curr to idle then it will
1211 * be serialized on the timer wheel base lock and take the new
1212 * timer into account automatically.
1214 if (rq
->curr
!= rq
->idle
)
1218 * We can set TIF_RESCHED on the idle task of the other CPU
1219 * lockless. The worst case is that the other CPU runs the
1220 * idle task through an additional NOOP schedule()
1222 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1224 /* NEED_RESCHED must be visible before we test polling */
1226 if (!tsk_is_polling(rq
->idle
))
1227 smp_send_reschedule(cpu
);
1229 #endif /* CONFIG_NO_HZ */
1231 #else /* !CONFIG_SMP */
1232 static void resched_task(struct task_struct
*p
)
1234 assert_spin_locked(&task_rq(p
)->lock
);
1235 set_tsk_need_resched(p
);
1237 #endif /* CONFIG_SMP */
1239 #if BITS_PER_LONG == 32
1240 # define WMULT_CONST (~0UL)
1242 # define WMULT_CONST (1UL << 32)
1245 #define WMULT_SHIFT 32
1248 * Shift right and round:
1250 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1253 * delta *= weight / lw
1255 static unsigned long
1256 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1257 struct load_weight
*lw
)
1261 if (!lw
->inv_weight
) {
1262 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1265 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1269 tmp
= (u64
)delta_exec
* weight
;
1271 * Check whether we'd overflow the 64-bit multiplication:
1273 if (unlikely(tmp
> WMULT_CONST
))
1274 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1277 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1279 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1282 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1288 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1295 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1296 * of tasks with abnormal "nice" values across CPUs the contribution that
1297 * each task makes to its run queue's load is weighted according to its
1298 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1299 * scaled version of the new time slice allocation that they receive on time
1303 #define WEIGHT_IDLEPRIO 2
1304 #define WMULT_IDLEPRIO (1 << 31)
1307 * Nice levels are multiplicative, with a gentle 10% change for every
1308 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1309 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1310 * that remained on nice 0.
1312 * The "10% effect" is relative and cumulative: from _any_ nice level,
1313 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1314 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1315 * If a task goes up by ~10% and another task goes down by ~10% then
1316 * the relative distance between them is ~25%.)
1318 static const int prio_to_weight
[40] = {
1319 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1320 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1321 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1322 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1323 /* 0 */ 1024, 820, 655, 526, 423,
1324 /* 5 */ 335, 272, 215, 172, 137,
1325 /* 10 */ 110, 87, 70, 56, 45,
1326 /* 15 */ 36, 29, 23, 18, 15,
1330 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1332 * In cases where the weight does not change often, we can use the
1333 * precalculated inverse to speed up arithmetics by turning divisions
1334 * into multiplications:
1336 static const u32 prio_to_wmult
[40] = {
1337 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1338 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1339 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1340 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1341 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1342 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1343 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1344 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1347 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1350 * runqueue iterator, to support SMP load-balancing between different
1351 * scheduling classes, without having to expose their internal data
1352 * structures to the load-balancing proper:
1354 struct rq_iterator
{
1356 struct task_struct
*(*start
)(void *);
1357 struct task_struct
*(*next
)(void *);
1361 static unsigned long
1362 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1363 unsigned long max_load_move
, struct sched_domain
*sd
,
1364 enum cpu_idle_type idle
, int *all_pinned
,
1365 int *this_best_prio
, struct rq_iterator
*iterator
);
1368 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1369 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1370 struct rq_iterator
*iterator
);
1373 #ifdef CONFIG_CGROUP_CPUACCT
1374 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1376 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1379 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1381 update_load_add(&rq
->load
, load
);
1384 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1386 update_load_sub(&rq
->load
, load
);
1389 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1390 typedef int (*tg_visitor
)(struct task_group
*, void *);
1393 * Iterate the full tree, calling @down when first entering a node and @up when
1394 * leaving it for the final time.
1396 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1398 struct task_group
*parent
, *child
;
1402 parent
= &root_task_group
;
1404 ret
= (*down
)(parent
, data
);
1407 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1414 ret
= (*up
)(parent
, data
);
1419 parent
= parent
->parent
;
1428 static int tg_nop(struct task_group
*tg
, void *data
)
1435 static unsigned long source_load(int cpu
, int type
);
1436 static unsigned long target_load(int cpu
, int type
);
1437 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1439 static unsigned long cpu_avg_load_per_task(int cpu
)
1441 struct rq
*rq
= cpu_rq(cpu
);
1444 rq
->avg_load_per_task
= rq
->load
.weight
/ rq
->nr_running
;
1446 return rq
->avg_load_per_task
;
1449 #ifdef CONFIG_FAIR_GROUP_SCHED
1451 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1454 * Calculate and set the cpu's group shares.
1457 __update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1458 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1461 unsigned long shares
;
1462 unsigned long rq_weight
;
1467 rq_weight
= tg
->cfs_rq
[cpu
]->load
.weight
;
1470 * If there are currently no tasks on the cpu pretend there is one of
1471 * average load so that when a new task gets to run here it will not
1472 * get delayed by group starvation.
1476 rq_weight
= NICE_0_LOAD
;
1479 if (unlikely(rq_weight
> sd_rq_weight
))
1480 rq_weight
= sd_rq_weight
;
1483 * \Sum shares * rq_weight
1484 * shares = -----------------------
1488 shares
= (sd_shares
* rq_weight
) / (sd_rq_weight
+ 1);
1491 * record the actual number of shares, not the boosted amount.
1493 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1494 tg
->cfs_rq
[cpu
]->rq_weight
= rq_weight
;
1496 if (shares
< MIN_SHARES
)
1497 shares
= MIN_SHARES
;
1498 else if (shares
> MAX_SHARES
)
1499 shares
= MAX_SHARES
;
1501 __set_se_shares(tg
->se
[cpu
], shares
);
1505 * Re-compute the task group their per cpu shares over the given domain.
1506 * This needs to be done in a bottom-up fashion because the rq weight of a
1507 * parent group depends on the shares of its child groups.
1509 static int tg_shares_up(struct task_group
*tg
, void *data
)
1511 unsigned long rq_weight
= 0;
1512 unsigned long shares
= 0;
1513 struct sched_domain
*sd
= data
;
1516 for_each_cpu_mask(i
, sd
->span
) {
1517 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1518 shares
+= tg
->cfs_rq
[i
]->shares
;
1521 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1522 shares
= tg
->shares
;
1524 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1525 shares
= tg
->shares
;
1528 rq_weight
= cpus_weight(sd
->span
) * NICE_0_LOAD
;
1530 for_each_cpu_mask(i
, sd
->span
) {
1531 struct rq
*rq
= cpu_rq(i
);
1532 unsigned long flags
;
1534 spin_lock_irqsave(&rq
->lock
, flags
);
1535 __update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1536 spin_unlock_irqrestore(&rq
->lock
, flags
);
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
1547 static int tg_load_down(struct task_group
*tg
, void *data
)
1550 long cpu
= (long)data
;
1553 load
= cpu_rq(cpu
)->load
.weight
;
1555 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1556 load
*= tg
->cfs_rq
[cpu
]->shares
;
1557 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1560 tg
->cfs_rq
[cpu
]->h_load
= load
;
1565 static void update_shares(struct sched_domain
*sd
)
1567 u64 now
= cpu_clock(raw_smp_processor_id());
1568 s64 elapsed
= now
- sd
->last_update
;
1570 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1571 sd
->last_update
= now
;
1572 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1576 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1578 spin_unlock(&rq
->lock
);
1580 spin_lock(&rq
->lock
);
1583 static void update_h_load(long cpu
)
1585 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1590 static inline void update_shares(struct sched_domain
*sd
)
1594 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1602 #ifdef CONFIG_FAIR_GROUP_SCHED
1603 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1606 cfs_rq
->shares
= shares
;
1611 #include "sched_stats.h"
1612 #include "sched_idletask.c"
1613 #include "sched_fair.c"
1614 #include "sched_rt.c"
1615 #ifdef CONFIG_SCHED_DEBUG
1616 # include "sched_debug.c"
1619 #define sched_class_highest (&rt_sched_class)
1620 #define for_each_class(class) \
1621 for (class = sched_class_highest; class; class = class->next)
1623 static void inc_nr_running(struct rq
*rq
)
1628 static void dec_nr_running(struct rq
*rq
)
1633 static void set_load_weight(struct task_struct
*p
)
1635 if (task_has_rt_policy(p
)) {
1636 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1637 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1642 * SCHED_IDLE tasks get minimal weight:
1644 if (p
->policy
== SCHED_IDLE
) {
1645 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1646 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1650 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1651 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1654 static void update_avg(u64
*avg
, u64 sample
)
1656 s64 diff
= sample
- *avg
;
1660 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1662 sched_info_queued(p
);
1663 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1667 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1669 if (sleep
&& p
->se
.last_wakeup
) {
1670 update_avg(&p
->se
.avg_overlap
,
1671 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1672 p
->se
.last_wakeup
= 0;
1675 sched_info_dequeued(p
);
1676 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1681 * __normal_prio - return the priority that is based on the static prio
1683 static inline int __normal_prio(struct task_struct
*p
)
1685 return p
->static_prio
;
1689 * Calculate the expected normal priority: i.e. priority
1690 * without taking RT-inheritance into account. Might be
1691 * boosted by interactivity modifiers. Changes upon fork,
1692 * setprio syscalls, and whenever the interactivity
1693 * estimator recalculates.
1695 static inline int normal_prio(struct task_struct
*p
)
1699 if (task_has_rt_policy(p
))
1700 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1702 prio
= __normal_prio(p
);
1707 * Calculate the current priority, i.e. the priority
1708 * taken into account by the scheduler. This value might
1709 * be boosted by RT tasks, or might be boosted by
1710 * interactivity modifiers. Will be RT if the task got
1711 * RT-boosted. If not then it returns p->normal_prio.
1713 static int effective_prio(struct task_struct
*p
)
1715 p
->normal_prio
= normal_prio(p
);
1717 * If we are RT tasks or we were boosted to RT priority,
1718 * keep the priority unchanged. Otherwise, update priority
1719 * to the normal priority:
1721 if (!rt_prio(p
->prio
))
1722 return p
->normal_prio
;
1727 * activate_task - move a task to the runqueue.
1729 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1731 if (task_contributes_to_load(p
))
1732 rq
->nr_uninterruptible
--;
1734 enqueue_task(rq
, p
, wakeup
);
1739 * deactivate_task - remove a task from the runqueue.
1741 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1743 if (task_contributes_to_load(p
))
1744 rq
->nr_uninterruptible
++;
1746 dequeue_task(rq
, p
, sleep
);
1751 * task_curr - is this task currently executing on a CPU?
1752 * @p: the task in question.
1754 inline int task_curr(const struct task_struct
*p
)
1756 return cpu_curr(task_cpu(p
)) == p
;
1759 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1761 set_task_rq(p
, cpu
);
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1769 task_thread_info(p
)->cpu
= cpu
;
1773 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1774 const struct sched_class
*prev_class
,
1775 int oldprio
, int running
)
1777 if (prev_class
!= p
->sched_class
) {
1778 if (prev_class
->switched_from
)
1779 prev_class
->switched_from(rq
, p
, running
);
1780 p
->sched_class
->switched_to(rq
, p
, running
);
1782 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1787 /* Used instead of source_load when we know the type == 0 */
1788 static unsigned long weighted_cpuload(const int cpu
)
1790 return cpu_rq(cpu
)->load
.weight
;
1794 * Is this task likely cache-hot:
1797 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1802 * Buddy candidates are cache hot:
1804 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
1807 if (p
->sched_class
!= &fair_sched_class
)
1810 if (sysctl_sched_migration_cost
== -1)
1812 if (sysctl_sched_migration_cost
== 0)
1815 delta
= now
- p
->se
.exec_start
;
1817 return delta
< (s64
)sysctl_sched_migration_cost
;
1821 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1823 int old_cpu
= task_cpu(p
);
1824 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1825 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1826 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1829 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1831 #ifdef CONFIG_SCHEDSTATS
1832 if (p
->se
.wait_start
)
1833 p
->se
.wait_start
-= clock_offset
;
1834 if (p
->se
.sleep_start
)
1835 p
->se
.sleep_start
-= clock_offset
;
1836 if (p
->se
.block_start
)
1837 p
->se
.block_start
-= clock_offset
;
1838 if (old_cpu
!= new_cpu
) {
1839 schedstat_inc(p
, se
.nr_migrations
);
1840 if (task_hot(p
, old_rq
->clock
, NULL
))
1841 schedstat_inc(p
, se
.nr_forced2_migrations
);
1844 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1845 new_cfsrq
->min_vruntime
;
1847 __set_task_cpu(p
, new_cpu
);
1850 struct migration_req
{
1851 struct list_head list
;
1853 struct task_struct
*task
;
1856 struct completion done
;
1860 * The task's runqueue lock must be held.
1861 * Returns true if you have to wait for migration thread.
1864 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1866 struct rq
*rq
= task_rq(p
);
1869 * If the task is not on a runqueue (and not running), then
1870 * it is sufficient to simply update the task's cpu field.
1872 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1873 set_task_cpu(p
, dest_cpu
);
1877 init_completion(&req
->done
);
1879 req
->dest_cpu
= dest_cpu
;
1880 list_add(&req
->list
, &rq
->migration_queue
);
1886 * wait_task_inactive - wait for a thread to unschedule.
1888 * If @match_state is nonzero, it's the @p->state value just checked and
1889 * not expected to change. If it changes, i.e. @p might have woken up,
1890 * then return zero. When we succeed in waiting for @p to be off its CPU,
1891 * we return a positive number (its total switch count). If a second call
1892 * a short while later returns the same number, the caller can be sure that
1893 * @p has remained unscheduled the whole time.
1895 * The caller must ensure that the task *will* unschedule sometime soon,
1896 * else this function might spin for a *long* time. This function can't
1897 * be called with interrupts off, or it may introduce deadlock with
1898 * smp_call_function() if an IPI is sent by the same process we are
1899 * waiting to become inactive.
1901 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1903 unsigned long flags
;
1910 * We do the initial early heuristics without holding
1911 * any task-queue locks at all. We'll only try to get
1912 * the runqueue lock when things look like they will
1918 * If the task is actively running on another CPU
1919 * still, just relax and busy-wait without holding
1922 * NOTE! Since we don't hold any locks, it's not
1923 * even sure that "rq" stays as the right runqueue!
1924 * But we don't care, since "task_running()" will
1925 * return false if the runqueue has changed and p
1926 * is actually now running somewhere else!
1928 while (task_running(rq
, p
)) {
1929 if (match_state
&& unlikely(p
->state
!= match_state
))
1935 * Ok, time to look more closely! We need the rq
1936 * lock now, to be *sure*. If we're wrong, we'll
1937 * just go back and repeat.
1939 rq
= task_rq_lock(p
, &flags
);
1940 trace_sched_wait_task(rq
, p
);
1941 running
= task_running(rq
, p
);
1942 on_rq
= p
->se
.on_rq
;
1944 if (!match_state
|| p
->state
== match_state
)
1945 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1946 task_rq_unlock(rq
, &flags
);
1949 * If it changed from the expected state, bail out now.
1951 if (unlikely(!ncsw
))
1955 * Was it really running after all now that we
1956 * checked with the proper locks actually held?
1958 * Oops. Go back and try again..
1960 if (unlikely(running
)) {
1966 * It's not enough that it's not actively running,
1967 * it must be off the runqueue _entirely_, and not
1970 * So if it wa still runnable (but just not actively
1971 * running right now), it's preempted, and we should
1972 * yield - it could be a while.
1974 if (unlikely(on_rq
)) {
1975 schedule_timeout_uninterruptible(1);
1980 * Ahh, all good. It wasn't running, and it wasn't
1981 * runnable, which means that it will never become
1982 * running in the future either. We're all done!
1991 * kick_process - kick a running thread to enter/exit the kernel
1992 * @p: the to-be-kicked thread
1994 * Cause a process which is running on another CPU to enter
1995 * kernel-mode, without any delay. (to get signals handled.)
1997 * NOTE: this function doesnt have to take the runqueue lock,
1998 * because all it wants to ensure is that the remote task enters
1999 * the kernel. If the IPI races and the task has been migrated
2000 * to another CPU then no harm is done and the purpose has been
2003 void kick_process(struct task_struct
*p
)
2009 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2010 smp_send_reschedule(cpu
);
2015 * Return a low guess at the load of a migration-source cpu weighted
2016 * according to the scheduling class and "nice" value.
2018 * We want to under-estimate the load of migration sources, to
2019 * balance conservatively.
2021 static unsigned long source_load(int cpu
, int type
)
2023 struct rq
*rq
= cpu_rq(cpu
);
2024 unsigned long total
= weighted_cpuload(cpu
);
2026 if (type
== 0 || !sched_feat(LB_BIAS
))
2029 return min(rq
->cpu_load
[type
-1], total
);
2033 * Return a high guess at the load of a migration-target cpu weighted
2034 * according to the scheduling class and "nice" value.
2036 static unsigned long target_load(int cpu
, int type
)
2038 struct rq
*rq
= cpu_rq(cpu
);
2039 unsigned long total
= weighted_cpuload(cpu
);
2041 if (type
== 0 || !sched_feat(LB_BIAS
))
2044 return max(rq
->cpu_load
[type
-1], total
);
2048 * find_idlest_group finds and returns the least busy CPU group within the
2051 static struct sched_group
*
2052 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2054 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2055 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2056 int load_idx
= sd
->forkexec_idx
;
2057 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2060 unsigned long load
, avg_load
;
2064 /* Skip over this group if it has no CPUs allowed */
2065 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2068 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2070 /* Tally up the load of all CPUs in the group */
2073 for_each_cpu_mask_nr(i
, group
->cpumask
) {
2074 /* Bias balancing toward cpus of our domain */
2076 load
= source_load(i
, load_idx
);
2078 load
= target_load(i
, load_idx
);
2083 /* Adjust by relative CPU power of the group */
2084 avg_load
= sg_div_cpu_power(group
,
2085 avg_load
* SCHED_LOAD_SCALE
);
2088 this_load
= avg_load
;
2090 } else if (avg_load
< min_load
) {
2091 min_load
= avg_load
;
2094 } while (group
= group
->next
, group
!= sd
->groups
);
2096 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2102 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2105 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2108 unsigned long load
, min_load
= ULONG_MAX
;
2112 /* Traverse only the allowed CPUs */
2113 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2115 for_each_cpu_mask_nr(i
, *tmp
) {
2116 load
= weighted_cpuload(i
);
2118 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2128 * sched_balance_self: balance the current task (running on cpu) in domains
2129 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2132 * Balance, ie. select the least loaded group.
2134 * Returns the target CPU number, or the same CPU if no balancing is needed.
2136 * preempt must be disabled.
2138 static int sched_balance_self(int cpu
, int flag
)
2140 struct task_struct
*t
= current
;
2141 struct sched_domain
*tmp
, *sd
= NULL
;
2143 for_each_domain(cpu
, tmp
) {
2145 * If power savings logic is enabled for a domain, stop there.
2147 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2149 if (tmp
->flags
& flag
)
2157 cpumask_t span
, tmpmask
;
2158 struct sched_group
*group
;
2159 int new_cpu
, weight
;
2161 if (!(sd
->flags
& flag
)) {
2167 group
= find_idlest_group(sd
, t
, cpu
);
2173 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2174 if (new_cpu
== -1 || new_cpu
== cpu
) {
2175 /* Now try balancing at a lower domain level of cpu */
2180 /* Now try balancing at a lower domain level of new_cpu */
2183 weight
= cpus_weight(span
);
2184 for_each_domain(cpu
, tmp
) {
2185 if (weight
<= cpus_weight(tmp
->span
))
2187 if (tmp
->flags
& flag
)
2190 /* while loop will break here if sd == NULL */
2196 #endif /* CONFIG_SMP */
2199 * try_to_wake_up - wake up a thread
2200 * @p: the to-be-woken-up thread
2201 * @state: the mask of task states that can be woken
2202 * @sync: do a synchronous wakeup?
2204 * Put it on the run-queue if it's not already there. The "current"
2205 * thread is always on the run-queue (except when the actual
2206 * re-schedule is in progress), and as such you're allowed to do
2207 * the simpler "current->state = TASK_RUNNING" to mark yourself
2208 * runnable without the overhead of this.
2210 * returns failure only if the task is already active.
2212 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2214 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2215 unsigned long flags
;
2219 if (!sched_feat(SYNC_WAKEUPS
))
2223 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2224 struct sched_domain
*sd
;
2226 this_cpu
= raw_smp_processor_id();
2229 for_each_domain(this_cpu
, sd
) {
2230 if (cpu_isset(cpu
, sd
->span
)) {
2239 rq
= task_rq_lock(p
, &flags
);
2240 old_state
= p
->state
;
2241 if (!(old_state
& state
))
2249 this_cpu
= smp_processor_id();
2252 if (unlikely(task_running(rq
, p
)))
2255 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2256 if (cpu
!= orig_cpu
) {
2257 set_task_cpu(p
, cpu
);
2258 task_rq_unlock(rq
, &flags
);
2259 /* might preempt at this point */
2260 rq
= task_rq_lock(p
, &flags
);
2261 old_state
= p
->state
;
2262 if (!(old_state
& state
))
2267 this_cpu
= smp_processor_id();
2271 #ifdef CONFIG_SCHEDSTATS
2272 schedstat_inc(rq
, ttwu_count
);
2273 if (cpu
== this_cpu
)
2274 schedstat_inc(rq
, ttwu_local
);
2276 struct sched_domain
*sd
;
2277 for_each_domain(this_cpu
, sd
) {
2278 if (cpu_isset(cpu
, sd
->span
)) {
2279 schedstat_inc(sd
, ttwu_wake_remote
);
2284 #endif /* CONFIG_SCHEDSTATS */
2287 #endif /* CONFIG_SMP */
2288 schedstat_inc(p
, se
.nr_wakeups
);
2290 schedstat_inc(p
, se
.nr_wakeups_sync
);
2291 if (orig_cpu
!= cpu
)
2292 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2293 if (cpu
== this_cpu
)
2294 schedstat_inc(p
, se
.nr_wakeups_local
);
2296 schedstat_inc(p
, se
.nr_wakeups_remote
);
2297 update_rq_clock(rq
);
2298 activate_task(rq
, p
, 1);
2302 trace_sched_wakeup(rq
, p
);
2303 check_preempt_curr(rq
, p
, sync
);
2305 p
->state
= TASK_RUNNING
;
2307 if (p
->sched_class
->task_wake_up
)
2308 p
->sched_class
->task_wake_up(rq
, p
);
2311 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2313 task_rq_unlock(rq
, &flags
);
2318 int wake_up_process(struct task_struct
*p
)
2320 return try_to_wake_up(p
, TASK_ALL
, 0);
2322 EXPORT_SYMBOL(wake_up_process
);
2324 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2326 return try_to_wake_up(p
, state
, 0);
2330 * Perform scheduler related setup for a newly forked process p.
