2 * SLOB Allocator: Simple List Of Blocks
4 * Matt Mackall <mpm@selenic.com> 12/30/03
6 * NUMA support by Paul Mundt, 2007.
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
63 #include <linux/swap.h> /* struct reclaim_state */
64 #include <linux/cache.h>
65 #include <linux/init.h>
66 #include <linux/module.h>
67 #include <linux/rcupdate.h>
68 #include <linux/list.h>
69 #include <trace/kmemtrace.h>
70 #include <asm/atomic.h>
73 * slob_block has a field 'units', which indicates size of block if +ve,
74 * or offset of next block if -ve (in SLOB_UNITs).
76 * Free blocks of size 1 unit simply contain the offset of the next block.
77 * Those with larger size contain their size in the first SLOB_UNIT of
78 * memory, and the offset of the next free block in the second SLOB_UNIT.
80 #if PAGE_SIZE <= (32767 * 2)
81 typedef s16 slobidx_t
;
83 typedef s32 slobidx_t
;
89 typedef struct slob_block slob_t
;
92 * We use struct page fields to manage some slob allocation aspects,
93 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
94 * just define our own struct page type variant here.
99 unsigned long flags
; /* mandatory */
100 atomic_t _count
; /* mandatory */
101 slobidx_t units
; /* free units left in page */
102 unsigned long pad
[2];
103 slob_t
*free
; /* first free slob_t in page */
104 struct list_head list
; /* linked list of free pages */
109 static inline void struct_slob_page_wrong_size(void)
110 { BUILD_BUG_ON(sizeof(struct slob_page
) != sizeof(struct page
)); }
113 * free_slob_page: call before a slob_page is returned to the page allocator.
115 static inline void free_slob_page(struct slob_page
*sp
)
117 reset_page_mapcount(&sp
->page
);
118 sp
->page
.mapping
= NULL
;
122 * All partially free slob pages go on these lists.
124 #define SLOB_BREAK1 256
125 #define SLOB_BREAK2 1024
126 static LIST_HEAD(free_slob_small
);
127 static LIST_HEAD(free_slob_medium
);
128 static LIST_HEAD(free_slob_large
);
131 * is_slob_page: True for all slob pages (false for bigblock pages)
133 static inline int is_slob_page(struct slob_page
*sp
)
135 return PageSlobPage((struct page
*)sp
);
138 static inline void set_slob_page(struct slob_page
*sp
)
140 __SetPageSlobPage((struct page
*)sp
);
143 static inline void clear_slob_page(struct slob_page
*sp
)
145 __ClearPageSlobPage((struct page
*)sp
);
148 static inline struct slob_page
*slob_page(const void *addr
)
150 return (struct slob_page
*)virt_to_page(addr
);
154 * slob_page_free: true for pages on free_slob_pages list.
156 static inline int slob_page_free(struct slob_page
*sp
)
158 return PageSlobFree((struct page
*)sp
);
161 static void set_slob_page_free(struct slob_page
*sp
, struct list_head
*list
)
163 list_add(&sp
->list
, list
);
164 __SetPageSlobFree((struct page
*)sp
);
167 static inline void clear_slob_page_free(struct slob_page
*sp
)
170 __ClearPageSlobFree((struct page
*)sp
);
173 #define SLOB_UNIT sizeof(slob_t)
174 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
175 #define SLOB_ALIGN L1_CACHE_BYTES
178 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
179 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
180 * the block using call_rcu.
183 struct rcu_head head
;
188 * slob_lock protects all slob allocator structures.
190 static DEFINE_SPINLOCK(slob_lock
);
193 * Encode the given size and next info into a free slob block s.
195 static void set_slob(slob_t
*s
, slobidx_t size
, slob_t
*next
)
197 slob_t
*base
= (slob_t
*)((unsigned long)s
& PAGE_MASK
);
198 slobidx_t offset
= next
- base
;
204 s
[0].units
= -offset
;
208 * Return the size of a slob block.
210 static slobidx_t
slob_units(slob_t
*s
)
218 * Return the next free slob block pointer after this one.
220 static slob_t
*slob_next(slob_t
*s
)
222 slob_t
*base
= (slob_t
*)((unsigned long)s
& PAGE_MASK
);
233 * Returns true if s is the last free block in its page.
235 static int slob_last(slob_t
*s
)
237 return !((unsigned long)slob_next(s
) & ~PAGE_MASK
);
240 static void *slob_new_pages(gfp_t gfp
, int order
, int node
)
246 page
= alloc_pages_node(node
, gfp
, order
);
249 page
= alloc_pages(gfp
, order
);
254 return page_address(page
);
257 static void slob_free_pages(void *b
, int order
)
259 if (current
->reclaim_state
)
260 current
->reclaim_state
->reclaimed_slab
+= 1 << order
;
261 free_pages((unsigned long)b
, order
);
265 * Allocate a slob block within a given slob_page sp.