2331 * p is forked by current.
2333 * __sched_fork() is basic setup used by init_idle() too:
2335 static void __sched_fork(struct task_struct
*p
)
2337 p
->se
.exec_start
= 0;
2338 p
->se
.sum_exec_runtime
= 0;
2339 p
->se
.prev_sum_exec_runtime
= 0;
2340 p
->se
.last_wakeup
= 0;
2341 p
->se
.avg_overlap
= 0;
2343 #ifdef CONFIG_SCHEDSTATS
2344 p
->se
.wait_start
= 0;
2345 p
->se
.sum_sleep_runtime
= 0;
2346 p
->se
.sleep_start
= 0;
2347 p
->se
.block_start
= 0;
2348 p
->se
.sleep_max
= 0;
2349 p
->se
.block_max
= 0;
2351 p
->se
.slice_max
= 0;
2355 INIT_LIST_HEAD(&p
->rt
.run_list
);
2357 INIT_LIST_HEAD(&p
->se
.group_node
);
2359 #ifdef CONFIG_PREEMPT_NOTIFIERS
2360 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2364 * We mark the process as running here, but have not actually
2365 * inserted it onto the runqueue yet. This guarantees that
2366 * nobody will actually run it, and a signal or other external
2367 * event cannot wake it up and insert it on the runqueue either.
2369 p
->state
= TASK_RUNNING
;
2373 * fork()/clone()-time setup:
2375 void sched_fork(struct task_struct
*p
, int clone_flags
)
2377 int cpu
= get_cpu();
2382 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2384 set_task_cpu(p
, cpu
);
2387 * Make sure we do not leak PI boosting priority to the child:
2389 p
->prio
= current
->normal_prio
;
2390 if (!rt_prio(p
->prio
))
2391 p
->sched_class
= &fair_sched_class
;
2393 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2394 if (likely(sched_info_on()))
2395 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2397 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2400 #ifdef CONFIG_PREEMPT
2401 /* Want to start with kernel preemption disabled. */
2402 task_thread_info(p
)->preempt_count
= 1;
2408 * wake_up_new_task - wake up a newly created task for the first time.
2410 * This function will do some initial scheduler statistics housekeeping
2411 * that must be done for every newly created context, then puts the task
2412 * on the runqueue and wakes it.
2414 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2416 unsigned long flags
;
2419 rq
= task_rq_lock(p
, &flags
);
2420 BUG_ON(p
->state
!= TASK_RUNNING
);
2421 update_rq_clock(rq
);
2423 p
->prio
= effective_prio(p
);
2425 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2426 activate_task(rq
, p
, 0);
2429 * Let the scheduling class do new task startup
2430 * management (if any):
2432 p
->sched_class
->task_new(rq
, p
);
2435 trace_sched_wakeup_new(rq
, p
);
2436 check_preempt_curr(rq
, p
, 0);
2438 if (p
->sched_class
->task_wake_up
)
2439 p
->sched_class
->task_wake_up(rq
, p
);
2441 task_rq_unlock(rq
, &flags
);
2444 #ifdef CONFIG_PREEMPT_NOTIFIERS
2447 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2448 * @notifier: notifier struct to register
2450 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2452 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2454 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2457 * preempt_notifier_unregister - no longer interested in preemption notifications
2458 * @notifier: notifier struct to unregister
2460 * This is safe to call from within a preemption notifier.
2462 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2464 hlist_del(¬ifier
->link
);
2466 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2468 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2470 struct preempt_notifier
*notifier
;
2471 struct hlist_node
*node
;
2473 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2474 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2478 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2479 struct task_struct
*next
)
2481 struct preempt_notifier
*notifier
;
2482 struct hlist_node
*node
;
2484 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2485 notifier
->ops
->sched_out(notifier
, next
);
2488 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2490 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2495 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2496 struct task_struct
*next
)
2500 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2503 * prepare_task_switch - prepare to switch tasks
2504 * @rq: the runqueue preparing to switch
2505 * @prev: the current task that is being switched out
2506 * @next: the task we are going to switch to.
2508 * This is called with the rq lock held and interrupts off. It must
2509 * be paired with a subsequent finish_task_switch after the context
2512 * prepare_task_switch sets up locking and calls architecture specific
2516 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2517 struct task_struct
*next
)
2519 fire_sched_out_preempt_notifiers(prev
, next
);
2520 prepare_lock_switch(rq
, next
);
2521 prepare_arch_switch(next
);
2525 * finish_task_switch - clean up after a task-switch
2526 * @rq: runqueue associated with task-switch
2527 * @prev: the thread we just switched away from.
2529 * finish_task_switch must be called after the context switch, paired
2530 * with a prepare_task_switch call before the context switch.
2531 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2532 * and do any other architecture-specific cleanup actions.
2534 * Note that we may have delayed dropping an mm in context_switch(). If
2535 * so, we finish that here outside of the runqueue lock. (Doing it
2536 * with the lock held can cause deadlocks; see schedule() for
2539 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2540 __releases(rq
->lock
)
2542 struct mm_struct
*mm
= rq
->prev_mm
;
2548 * A task struct has one reference for the use as "current".
2549 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2550 * schedule one last time. The schedule call will never return, and
2551 * the scheduled task must drop that reference.
2552 * The test for TASK_DEAD must occur while the runqueue locks are
2553 * still held, otherwise prev could be scheduled on another cpu, die
2554 * there before we look at prev->state, and then the reference would
2556 * Manfred Spraul <manfred@colorfullife.com>
2558 prev_state
= prev
->state
;
2559 finish_arch_switch(prev
);
2560 finish_lock_switch(rq
, prev
);
2562 if (current
->sched_class
->post_schedule
)
2563 current
->sched_class
->post_schedule(rq
);
2566 fire_sched_in_preempt_notifiers(current
);
2569 if (unlikely(prev_state
== TASK_DEAD
)) {
2571 * Remove function-return probe instances associated with this
2572 * task and put them back on the free list.
2574 kprobe_flush_task(prev
);
2575 put_task_struct(prev
);
2580 * schedule_tail - first thing a freshly forked thread must call.
2581 * @prev: the thread we just switched away from.
2583 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2584 __releases(rq
->lock
)
2586 struct rq
*rq
= this_rq();
2588 finish_task_switch(rq
, prev
);
2589 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2590 /* In this case, finish_task_switch does not reenable preemption */
2593 if (current
->set_child_tid
)
2594 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2598 * context_switch - switch to the new MM and the new
2599 * thread's register state.
2602 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2603 struct task_struct
*next
)
2605 struct mm_struct
*mm
, *oldmm
;
2607 prepare_task_switch(rq
, prev
, next
);
2608 trace_sched_switch(rq
, prev
, next
);
2610 oldmm
= prev
->active_mm
;
2612 * For paravirt, this is coupled with an exit in switch_to to
2613 * combine the page table reload and the switch backend into
2616 arch_enter_lazy_cpu_mode();
2618 if (unlikely(!mm
)) {
2619 next
->active_mm
= oldmm
;
2620 atomic_inc(&oldmm
->mm_count
);
2621 enter_lazy_tlb(oldmm
, next
);
2623 switch_mm(oldmm
, mm
, next
);
2625 if (unlikely(!prev
->mm
)) {
2626 prev
->active_mm
= NULL
;
2627 rq
->prev_mm
= oldmm
;
2630 * Since the runqueue lock will be released by the next
2631 * task (which is an invalid locking op but in the case
2632 * of the scheduler it's an obvious special-case), so we
2633 * do an early lockdep release here:
2635 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2636 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2639 /* Here we just switch the register state and the stack. */
2640 switch_to(prev
, next
, prev
);
2644 * this_rq must be evaluated again because prev may have moved
2645 * CPUs since it called schedule(), thus the 'rq' on its stack
2646 * frame will be invalid.
2648 finish_task_switch(this_rq(), prev
);
2652 * nr_running, nr_uninterruptible and nr_context_switches:
2654 * externally visible scheduler statistics: current number of runnable
2655 * threads, current number of uninterruptible-sleeping threads, total
2656 * number of context switches performed since bootup.
2658 unsigned long nr_running(void)
2660 unsigned long i
, sum
= 0;
2662 for_each_online_cpu(i
)
2663 sum
+= cpu_rq(i
)->nr_running
;
2668 unsigned long nr_uninterruptible(void)
2670 unsigned long i
, sum
= 0;
2672 for_each_possible_cpu(i
)
2673 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2676 * Since we read the counters lockless, it might be slightly
2677 * inaccurate. Do not allow it to go below zero though:
2679 if (unlikely((long)sum
< 0))
2685 unsigned long long nr_context_switches(void)
2688 unsigned long long sum
= 0;
2690 for_each_possible_cpu(i
)
2691 sum
+= cpu_rq(i
)->nr_switches
;
2696 unsigned long nr_iowait(void)
2698 unsigned long i
, sum
= 0;
2700 for_each_possible_cpu(i
)
2701 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2706 unsigned long nr_active(void)
2708 unsigned long i
, running
= 0, uninterruptible
= 0;
2710 for_each_online_cpu(i
) {
2711 running
+= cpu_rq(i
)->nr_running
;
2712 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2715 if (unlikely((long)uninterruptible
< 0))
2716 uninterruptible
= 0;
2718 return running
+ uninterruptible
;
2722 * Update rq->cpu_load[] statistics. This function is usually called every
2723 * scheduler tick (TICK_NSEC).
2725 static void update_cpu_load(struct rq
*this_rq
)
2727 unsigned long this_load
= this_rq
->load
.weight
;
2730 this_rq
->nr_load_updates
++;
2732 /* Update our load: */
2733 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2734 unsigned long old_load
, new_load
;
2736 /* scale is effectively 1 << i now, and >> i divides by scale */
2738 old_load
= this_rq
->cpu_load
[i
];
2739 new_load
= this_load
;
2741 * Round up the averaging division if load is increasing. This
2742 * prevents us from getting stuck on 9 if the load is 10, for
2745 if (new_load
> old_load
)
2746 new_load
+= scale
-1;
2747 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2754 * double_rq_lock - safely lock two runqueues
2756 * Note this does not disable interrupts like task_rq_lock,
2757 * you need to do so manually before calling.
2759 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2760 __acquires(rq1
->lock
)
2761 __acquires(rq2
->lock
)
2763 BUG_ON(!irqs_disabled());
2765 spin_lock(&rq1
->lock
);
2766 __acquire(rq2
->lock
); /* Fake it out ;) */
2769 spin_lock(&rq1
->lock
);
2770 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2772 spin_lock(&rq2
->lock
);
2773 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2776 update_rq_clock(rq1
);
2777 update_rq_clock(rq2
);
2781 * double_rq_unlock - safely unlock two runqueues
2783 * Note this does not restore interrupts like task_rq_unlock,
2784 * you need to do so manually after calling.
2786 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2787 __releases(rq1
->lock
)
2788 __releases(rq2
->lock
)
2790 spin_unlock(&rq1
->lock
);
2792 spin_unlock(&rq2
->lock
);
2794 __release(rq2
->lock
);
2798 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2800 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2801 __releases(this_rq
->lock
)
2802 __acquires(busiest
->lock
)
2803 __acquires(this_rq
->lock
)
2807 if (unlikely(!irqs_disabled())) {
2808 /* printk() doesn't work good under rq->lock */
2809 spin_unlock(&this_rq
->lock
);
2812 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2813 if (busiest
< this_rq
) {
2814 spin_unlock(&this_rq
->lock
);
2815 spin_lock(&busiest
->lock
);
2816 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
2819 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
2824 static void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2825 __releases(busiest
->lock
)
2827 spin_unlock(&busiest
->lock
);
2828 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
2832 * If dest_cpu is allowed for this process, migrate the task to it.
2833 * This is accomplished by forcing the cpu_allowed mask to only
2834 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2835 * the cpu_allowed mask is restored.
2837 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2839 struct migration_req req
;
2840 unsigned long flags
;
2843 rq
= task_rq_lock(p
, &flags
);
2844 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2845 || unlikely(!cpu_active(dest_cpu
)))
2848 trace_sched_migrate_task(rq
, p
, dest_cpu
);
2849 /* force the process onto the specified CPU */
2850 if (migrate_task(p
, dest_cpu
, &req
)) {
2851 /* Need to wait for migration thread (might exit: take ref). */
2852 struct task_struct
*mt
= rq
->migration_thread
;
2854 get_task_struct(mt
);
2855 task_rq_unlock(rq
, &flags
);
2856 wake_up_process(mt
);
2857 put_task_struct(mt
);
2858 wait_for_completion(&req
.done
);
2863 task_rq_unlock(rq
, &flags
);
2867 * sched_exec - execve() is a valuable balancing opportunity, because at
2868 * this point the task has the smallest effective memory and cache footprint.
2870 void sched_exec(void)
2872 int new_cpu
, this_cpu
= get_cpu();
2873 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2875 if (new_cpu
!= this_cpu
)
2876 sched_migrate_task(current
, new_cpu
);
2880 * pull_task - move a task from a remote runqueue to the local runqueue.
2881 * Both runqueues must be locked.
2883 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2884 struct rq
*this_rq
, int this_cpu
)
2886 deactivate_task(src_rq
, p
, 0);
2887 set_task_cpu(p
, this_cpu
);
2888 activate_task(this_rq
, p
, 0);
2890 * Note that idle threads have a prio of MAX_PRIO, for this test
2891 * to be always true for them.
2893 check_preempt_curr(this_rq
, p
, 0);
2897 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2900 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2901 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2905 * We do not migrate tasks that are:
2906 * 1) running (obviously), or
2907 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2908 * 3) are cache-hot on their current CPU.
2910 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2911 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2916 if (task_running(rq
, p
)) {
2917 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2922 * Aggressive migration if:
2923 * 1) task is cache cold, or
2924 * 2) too many balance attempts have failed.
2927 if (!task_hot(p
, rq
->clock
, sd
) ||
2928 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2929 #ifdef CONFIG_SCHEDSTATS
2930 if (task_hot(p
, rq
->clock
, sd
)) {
2931 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2932 schedstat_inc(p
, se
.nr_forced_migrations
);
2938 if (task_hot(p
, rq
->clock
, sd
)) {
2939 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2945 static unsigned long
2946 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2947 unsigned long max_load_move
, struct sched_domain
*sd
,
2948 enum cpu_idle_type idle
, int *all_pinned
,
2949 int *this_best_prio
, struct rq_iterator
*iterator
)
2951 int loops
= 0, pulled
= 0, pinned
= 0;
2952 struct task_struct
*p
;
2953 long rem_load_move
= max_load_move
;
2955 if (max_load_move
== 0)
2961 * Start the load-balancing iterator:
2963 p
= iterator
->start(iterator
->arg
);
2965 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2968 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2969 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2970 p
= iterator
->next(iterator
->arg
);
2974 pull_task(busiest
, p
, this_rq
, this_cpu
);
2976 rem_load_move
-= p
->se
.load
.weight
;
2979 * We only want to steal up to the prescribed amount of weighted load.
2981 if (rem_load_move
> 0) {
2982 if (p
->prio
< *this_best_prio
)
2983 *this_best_prio
= p
->prio
;
2984 p
= iterator
->next(iterator
->arg
);
2989 * Right now, this is one of only two places pull_task() is called,
2990 * so we can safely collect pull_task() stats here rather than
2991 * inside pull_task().
2993 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2996 *all_pinned
= pinned
;
2998 return max_load_move
- rem_load_move
;
3002 * move_tasks tries to move up to max_load_move weighted load from busiest to
3003 * this_rq, as part of a balancing operation within domain "sd".
3004 * Returns 1 if successful and 0 otherwise.
3006 * Called with both runqueues locked.
3008 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3009 unsigned long max_load_move
,
3010 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3013 const struct sched_class
*class = sched_class_highest
;
3014 unsigned long total_load_moved
= 0;
3015 int this_best_prio
= this_rq
->curr
->prio
;
3019 class->load_balance(this_rq
, this_cpu
, busiest
,
3020 max_load_move
- total_load_moved
,
3021 sd
, idle
, all_pinned
, &this_best_prio
);
3022 class = class->next
;
3024 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3027 } while (class && max_load_move
> total_load_moved
);
3029 return total_load_moved
> 0;
3033 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3034 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3035 struct rq_iterator
*iterator
)
3037 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3041 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3042 pull_task(busiest
, p
, this_rq
, this_cpu
);
3044 * Right now, this is only the second place pull_task()
3045 * is called, so we can safely collect pull_task()
3046 * stats here rather than inside pull_task().
3048 schedstat_inc(sd
, lb_gained
[idle
]);
3052 p
= iterator
->next(iterator
->arg
);
3059 * move_one_task tries to move exactly one task from busiest to this_rq, as
3060 * part of active balancing operations within "domain".
3061 * Returns 1 if successful and 0 otherwise.
3063 * Called with both runqueues locked.
3065 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3066 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3068 const struct sched_class
*class;
3070 for (class = sched_class_highest
; class; class = class->next
)
3071 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3078 * find_busiest_group finds and returns the busiest CPU group within the
3079 * domain. It calculates and returns the amount of weighted load which
3080 * should be moved to restore balance via the imbalance parameter.
3082 static struct sched_group
*
3083 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3084 unsigned long *imbalance
, enum cpu_idle_type idle
,
3085 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3087 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3088 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3089 unsigned long max_pull
;
3090 unsigned long busiest_load_per_task
, busiest_nr_running
;
3091 unsigned long this_load_per_task
, this_nr_running
;
3092 int load_idx
, group_imb
= 0;
3093 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3094 int power_savings_balance
= 1;
3095 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3096 unsigned long min_nr_running
= ULONG_MAX
;
3097 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3100 max_load
= this_load
= total_load
= total_pwr
= 0;
3101 busiest_load_per_task
= busiest_nr_running
= 0;
3102 this_load_per_task
= this_nr_running
= 0;
3104 if (idle
== CPU_NOT_IDLE
)
3105 load_idx
= sd
->busy_idx
;
3106 else if (idle
== CPU_NEWLY_IDLE
)
3107 load_idx
= sd
->newidle_idx
;
3109 load_idx
= sd
->idle_idx
;
3112 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3115 int __group_imb
= 0;
3116 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3117 unsigned long sum_nr_running
, sum_weighted_load
;
3118 unsigned long sum_avg_load_per_task
;
3119 unsigned long avg_load_per_task
;
3121 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3124 balance_cpu
= first_cpu(group
->cpumask
);
3126 /* Tally up the load of all CPUs in the group */
3127 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3128 sum_avg_load_per_task
= avg_load_per_task
= 0;
3131 min_cpu_load
= ~0UL;
3133 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3136 if (!cpu_isset(i
, *cpus
))
3141 if (*sd_idle
&& rq
->nr_running
)
3144 /* Bias balancing toward cpus of our domain */
3146 if (idle_cpu(i
) && !first_idle_cpu
) {
3151 load
= target_load(i
, load_idx
);
3153 load
= source_load(i
, load_idx
);
3154 if (load
> max_cpu_load
)
3155 max_cpu_load
= load
;
3156 if (min_cpu_load
> load
)
3157 min_cpu_load
= load
;
3161 sum_nr_running
+= rq
->nr_running
;
3162 sum_weighted_load
+= weighted_cpuload(i
);
3164 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3168 * First idle cpu or the first cpu(busiest) in this sched group
3169 * is eligible for doing load balancing at this and above
3170 * domains. In the newly idle case, we will allow all the cpu's
3171 * to do the newly idle load balance.
3173 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3174 balance_cpu
!= this_cpu
&& balance
) {
3179 total_load
+= avg_load
;
3180 total_pwr
+= group
->__cpu_power
;
3182 /* Adjust by relative CPU power of the group */
3183 avg_load
= sg_div_cpu_power(group
,
3184 avg_load
* SCHED_LOAD_SCALE
);
3188 * Consider the group unbalanced when the imbalance is larger
3189 * than the average weight of two tasks.
3191 * APZ: with cgroup the avg task weight can vary wildly and
3192 * might not be a suitable number - should we keep a
3193 * normalized nr_running number somewhere that negates
3196 avg_load_per_task
= sg_div_cpu_power(group
,
3197 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3199 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3202 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3205 this_load
= avg_load
;
3207 this_nr_running
= sum_nr_running
;
3208 this_load_per_task
= sum_weighted_load
;
3209 } else if (avg_load
> max_load
&&
3210 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3211 max_load
= avg_load
;
3213 busiest_nr_running
= sum_nr_running
;
3214 busiest_load_per_task
= sum_weighted_load
;
3215 group_imb
= __group_imb
;
3218 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3220 * Busy processors will not participate in power savings
3223 if (idle
== CPU_NOT_IDLE
||
3224 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3228 * If the local group is idle or completely loaded
3229 * no need to do power savings balance at this domain
3231 if (local_group
&& (this_nr_running
>= group_capacity
||
3233 power_savings_balance
= 0;
3236 * If a group is already running at full capacity or idle,
3237 * don't include that group in power savings calculations
3239 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3244 * Calculate the group which has the least non-idle load.
3245 * This is the group from where we need to pick up the load
3248 if ((sum_nr_running
< min_nr_running
) ||
3249 (sum_nr_running
== min_nr_running
&&
3250 first_cpu(group
->cpumask
) <
3251 first_cpu(group_min
->cpumask
))) {
3253 min_nr_running
= sum_nr_running
;
3254 min_load_per_task
= sum_weighted_load
/
3259 * Calculate the group which is almost near its
3260 * capacity but still has some space to pick up some load
3261 * from other group and save more power
3263 if (sum_nr_running
<= group_capacity
- 1) {
3264 if (sum_nr_running
> leader_nr_running
||
3265 (sum_nr_running
== leader_nr_running
&&
3266 first_cpu(group
->cpumask
) >
3267 first_cpu(group_leader
->cpumask
))) {
3268 group_leader
= group
;
3269 leader_nr_running
= sum_nr_running
;
3274 group
= group
->next
;
3275 } while (group
!= sd
->groups
);
3277 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3280 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3282 if (this_load
>= avg_load
||
3283 100*max_load
<= sd
->imbalance_pct
*this_load
)
3286 busiest_load_per_task
/= busiest_nr_running
;
3288 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3291 * We're trying to get all the cpus to the average_load, so we don't
3292 * want to push ourselves above the average load, nor do we wish to
3293 * reduce the max loaded cpu below the average load, as either of these
3294 * actions would just result in more rebalancing later, and ping-pong
3295 * tasks around. Thus we look for the minimum possible imbalance.
3296 * Negative imbalances (*we* are more loaded than anyone else) will
3297 * be counted as no imbalance for these purposes -- we can't fix that
3298 * by pulling tasks to us. Be careful of negative numbers as they'll
3299 * appear as very large values with unsigned longs.
3301 if (max_load
<= busiest_load_per_task
)
3305 * In the presence of smp nice balancing, certain scenarios can have
3306 * max load less than avg load(as we skip the groups at or below
3307 * its cpu_power, while calculating max_load..)
3309 if (max_load
< avg_load
) {
3311 goto small_imbalance
;
3314 /* Don't want to pull so many tasks that a group would go idle */
3315 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3317 /* How much load to actually move to equalise the imbalance */
3318 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3319 (avg_load
- this_load
) * this->__cpu_power
)
3323 * if *imbalance is less than the average load per runnable task
3324 * there is no gaurantee that any tasks will be moved so we'll have
3325 * a think about bumping its value to force at least one task to be
3328 if (*imbalance
< busiest_load_per_task
) {
3329 unsigned long tmp
, pwr_now
, pwr_move
;
3333 pwr_move
= pwr_now
= 0;
3335 if (this_nr_running
) {
3336 this_load_per_task
/= this_nr_running
;
3337 if (busiest_load_per_task
> this_load_per_task
)
3340 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3342 if (max_load
- this_load
+ 2*busiest_load_per_task
>=
3343 busiest_load_per_task
* imbn
) {
3344 *imbalance
= busiest_load_per_task
;
3349 * OK, we don't have enough imbalance to justify moving tasks,
3350 * however we may be able to increase total CPU power used by
3354 pwr_now
+= busiest
->__cpu_power
*
3355 min(busiest_load_per_task
, max_load
);
3356 pwr_now
+= this->__cpu_power
*
3357 min(this_load_per_task
, this_load
);
3358 pwr_now
/= SCHED_LOAD_SCALE
;
3360 /* Amount of load we'd subtract */
3361 tmp
= sg_div_cpu_power(busiest
,
3362 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3364 pwr_move
+= busiest
->__cpu_power
*
3365 min(busiest_load_per_task
, max_load
- tmp
);
3367 /* Amount of load we'd add */
3368 if (max_load
* busiest
->__cpu_power
<
3369 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3370 tmp
= sg_div_cpu_power(this,
3371 max_load
* busiest
->__cpu_power
);
3373 tmp
= sg_div_cpu_power(this,
3374 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3375 pwr_move
+= this->__cpu_power
*
3376 min(this_load_per_task
, this_load
+ tmp
);
3377 pwr_move
/= SCHED_LOAD_SCALE
;
3379 /* Move if we gain throughput */
3380 if (pwr_move
> pwr_now
)
3381 *imbalance
= busiest_load_per_task
;
3387 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3391 if (this == group_leader
&& group_leader
!= group_min
) {
3392 *imbalance
= min_load_per_task
;
3402 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3405 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3406 unsigned long imbalance
, const cpumask_t
*cpus
)
3408 struct rq
*busiest
= NULL
, *rq
;
3409 unsigned long max_load
= 0;
3412 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3415 if (!cpu_isset(i
, *cpus
))
3419 wl
= weighted_cpuload(i
);
3421 if (rq
->nr_running
== 1 && wl
> imbalance
)
3424 if (wl
> max_load
) {
3434 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3435 * so long as it is large enough.
3437 #define MAX_PINNED_INTERVAL 512
3440 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3441 * tasks if there is an imbalance.
3443 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3444 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3445 int *balance
, cpumask_t
*cpus
)
3447 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3448 struct sched_group
*group
;
3449 unsigned long imbalance
;
3451 unsigned long flags
;
3456 * When power savings policy is enabled for the parent domain, idle
3457 * sibling can pick up load irrespective of busy siblings. In this case,
3458 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3459 * portraying it as CPU_NOT_IDLE.
3461 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3462 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3465 schedstat_inc(sd
, lb_count
[idle
]);
3469 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3476 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3480 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3482 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3486 BUG_ON(busiest
== this_rq
);
3488 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3491 if (busiest
->nr_running
> 1) {
3493 * Attempt to move tasks. If find_busiest_group has found
3494 * an imbalance but busiest->nr_running <= 1, the group is
3495 * still unbalanced. ld_moved simply stays zero, so it is
3496 * correctly treated as an imbalance.
3498 local_irq_save(flags
);
3499 double_rq_lock(this_rq
, busiest
);
3500 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3501 imbalance
, sd
, idle
, &all_pinned
);
3502 double_rq_unlock(this_rq
, busiest
);
3503 local_irq_restore(flags
);
3506 * some other cpu did the load balance for us.
3508 if (ld_moved
&& this_cpu
!= smp_processor_id())
3509 resched_cpu(this_cpu
);
3511 /* All tasks on this runqueue were pinned by CPU affinity */
3512 if (unlikely(all_pinned
)) {
3513 cpu_clear(cpu_of(busiest
), *cpus
);
3514 if (!cpus_empty(*cpus
))
3521 schedstat_inc(sd
, lb_failed
[idle
]);
3522 sd
->nr_balance_failed
++;
3524 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3526 spin_lock_irqsave(&busiest
->lock
, flags
);
3528 /* don't kick the migration_thread, if the curr
3529 * task on busiest cpu can't be moved to this_cpu
3531 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3532 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3534 goto out_one_pinned
;
3537 if (!busiest
->active_balance
) {
3538 busiest
->active_balance
= 1;
3539 busiest
->push_cpu
= this_cpu
;
3542 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3544 wake_up_process(busiest
->migration_thread
);
3547 * We've kicked active balancing, reset the failure
3550 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3553 sd
->nr_balance_failed
= 0;
3555 if (likely(!active_balance
)) {
3556 /* We were unbalanced, so reset the balancing interval */
3557 sd
->balance_interval
= sd
->min_interval
;
3560 * If we've begun active balancing, start to back off. This
3561 * case may not be covered by the all_pinned logic if there
3562 * is only 1 task on the busy runqueue (because we don't call
3565 if (sd
->balance_interval
< sd
->max_interval
)
3566 sd
->balance_interval
*= 2;
3569 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3570 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3576 schedstat_inc(sd
, lb_balanced
[idle
]);
3578 sd
->nr_balance_failed
= 0;
3581 /* tune up the balancing interval */
3582 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3583 (sd
->balance_interval
< sd
->max_interval
))
3584 sd
->balance_interval
*= 2;
3586 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3587 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3598 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3599 * tasks if there is an imbalance.
3601 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3602 * this_rq is locked.
3605 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3608 struct sched_group
*group
;
3609 struct rq
*busiest
= NULL
;
3610 unsigned long imbalance
;
3618 * When power savings policy is enabled for the parent domain, idle
3619 * sibling can pick up load irrespective of busy siblings. In this case,
3620 * let the state of idle sibling percolate up as IDLE, instead of
3621 * portraying it as CPU_NOT_IDLE.
3623 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3624 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3627 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3629 update_shares_locked(this_rq
, sd
);
3630 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3631 &sd_idle
, cpus
, NULL
);
3633 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3637 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3639 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3643 BUG_ON(busiest
== this_rq
);
3645 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3648 if (busiest
->nr_running
> 1) {
3649 /* Attempt to move tasks */
3650 double_lock_balance(this_rq
, busiest
);
3651 /* this_rq->clock is already updated */
3652 update_rq_clock(busiest
);
3653 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3654 imbalance
, sd
, CPU_NEWLY_IDLE
,
3656 double_unlock_balance(this_rq
, busiest
);
3658 if (unlikely(all_pinned
)) {
3659 cpu_clear(cpu_of(busiest
), *cpus
);
3660 if (!cpus_empty(*cpus
))
3666 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3667 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3668 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3671 sd
->nr_balance_failed
= 0;
3673 update_shares_locked(this_rq
, sd
);
3677 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3678 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3679 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3681 sd
->nr_balance_failed
= 0;
3687 * idle_balance is called by schedule() if this_cpu is about to become
3688 * idle. Attempts to pull tasks from other CPUs.
3690 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3692 struct sched_domain
*sd
;
3693 int pulled_task
= -1;
3694 unsigned long next_balance
= jiffies
+ HZ
;
3697 for_each_domain(this_cpu
, sd
) {
3698 unsigned long interval
;
3700 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3703 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3704 /* If we've pulled tasks over stop searching: */
3705 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3708 interval
= msecs_to_jiffies(sd
->balance_interval
);
3709 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3710 next_balance
= sd
->last_balance
+ interval
;
3714 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3716 * We are going idle. next_balance may be set based on
3717 * a busy processor. So reset next_balance.
3719 this_rq
->next_balance
= next_balance
;
3724 * active_load_balance is run by migration threads. It pushes running tasks
3725 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3726 * running on each physical CPU where possible, and avoids physical /
3727 * logical imbalances.
3729 * Called with busiest_rq locked.
3731 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3733 int target_cpu
= busiest_rq
->push_cpu
;
3734 struct sched_domain
*sd
;
3735 struct rq
*target_rq
;
3737 /* Is there any task to move? */
3738 if (busiest_rq
->nr_running
<= 1)
3741 target_rq
= cpu_rq(target_cpu
);
3744 * This condition is "impossible", if it occurs
3745 * we need to fix it. Originally reported by
3746 * Bjorn Helgaas on a 128-cpu setup.
3748 BUG_ON(busiest_rq
== target_rq
);
3750 /* move a task from busiest_rq to target_rq */
3751 double_lock_balance(busiest_rq
, target_rq
);
3752 update_rq_clock(busiest_rq
);
3753 update_rq_clock(target_rq
);
3755 /* Search for an sd spanning us and the target CPU. */
3756 for_each_domain(target_cpu
, sd
) {
3757 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3758 cpu_isset(busiest_cpu
, sd
->span
))
3763 schedstat_inc(sd
, alb_count
);
3765 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3767 schedstat_inc(sd
, alb_pushed
);
3769 schedstat_inc(sd
, alb_failed
);
3771 double_unlock_balance(busiest_rq
, target_rq
);
3776 atomic_t load_balancer
;
3778 } nohz ____cacheline_aligned
= {
3779 .load_balancer
= ATOMIC_INIT(-1),
3780 .cpu_mask
= CPU_MASK_NONE
,
3784 * This routine will try to nominate the ilb (idle load balancing)
3785 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3786 * load balancing on behalf of all those cpus. If all the cpus in the system
3787 * go into this tickless mode, then there will be no ilb owner (as there is
3788 * no need for one) and all the cpus will sleep till the next wakeup event
3791 * For the ilb owner, tick is not stopped. And this tick will be used
3792 * for idle load balancing. ilb owner will still be part of
3795 * While stopping the tick, this cpu will become the ilb owner if there
3796 * is no other owner. And will be the owner till that cpu becomes busy
3797 * or if all cpus in the system stop their ticks at which point
3798 * there is no need for ilb owner.
3800 * When the ilb owner becomes busy, it nominates another owner, during the
3801 * next busy scheduler_tick()
3803 int select_nohz_load_balancer(int stop_tick
)
3805 int cpu
= smp_processor_id();
3808 cpu_set(cpu
, nohz
.cpu_mask
);
3809 cpu_rq(cpu
)->in_nohz_recently
= 1;
3812 * If we are going offline and still the leader, give up!
3814 if (!cpu_active(cpu
) &&
3815 atomic_read(&nohz
.load_balancer
) == cpu
) {
3816 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3821 /* time for ilb owner also to sleep */
3822 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3823 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3824 atomic_set(&nohz
.load_balancer
, -1);
3828 if (atomic_read(&nohz
.load_balancer
) == -1) {
3829 /* make me the ilb owner */
3830 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3832 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3835 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3838 cpu_clear(cpu
, nohz
.cpu_mask
);
3840 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3841 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3848 static DEFINE_SPINLOCK(balancing
);
3851 * It checks each scheduling domain to see if it is due to be balanced,
3852 * and initiates a balancing operation if so.
3854 * Balancing parameters are set up in arch_init_sched_domains.
3856 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3859 struct rq
*rq
= cpu_rq(cpu
);
3860 unsigned long interval
;
3861 struct sched_domain
*sd
;
3862 /* Earliest time when we have to do rebalance again */
3863 unsigned long next_balance
= jiffies
+ 60*HZ
;
3864 int update_next_balance
= 0;
3868 for_each_domain(cpu
, sd
) {
3869 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3872 interval
= sd
->balance_interval
;
3873 if (idle
!= CPU_IDLE
)
3874 interval
*= sd
->busy_factor
;
3876 /* scale ms to jiffies */
3877 interval
= msecs_to_jiffies(interval
);
3878 if (unlikely(!interval
))
3880 if (interval
> HZ
*NR_CPUS
/10)
3881 interval
= HZ
*NR_CPUS
/10;
3883 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3885 if (need_serialize
) {
3886 if (!spin_trylock(&balancing
))
3890 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3891 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
3893 * We've pulled tasks over so either we're no
3894 * longer idle, or one of our SMT siblings is
3897 idle
= CPU_NOT_IDLE
;
3899 sd
->last_balance
= jiffies
;
3902 spin_unlock(&balancing
);
3904 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3905 next_balance
= sd
->last_balance
+ interval
;
3906 update_next_balance
= 1;
3910 * Stop the load balance at this level. There is another
3911 * CPU in our sched group which is doing load balancing more
3919 * next_balance will be updated only when there is a need.
3920 * When the cpu is attached to null domain for ex, it will not be
3923 if (likely(update_next_balance
))
3924 rq
->next_balance
= next_balance
;
3928 * run_rebalance_domains is triggered when needed from the scheduler tick.
3929 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3930 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3932 static void run_rebalance_domains(struct softirq_action
*h
)
3934 int this_cpu
= smp_processor_id();
3935 struct rq
*this_rq
= cpu_rq(this_cpu
);
3936 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3937 CPU_IDLE
: CPU_NOT_IDLE
;
3939 rebalance_domains(this_cpu
, idle
);
3943 * If this cpu is the owner for idle load balancing, then do the
3944 * balancing on behalf of the other idle cpus whose ticks are
3947 if (this_rq
->idle_at_tick
&&
3948 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3949 cpumask_t cpus
= nohz
.cpu_mask
;
3953 cpu_clear(this_cpu
, cpus
);
3954 for_each_cpu_mask_nr(balance_cpu
, cpus
) {
3956 * If this cpu gets work to do, stop the load balancing
3957 * work being done for other cpus. Next load
3958 * balancing owner will pick it up.
3963 rebalance_domains(balance_cpu
, CPU_IDLE
);
3965 rq
= cpu_rq(balance_cpu
);
3966 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3967 this_rq
->next_balance
= rq
->next_balance
;
3974 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3976 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3977 * idle load balancing owner or decide to stop the periodic load balancing,
3978 * if the whole system is idle.
3980 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3984 * If we were in the nohz mode recently and busy at the current
3985 * scheduler tick, then check if we need to nominate new idle
3988 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3989 rq
->in_nohz_recently
= 0;
3991 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3992 cpu_clear(cpu
, nohz
.cpu_mask
);
3993 atomic_set(&nohz
.load_balancer
, -1);
3996 if (atomic_read(&nohz
.load_balancer
) == -1) {
3998 * simple selection for now: Nominate the
3999 * first cpu in the nohz list to be the next
4002 * TBD: Traverse the sched domains and nominate
4003 * the nearest cpu in the nohz.cpu_mask.
4005 int ilb
= first_cpu(nohz
.cpu_mask
);
4007 if (ilb
< nr_cpu_ids
)
4013 * If this cpu is idle and doing idle load balancing for all the
4014 * cpus with ticks stopped, is it time for that to stop?
4016 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4017 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4023 * If this cpu is idle and the idle load balancing is done by
4024 * someone else, then no need raise the SCHED_SOFTIRQ
4026 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4027 cpu_isset(cpu
, nohz
.cpu_mask
))
4030 if (time_after_eq(jiffies
, rq
->next_balance
))
4031 raise_softirq(SCHED_SOFTIRQ
);
4034 #else /* CONFIG_SMP */
4037 * on UP we do not need to balance between CPUs:
4039 static inline void idle_balance(int cpu
, struct rq
*rq
)
4045 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4047 EXPORT_PER_CPU_SYMBOL(kstat
);
4050 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4051 * that have not yet been banked in case the task is currently running.
4053 unsigned long long task_sched_runtime(struct task_struct
*p
)
4055 unsigned long flags
;
4059 rq
= task_rq_lock(p
, &flags
);
4060 ns
= p
->se
.sum_exec_runtime
;
4061 if (task_current(rq
, p
)) {
4062 update_rq_clock(rq
);
4063 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4064 if ((s64
)delta_exec
> 0)
4067 task_rq_unlock(rq
, &flags
);
4073 * Account user cpu time to a process.
4074 * @p: the process that the cpu time gets accounted to
4075 * @cputime: the cpu time spent in user space since the last update
4077 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4079 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4082 p
->utime
= cputime_add(p
->utime
, cputime
);
4084 /* Add user time to cpustat. */
4085 tmp
= cputime_to_cputime64(cputime
);
4086 if (TASK_NICE(p
) > 0)
4087 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4089 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4090 /* Account for user time used */
4091 acct_update_integrals(p
);
4095 * Account guest cpu time to a process.
4096 * @p: the process that the cpu time gets accounted to
4097 * @cputime: the cpu time spent in virtual machine since the last update
4099 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4102 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4104 tmp
= cputime_to_cputime64(cputime
);
4106 p
->utime
= cputime_add(p
->utime
, cputime
);
4107 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4109 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4110 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4114 * Account scaled user cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @cputime: the cpu time spent in user space since the last update
4118 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4120 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4124 * Account system cpu time to a process.
4125 * @p: the process that the cpu time gets accounted to
4126 * @hardirq_offset: the offset to subtract from hardirq_count()
4127 * @cputime: the cpu time spent in kernel space since the last update
4129 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4132 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4133 struct rq
*rq
= this_rq();
4136 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4137 account_guest_time(p
, cputime
);
4141 p
->stime
= cputime_add(p
->stime
, cputime
);
4143 /* Add system time to cpustat. */
4144 tmp
= cputime_to_cputime64(cputime
);
4145 if (hardirq_count() - hardirq_offset
)
4146 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4147 else if (softirq_count())
4148 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4149 else if (p
!= rq
->idle
)
4150 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4151 else if (atomic_read(&rq
->nr_iowait
) > 0)
4152 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4154 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4155 /* Account for system time used */
4156 acct_update_integrals(p
);
4160 * Account scaled system cpu time to a process.
4161 * @p: the process that the cpu time gets accounted to
4162 * @hardirq_offset: the offset to subtract from hardirq_count()
4163 * @cputime: the cpu time spent in kernel space since the last update
4165 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4167 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4171 * Account for involuntary wait time.
4172 * @p: the process from which the cpu time has been stolen
4173 * @steal: the cpu time spent in involuntary wait
4175 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4177 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4178 cputime64_t tmp
= cputime_to_cputime64(steal
);
4179 struct rq
*rq
= this_rq();
4181 if (p
== rq
->idle
) {
4182 p
->stime
= cputime_add(p
->stime
, steal
);
4183 if (atomic_read(&rq
->nr_iowait
) > 0)
4184 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4186 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4188 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4192 * Use precise platform statistics if available:
4194 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4195 cputime_t
task_utime(struct task_struct
*p
)
4200 cputime_t
task_stime(struct task_struct
*p
)
4205 cputime_t
task_utime(struct task_struct
*p
)
4207 clock_t utime
= cputime_to_clock_t(p
->utime
),
4208 total
= utime
+ cputime_to_clock_t(p
->stime
);
4212 * Use CFS's precise accounting:
4214 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4218 do_div(temp
, total
);
4220 utime
= (clock_t)temp
;
4222 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4223 return p
->prev_utime
;
4226 cputime_t
task_stime(struct task_struct
*p
)
4231 * Use CFS's precise accounting. (we subtract utime from
4232 * the total, to make sure the total observed by userspace
4233 * grows monotonically - apps rely on that):
4235 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4236 cputime_to_clock_t(task_utime(p
));
4239 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4241 return p
->prev_stime
;
4245 inline cputime_t
task_gtime(struct task_struct
*p
)
4251 * This function gets called by the timer code, with HZ frequency.
4252 * We call it with interrupts disabled.
4254 * It also gets called by the fork code, when changing the parent's
4257 void scheduler_tick(void)
4259 int cpu
= smp_processor_id();
4260 struct rq
*rq
= cpu_rq(cpu
);
4261 struct task_struct
*curr
= rq
->curr
;
4265 spin_lock(&rq
->lock
);
4266 update_rq_clock(rq
);
4267 update_cpu_load(rq
);
4268 curr
->sched_class
->task_tick(rq
, curr
, 0);
4269 spin_unlock(&rq
->lock
);
4272 rq
->idle_at_tick
= idle_cpu(cpu
);
4273 trigger_load_balance(rq
, cpu
);
4277 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4278 defined(CONFIG_PREEMPT_TRACER))
4280 static inline unsigned long get_parent_ip(unsigned long addr
)
4282 if (in_lock_functions(addr
)) {
4283 addr
= CALLER_ADDR2
;
4284 if (in_lock_functions(addr
))
4285 addr
= CALLER_ADDR3
;
4290 void __kprobes
add_preempt_count(int val
)
4292 #ifdef CONFIG_DEBUG_PREEMPT
4296 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4299 preempt_count() += val
;
4300 #ifdef CONFIG_DEBUG_PREEMPT
4302 * Spinlock count overflowing soon?
4304 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4307 if (preempt_count() == val
)
4308 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4310 EXPORT_SYMBOL(add_preempt_count
);
4312 void __kprobes
sub_preempt_count(int val
)
4314 #ifdef CONFIG_DEBUG_PREEMPT
4318 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4321 * Is the spinlock portion underflowing?
4323 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4324 !(preempt_count() & PREEMPT_MASK
)))
4328 if (preempt_count() == val
)
4329 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4330 preempt_count() -= val
;
4332 EXPORT_SYMBOL(sub_preempt_count
);
4337 * Print scheduling while atomic bug:
4339 static noinline
void __schedule_bug(struct task_struct
*prev
)
4341 struct pt_regs
*regs
= get_irq_regs();
4343 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4344 prev
->comm
, prev
->pid
, preempt_count());
4346 debug_show_held_locks(prev
);
4348 if (irqs_disabled())
4349 print_irqtrace_events(prev
);
4358 * Various schedule()-time debugging checks and statistics:
4360 static inline void schedule_debug(struct task_struct
*prev
)
4363 * Test if we are atomic. Since do_exit() needs to call into
4364 * schedule() atomically, we ignore that path for now.
4365 * Otherwise, whine if we are scheduling when we should not be.
4367 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4368 __schedule_bug(prev
);
4370 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4372 schedstat_inc(this_rq(), sched_count
);
4373 #ifdef CONFIG_SCHEDSTATS
4374 if (unlikely(prev
->lock_depth
>= 0)) {
4375 schedstat_inc(this_rq(), bkl_count
);
4376 schedstat_inc(prev
, sched_info
.bkl_count
);
4382 * Pick up the highest-prio task:
4384 static inline struct task_struct
*
4385 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4387 const struct sched_class
*class;
4388 struct task_struct
*p
;
4391 * Optimization: we know that if all tasks are in
4392 * the fair class we can call that function directly:
4394 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4395 p
= fair_sched_class
.pick_next_task(rq
);
4400 class = sched_class_highest
;
4402 p
= class->pick_next_task(rq
);
4406 * Will never be NULL as the idle class always
4407 * returns a non-NULL p:
4409 class = class->next
;
4414 * schedule() is the main scheduler function.
4416 asmlinkage
void __sched
schedule(void)
4418 struct task_struct
*prev
, *next
;
4419 unsigned long *switch_count
;
4425 cpu
= smp_processor_id();
4429 switch_count
= &prev
->nivcsw
;
4431 release_kernel_lock(prev
);
4432 need_resched_nonpreemptible
:
4434 schedule_debug(prev
);
4436 if (sched_feat(HRTICK
))
4440 * Do the rq-clock update outside the rq lock:
4442 local_irq_disable();
4443 update_rq_clock(rq
);
4444 spin_lock(&rq
->lock
);
4445 clear_tsk_need_resched(prev
);
4447 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4448 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4449 prev
->state
= TASK_RUNNING
;
4451 deactivate_task(rq
, prev
, 1);
4452 switch_count
= &prev
->nvcsw
;
4456 if (prev
->sched_class
->pre_schedule
)
4457 prev
->sched_class
->pre_schedule(rq
, prev
);
4460 if (unlikely(!rq
->nr_running
))
4461 idle_balance(cpu
, rq
);
4463 prev
->sched_class
->put_prev_task(rq
, prev
);
4464 next
= pick_next_task(rq
, prev
);
4466 if (likely(prev
!= next
)) {
4467 sched_info_switch(prev
, next
);
4473 context_switch(rq
, prev
, next
); /* unlocks the rq */
4475 * the context switch might have flipped the stack from under
4476 * us, hence refresh the local variables.
4478 cpu
= smp_processor_id();
4481 spin_unlock_irq(&rq
->lock
);
4483 if (unlikely(reacquire_kernel_lock(current
) < 0))
4484 goto need_resched_nonpreemptible
;
4486 preempt_enable_no_resched();
4487 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4490 EXPORT_SYMBOL(schedule
);
4492 #ifdef CONFIG_PREEMPT
4494 * this is the entry point to schedule() from in-kernel preemption
4495 * off of preempt_enable. Kernel preemptions off return from interrupt
4496 * occur there and call schedule directly.
4498 asmlinkage
void __sched
preempt_schedule(void)
4500 struct thread_info
*ti
= current_thread_info();
4503 * If there is a non-zero preempt_count or interrupts are disabled,
4504 * we do not want to preempt the current task. Just return..
4506 if (likely(ti
->preempt_count
|| irqs_disabled()))
4510 add_preempt_count(PREEMPT_ACTIVE
);
4512 sub_preempt_count(PREEMPT_ACTIVE
);
4515 * Check again in case we missed a preemption opportunity
4516 * between schedule and now.
4519 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4521 EXPORT_SYMBOL(preempt_schedule
);
4524 * this is the entry point to schedule() from kernel preemption
4525 * off of irq context.
4526 * Note, that this is called and return with irqs disabled. This will
4527 * protect us against recursive calling from irq.
4529 asmlinkage
void __sched
preempt_schedule_irq(void)
4531 struct thread_info
*ti
= current_thread_info();
4533 /* Catch callers which need to be fixed */
4534 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4537 add_preempt_count(PREEMPT_ACTIVE
);
4540 local_irq_disable();
4541 sub_preempt_count(PREEMPT_ACTIVE
);
4544 * Check again in case we missed a preemption opportunity
4545 * between schedule and now.
4548 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4551 #endif /* CONFIG_PREEMPT */
4553 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4556 return try_to_wake_up(curr
->private, mode
, sync
);
4558 EXPORT_SYMBOL(default_wake_function
);
4561 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4562 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4563 * number) then we wake all the non-exclusive tasks and one exclusive task.
4565 * There are circumstances in which we can try to wake a task which has already
4566 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4567 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4569 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4570 int nr_exclusive
, int sync
, void *key
)
4572 wait_queue_t
*curr
, *next
;
4574 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4575 unsigned flags
= curr
->flags
;
4577 if (curr
->func(curr
, mode
, sync
, key
) &&
4578 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4584 * __wake_up - wake up threads blocked on a waitqueue.
4586 * @mode: which threads
4587 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4588 * @key: is directly passed to the wakeup function
4590 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4591 int nr_exclusive
, void *key
)
4593 unsigned long flags
;
4595 spin_lock_irqsave(&q
->lock
, flags
);
4596 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4597 spin_unlock_irqrestore(&q
->lock
, flags
);
4599 EXPORT_SYMBOL(__wake_up
);
4602 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4604 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4606 __wake_up_common(q
, mode
, 1, 0, NULL
);
4610 * __wake_up_sync - wake up threads blocked on a waitqueue.
4612 * @mode: which threads
4613 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4615 * The sync wakeup differs that the waker knows that it will schedule
4616 * away soon, so while the target thread will be woken up, it will not
4617 * be migrated to another CPU - ie. the two threads are 'synchronized'
4618 * with each other. This can prevent needless bouncing between CPUs.
4620 * On UP it can prevent extra preemption.
4623 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4625 unsigned long flags
;
4631 if (unlikely(!nr_exclusive
))
4634 spin_lock_irqsave(&q
->lock
, flags
);
4635 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4636 spin_unlock_irqrestore(&q
->lock
, flags
);
4638 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4641 * complete: - signals a single thread waiting on this completion
4642 * @x: holds the state of this particular completion
4644 * This will wake up a single thread waiting on this completion. Threads will be
4645 * awakened in the same order in which they were queued.
4647 * See also complete_all(), wait_for_completion() and related routines.
4649 void complete(struct completion
*x
)
4651 unsigned long flags
;
4653 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4655 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4656 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4658 EXPORT_SYMBOL(complete
);
4661 * complete_all: - signals all threads waiting on this completion
4662 * @x: holds the state of this particular completion
4664 * This will wake up all threads waiting on this particular completion event.
4666 void complete_all(struct completion
*x
)
4668 unsigned long flags
;
4670 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4671 x
->done
+= UINT_MAX
/2;
4672 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4673 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4675 EXPORT_SYMBOL(complete_all
);
4677 static inline long __sched
4678 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4681 DECLARE_WAITQUEUE(wait
, current
);
4683 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4684 __add_wait_queue_tail(&x
->wait
, &wait
);
4686 if (signal_pending_state(state
, current
)) {
4687 timeout
= -ERESTARTSYS
;
4690 __set_current_state(state
);
4691 spin_unlock_irq(&x
->wait
.lock
);
4692 timeout
= schedule_timeout(timeout
);
4693 spin_lock_irq(&x
->wait
.lock
);
4694 } while (!x
->done
&& timeout
);
4695 __remove_wait_queue(&x
->wait
, &wait
);
4700 return timeout
?: 1;
4704 wait_for_common(struct completion
*x
, long timeout
, int state
)
4708 spin_lock_irq(&x
->wait
.lock
);
4709 timeout
= do_wait_for_common(x
, timeout
, state
);
4710 spin_unlock_irq(&x
->wait
.lock
);
4715 * wait_for_completion: - waits for completion of a task
4716 * @x: holds the state of this particular completion
4718 * This waits to be signaled for completion of a specific task. It is NOT
4719 * interruptible and there is no timeout.
4721 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4722 * and interrupt capability. Also see complete().
4724 void __sched
wait_for_completion(struct completion
*x
)
4726 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4728 EXPORT_SYMBOL(wait_for_completion
);
4731 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4732 * @x: holds the state of this particular completion
4733 * @timeout: timeout value in jiffies
4735 * This waits for either a completion of a specific task to be signaled or for a
4736 * specified timeout to expire. The timeout is in jiffies. It is not
4739 unsigned long __sched
4740 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4742 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4744 EXPORT_SYMBOL(wait_for_completion_timeout
);
4747 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4748 * @x: holds the state of this particular completion
4750 * This waits for completion of a specific task to be signaled. It is
4753 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4755 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4756 if (t
== -ERESTARTSYS
)
4760 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4763 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4764 * @x: holds the state of this particular completion
4765 * @timeout: timeout value in jiffies
4767 * This waits for either a completion of a specific task to be signaled or for a
4768 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4770 unsigned long __sched
4771 wait_for_completion_interruptible_timeout(struct completion
*x
,
4772 unsigned long timeout
)
4774 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4776 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4779 * wait_for_completion_killable: - waits for completion of a task (killable)
4780 * @x: holds the state of this particular completion
4782 * This waits to be signaled for completion of a specific task. It can be
4783 * interrupted by a kill signal.
4785 int __sched
wait_for_completion_killable(struct completion
*x
)
4787 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4788 if (t
== -ERESTARTSYS
)
4792 EXPORT_SYMBOL(wait_for_completion_killable
);
4795 * try_wait_for_completion - try to decrement a completion without blocking
4796 * @x: completion structure
4798 * Returns: 0 if a decrement cannot be done without blocking
4799 * 1 if a decrement succeeded.
4801 * If a completion is being used as a counting completion,
4802 * attempt to decrement the counter without blocking. This
4803 * enables us to avoid waiting if the resource the completion
4804 * is protecting is not available.
4806 bool try_wait_for_completion(struct completion
*x
)
4810 spin_lock_irq(&x
->wait
.lock
);
4815 spin_unlock_irq(&x
->wait
.lock
);
4818 EXPORT_SYMBOL(try_wait_for_completion
);
4821 * completion_done - Test to see if a completion has any waiters
4822 * @x: completion structure
4824 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4825 * 1 if there are no waiters.
4828 bool completion_done(struct completion
*x
)
4832 spin_lock_irq(&x
->wait
.lock
);
4835 spin_unlock_irq(&x
->wait
.lock
);
4838 EXPORT_SYMBOL(completion_done
);
4841 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4843 unsigned long flags
;
4846 init_waitqueue_entry(&wait
, current
);
4848 __set_current_state(state
);
4850 spin_lock_irqsave(&q
->lock
, flags
);
4851 __add_wait_queue(q
, &wait
);
4852 spin_unlock(&q
->lock
);
4853 timeout
= schedule_timeout(timeout
);
4854 spin_lock_irq(&q
->lock
);
4855 __remove_wait_queue(q
, &wait
);
4856 spin_unlock_irqrestore(&q
->lock
, flags
);
4861 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4863 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4865 EXPORT_SYMBOL(interruptible_sleep_on
);
4868 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4870 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4872 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4874 void __sched
sleep_on(wait_queue_head_t
*q
)
4876 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4878 EXPORT_SYMBOL(sleep_on
);
4880 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4882 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4884 EXPORT_SYMBOL(sleep_on_timeout
);
4886 #ifdef CONFIG_RT_MUTEXES
4889 * rt_mutex_setprio - set the current priority of a task
4891 * @prio: prio value (kernel-internal form)
4893 * This function changes the 'effective' priority of a task. It does
4894 * not touch ->normal_prio like __setscheduler().
4896 * Used by the rt_mutex code to implement priority inheritance logic.
4898 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4900 unsigned long flags
;
4901 int oldprio
, on_rq
, running
;
4903 const struct sched_class
*prev_class
= p
->sched_class
;
4905 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4907 rq
= task_rq_lock(p
, &flags
);
4908 update_rq_clock(rq
);
4911 on_rq
= p
->se
.on_rq
;
4912 running
= task_current(rq
, p
);
4914 dequeue_task(rq
, p
, 0);
4916 p
->sched_class
->put_prev_task(rq
, p
);
4919 p
->sched_class
= &rt_sched_class
;
4921 p
->sched_class
= &fair_sched_class
;
4926 p
->sched_class
->set_curr_task(rq
);
4928 enqueue_task(rq
, p
, 0);
4930 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4932 task_rq_unlock(rq
, &flags
);
4937 void set_user_nice(struct task_struct
*p
, long nice
)
4939 int old_prio
, delta
, on_rq
;
4940 unsigned long flags
;
4943 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4946 * We have to be careful, if called from sys_setpriority(),
4947 * the task might be in the middle of scheduling on another CPU.
4949 rq
= task_rq_lock(p
, &flags
);
4950 update_rq_clock(rq
);
4952 * The RT priorities are set via sched_setscheduler(), but we still
4953 * allow the 'normal' nice value to be set - but as expected
4954 * it wont have any effect on scheduling until the task is
4955 * SCHED_FIFO/SCHED_RR:
4957 if (task_has_rt_policy(p
)) {
4958 p
->static_prio
= NICE_TO_PRIO(nice
);
4961 on_rq
= p
->se
.on_rq
;
4963 dequeue_task(rq
, p
, 0);
4965 p
->static_prio
= NICE_TO_PRIO(nice
);
4968 p
->prio
= effective_prio(p
);
4969 delta
= p
->prio
- old_prio
;
4972 enqueue_task(rq
, p
, 0);
4974 * If the task increased its priority or is running and
4975 * lowered its priority, then reschedule its CPU:
4977 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4978 resched_task(rq
->curr
);
4981 task_rq_unlock(rq
, &flags
);
4983 EXPORT_SYMBOL(set_user_nice
);
4986 * can_nice - check if a task can reduce its nice value
4990 int can_nice(const struct task_struct
*p
, const int nice
)
4992 /* convert nice value [19,-20] to rlimit style value [1,40] */
4993 int nice_rlim
= 20 - nice
;
4995 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4996 capable(CAP_SYS_NICE
));
4999 #ifdef __ARCH_WANT_SYS_NICE
5002 * sys_nice - change the priority of the current process.
5003 * @increment: priority increment
5005 * sys_setpriority is a more generic, but much slower function that
5006 * does similar things.
5008 asmlinkage
long sys_nice(int increment
)
5013 * Setpriority might change our priority at the same moment.
5014 * We don't have to worry. Conceptually one call occurs first
5015 * and we have a single winner.
5017 if (increment
< -40)
5022 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5028 if (increment
< 0 && !can_nice(current
, nice
))
5031 retval
= security_task_setnice(current
, nice
);
5035 set_user_nice(current
, nice
);
5042 * task_prio - return the priority value of a given task.
5043 * @p: the task in question.
5045 * This is the priority value as seen by users in /proc.
5046 * RT tasks are offset by -200. Normal tasks are centered
5047 * around 0, value goes from -16 to +15.
5049 int task_prio(const struct task_struct
*p
)
5051 return p
->prio
- MAX_RT_PRIO
;
5055 * task_nice - return the nice value of a given task.
5056 * @p: the task in question.
5058 int task_nice(const struct task_struct
*p
)
5060 return TASK_NICE(p
);
5062 EXPORT_SYMBOL(task_nice
);
5065 * idle_cpu - is a given cpu idle currently?
5066 * @cpu: the processor in question.
5068 int idle_cpu(int cpu
)
5070 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5074 * idle_task - return the idle task for a given cpu.
5075 * @cpu: the processor in question.
5077 struct task_struct
*idle_task(int cpu
)
5079 return cpu_rq(cpu
)->idle
;
5083 * find_process_by_pid - find a process with a matching PID value.
5084 * @pid: the pid in question.
5086 static struct task_struct
*find_process_by_pid(pid_t pid
)
5088 return pid
? find_task_by_vpid(pid
) : current
;
5091 /* Actually do priority change: must hold rq lock. */
5093 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5095 BUG_ON(p
->se
.on_rq
);
5098 switch (p
->policy
) {
5102 p
->sched_class
= &fair_sched_class
;
5106 p
->sched_class
= &rt_sched_class
;
5110 p
->rt_priority
= prio
;
5111 p
->normal_prio
= normal_prio(p
);
5112 /* we are holding p->pi_lock already */
5113 p
->prio
= rt_mutex_getprio(p
);
5117 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5118 struct sched_param
*param
, bool user
)
5120 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5121 unsigned long flags
;
5122 const struct sched_class
*prev_class
= p
->sched_class
;
5125 /* may grab non-irq protected spin_locks */
5126 BUG_ON(in_interrupt());
5128 /* double check policy once rq lock held */
5130 policy
= oldpolicy
= p
->policy
;
5131 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5132 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5133 policy
!= SCHED_IDLE
)
5136 * Valid priorities for SCHED_FIFO and SCHED_RR are
5137 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5138 * SCHED_BATCH and SCHED_IDLE is 0.
5140 if (param
->sched_priority
< 0 ||
5141 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5142 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5144 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5148 * Allow unprivileged RT tasks to decrease priority:
5150 if (user
&& !capable(CAP_SYS_NICE
)) {
5151 if (rt_policy(policy
)) {
5152 unsigned long rlim_rtprio
;
5154 if (!lock_task_sighand(p
, &flags
))
5156 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5157 unlock_task_sighand(p
, &flags
);
5159 /* can't set/change the rt policy */
5160 if (policy
!= p
->policy
&& !rlim_rtprio
)
5163 /* can't increase priority */
5164 if (param
->sched_priority
> p
->rt_priority
&&
5165 param
->sched_priority
> rlim_rtprio
)
5169 * Like positive nice levels, dont allow tasks to
5170 * move out of SCHED_IDLE either:
5172 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5175 /* can't change other user's priorities */
5176 if ((current
->euid
!= p
->euid
) &&
5177 (current
->euid
!= p
->uid
))
5182 #ifdef CONFIG_RT_GROUP_SCHED
5184 * Do not allow realtime tasks into groups that have no runtime
5187 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5188 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5192 retval
= security_task_setscheduler(p
, policy
, param
);
5198 * make sure no PI-waiters arrive (or leave) while we are
5199 * changing the priority of the task:
5201 spin_lock_irqsave(&p
->pi_lock
, flags
);
5203 * To be able to change p->policy safely, the apropriate
5204 * runqueue lock must be held.
5206 rq
= __task_rq_lock(p
);
5207 /* recheck policy now with rq lock held */
5208 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5209 policy
= oldpolicy
= -1;
5210 __task_rq_unlock(rq
);
5211 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5214 update_rq_clock(rq
);
5215 on_rq
= p
->se
.on_rq
;
5216 running
= task_current(rq
, p
);
5218 deactivate_task(rq
, p
, 0);
5220 p
->sched_class
->put_prev_task(rq
, p
);
5223 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5226 p
->sched_class
->set_curr_task(rq
);
5228 activate_task(rq
, p
, 0);
5230 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5232 __task_rq_unlock(rq
);
5233 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5235 rt_mutex_adjust_pi(p
);
5241 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5242 * @p: the task in question.
5243 * @policy: new policy.
5244 * @param: structure containing the new RT priority.
5246 * NOTE that the task may be already dead.
5248 int sched_setscheduler(struct task_struct
*p
, int policy
,
5249 struct sched_param
*param
)
5251 return __sched_setscheduler(p
, policy
, param
, true);
5253 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5256 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5257 * @p: the task in question.
5258 * @policy: new policy.
5259 * @param: structure containing the new RT priority.
5261 * Just like sched_setscheduler, only don't bother checking if the
5262 * current context has permission. For example, this is needed in
5263 * stop_machine(): we create temporary high priority worker threads,
5264 * but our caller might not have that capability.
5266 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5267 struct sched_param
*param
)
5269 return __sched_setscheduler(p
, policy
, param
, false);
5273 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5275 struct sched_param lparam
;
5276 struct task_struct
*p
;
5279 if (!param
|| pid
< 0)
5281 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5286 p
= find_process_by_pid(pid
);
5288 retval
= sched_setscheduler(p
, policy
, &lparam
);
5295 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5296 * @pid: the pid in question.
5297 * @policy: new policy.
5298 * @param: structure containing the new RT priority.
5301 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5303 /* negative values for policy are not valid */
5307 return do_sched_setscheduler(pid
, policy
, param
);
5311 * sys_sched_setparam - set/change the RT priority of a thread
5312 * @pid: the pid in question.
5313 * @param: structure containing the new RT priority.
5315 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5317 return do_sched_setscheduler(pid
, -1, param
);
5321 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5322 * @pid: the pid in question.
5324 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5326 struct task_struct
*p
;
5333 read_lock(&tasklist_lock
);
5334 p
= find_process_by_pid(pid
);
5336 retval
= security_task_getscheduler(p
);
5340 read_unlock(&tasklist_lock
);
5345 * sys_sched_getscheduler - get the RT priority of a thread
5346 * @pid: the pid in question.
5347 * @param: structure containing the RT priority.
5349 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5351 struct sched_param lp
;
5352 struct task_struct
*p
;
5355 if (!param
|| pid
< 0)
5358 read_lock(&tasklist_lock
);
5359 p
= find_process_by_pid(pid
);
5364 retval
= security_task_getscheduler(p
);
5368 lp
.sched_priority
= p
->rt_priority
;
5369 read_unlock(&tasklist_lock
);
5372 * This one might sleep, we cannot do it with a spinlock held ...
5374 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5379 read_unlock(&tasklist_lock
);
5383 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5385 cpumask_t cpus_allowed
;
5386 cpumask_t new_mask
= *in_mask
;
5387 struct task_struct
*p
;
5391 read_lock(&tasklist_lock
);
5393 p
= find_process_by_pid(pid
);
5395 read_unlock(&tasklist_lock
);
5401 * It is not safe to call set_cpus_allowed with the
5402 * tasklist_lock held. We will bump the task_struct's
5403 * usage count and then drop tasklist_lock.
5406 read_unlock(&tasklist_lock
);
5409 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5410 !capable(CAP_SYS_NICE
))
5413 retval
= security_task_setscheduler(p
, 0, NULL
);
5417 cpuset_cpus_allowed(p
, &cpus_allowed
);
5418 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5420 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5423 cpuset_cpus_allowed(p
, &cpus_allowed
);
5424 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5426 * We must have raced with a concurrent cpuset
5427 * update. Just reset the cpus_allowed to the
5428 * cpuset's cpus_allowed
5430 new_mask
= cpus_allowed
;
5440 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5441 cpumask_t
*new_mask
)
5443 if (len
< sizeof(cpumask_t
)) {
5444 memset(new_mask
, 0, sizeof(cpumask_t
));
5445 } else if (len
> sizeof(cpumask_t
)) {
5446 len
= sizeof(cpumask_t
);
5448 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5452 * sys_sched_setaffinity - set the cpu affinity of a process
5453 * @pid: pid of the process
5454 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5455 * @user_mask_ptr: user-space pointer to the new cpu mask
5457 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5458 unsigned long __user
*user_mask_ptr
)
5463 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5467 return sched_setaffinity(pid
, &new_mask
);
5470 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5472 struct task_struct
*p
;
5476 read_lock(&tasklist_lock
);
5479 p
= find_process_by_pid(pid
);
5483 retval
= security_task_getscheduler(p
);
5487 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5490 read_unlock(&tasklist_lock
);
5497 * sys_sched_getaffinity - get the cpu affinity of a process
5498 * @pid: pid of the process
5499 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5500 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5502 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5503 unsigned long __user
*user_mask_ptr
)
5508 if (len
< sizeof(cpumask_t
))
5511 ret
= sched_getaffinity(pid
, &mask
);
5515 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5518 return sizeof(cpumask_t
);
5522 * sys_sched_yield - yield the current processor to other threads.
5524 * This function yields the current CPU to other tasks. If there are no
5525 * other threads running on this CPU then this function will return.
5527 asmlinkage
long sys_sched_yield(void)
5529 struct rq
*rq
= this_rq_lock();
5531 schedstat_inc(rq
, yld_count
);
5532 current
->sched_class
->yield_task(rq
);
5535 * Since we are going to call schedule() anyway, there's
5536 * no need to preempt or enable interrupts:
5538 __release(rq
->lock
);
5539 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5540 _raw_spin_unlock(&rq
->lock
);
5541 preempt_enable_no_resched();
5548 static void __cond_resched(void)
5550 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5551 __might_sleep(__FILE__
, __LINE__
);
5554 * The BKS might be reacquired before we have dropped
5555 * PREEMPT_ACTIVE, which could trigger a second
5556 * cond_resched() call.
5559 add_preempt_count(PREEMPT_ACTIVE
);
5561 sub_preempt_count(PREEMPT_ACTIVE
);
5562 } while (need_resched());
5565 int __sched
_cond_resched(void)
5567 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5568 system_state
== SYSTEM_RUNNING
) {
5574 EXPORT_SYMBOL(_cond_resched
);
5577 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5578 * call schedule, and on return reacquire the lock.
5580 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5581 * operations here to prevent schedule() from being called twice (once via
5582 * spin_unlock(), once by hand).
5584 int cond_resched_lock(spinlock_t
*lock
)
5586 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5589 if (spin_needbreak(lock
) || resched
) {
5591 if (resched
&& need_resched())
5600 EXPORT_SYMBOL(cond_resched_lock
);
5602 int __sched
cond_resched_softirq(void)
5604 BUG_ON(!in_softirq());
5606 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5614 EXPORT_SYMBOL(cond_resched_softirq
);
5617 * yield - yield the current processor to other threads.
5619 * This is a shortcut for kernel-space yielding - it marks the
5620 * thread runnable and calls sys_sched_yield().
5622 void __sched
yield(void)
5624 set_current_state(TASK_RUNNING
);
5627 EXPORT_SYMBOL(yield
);
5630 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5631 * that process accounting knows that this is a task in IO wait state.
5633 * But don't do that if it is a deliberate, throttling IO wait (this task
5634 * has set its backing_dev_info: the queue against which it should throttle)
5636 void __sched
io_schedule(void)
5638 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5640 delayacct_blkio_start();
5641 atomic_inc(&rq
->nr_iowait
);
5643 atomic_dec(&rq
->nr_iowait
);
5644 delayacct_blkio_end();
5646 EXPORT_SYMBOL(io_schedule
);
5648 long __sched
io_schedule_timeout(long timeout
)
5650 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5653 delayacct_blkio_start();
5654 atomic_inc(&rq
->nr_iowait
);
5655 ret
= schedule_timeout(timeout
);
5656 atomic_dec(&rq
->nr_iowait
);
5657 delayacct_blkio_end();
5662 * sys_sched_get_priority_max - return maximum RT priority.
5663 * @policy: scheduling class.
5665 * this syscall returns the maximum rt_priority that can be used
5666 * by a given scheduling class.
5668 asmlinkage
long sys_sched_get_priority_max(int policy
)
5675 ret
= MAX_USER_RT_PRIO
-1;
5687 * sys_sched_get_priority_min - return minimum RT priority.
5688 * @policy: scheduling class.
5690 * this syscall returns the minimum rt_priority that can be used
5691 * by a given scheduling class.
5693 asmlinkage
long sys_sched_get_priority_min(int policy
)
5711 * sys_sched_rr_get_interval - return the default timeslice of a process.
5712 * @pid: pid of the process.
5713 * @interval: userspace pointer to the timeslice value.
5715 * this syscall writes the default timeslice value of a given process
5716 * into the user-space timespec buffer. A value of '0' means infinity.
5719 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5721 struct task_struct
*p
;
5722 unsigned int time_slice
;
5730 read_lock(&tasklist_lock
);
5731 p
= find_process_by_pid(pid
);
5735 retval
= security_task_getscheduler(p
);
5740 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5741 * tasks that are on an otherwise idle runqueue:
5744 if (p
->policy
== SCHED_RR
) {
5745 time_slice
= DEF_TIMESLICE
;
5746 } else if (p
->policy
!= SCHED_FIFO
) {
5747 struct sched_entity
*se
= &p
->se
;
5748 unsigned long flags
;
5751 rq
= task_rq_lock(p
, &flags
);
5752 if (rq
->cfs
.load
.weight
)
5753 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5754 task_rq_unlock(rq
, &flags
);
5756 read_unlock(&tasklist_lock
);
5757 jiffies_to_timespec(time_slice
, &t
);
5758 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5762 read_unlock(&tasklist_lock
);
5766 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5768 void sched_show_task(struct task_struct
*p
)
5770 unsigned long free
= 0;
5773 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5774 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5775 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5776 #if BITS_PER_LONG == 32
5777 if (state
== TASK_RUNNING
)
5778 printk(KERN_CONT
" running ");
5780 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5782 if (state
== TASK_RUNNING
)
5783 printk(KERN_CONT
" running task ");
5785 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5787 #ifdef CONFIG_DEBUG_STACK_USAGE
5789 unsigned long *n
= end_of_stack(p
);
5792 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5795 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5796 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5798 show_stack(p
, NULL
);
5801 void show_state_filter(unsigned long state_filter
)
5803 struct task_struct
*g
, *p
;
5805 #if BITS_PER_LONG == 32
5807 " task PC stack pid father\n");
5810 " task PC stack pid father\n");
5812 read_lock(&tasklist_lock
);
5813 do_each_thread(g
, p
) {
5815 * reset the NMI-timeout, listing all files on a slow
5816 * console might take alot of time:
5818 touch_nmi_watchdog();
5819 if (!state_filter
|| (p
->state
& state_filter
))
5821 } while_each_thread(g
, p
);
5823 touch_all_softlockup_watchdogs();
5825 #ifdef CONFIG_SCHED_DEBUG
5826 sysrq_sched_debug_show();
5828 read_unlock(&tasklist_lock
);
5830 * Only show locks if all tasks are dumped:
5832 if (state_filter
== -1)
5833 debug_show_all_locks();
5836 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5838 idle
->sched_class
= &idle_sched_class
;
5842 * init_idle - set up an idle thread for a given CPU
5843 * @idle: task in question
5844 * @cpu: cpu the idle task belongs to
5846 * NOTE: this function does not set the idle thread's NEED_RESCHED
5847 * flag, to make booting more robust.
5849 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5851 struct rq
*rq
= cpu_rq(cpu
);
5852 unsigned long flags
;
5855 idle
->se
.exec_start
= sched_clock();
5857 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5858 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5859 __set_task_cpu(idle
, cpu
);
5861 spin_lock_irqsave(&rq
->lock
, flags
);
5862 rq
->curr
= rq
->idle
= idle
;
5863 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5866 spin_unlock_irqrestore(&rq
->lock
, flags
);
5868 /* Set the preempt count _outside_ the spinlocks! */
5869 #if defined(CONFIG_PREEMPT)
5870 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5872 task_thread_info(idle
)->preempt_count
= 0;
5875 * The idle tasks have their own, simple scheduling class:
5877 idle
->sched_class
= &idle_sched_class
;
5881 * In a system that switches off the HZ timer nohz_cpu_mask
5882 * indicates which cpus entered this state. This is used
5883 * in the rcu update to wait only for active cpus. For system
5884 * which do not switch off the HZ timer nohz_cpu_mask should
5885 * always be CPU_MASK_NONE.
5887 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5890 * Increase the granularity value when there are more CPUs,
5891 * because with more CPUs the 'effective latency' as visible
5892 * to users decreases. But the relationship is not linear,
5893 * so pick a second-best guess by going with the log2 of the
5896 * This idea comes from the SD scheduler of Con Kolivas:
5898 static inline void sched_init_granularity(void)
5900 unsigned int factor
= 1 + ilog2(num_online_cpus());
5901 const unsigned long limit
= 200000000;
5903 sysctl_sched_min_granularity
*= factor
;
5904 if (sysctl_sched_min_granularity
> limit
)
5905 sysctl_sched_min_granularity
= limit
;
5907 sysctl_sched_latency
*= factor
;
5908 if (sysctl_sched_latency
> limit
)
5909 sysctl_sched_latency
= limit
;
5911 sysctl_sched_wakeup_granularity
*= factor
;
5913 sysctl_sched_shares_ratelimit
*= factor
;
5918 * This is how migration works:
5920 * 1) we queue a struct migration_req structure in the source CPU's
5921 * runqueue and wake up that CPU's migration thread.
5922 * 2) we down() the locked semaphore => thread blocks.
5923 * 3) migration thread wakes up (implicitly it forces the migrated
5924 * thread off the CPU)
5925 * 4) it gets the migration request and checks whether the migrated
5926 * task is still in the wrong runqueue.
5927 * 5) if it's in the wrong runqueue then the migration thread removes
5928 * it and puts it into the right queue.
5929 * 6) migration thread up()s the semaphore.
5930 * 7) we wake up and the migration is done.
5934 * Change a given task's CPU affinity. Migrate the thread to a
5935 * proper CPU and schedule it away if the CPU it's executing on
5936 * is removed from the allowed bitmask.
5938 * NOTE: the caller must have a valid reference to the task, the
5939 * task must not exit() & deallocate itself prematurely. The
5940 * call is not atomic; no spinlocks may be held.
5942 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5944 struct migration_req req
;
5945 unsigned long flags
;
5949 rq
= task_rq_lock(p
, &flags
);
5950 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5955 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5956 !cpus_equal(p
->cpus_allowed
, *new_mask
))) {
5961 if (p
->sched_class
->set_cpus_allowed
)
5962 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5964 p
->cpus_allowed
= *new_mask
;
5965 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5968 /* Can the task run on the task's current CPU? If so, we're done */
5969 if (cpu_isset(task_cpu(p
), *new_mask
))
5972 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5973 /* Need help from migration thread: drop lock and wait. */
5974 task_rq_unlock(rq
, &flags
);
5975 wake_up_process(rq
->migration_thread
);
5976 wait_for_completion(&req
.done
);
5977 tlb_migrate_finish(p
->mm
);
5981 task_rq_unlock(rq
, &flags
);
5985 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5988 * Move (not current) task off this cpu, onto dest cpu. We're doing
5989 * this because either it can't run here any more (set_cpus_allowed()
5990 * away from this CPU, or CPU going down), or because we're
5991 * attempting to rebalance this task on exec (sched_exec).
5993 * So we race with normal scheduler movements, but that's OK, as long
5994 * as the task is no longer on this CPU.
5996 * Returns non-zero if task was successfully migrated.
5998 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6000 struct rq
*rq_dest
, *rq_src
;
6003 if (unlikely(!cpu_active(dest_cpu
)))
6006 rq_src
= cpu_rq(src_cpu
);
6007 rq_dest
= cpu_rq(dest_cpu
);
6009 double_rq_lock(rq_src
, rq_dest
);
6010 /* Already moved. */
6011 if (task_cpu(p
) != src_cpu
)
6013 /* Affinity changed (again). */
6014 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
6017 on_rq
= p
->se
.on_rq
;
6019 deactivate_task(rq_src
, p
, 0);
6021 set_task_cpu(p
, dest_cpu
);
6023 activate_task(rq_dest
, p
, 0);
6024 check_preempt_curr(rq_dest
, p
, 0);
6029 double_rq_unlock(rq_src
, rq_dest
);
6034 * migration_thread - this is a highprio system thread that performs
6035 * thread migration by bumping thread off CPU then 'pushing' onto
6038 static int migration_thread(void *data
)
6040 int cpu
= (long)data
;
6044 BUG_ON(rq
->migration_thread
!= current
);
6046 set_current_state(TASK_INTERRUPTIBLE
);
6047 while (!kthread_should_stop()) {
6048 struct migration_req
*req
;
6049 struct list_head
*head
;
6051 spin_lock_irq(&rq
->lock
);
6053 if (cpu_is_offline(cpu
)) {
6054 spin_unlock_irq(&rq
->lock
);
6058 if (rq
->active_balance
) {
6059 active_load_balance(rq
, cpu
);
6060 rq
->active_balance
= 0;
6063 head
= &rq
->migration_queue
;
6065 if (list_empty(head
)) {
6066 spin_unlock_irq(&rq
->lock
);
6068 set_current_state(TASK_INTERRUPTIBLE
);
6071 req
= list_entry(head
->next
, struct migration_req
, list
);
6072 list_del_init(head
->next
);
6074 spin_unlock(&rq
->lock
);
6075 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6078 complete(&req
->done
);
6080 __set_current_state(TASK_RUNNING
);
6084 /* Wait for kthread_stop */
6085 set_current_state(TASK_INTERRUPTIBLE
);
6086 while (!kthread_should_stop()) {
6088 set_current_state(TASK_INTERRUPTIBLE
);
6090 __set_current_state(TASK_RUNNING
);
6094 #ifdef CONFIG_HOTPLUG_CPU
6096 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6100 local_irq_disable();
6101 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6107 * Figure out where task on dead CPU should go, use force if necessary.
6108 * NOTE: interrupts should be disabled by the caller
6110 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6112 unsigned long flags
;
6119 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
6120 cpus_and(mask
, mask
, p
->cpus_allowed
);
6121 dest_cpu
= any_online_cpu(mask
);
6123 /* On any allowed CPU? */
6124 if (dest_cpu
>= nr_cpu_ids
)
6125 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6127 /* No more Mr. Nice Guy. */
6128 if (dest_cpu
>= nr_cpu_ids
) {
6129 cpumask_t cpus_allowed
;
6131 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
6133 * Try to stay on the same cpuset, where the
6134 * current cpuset may be a subset of all cpus.
6135 * The cpuset_cpus_allowed_locked() variant of
6136 * cpuset_cpus_allowed() will not block. It must be
6137 * called within calls to cpuset_lock/cpuset_unlock.
6139 rq
= task_rq_lock(p
, &flags
);
6140 p
->cpus_allowed
= cpus_allowed
;
6141 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6142 task_rq_unlock(rq
, &flags
);
6145 * Don't tell them about moving exiting tasks or
6146 * kernel threads (both mm NULL), since they never
6149 if (p
->mm
&& printk_ratelimit()) {
6150 printk(KERN_INFO
"process %d (%s) no "
6151 "longer affine to cpu%d\n",
6152 task_pid_nr(p
), p
->comm
, dead_cpu
);
6155 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
6159 * While a dead CPU has no uninterruptible tasks queued at this point,
6160 * it might still have a nonzero ->nr_uninterruptible counter, because
6161 * for performance reasons the counter is not stricly tracking tasks to
6162 * their home CPUs. So we just add the counter to another CPU's counter,
6163 * to keep the global sum constant after CPU-down:
6165 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6167 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
6168 unsigned long flags
;
6170 local_irq_save(flags
);
6171 double_rq_lock(rq_src
, rq_dest
);
6172 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6173 rq_src
->nr_uninterruptible
= 0;
6174 double_rq_unlock(rq_src
, rq_dest
);
6175 local_irq_restore(flags
);
6178 /* Run through task list and migrate tasks from the dead cpu. */
6179 static void migrate_live_tasks(int src_cpu
)
6181 struct task_struct
*p
, *t
;
6183 read_lock(&tasklist_lock
);
6185 do_each_thread(t
, p
) {
6189 if (task_cpu(p
) == src_cpu
)
6190 move_task_off_dead_cpu(src_cpu
, p
);
6191 } while_each_thread(t
, p
);
6193 read_unlock(&tasklist_lock
);
6197 * Schedules idle task to be the next runnable task on current CPU.
6198 * It does so by boosting its priority to highest possible.
6199 * Used by CPU offline code.
6201 void sched_idle_next(void)
6203 int this_cpu
= smp_processor_id();
6204 struct rq
*rq
= cpu_rq(this_cpu
);
6205 struct task_struct
*p
= rq
->idle
;
6206 unsigned long flags
;
6208 /* cpu has to be offline */
6209 BUG_ON(cpu_online(this_cpu
));
6212 * Strictly not necessary since rest of the CPUs are stopped by now
6213 * and interrupts disabled on the current cpu.
6215 spin_lock_irqsave(&rq
->lock
, flags
);
6217 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6219 update_rq_clock(rq
);
6220 activate_task(rq
, p
, 0);
6222 spin_unlock_irqrestore(&rq
->lock
, flags
);
6226 * Ensures that the idle task is using init_mm right before its cpu goes
6229 void idle_task_exit(void)
6231 struct mm_struct
*mm
= current
->active_mm
;
6233 BUG_ON(cpu_online(smp_processor_id()));
6236 switch_mm(mm
, &init_mm
, current
);
6240 /* called under rq->lock with disabled interrupts */
6241 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6243 struct rq
*rq
= cpu_rq(dead_cpu
);
6245 /* Must be exiting, otherwise would be on tasklist. */
6246 BUG_ON(!p
->exit_state
);
6248 /* Cannot have done final schedule yet: would have vanished. */
6249 BUG_ON(p
->state
== TASK_DEAD
);
6254 * Drop lock around migration; if someone else moves it,
6255 * that's OK. No task can be added to this CPU, so iteration is
6258 spin_unlock_irq(&rq
->lock
);
6259 move_task_off_dead_cpu(dead_cpu
, p
);
6260 spin_lock_irq(&rq
->lock
);
6265 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6266 static void migrate_dead_tasks(unsigned int dead_cpu
)
6268 struct rq
*rq
= cpu_rq(dead_cpu
);
6269 struct task_struct
*next
;
6272 if (!rq
->nr_running
)
6274 update_rq_clock(rq
);
6275 next
= pick_next_task(rq
, rq
->curr
);
6278 next
->sched_class
->put_prev_task(rq
, next
);
6279 migrate_dead(dead_cpu
, next
);
6283 #endif /* CONFIG_HOTPLUG_CPU */
6285 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6287 static struct ctl_table sd_ctl_dir
[] = {
6289 .procname
= "sched_domain",
6295 static struct ctl_table sd_ctl_root
[] = {
6297 .ctl_name
= CTL_KERN
,
6298 .procname
= "kernel",
6300 .child
= sd_ctl_dir
,
6305 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6307 struct ctl_table
*entry
=
6308 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6313 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6315 struct ctl_table
*entry
;
6318 * In the intermediate directories, both the child directory and
6319 * procname are dynamically allocated and could fail but the mode
6320 * will always be set. In the lowest directory the names are
6321 * static strings and all have proc handlers.
6323 for (entry
= *tablep
; entry
->mode
; entry
++) {
6325 sd_free_ctl_entry(&entry
->child
);
6326 if (entry
->proc_handler
== NULL
)
6327 kfree(entry
->procname
);
6335 set_table_entry(struct ctl_table
*entry
,
6336 const char *procname
, void *data
, int maxlen
,
6337 mode_t mode
, proc_handler
*proc_handler
)
6339 entry
->procname
= procname
;
6341 entry
->maxlen
= maxlen
;
6343 entry
->proc_handler
= proc_handler
;
6346 static struct ctl_table
*
6347 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6349 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6354 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6355 sizeof(long), 0644, proc_doulongvec_minmax
);
6356 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6357 sizeof(long), 0644, proc_doulongvec_minmax
);
6358 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6359 sizeof(int), 0644, proc_dointvec_minmax
);
6360 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6361 sizeof(int), 0644, proc_dointvec_minmax
);
6362 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6363 sizeof(int), 0644, proc_dointvec_minmax
);
6364 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6365 sizeof(int), 0644, proc_dointvec_minmax
);
6366 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6367 sizeof(int), 0644, proc_dointvec_minmax
);
6368 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6369 sizeof(int), 0644, proc_dointvec_minmax
);
6370 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6371 sizeof(int), 0644, proc_dointvec_minmax
);
6372 set_table_entry(&table
[9], "cache_nice_tries",
6373 &sd
->cache_nice_tries
,
6374 sizeof(int), 0644, proc_dointvec_minmax
);
6375 set_table_entry(&table
[10], "flags", &sd
->flags
,
6376 sizeof(int), 0644, proc_dointvec_minmax
);
6377 set_table_entry(&table
[11], "name", sd
->name
,
6378 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6379 /* &table[12] is terminator */
6384 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6386 struct ctl_table
*entry
, *table
;
6387 struct sched_domain
*sd
;
6388 int domain_num
= 0, i
;
6391 for_each_domain(cpu
, sd
)
6393 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6398 for_each_domain(cpu
, sd
) {
6399 snprintf(buf
, 32, "domain%d", i
);
6400 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6402 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6409 static struct ctl_table_header
*sd_sysctl_header
;
6410 static void register_sched_domain_sysctl(void)
6412 int i
, cpu_num
= num_online_cpus();
6413 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6416 WARN_ON(sd_ctl_dir
[0].child
);
6417 sd_ctl_dir
[0].child
= entry
;
6422 for_each_online_cpu(i
) {
6423 snprintf(buf
, 32, "cpu%d", i
);
6424 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6426 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6430 WARN_ON(sd_sysctl_header
);
6431 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6434 /* may be called multiple times per register */
6435 static void unregister_sched_domain_sysctl(void)
6437 if (sd_sysctl_header
)
6438 unregister_sysctl_table(sd_sysctl_header
);
6439 sd_sysctl_header
= NULL
;
6440 if (sd_ctl_dir
[0].child
)
6441 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6444 static void register_sched_domain_sysctl(void)
6447 static void unregister_sched_domain_sysctl(void)
6452 static void set_rq_online(struct rq
*rq
)
6455 const struct sched_class
*class;
6457 cpu_set(rq
->cpu
, rq
->rd
->online
);
6460 for_each_class(class) {
6461 if (class->rq_online
)
6462 class->rq_online(rq
);
6467 static void set_rq_offline(struct rq
*rq
)
6470 const struct sched_class
*class;
6472 for_each_class(class) {
6473 if (class->rq_offline
)
6474 class->rq_offline(rq
);
6477 cpu_clear(rq
->cpu
, rq
->rd
->online
);
6483 * migration_call - callback that gets triggered when a CPU is added.
6484 * Here we can start up the necessary migration thread for the new CPU.
6486 static int __cpuinit
6487 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6489 struct task_struct
*p
;
6490 int cpu
= (long)hcpu
;
6491 unsigned long flags
;
6496 case CPU_UP_PREPARE
:
6497 case CPU_UP_PREPARE_FROZEN
:
6498 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6501 kthread_bind(p
, cpu
);
6502 /* Must be high prio: stop_machine expects to yield to it. */
6503 rq
= task_rq_lock(p
, &flags
);
6504 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6505 task_rq_unlock(rq
, &flags
);
6506 cpu_rq(cpu
)->migration_thread
= p
;
6510 case CPU_ONLINE_FROZEN
:
6511 /* Strictly unnecessary, as first user will wake it. */
6512 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6514 /* Update our root-domain */
6516 spin_lock_irqsave(&rq
->lock
, flags
);
6518 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6522 spin_unlock_irqrestore(&rq
->lock
, flags
);
6525 #ifdef CONFIG_HOTPLUG_CPU
6526 case CPU_UP_CANCELED
:
6527 case CPU_UP_CANCELED_FROZEN
:
6528 if (!cpu_rq(cpu
)->migration_thread
)
6530 /* Unbind it from offline cpu so it can run. Fall thru. */
6531 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6532 any_online_cpu(cpu_online_map
));
6533 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6534 cpu_rq(cpu
)->migration_thread
= NULL
;
6538 case CPU_DEAD_FROZEN
:
6539 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6540 migrate_live_tasks(cpu
);
6542 kthread_stop(rq
->migration_thread
);
6543 rq
->migration_thread
= NULL
;
6544 /* Idle task back to normal (off runqueue, low prio) */
6545 spin_lock_irq(&rq
->lock
);
6546 update_rq_clock(rq
);
6547 deactivate_task(rq
, rq
->idle
, 0);
6548 rq
->idle
->static_prio
= MAX_PRIO
;
6549 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6550 rq
->idle
->sched_class
= &idle_sched_class
;
6551 migrate_dead_tasks(cpu
);
6552 spin_unlock_irq(&rq
->lock
);
6554 migrate_nr_uninterruptible(rq
);
6555 BUG_ON(rq
->nr_running
!= 0);
6558 * No need to migrate the tasks: it was best-effort if
6559 * they didn't take sched_hotcpu_mutex. Just wake up
6562 spin_lock_irq(&rq
->lock
);
6563 while (!list_empty(&rq
->migration_queue
)) {
6564 struct migration_req
*req
;
6566 req
= list_entry(rq
->migration_queue
.next
,
6567 struct migration_req
, list
);
6568 list_del_init(&req
->list
);
6569 complete(&req
->done
);
6571 spin_unlock_irq(&rq
->lock
);
6575 case CPU_DYING_FROZEN
:
6576 /* Update our root-domain */
6578 spin_lock_irqsave(&rq
->lock
, flags
);
6580 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6583 spin_unlock_irqrestore(&rq
->lock
, flags
);
6590 /* Register at highest priority so that task migration (migrate_all_tasks)
6591 * happens before everything else.
6593 static struct notifier_block __cpuinitdata migration_notifier
= {
6594 .notifier_call
= migration_call
,
6598 static int __init
migration_init(void)
6600 void *cpu
= (void *)(long)smp_processor_id();
6603 /* Start one for the boot CPU: */
6604 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6605 BUG_ON(err
== NOTIFY_BAD
);
6606 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6607 register_cpu_notifier(&migration_notifier
);
6611 early_initcall(migration_init
);
6616 #ifdef CONFIG_SCHED_DEBUG
6618 static inline const char *sd_level_to_string(enum sched_domain_level lvl
)
6631 case SD_LV_ALLNODES
:
6640 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6641 cpumask_t
*groupmask
)
6643 struct sched_group
*group
= sd
->groups
;
6646 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6647 cpus_clear(*groupmask
);
6649 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6651 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6652 printk("does not load-balance\n");
6654 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6659 printk(KERN_CONT
"span %s level %s\n",
6660 str
, sd_level_to_string(sd
->level
));
6662 if (!cpu_isset(cpu
, sd
->span
)) {
6663 printk(KERN_ERR
"ERROR: domain->span does not contain "
6666 if (!cpu_isset(cpu
, group
->cpumask
)) {
6667 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6671 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6675 printk(KERN_ERR
"ERROR: group is NULL\n");
6679 if (!group
->__cpu_power
) {
6680 printk(KERN_CONT
"\n");
6681 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6686 if (!cpus_weight(group
->cpumask
)) {
6687 printk(KERN_CONT
"\n");
6688 printk(KERN_ERR
"ERROR: empty group\n");
6692 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6693 printk(KERN_CONT
"\n");
6694 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6698 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6700 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6701 printk(KERN_CONT
" %s", str
);
6703 group
= group
->next
;
6704 } while (group
!= sd
->groups
);
6705 printk(KERN_CONT
"\n");
6707 if (!cpus_equal(sd
->span
, *groupmask
))
6708 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6710 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6711 printk(KERN_ERR
"ERROR: parent span is not a superset "
6712 "of domain->span\n");
6716 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6718 cpumask_t
*groupmask
;
6722 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6726 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6728 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6730 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6735 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6744 #else /* !CONFIG_SCHED_DEBUG */
6745 # define sched_domain_debug(sd, cpu) do { } while (0)
6746 #endif /* CONFIG_SCHED_DEBUG */
6748 static int sd_degenerate(struct sched_domain
*sd
)
6750 if (cpus_weight(sd
->span
) == 1)
6753 /* Following flags need at least 2 groups */
6754 if (sd
->flags
& (SD_LOAD_BALANCE
|
6755 SD_BALANCE_NEWIDLE
|
6759 SD_SHARE_PKG_RESOURCES
)) {
6760 if (sd
->groups
!= sd
->groups
->next
)
6764 /* Following flags don't use groups */
6765 if (sd
->flags
& (SD_WAKE_IDLE
|
6774 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6776 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6778 if (sd_degenerate(parent
))
6781 if (!cpus_equal(sd
->span
, parent
->span
))
6784 /* Does parent contain flags not in child? */
6785 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6786 if (cflags
& SD_WAKE_AFFINE
)
6787 pflags
&= ~SD_WAKE_BALANCE
;
6788 /* Flags needing groups don't count if only 1 group in parent */
6789 if (parent
->groups
== parent
->groups
->next
) {
6790 pflags
&= ~(SD_LOAD_BALANCE
|
6791 SD_BALANCE_NEWIDLE
|
6795 SD_SHARE_PKG_RESOURCES
);
6797 if (~cflags
& pflags
)
6803 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6805 unsigned long flags
;
6807 spin_lock_irqsave(&rq
->lock
, flags
);
6810 struct root_domain
*old_rd
= rq
->rd
;
6812 if (cpu_isset(rq
->cpu
, old_rd
->online
))
6815 cpu_clear(rq
->cpu
, old_rd
->span
);
6817 if (atomic_dec_and_test(&old_rd
->refcount
))
6821 atomic_inc(&rd
->refcount
);
6824 cpu_set(rq
->cpu
, rd
->span
);
6825 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6828 spin_unlock_irqrestore(&rq
->lock
, flags
);
6831 static void init_rootdomain(struct root_domain
*rd
)
6833 memset(rd
, 0, sizeof(*rd
));
6835 cpus_clear(rd
->span
);
6836 cpus_clear(rd
->online
);
6838 cpupri_init(&rd
->cpupri
);
6841 static void init_defrootdomain(void)
6843 init_rootdomain(&def_root_domain
);
6844 atomic_set(&def_root_domain
.refcount
, 1);
6847 static struct root_domain
*alloc_rootdomain(void)
6849 struct root_domain
*rd
;
6851 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6855 init_rootdomain(rd
);
6861 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6862 * hold the hotplug lock.
6865 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6867 struct rq
*rq
= cpu_rq(cpu
);
6868 struct sched_domain
*tmp
;
6870 /* Remove the sched domains which do not contribute to scheduling. */
6871 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6872 struct sched_domain
*parent
= tmp
->parent
;
6875 if (sd_parent_degenerate(tmp
, parent
)) {
6876 tmp
->parent
= parent
->parent
;
6878 parent
->parent
->child
= tmp
;
6882 if (sd
&& sd_degenerate(sd
)) {
6888 sched_domain_debug(sd
, cpu
);
6890 rq_attach_root(rq
, rd
);
6891 rcu_assign_pointer(rq
->sd
, sd
);
6894 /* cpus with isolated domains */
6895 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6897 /* Setup the mask of cpus configured for isolated domains */
6898 static int __init
isolated_cpu_setup(char *str
)
6900 static int __initdata ints
[NR_CPUS
];
6903 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6904 cpus_clear(cpu_isolated_map
);
6905 for (i
= 1; i
<= ints
[0]; i
++)
6906 if (ints
[i
] < NR_CPUS
)
6907 cpu_set(ints
[i
], cpu_isolated_map
);
6911 __setup("isolcpus=", isolated_cpu_setup
);
6914 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6915 * to a function which identifies what group(along with sched group) a CPU
6916 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6917 * (due to the fact that we keep track of groups covered with a cpumask_t).
6919 * init_sched_build_groups will build a circular linked list of the groups
6920 * covered by the given span, and will set each group's ->cpumask correctly,
6921 * and ->cpu_power to 0.
6924 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6925 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6926 struct sched_group
**sg
,
6927 cpumask_t
*tmpmask
),
6928 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6930 struct sched_group
*first
= NULL
, *last
= NULL
;
6933 cpus_clear(*covered
);
6935 for_each_cpu_mask_nr(i
, *span
) {
6936 struct sched_group
*sg
;
6937 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6940 if (cpu_isset(i
, *covered
))
6943 cpus_clear(sg
->cpumask
);
6944 sg
->__cpu_power
= 0;
6946 for_each_cpu_mask_nr(j
, *span
) {
6947 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6950 cpu_set(j
, *covered
);
6951 cpu_set(j
, sg
->cpumask
);
6962 #define SD_NODES_PER_DOMAIN 16
6967 * find_next_best_node - find the next node to include in a sched_domain
6968 * @node: node whose sched_domain we're building
6969 * @used_nodes: nodes already in the sched_domain
6971 * Find the next node to include in a given scheduling domain. Simply
6972 * finds the closest node not already in the @used_nodes map.
6974 * Should use nodemask_t.
6976 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6978 int i
, n
, val
, min_val
, best_node
= 0;
6982 for (i
= 0; i
< nr_node_ids
; i
++) {
6983 /* Start at @node */
6984 n
= (node
+ i
) % nr_node_ids
;
6986 if (!nr_cpus_node(n
))
6989 /* Skip already used nodes */
6990 if (node_isset(n
, *used_nodes
))
6993 /* Simple min distance search */
6994 val
= node_distance(node
, n
);
6996 if (val
< min_val
) {
7002 node_set(best_node
, *used_nodes
);
7007 * sched_domain_node_span - get a cpumask for a node's sched_domain
7008 * @node: node whose cpumask we're constructing
7009 * @span: resulting cpumask
7011 * Given a node, construct a good cpumask for its sched_domain to span. It
7012 * should be one that prevents unnecessary balancing, but also spreads tasks
7015 static void sched_domain_node_span(int node
, cpumask_t
*span
)
7017 nodemask_t used_nodes
;
7018 node_to_cpumask_ptr(nodemask
, node
);
7022 nodes_clear(used_nodes
);
7024 cpus_or(*span
, *span
, *nodemask
);
7025 node_set(node
, used_nodes
);
7027 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7028 int next_node
= find_next_best_node(node
, &used_nodes
);
7030 node_to_cpumask_ptr_next(nodemask
, next_node
);
7031 cpus_or(*span
, *span
, *nodemask
);
7034 #endif /* CONFIG_NUMA */
7036 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7039 * SMT sched-domains:
7041 #ifdef CONFIG_SCHED_SMT
7042 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
7043 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
7046 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7050 *sg
= &per_cpu(sched_group_cpus
, cpu
);
7053 #endif /* CONFIG_SCHED_SMT */
7056 * multi-core sched-domains:
7058 #ifdef CONFIG_SCHED_MC
7059 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
7060 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
7061 #endif /* CONFIG_SCHED_MC */
7063 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7065 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7070 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7071 cpus_and(*mask
, *mask
, *cpu_map
);
7072 group
= first_cpu(*mask
);
7074 *sg
= &per_cpu(sched_group_core
, group
);
7077 #elif defined(CONFIG_SCHED_MC)
7079 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7083 *sg
= &per_cpu(sched_group_core
, cpu
);
7088 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
7089 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
7092 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7096 #ifdef CONFIG_SCHED_MC
7097 *mask
= cpu_coregroup_map(cpu
);
7098 cpus_and(*mask
, *mask
, *cpu_map
);
7099 group
= first_cpu(*mask
);
7100 #elif defined(CONFIG_SCHED_SMT)
7101 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7102 cpus_and(*mask
, *mask
, *cpu_map
);
7103 group
= first_cpu(*mask
);
7108 *sg
= &per_cpu(sched_group_phys
, group
);
7114 * The init_sched_build_groups can't handle what we want to do with node
7115 * groups, so roll our own. Now each node has its own list of groups which
7116 * gets dynamically allocated.
7118 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7119 static struct sched_group
***sched_group_nodes_bycpu
;
7121 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7122 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
7124 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
7125 struct sched_group
**sg
, cpumask_t
*nodemask
)
7129 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
7130 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7131 group
= first_cpu(*nodemask
);
7134 *sg
= &per_cpu(sched_group_allnodes
, group
);
7138 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7140 struct sched_group
*sg
= group_head
;
7146 for_each_cpu_mask_nr(j
, sg
->cpumask
) {
7147 struct sched_domain
*sd
;
7149 sd
= &per_cpu(phys_domains
, j
);
7150 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
7152 * Only add "power" once for each
7158 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7161 } while (sg
!= group_head
);
7163 #endif /* CONFIG_NUMA */
7166 /* Free memory allocated for various sched_group structures */
7167 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7171 for_each_cpu_mask_nr(cpu
, *cpu_map
) {
7172 struct sched_group
**sched_group_nodes
7173 = sched_group_nodes_bycpu
[cpu
];
7175 if (!sched_group_nodes
)
7178 for (i
= 0; i
< nr_node_ids
; i
++) {
7179 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7181 *nodemask
= node_to_cpumask(i
);
7182 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7183 if (cpus_empty(*nodemask
))
7193 if (oldsg
!= sched_group_nodes
[i
])
7196 kfree(sched_group_nodes
);
7197 sched_group_nodes_bycpu
[cpu
] = NULL
;
7200 #else /* !CONFIG_NUMA */
7201 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7204 #endif /* CONFIG_NUMA */
7207 * Initialize sched groups cpu_power.
7209 * cpu_power indicates the capacity of sched group, which is used while
7210 * distributing the load between different sched groups in a sched domain.
7211 * Typically cpu_power for all the groups in a sched domain will be same unless
7212 * there are asymmetries in the topology. If there are asymmetries, group
7213 * having more cpu_power will pickup more load compared to the group having
7216 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7217 * the maximum number of tasks a group can handle in the presence of other idle
7218 * or lightly loaded groups in the same sched domain.
7220 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7222 struct sched_domain
*child
;
7223 struct sched_group
*group
;
7225 WARN_ON(!sd
|| !sd
->groups
);
7227 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7232 sd
->groups
->__cpu_power
= 0;
7235 * For perf policy, if the groups in child domain share resources
7236 * (for example cores sharing some portions of the cache hierarchy
7237 * or SMT), then set this domain groups cpu_power such that each group
7238 * can handle only one task, when there are other idle groups in the
7239 * same sched domain.
7241 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7243 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7244 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7249 * add cpu_power of each child group to this groups cpu_power
7251 group
= child
->groups
;
7253 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7254 group
= group
->next
;
7255 } while (group
!= child
->groups
);
7259 * Initializers for schedule domains
7260 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7263 #ifdef CONFIG_SCHED_DEBUG
7264 # define SD_INIT_NAME(sd, type) sd->name = #type
7266 # define SD_INIT_NAME(sd, type) do { } while (0)
7269 #define SD_INIT(sd, type) sd_init_##type(sd)
7271 #define SD_INIT_FUNC(type) \
7272 static noinline void sd_init_##type(struct sched_domain *sd) \
7274 memset(sd, 0, sizeof(*sd)); \
7275 *sd = SD_##type##_INIT; \
7276 sd->level = SD_LV_##type; \
7277 SD_INIT_NAME(sd, type); \
7282 SD_INIT_FUNC(ALLNODES
)
7285 #ifdef CONFIG_SCHED_SMT
7286 SD_INIT_FUNC(SIBLING
)
7288 #ifdef CONFIG_SCHED_MC
7293 * To minimize stack usage kmalloc room for cpumasks and share the
7294 * space as the usage in build_sched_domains() dictates. Used only
7295 * if the amount of space is significant.
7298 cpumask_t tmpmask
; /* make this one first */
7301 cpumask_t this_sibling_map
;
7302 cpumask_t this_core_map
;
7304 cpumask_t send_covered
;
7307 cpumask_t domainspan
;
7309 cpumask_t notcovered
;
7314 #define SCHED_CPUMASK_ALLOC 1
7315 #define SCHED_CPUMASK_FREE(v) kfree(v)
7316 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7318 #define SCHED_CPUMASK_ALLOC 0
7319 #define SCHED_CPUMASK_FREE(v)
7320 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7323 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7324 ((unsigned long)(a) + offsetof(struct allmasks, v))
7326 static int default_relax_domain_level
= -1;
7328 static int __init
setup_relax_domain_level(char *str
)
7332 val
= simple_strtoul(str
, NULL
, 0);
7333 if (val
< SD_LV_MAX
)
7334 default_relax_domain_level
= val
;
7338 __setup("relax_domain_level=", setup_relax_domain_level
);
7340 static void set_domain_attribute(struct sched_domain
*sd
,
7341 struct sched_domain_attr
*attr
)
7345 if (!attr
|| attr
->relax_domain_level
< 0) {
7346 if (default_relax_domain_level
< 0)
7349 request
= default_relax_domain_level
;
7351 request
= attr
->relax_domain_level
;
7352 if (request
< sd
->level
) {
7353 /* turn off idle balance on this domain */
7354 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7356 /* turn on idle balance on this domain */
7357 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7362 * Build sched domains for a given set of cpus and attach the sched domains
7363 * to the individual cpus
7365 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7366 struct sched_domain_attr
*attr
)
7369 struct root_domain
*rd
;
7370 SCHED_CPUMASK_DECLARE(allmasks
);
7373 struct sched_group
**sched_group_nodes
= NULL
;
7374 int sd_allnodes
= 0;
7377 * Allocate the per-node list of sched groups
7379 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7381 if (!sched_group_nodes
) {
7382 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7387 rd
= alloc_rootdomain();
7389 printk(KERN_WARNING
"Cannot alloc root domain\n");
7391 kfree(sched_group_nodes
);
7396 #if SCHED_CPUMASK_ALLOC
7397 /* get space for all scratch cpumask variables */
7398 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
7400 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7403 kfree(sched_group_nodes
);
7408 tmpmask
= (cpumask_t
*)allmasks
;
7412 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7416 * Set up domains for cpus specified by the cpu_map.
7418 for_each_cpu_mask_nr(i
, *cpu_map
) {
7419 struct sched_domain
*sd
= NULL
, *p
;
7420 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7422 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7423 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7426 if (cpus_weight(*cpu_map
) >
7427 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7428 sd
= &per_cpu(allnodes_domains
, i
);
7429 SD_INIT(sd
, ALLNODES
);
7430 set_domain_attribute(sd
, attr
);
7431 sd
->span
= *cpu_map
;
7432 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7438 sd
= &per_cpu(node_domains
, i
);
7440 set_domain_attribute(sd
, attr
);
7441 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7445 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7449 sd
= &per_cpu(phys_domains
, i
);
7451 set_domain_attribute(sd
, attr
);
7452 sd
->span
= *nodemask
;
7456 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7458 #ifdef CONFIG_SCHED_MC
7460 sd
= &per_cpu(core_domains
, i
);
7462 set_domain_attribute(sd
, attr
);
7463 sd
->span
= cpu_coregroup_map(i
);
7464 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7467 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7470 #ifdef CONFIG_SCHED_SMT
7472 sd
= &per_cpu(cpu_domains
, i
);
7473 SD_INIT(sd
, SIBLING
);
7474 set_domain_attribute(sd
, attr
);
7475 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7476 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7479 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7483 #ifdef CONFIG_SCHED_SMT
7484 /* Set up CPU (sibling) groups */
7485 for_each_cpu_mask_nr(i
, *cpu_map
) {
7486 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7487 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7489 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7490 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7491 if (i
!= first_cpu(*this_sibling_map
))
7494 init_sched_build_groups(this_sibling_map
, cpu_map
,
7496 send_covered
, tmpmask
);
7500 #ifdef CONFIG_SCHED_MC
7501 /* Set up multi-core groups */
7502 for_each_cpu_mask_nr(i
, *cpu_map
) {
7503 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7504 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7506 *this_core_map
= cpu_coregroup_map(i
);
7507 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7508 if (i
!= first_cpu(*this_core_map
))
7511 init_sched_build_groups(this_core_map
, cpu_map
,
7513 send_covered
, tmpmask
);
7517 /* Set up physical groups */
7518 for (i
= 0; i
< nr_node_ids
; i
++) {
7519 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7520 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7522 *nodemask
= node_to_cpumask(i
);
7523 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7524 if (cpus_empty(*nodemask
))
7527 init_sched_build_groups(nodemask
, cpu_map
,
7529 send_covered
, tmpmask
);
7533 /* Set up node groups */
7535 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7537 init_sched_build_groups(cpu_map
, cpu_map
,
7538 &cpu_to_allnodes_group
,
7539 send_covered
, tmpmask
);
7542 for (i
= 0; i
< nr_node_ids
; i
++) {
7543 /* Set up node groups */
7544 struct sched_group
*sg
, *prev
;
7545 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7546 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7547 SCHED_CPUMASK_VAR(covered
, allmasks
);
7550 *nodemask
= node_to_cpumask(i
);
7551 cpus_clear(*covered
);
7553 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7554 if (cpus_empty(*nodemask
)) {
7555 sched_group_nodes
[i
] = NULL
;
7559 sched_domain_node_span(i
, domainspan
);
7560 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7562 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7564 printk(KERN_WARNING
"Can not alloc domain group for "
7568 sched_group_nodes
[i
] = sg
;
7569 for_each_cpu_mask_nr(j
, *nodemask
) {
7570 struct sched_domain
*sd
;
7572 sd
= &per_cpu(node_domains
, j
);
7575 sg
->__cpu_power
= 0;
7576 sg
->cpumask
= *nodemask
;
7578 cpus_or(*covered
, *covered
, *nodemask
);
7581 for (j
= 0; j
< nr_node_ids
; j
++) {
7582 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7583 int n
= (i
+ j
) % nr_node_ids
;
7584 node_to_cpumask_ptr(pnodemask
, n
);
7586 cpus_complement(*notcovered
, *covered
);
7587 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7588 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7589 if (cpus_empty(*tmpmask
))
7592 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7593 if (cpus_empty(*tmpmask
))
7596 sg
= kmalloc_node(sizeof(struct sched_group
),
7600 "Can not alloc domain group for node %d\n", j
);
7603 sg
->__cpu_power
= 0;
7604 sg
->cpumask
= *tmpmask
;
7605 sg
->next
= prev
->next
;
7606 cpus_or(*covered
, *covered
, *tmpmask
);
7613 /* Calculate CPU power for physical packages and nodes */
7614 #ifdef CONFIG_SCHED_SMT
7615 for_each_cpu_mask_nr(i
, *cpu_map
) {
7616 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7618 init_sched_groups_power(i
, sd
);
7621 #ifdef CONFIG_SCHED_MC
7622 for_each_cpu_mask_nr(i
, *cpu_map
) {
7623 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7625 init_sched_groups_power(i
, sd
);
7629 for_each_cpu_mask_nr(i
, *cpu_map
) {
7630 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7632 init_sched_groups_power(i
, sd
);
7636 for (i
= 0; i
< nr_node_ids
; i
++)
7637 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7640 struct sched_group
*sg
;
7642 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7644 init_numa_sched_groups_power(sg
);
7648 /* Attach the domains */
7649 for_each_cpu_mask_nr(i
, *cpu_map
) {
7650 struct sched_domain
*sd
;
7651 #ifdef CONFIG_SCHED_SMT
7652 sd
= &per_cpu(cpu_domains
, i
);
7653 #elif defined(CONFIG_SCHED_MC)
7654 sd
= &per_cpu(core_domains
, i
);
7656 sd
= &per_cpu(phys_domains
, i
);
7658 cpu_attach_domain(sd
, rd
, i
);
7661 SCHED_CPUMASK_FREE((void *)allmasks
);
7666 free_sched_groups(cpu_map
, tmpmask
);
7667 SCHED_CPUMASK_FREE((void *)allmasks
);
7672 static int build_sched_domains(const cpumask_t
*cpu_map
)
7674 return __build_sched_domains(cpu_map
, NULL
);
7677 static cpumask_t
*doms_cur
; /* current sched domains */
7678 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7679 static struct sched_domain_attr
*dattr_cur
;
7680 /* attribues of custom domains in 'doms_cur' */
7683 * Special case: If a kmalloc of a doms_cur partition (array of
7684 * cpumask_t) fails, then fallback to a single sched domain,
7685 * as determined by the single cpumask_t fallback_doms.
7687 static cpumask_t fallback_doms
;
7689 void __attribute__((weak
)) arch_update_cpu_topology(void)
7694 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7695 * For now this just excludes isolated cpus, but could be used to
7696 * exclude other special cases in the future.
7698 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7702 arch_update_cpu_topology();
7704 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7706 doms_cur
= &fallback_doms
;
7707 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7709 err
= build_sched_domains(doms_cur
);
7710 register_sched_domain_sysctl();
7715 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7718 free_sched_groups(cpu_map
, tmpmask
);
7722 * Detach sched domains from a group of cpus specified in cpu_map
7723 * These cpus will now be attached to the NULL domain
7725 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7730 unregister_sched_domain_sysctl();
7732 for_each_cpu_mask_nr(i
, *cpu_map
)
7733 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7734 synchronize_sched();
7735 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7738 /* handle null as "default" */
7739 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7740 struct sched_domain_attr
*new, int idx_new
)
7742 struct sched_domain_attr tmp
;
7749 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7750 new ? (new + idx_new
) : &tmp
,
7751 sizeof(struct sched_domain_attr
));
7755 * Partition sched domains as specified by the 'ndoms_new'
7756 * cpumasks in the array doms_new[] of cpumasks. This compares
7757 * doms_new[] to the current sched domain partitioning, doms_cur[].
7758 * It destroys each deleted domain and builds each new domain.
7760 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7761 * The masks don't intersect (don't overlap.) We should setup one
7762 * sched domain for each mask. CPUs not in any of the cpumasks will
7763 * not be load balanced. If the same cpumask appears both in the
7764 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7767 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7768 * ownership of it and will kfree it when done with it. If the caller
7769 * failed the kmalloc call, then it can pass in doms_new == NULL,
7770 * and partition_sched_domains() will fallback to the single partition
7771 * 'fallback_doms', it also forces the domains to be rebuilt.
7773 * If doms_new==NULL it will be replaced with cpu_online_map.
7774 * ndoms_new==0 is a special case for destroying existing domains.
7775 * It will not create the default domain.
7777 * Call with hotplug lock held
7779 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7780 struct sched_domain_attr
*dattr_new
)
7784 mutex_lock(&sched_domains_mutex
);
7786 /* always unregister in case we don't destroy any domains */
7787 unregister_sched_domain_sysctl();
7789 n
= doms_new
? ndoms_new
: 0;
7791 /* Destroy deleted domains */
7792 for (i
= 0; i
< ndoms_cur
; i
++) {
7793 for (j
= 0; j
< n
; j
++) {
7794 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7795 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7798 /* no match - a current sched domain not in new doms_new[] */
7799 detach_destroy_domains(doms_cur
+ i
);
7804 if (doms_new
== NULL
) {
7806 doms_new
= &fallback_doms
;
7807 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7811 /* Build new domains */
7812 for (i
= 0; i
< ndoms_new
; i
++) {
7813 for (j
= 0; j
< ndoms_cur
; j
++) {
7814 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7815 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7818 /* no match - add a new doms_new */
7819 __build_sched_domains(doms_new
+ i
,
7820 dattr_new
? dattr_new
+ i
: NULL
);
7825 /* Remember the new sched domains */
7826 if (doms_cur
!= &fallback_doms
)
7828 kfree(dattr_cur
); /* kfree(NULL) is safe */
7829 doms_cur
= doms_new
;
7830 dattr_cur
= dattr_new
;
7831 ndoms_cur
= ndoms_new
;
7833 register_sched_domain_sysctl();
7835 mutex_unlock(&sched_domains_mutex
);
7838 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7839 int arch_reinit_sched_domains(void)
7843 /* Destroy domains first to force the rebuild */
7844 partition_sched_domains(0, NULL
, NULL
);
7846 rebuild_sched_domains();
7852 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7856 if (buf
[0] != '0' && buf
[0] != '1')
7860 sched_smt_power_savings
= (buf
[0] == '1');
7862 sched_mc_power_savings
= (buf
[0] == '1');
7864 ret
= arch_reinit_sched_domains();
7866 return ret
? ret
: count
;
7869 #ifdef CONFIG_SCHED_MC
7870 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7873 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7875 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7876 const char *buf
, size_t count
)
7878 return sched_power_savings_store(buf
, count
, 0);
7880 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7881 sched_mc_power_savings_show
,
7882 sched_mc_power_savings_store
);
7885 #ifdef CONFIG_SCHED_SMT
7886 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7889 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7891 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7892 const char *buf
, size_t count
)
7894 return sched_power_savings_store(buf
, count
, 1);
7896 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7897 sched_smt_power_savings_show
,
7898 sched_smt_power_savings_store
);
7901 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7905 #ifdef CONFIG_SCHED_SMT
7907 err
= sysfs_create_file(&cls
->kset
.kobj
,
7908 &attr_sched_smt_power_savings
.attr
);
7910 #ifdef CONFIG_SCHED_MC
7911 if (!err
&& mc_capable())
7912 err
= sysfs_create_file(&cls
->kset
.kobj
,
7913 &attr_sched_mc_power_savings
.attr
);
7917 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7919 #ifndef CONFIG_CPUSETS
7921 * Add online and remove offline CPUs from the scheduler domains.
7922 * When cpusets are enabled they take over this function.
7924 static int update_sched_domains(struct notifier_block
*nfb
,
7925 unsigned long action
, void *hcpu
)
7929 case CPU_ONLINE_FROZEN
:
7931 case CPU_DEAD_FROZEN
:
7932 partition_sched_domains(1, NULL
, NULL
);
7941 static int update_runtime(struct notifier_block
*nfb
,
7942 unsigned long action
, void *hcpu
)
7944 int cpu
= (int)(long)hcpu
;
7947 case CPU_DOWN_PREPARE
:
7948 case CPU_DOWN_PREPARE_FROZEN
:
7949 disable_runtime(cpu_rq(cpu
));
7952 case CPU_DOWN_FAILED
:
7953 case CPU_DOWN_FAILED_FROZEN
:
7955 case CPU_ONLINE_FROZEN
:
7956 enable_runtime(cpu_rq(cpu
));
7964 void __init
sched_init_smp(void)
7966 cpumask_t non_isolated_cpus
;
7968 #if defined(CONFIG_NUMA)
7969 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7971 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7974 mutex_lock(&sched_domains_mutex
);
7975 arch_init_sched_domains(&cpu_online_map
);
7976 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7977 if (cpus_empty(non_isolated_cpus
))
7978 cpu_set(smp_processor_id(), non_isolated_cpus
);
7979 mutex_unlock(&sched_domains_mutex
);
7982 #ifndef CONFIG_CPUSETS
7983 /* XXX: Theoretical race here - CPU may be hotplugged now */
7984 hotcpu_notifier(update_sched_domains
, 0);
7987 /* RT runtime code needs to handle some hotplug events */
7988 hotcpu_notifier(update_runtime
, 0);
7992 /* Move init over to a non-isolated CPU */
7993 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7995 sched_init_granularity();
7998 void __init
sched_init_smp(void)
8000 sched_init_granularity();
8002 #endif /* CONFIG_SMP */
8004 int in_sched_functions(unsigned long addr
)
8006 return in_lock_functions(addr
) ||
8007 (addr
>= (unsigned long)__sched_text_start
8008 && addr
< (unsigned long)__sched_text_end
);
8011 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8013 cfs_rq
->tasks_timeline
= RB_ROOT
;
8014 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8015 #ifdef CONFIG_FAIR_GROUP_SCHED
8018 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8021 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8023 struct rt_prio_array
*array
;
8026 array
= &rt_rq
->active
;
8027 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8028 INIT_LIST_HEAD(array
->queue
+ i
);
8029 __clear_bit(i
, array
->bitmap
);
8031 /* delimiter for bitsearch: */
8032 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8034 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8035 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8038 rt_rq
->rt_nr_migratory
= 0;
8039 rt_rq
->overloaded
= 0;
8043 rt_rq
->rt_throttled
= 0;
8044 rt_rq
->rt_runtime
= 0;
8045 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 rt_rq
->rt_nr_boosted
= 0;
8053 #ifdef CONFIG_FAIR_GROUP_SCHED
8054 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8055 struct sched_entity
*se
, int cpu
, int add
,
8056 struct sched_entity
*parent
)
8058 struct rq
*rq
= cpu_rq(cpu
);
8059 tg
->cfs_rq
[cpu
] = cfs_rq
;
8060 init_cfs_rq(cfs_rq
, rq
);
8063 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8066 /* se could be NULL for init_task_group */
8071 se
->cfs_rq
= &rq
->cfs
;
8073 se
->cfs_rq
= parent
->my_q
;
8076 se
->load
.weight
= tg
->shares
;
8077 se
->load
.inv_weight
= 0;
8078 se
->parent
= parent
;
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8084 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8085 struct sched_rt_entity
*parent
)
8087 struct rq
*rq
= cpu_rq(cpu
);
8089 tg
->rt_rq
[cpu
] = rt_rq
;
8090 init_rt_rq(rt_rq
, rq
);
8092 rt_rq
->rt_se
= rt_se
;
8093 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8095 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8097 tg
->rt_se
[cpu
] = rt_se
;
8102 rt_se
->rt_rq
= &rq
->rt
;
8104 rt_se
->rt_rq
= parent
->my_q
;
8106 rt_se
->my_q
= rt_rq
;
8107 rt_se
->parent
= parent
;
8108 INIT_LIST_HEAD(&rt_se
->run_list
);
8112 void __init
sched_init(void)
8115 unsigned long alloc_size
= 0, ptr
;
8117 #ifdef CONFIG_FAIR_GROUP_SCHED
8118 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8120 #ifdef CONFIG_RT_GROUP_SCHED
8121 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8123 #ifdef CONFIG_USER_SCHED
8127 * As sched_init() is called before page_alloc is setup,
8128 * we use alloc_bootmem().
8131 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8133 #ifdef CONFIG_FAIR_GROUP_SCHED
8134 init_task_group
.se
= (struct sched_entity
**)ptr
;
8135 ptr
+= nr_cpu_ids
* sizeof(void **);
8137 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8138 ptr
+= nr_cpu_ids
* sizeof(void **);
8140 #ifdef CONFIG_USER_SCHED
8141 root_task_group
.se
= (struct sched_entity
**)ptr
;
8142 ptr
+= nr_cpu_ids
* sizeof(void **);
8144 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8145 ptr
+= nr_cpu_ids
* sizeof(void **);
8146 #endif /* CONFIG_USER_SCHED */
8147 #endif /* CONFIG_FAIR_GROUP_SCHED */
8148 #ifdef CONFIG_RT_GROUP_SCHED
8149 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8150 ptr
+= nr_cpu_ids
* sizeof(void **);
8152 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8153 ptr
+= nr_cpu_ids
* sizeof(void **);
8155 #ifdef CONFIG_USER_SCHED
8156 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8157 ptr
+= nr_cpu_ids
* sizeof(void **);
8159 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8160 ptr
+= nr_cpu_ids
* sizeof(void **);
8161 #endif /* CONFIG_USER_SCHED */
8162 #endif /* CONFIG_RT_GROUP_SCHED */
8166 init_defrootdomain();
8169 init_rt_bandwidth(&def_rt_bandwidth
,
8170 global_rt_period(), global_rt_runtime());
8172 #ifdef CONFIG_RT_GROUP_SCHED
8173 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8174 global_rt_period(), global_rt_runtime());
8175 #ifdef CONFIG_USER_SCHED
8176 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8177 global_rt_period(), RUNTIME_INF
);
8178 #endif /* CONFIG_USER_SCHED */
8179 #endif /* CONFIG_RT_GROUP_SCHED */
8181 #ifdef CONFIG_GROUP_SCHED
8182 list_add(&init_task_group
.list
, &task_groups
);
8183 INIT_LIST_HEAD(&init_task_group
.children
);
8185 #ifdef CONFIG_USER_SCHED
8186 INIT_LIST_HEAD(&root_task_group
.children
);
8187 init_task_group
.parent
= &root_task_group
;
8188 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8189 #endif /* CONFIG_USER_SCHED */
8190 #endif /* CONFIG_GROUP_SCHED */
8192 for_each_possible_cpu(i
) {
8196 spin_lock_init(&rq
->lock
);
8198 init_cfs_rq(&rq
->cfs
, rq
);
8199 init_rt_rq(&rq
->rt
, rq
);
8200 #ifdef CONFIG_FAIR_GROUP_SCHED
8201 init_task_group
.shares
= init_task_group_load
;
8202 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8203 #ifdef CONFIG_CGROUP_SCHED
8205 * How much cpu bandwidth does init_task_group get?
8207 * In case of task-groups formed thr' the cgroup filesystem, it
8208 * gets 100% of the cpu resources in the system. This overall
8209 * system cpu resource is divided among the tasks of
8210 * init_task_group and its child task-groups in a fair manner,
8211 * based on each entity's (task or task-group's) weight
8212 * (se->load.weight).
8214 * In other words, if init_task_group has 10 tasks of weight
8215 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8216 * then A0's share of the cpu resource is:
8218 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8220 * We achieve this by letting init_task_group's tasks sit
8221 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8223 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8224 #elif defined CONFIG_USER_SCHED
8225 root_task_group
.shares
= NICE_0_LOAD
;
8226 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8228 * In case of task-groups formed thr' the user id of tasks,
8229 * init_task_group represents tasks belonging to root user.
8230 * Hence it forms a sibling of all subsequent groups formed.
8231 * In this case, init_task_group gets only a fraction of overall
8232 * system cpu resource, based on the weight assigned to root
8233 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8234 * by letting tasks of init_task_group sit in a separate cfs_rq
8235 * (init_cfs_rq) and having one entity represent this group of
8236 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8238 init_tg_cfs_entry(&init_task_group
,
8239 &per_cpu(init_cfs_rq
, i
),
8240 &per_cpu(init_sched_entity
, i
), i
, 1,
8241 root_task_group
.se
[i
]);
8244 #endif /* CONFIG_FAIR_GROUP_SCHED */
8246 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8247 #ifdef CONFIG_RT_GROUP_SCHED
8248 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8249 #ifdef CONFIG_CGROUP_SCHED
8250 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8251 #elif defined CONFIG_USER_SCHED
8252 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8253 init_tg_rt_entry(&init_task_group
,
8254 &per_cpu(init_rt_rq
, i
),
8255 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8256 root_task_group
.rt_se
[i
]);
8260 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8261 rq
->cpu_load
[j
] = 0;
8265 rq
->active_balance
= 0;
8266 rq
->next_balance
= jiffies
;
8270 rq
->migration_thread
= NULL
;
8271 INIT_LIST_HEAD(&rq
->migration_queue
);
8272 rq_attach_root(rq
, &def_root_domain
);
8275 atomic_set(&rq
->nr_iowait
, 0);
8278 set_load_weight(&init_task
);
8280 #ifdef CONFIG_PREEMPT_NOTIFIERS
8281 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8285 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8288 #ifdef CONFIG_RT_MUTEXES
8289 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8293 * The boot idle thread does lazy MMU switching as well:
8295 atomic_inc(&init_mm
.mm_count
);
8296 enter_lazy_tlb(&init_mm
, current
);
8299 * Make us the idle thread. Technically, schedule() should not be
8300 * called from this thread, however somewhere below it might be,
8301 * but because we are the idle thread, we just pick up running again
8302 * when this runqueue becomes "idle".
8304 init_idle(current
, smp_processor_id());
8306 * During early bootup we pretend to be a normal task:
8308 current
->sched_class
= &fair_sched_class
;
8310 scheduler_running
= 1;
8313 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8314 void __might_sleep(char *file
, int line
)
8317 static unsigned long prev_jiffy
; /* ratelimiting */
8319 if ((!in_atomic() && !irqs_disabled()) ||
8320 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8322 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8324 prev_jiffy
= jiffies
;
8327 "BUG: sleeping function called from invalid context at %s:%d\n",
8330 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8331 in_atomic(), irqs_disabled(),
8332 current
->pid
, current
->comm
);
8334 debug_show_held_locks(current
);
8335 if (irqs_disabled())
8336 print_irqtrace_events(current
);
8340 EXPORT_SYMBOL(__might_sleep
);
8343 #ifdef CONFIG_MAGIC_SYSRQ
8344 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8348 update_rq_clock(rq
);
8349 on_rq
= p
->se
.on_rq
;
8351 deactivate_task(rq
, p
, 0);
8352 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8354 activate_task(rq
, p
, 0);
8355 resched_task(rq
->curr
);
8359 void normalize_rt_tasks(void)
8361 struct task_struct
*g
, *p
;
8362 unsigned long flags
;
8365 read_lock_irqsave(&tasklist_lock
, flags
);
8366 do_each_thread(g
, p
) {
8368 * Only normalize user tasks:
8373 p
->se
.exec_start
= 0;
8374 #ifdef CONFIG_SCHEDSTATS
8375 p
->se
.wait_start
= 0;
8376 p
->se
.sleep_start
= 0;
8377 p
->se
.block_start
= 0;
8382 * Renice negative nice level userspace
8385 if (TASK_NICE(p
) < 0 && p
->mm
)
8386 set_user_nice(p
, 0);
8390 spin_lock(&p
->pi_lock
);
8391 rq
= __task_rq_lock(p
);
8393 normalize_task(rq
, p
);
8395 __task_rq_unlock(rq
);
8396 spin_unlock(&p
->pi_lock
);
8397 } while_each_thread(g
, p
);
8399 read_unlock_irqrestore(&tasklist_lock
, flags
);
8402 #endif /* CONFIG_MAGIC_SYSRQ */
8406 * These functions are only useful for the IA64 MCA handling.
8408 * They can only be called when the whole system has been
8409 * stopped - every CPU needs to be quiescent, and no scheduling
8410 * activity can take place. Using them for anything else would
8411 * be a serious bug, and as a result, they aren't even visible
8412 * under any other configuration.
8416 * curr_task - return the current task for a given cpu.
8417 * @cpu: the processor in question.
8419 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8421 struct task_struct
*curr_task(int cpu
)
8423 return cpu_curr(cpu
);
8427 * set_curr_task - set the current task for a given cpu.
8428 * @cpu: the processor in question.
8429 * @p: the task pointer to set.
8431 * Description: This function must only be used when non-maskable interrupts
8432 * are serviced on a separate stack. It allows the architecture to switch the
8433 * notion of the current task on a cpu in a non-blocking manner. This function
8434 * must be called with all CPU's synchronized, and interrupts disabled, the
8435 * and caller must save the original value of the current task (see
8436 * curr_task() above) and restore that value before reenabling interrupts and
8437 * re-starting the system.
8439 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8441 void set_curr_task(int cpu
, struct task_struct
*p
)
8448 #ifdef CONFIG_FAIR_GROUP_SCHED
8449 static void free_fair_sched_group(struct task_group
*tg
)
8453 for_each_possible_cpu(i
) {
8455 kfree(tg
->cfs_rq
[i
]);
8465 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8467 struct cfs_rq
*cfs_rq
;
8468 struct sched_entity
*se
, *parent_se
;
8472 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8475 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8479 tg
->shares
= NICE_0_LOAD
;
8481 for_each_possible_cpu(i
) {
8484 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
8485 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8489 se
= kmalloc_node(sizeof(struct sched_entity
),
8490 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8494 parent_se
= parent
? parent
->se
[i
] : NULL
;
8495 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8504 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8506 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8507 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8510 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8512 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8514 #else /* !CONFG_FAIR_GROUP_SCHED */
8515 static inline void free_fair_sched_group(struct task_group
*tg
)
8520 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8525 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8529 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8532 #endif /* CONFIG_FAIR_GROUP_SCHED */
8534 #ifdef CONFIG_RT_GROUP_SCHED
8535 static void free_rt_sched_group(struct task_group
*tg
)
8539 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8541 for_each_possible_cpu(i
) {
8543 kfree(tg
->rt_rq
[i
]);
8545 kfree(tg
->rt_se
[i
]);
8553 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8555 struct rt_rq
*rt_rq
;
8556 struct sched_rt_entity
*rt_se
, *parent_se
;
8560 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8563 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8567 init_rt_bandwidth(&tg
->rt_bandwidth
,
8568 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8570 for_each_possible_cpu(i
) {
8573 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8574 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8578 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8579 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8583 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8584 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8593 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8595 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8596 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8599 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8601 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8603 #else /* !CONFIG_RT_GROUP_SCHED */
8604 static inline void free_rt_sched_group(struct task_group
*tg
)
8609 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8614 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8618 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8621 #endif /* CONFIG_RT_GROUP_SCHED */
8623 #ifdef CONFIG_GROUP_SCHED
8624 static void free_sched_group(struct task_group
*tg
)
8626 free_fair_sched_group(tg
);
8627 free_rt_sched_group(tg
);
8631 /* allocate runqueue etc for a new task group */
8632 struct task_group
*sched_create_group(struct task_group
*parent
)
8634 struct task_group
*tg
;
8635 unsigned long flags
;
8638 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8640 return ERR_PTR(-ENOMEM
);
8642 if (!alloc_fair_sched_group(tg
, parent
))
8645 if (!alloc_rt_sched_group(tg
, parent
))
8648 spin_lock_irqsave(&task_group_lock
, flags
);
8649 for_each_possible_cpu(i
) {
8650 register_fair_sched_group(tg
, i
);
8651 register_rt_sched_group(tg
, i
);
8653 list_add_rcu(&tg
->list
, &task_groups
);
8655 WARN_ON(!parent
); /* root should already exist */
8657 tg
->parent
= parent
;
8658 INIT_LIST_HEAD(&tg
->children
);
8659 list_add_rcu(&tg
->siblings
, &parent
->children
);
8660 spin_unlock_irqrestore(&task_group_lock
, flags
);
8665 free_sched_group(tg
);
8666 return ERR_PTR(-ENOMEM
);
8669 /* rcu callback to free various structures associated with a task group */
8670 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8672 /* now it should be safe to free those cfs_rqs */
8673 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8676 /* Destroy runqueue etc associated with a task group */
8677 void sched_destroy_group(struct task_group
*tg
)
8679 unsigned long flags
;
8682 spin_lock_irqsave(&task_group_lock
, flags
);
8683 for_each_possible_cpu(i
) {
8684 unregister_fair_sched_group(tg
, i
);
8685 unregister_rt_sched_group(tg
, i
);
8687 list_del_rcu(&tg
->list
);
8688 list_del_rcu(&tg
->siblings
);
8689 spin_unlock_irqrestore(&task_group_lock
, flags
);
8691 /* wait for possible concurrent references to cfs_rqs complete */
8692 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8695 /* change task's runqueue when it moves between groups.
8696 * The caller of this function should have put the task in its new group
8697 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8698 * reflect its new group.
8700 void sched_move_task(struct task_struct
*tsk
)
8703 unsigned long flags
;
8706 rq
= task_rq_lock(tsk
, &flags
);
8708 update_rq_clock(rq
);
8710 running
= task_current(rq
, tsk
);
8711 on_rq
= tsk
->se
.on_rq
;
8714 dequeue_task(rq
, tsk
, 0);
8715 if (unlikely(running
))
8716 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8718 set_task_rq(tsk
, task_cpu(tsk
));
8720 #ifdef CONFIG_FAIR_GROUP_SCHED
8721 if (tsk
->sched_class
->moved_group
)
8722 tsk
->sched_class
->moved_group(tsk
);
8725 if (unlikely(running
))
8726 tsk
->sched_class
->set_curr_task(rq
);
8728 enqueue_task(rq
, tsk
, 0);
8730 task_rq_unlock(rq
, &flags
);
8732 #endif /* CONFIG_GROUP_SCHED */
8734 #ifdef CONFIG_FAIR_GROUP_SCHED
8735 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8737 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8742 dequeue_entity(cfs_rq
, se
, 0);
8744 se
->load
.weight
= shares
;
8745 se
->load
.inv_weight
= 0;
8748 enqueue_entity(cfs_rq
, se
, 0);
8751 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8753 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8754 struct rq
*rq
= cfs_rq
->rq
;
8755 unsigned long flags
;
8757 spin_lock_irqsave(&rq
->lock
, flags
);
8758 __set_se_shares(se
, shares
);
8759 spin_unlock_irqrestore(&rq
->lock
, flags
);
8762 static DEFINE_MUTEX(shares_mutex
);
8764 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8767 unsigned long flags
;
8770 * We can't change the weight of the root cgroup.
8775 if (shares
< MIN_SHARES
)
8776 shares
= MIN_SHARES
;
8777 else if (shares
> MAX_SHARES
)
8778 shares
= MAX_SHARES
;
8780 mutex_lock(&shares_mutex
);
8781 if (tg
->shares
== shares
)
8784 spin_lock_irqsave(&task_group_lock
, flags
);
8785 for_each_possible_cpu(i
)
8786 unregister_fair_sched_group(tg
, i
);
8787 list_del_rcu(&tg
->siblings
);
8788 spin_unlock_irqrestore(&task_group_lock
, flags
);
8790 /* wait for any ongoing reference to this group to finish */
8791 synchronize_sched();
8794 * Now we are free to modify the group's share on each cpu
8795 * w/o tripping rebalance_share or load_balance_fair.
8797 tg
->shares
= shares
;
8798 for_each_possible_cpu(i
) {
8802 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8803 set_se_shares(tg
->se
[i
], shares
);
8807 * Enable load balance activity on this group, by inserting it back on
8808 * each cpu's rq->leaf_cfs_rq_list.
8810 spin_lock_irqsave(&task_group_lock
, flags
);
8811 for_each_possible_cpu(i
)
8812 register_fair_sched_group(tg
, i
);
8813 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8814 spin_unlock_irqrestore(&task_group_lock
, flags
);
8816 mutex_unlock(&shares_mutex
);
8820 unsigned long sched_group_shares(struct task_group
*tg
)
8826 #ifdef CONFIG_RT_GROUP_SCHED
8828 * Ensure that the real time constraints are schedulable.
8830 static DEFINE_MUTEX(rt_constraints_mutex
);
8832 static unsigned long to_ratio(u64 period
, u64 runtime
)
8834 if (runtime
== RUNTIME_INF
)
8837 return div64_u64(runtime
<< 20, period
);
8840 /* Must be called with tasklist_lock held */
8841 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8843 struct task_struct
*g
, *p
;
8845 do_each_thread(g
, p
) {
8846 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8848 } while_each_thread(g
, p
);
8853 struct rt_schedulable_data
{
8854 struct task_group
*tg
;
8859 static int tg_schedulable(struct task_group
*tg
, void *data
)
8861 struct rt_schedulable_data
*d
= data
;
8862 struct task_group
*child
;
8863 unsigned long total
, sum
= 0;
8864 u64 period
, runtime
;
8866 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8867 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8870 period
= d
->rt_period
;
8871 runtime
= d
->rt_runtime
;
8875 * Cannot have more runtime than the period.
8877 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8881 * Ensure we don't starve existing RT tasks.
8883 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8886 total
= to_ratio(period
, runtime
);
8889 * Nobody can have more than the global setting allows.
8891 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8895 * The sum of our children's runtime should not exceed our own.
8897 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8898 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8899 runtime
= child
->rt_bandwidth
.rt_runtime
;
8901 if (child
== d
->tg
) {
8902 period
= d
->rt_period
;
8903 runtime
= d
->rt_runtime
;
8906 sum
+= to_ratio(period
, runtime
);
8915 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8917 struct rt_schedulable_data data
= {
8919 .rt_period
= period
,
8920 .rt_runtime
= runtime
,
8923 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8926 static int tg_set_bandwidth(struct task_group
*tg
,
8927 u64 rt_period
, u64 rt_runtime
)
8931 mutex_lock(&rt_constraints_mutex
);
8932 read_lock(&tasklist_lock
);
8933 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8937 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8938 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8939 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8941 for_each_possible_cpu(i
) {
8942 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8944 spin_lock(&rt_rq
->rt_runtime_lock
);
8945 rt_rq
->rt_runtime
= rt_runtime
;
8946 spin_unlock(&rt_rq
->rt_runtime_lock
);
8948 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8950 read_unlock(&tasklist_lock
);
8951 mutex_unlock(&rt_constraints_mutex
);
8956 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8958 u64 rt_runtime
, rt_period
;
8960 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8961 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8962 if (rt_runtime_us
< 0)
8963 rt_runtime
= RUNTIME_INF
;
8965 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8968 long sched_group_rt_runtime(struct task_group
*tg
)
8972 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8975 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8976 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8977 return rt_runtime_us
;
8980 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8982 u64 rt_runtime
, rt_period
;
8984 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8985 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8990 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8993 long sched_group_rt_period(struct task_group
*tg
)
8997 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8998 do_div(rt_period_us
, NSEC_PER_USEC
);
8999 return rt_period_us
;
9002 static int sched_rt_global_constraints(void)
9004 u64 runtime
, period
;
9007 if (sysctl_sched_rt_period
<= 0)
9010 runtime
= global_rt_runtime();
9011 period
= global_rt_period();
9014 * Sanity check on the sysctl variables.
9016 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9019 mutex_lock(&rt_constraints_mutex
);
9020 read_lock(&tasklist_lock
);
9021 ret
= __rt_schedulable(NULL
, 0, 0);
9022 read_unlock(&tasklist_lock
);
9023 mutex_unlock(&rt_constraints_mutex
);
9027 #else /* !CONFIG_RT_GROUP_SCHED */
9028 static int sched_rt_global_constraints(void)
9030 unsigned long flags
;
9033 if (sysctl_sched_rt_period
<= 0)
9036 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9037 for_each_possible_cpu(i
) {
9038 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9040 spin_lock(&rt_rq
->rt_runtime_lock
);
9041 rt_rq
->rt_runtime
= global_rt_runtime();
9042 spin_unlock(&rt_rq
->rt_runtime_lock
);
9044 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9048 #endif /* CONFIG_RT_GROUP_SCHED */
9050 int sched_rt_handler(struct ctl_table
*table
, int write
,
9051 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9055 int old_period
, old_runtime
;
9056 static DEFINE_MUTEX(mutex
);
9059 old_period
= sysctl_sched_rt_period
;
9060 old_runtime
= sysctl_sched_rt_runtime
;
9062 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9064 if (!ret
&& write
) {
9065 ret
= sched_rt_global_constraints();
9067 sysctl_sched_rt_period
= old_period
;
9068 sysctl_sched_rt_runtime
= old_runtime
;
9070 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9071 def_rt_bandwidth
.rt_period
=
9072 ns_to_ktime(global_rt_period());
9075 mutex_unlock(&mutex
);
9080 #ifdef CONFIG_CGROUP_SCHED
9082 /* return corresponding task_group object of a cgroup */
9083 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9085 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9086 struct task_group
, css
);
9089 static struct cgroup_subsys_state
*
9090 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9092 struct task_group
*tg
, *parent
;
9094 if (!cgrp
->parent
) {
9095 /* This is early initialization for the top cgroup */
9096 return &init_task_group
.css
;
9099 parent
= cgroup_tg(cgrp
->parent
);
9100 tg
= sched_create_group(parent
);
9102 return ERR_PTR(-ENOMEM
);
9108 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9110 struct task_group
*tg
= cgroup_tg(cgrp
);
9112 sched_destroy_group(tg
);
9116 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9117 struct task_struct
*tsk
)
9119 #ifdef CONFIG_RT_GROUP_SCHED
9120 /* Don't accept realtime tasks when there is no way for them to run */
9121 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9124 /* We don't support RT-tasks being in separate groups */
9125 if (tsk
->sched_class
!= &fair_sched_class
)
9133 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9134 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9136 sched_move_task(tsk
);
9139 #ifdef CONFIG_FAIR_GROUP_SCHED
9140 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9143 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9146 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9148 struct task_group
*tg
= cgroup_tg(cgrp
);
9150 return (u64
) tg
->shares
;
9152 #endif /* CONFIG_FAIR_GROUP_SCHED */
9154 #ifdef CONFIG_RT_GROUP_SCHED
9155 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9158 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9161 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9163 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9166 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9169 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9172 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9174 return sched_group_rt_period(cgroup_tg(cgrp
));
9176 #endif /* CONFIG_RT_GROUP_SCHED */
9178 static struct cftype cpu_files
[] = {
9179 #ifdef CONFIG_FAIR_GROUP_SCHED
9182 .read_u64
= cpu_shares_read_u64
,
9183 .write_u64
= cpu_shares_write_u64
,
9186 #ifdef CONFIG_RT_GROUP_SCHED
9188 .name
= "rt_runtime_us",
9189 .read_s64
= cpu_rt_runtime_read
,
9190 .write_s64
= cpu_rt_runtime_write
,
9193 .name
= "rt_period_us",
9194 .read_u64
= cpu_rt_period_read_uint
,
9195 .write_u64
= cpu_rt_period_write_uint
,
9200 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9202 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9205 struct cgroup_subsys cpu_cgroup_subsys
= {
9207 .create
= cpu_cgroup_create
,
9208 .destroy
= cpu_cgroup_destroy
,
9209 .can_attach
= cpu_cgroup_can_attach
,
9210 .attach
= cpu_cgroup_attach
,
9211 .populate
= cpu_cgroup_populate
,
9212 .subsys_id
= cpu_cgroup_subsys_id
,
9216 #endif /* CONFIG_CGROUP_SCHED */
9218 #ifdef CONFIG_CGROUP_CPUACCT
9221 * CPU accounting code for task groups.
9223 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9224 * (balbir@in.ibm.com).
9227 /* track cpu usage of a group of tasks */
9229 struct cgroup_subsys_state css
;
9230 /* cpuusage holds pointer to a u64-type object on every cpu */
9234 struct cgroup_subsys cpuacct_subsys
;
9236 /* return cpu accounting group corresponding to this container */
9237 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9239 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9240 struct cpuacct
, css
);
9243 /* return cpu accounting group to which this task belongs */
9244 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9246 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9247 struct cpuacct
, css
);
9250 /* create a new cpu accounting group */
9251 static struct cgroup_subsys_state
*cpuacct_create(
9252 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9254 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9257 return ERR_PTR(-ENOMEM
);
9259 ca
->cpuusage
= alloc_percpu(u64
);
9260 if (!ca
->cpuusage
) {
9262 return ERR_PTR(-ENOMEM
);
9268 /* destroy an existing cpu accounting group */
9270 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9272 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9274 free_percpu(ca
->cpuusage
);
9278 /* return total cpu usage (in nanoseconds) of a group */
9279 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9281 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9282 u64 totalcpuusage
= 0;
9285 for_each_possible_cpu(i
) {
9286 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9289 * Take rq->lock to make 64-bit addition safe on 32-bit
9292 spin_lock_irq(&cpu_rq(i
)->lock
);
9293 totalcpuusage
+= *cpuusage
;
9294 spin_unlock_irq(&cpu_rq(i
)->lock
);
9297 return totalcpuusage
;
9300 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9303 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9312 for_each_possible_cpu(i
) {
9313 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9315 spin_lock_irq(&cpu_rq(i
)->lock
);
9317 spin_unlock_irq(&cpu_rq(i
)->lock
);
9323 static struct cftype files
[] = {
9326 .read_u64
= cpuusage_read
,
9327 .write_u64
= cpuusage_write
,
9331 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9333 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9337 * charge this task's execution time to its accounting group.
9339 * called with rq->lock held.
9341 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9345 if (!cpuacct_subsys
.active
)
9350 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
9352 *cpuusage
+= cputime
;
9356 struct cgroup_subsys cpuacct_subsys
= {
9358 .create
= cpuacct_create
,
9359 .destroy
= cpuacct_destroy
,
9360 .populate
= cpuacct_populate
,
9361 .subsys_id
= cpuacct_subsys_id
,
9363 #endif /* CONFIG_CGROUP_CPUACCT */