267 static void *slob_page_alloc(struct slob_page
*sp
, size_t size
, int align
)
269 slob_t
*prev
, *cur
, *aligned
= NULL
;
270 int delta
= 0, units
= SLOB_UNITS(size
);
272 for (prev
= NULL
, cur
= sp
->free
; ; prev
= cur
, cur
= slob_next(cur
)) {
273 slobidx_t avail
= slob_units(cur
);
276 aligned
= (slob_t
*)ALIGN((unsigned long)cur
, align
);
277 delta
= aligned
- cur
;
279 if (avail
>= units
+ delta
) { /* room enough? */
282 if (delta
) { /* need to fragment head to align? */
283 next
= slob_next(cur
);
284 set_slob(aligned
, avail
- delta
, next
);
285 set_slob(cur
, delta
, aligned
);
288 avail
= slob_units(cur
);
291 next
= slob_next(cur
);
292 if (avail
== units
) { /* exact fit? unlink. */
294 set_slob(prev
, slob_units(prev
), next
);
297 } else { /* fragment */
299 set_slob(prev
, slob_units(prev
), cur
+ units
);
301 sp
->free
= cur
+ units
;
302 set_slob(cur
+ units
, avail
- units
, next
);
307 clear_slob_page_free(sp
);
316 * slob_alloc: entry point into the slob allocator.
318 static void *slob_alloc(size_t size
, gfp_t gfp
, int align
, int node
)
320 struct slob_page
*sp
;
321 struct list_head
*prev
;
322 struct list_head
*slob_list
;
326 if (size
< SLOB_BREAK1
)
327 slob_list
= &free_slob_small
;
328 else if (size
< SLOB_BREAK2
)
329 slob_list
= &free_slob_medium
;
331 slob_list
= &free_slob_large
;
333 spin_lock_irqsave(&slob_lock
, flags
);
334 /* Iterate through each partially free page, try to find room */
335 list_for_each_entry(sp
, slob_list
, list
) {
338 * If there's a node specification, search for a partial
339 * page with a matching node id in the freelist.
341 if (node
!= -1 && page_to_nid(&sp
->page
) != node
)
344 /* Enough room on this page? */
345 if (sp
->units
< SLOB_UNITS(size
))
348 /* Attempt to alloc */
349 prev
= sp
->list
.prev
;
350 b
= slob_page_alloc(sp
, size
, align
);
354 /* Improve fragment distribution and reduce our average
355 * search time by starting our next search here. (see
356 * Knuth vol 1, sec 2.5, pg 449) */
357 if (prev
!= slob_list
->prev
&&
358 slob_list
->next
!= prev
->next
)
359 list_move_tail(slob_list
, prev
->next
);
362 spin_unlock_irqrestore(&slob_lock
, flags
);
364 /* Not enough space: must allocate a new page */
366 b
= slob_new_pages(gfp
& ~__GFP_ZERO
, 0, node
);
372 spin_lock_irqsave(&slob_lock
, flags
);
373 sp
->units
= SLOB_UNITS(PAGE_SIZE
);
375 INIT_LIST_HEAD(&sp
->list
);
376 set_slob(b
, SLOB_UNITS(PAGE_SIZE
), b
+ SLOB_UNITS(PAGE_SIZE
));
377 set_slob_page_free(sp
, slob_list
);
378 b
= slob_page_alloc(sp
, size
, align
);
380 spin_unlock_irqrestore(&slob_lock
, flags
);
382 if (unlikely((gfp
& __GFP_ZERO
) && b
))
388 * slob_free: entry point into the slob allocator.
390 static void slob_free(void *block
, int size
)
392 struct slob_page
*sp
;
393 slob_t
*prev
, *next
, *b
= (slob_t
*)block
;
397 if (unlikely(ZERO_OR_NULL_PTR(block
)))
401 sp
= slob_page(block
);
402 units
= SLOB_UNITS(size
);
404 spin_lock_irqsave(&slob_lock
, flags
);
406 if (sp
->units
+ units
== SLOB_UNITS(PAGE_SIZE
)) {
407 /* Go directly to page allocator. Do not pass slob allocator */
408 if (slob_page_free(sp
))
409 clear_slob_page_free(sp
);
410 spin_unlock_irqrestore(&slob_lock
, flags
);
413 slob_free_pages(b
, 0);
417 if (!slob_page_free(sp
)) {
418 /* This slob page is about to become partially free. Easy! */
422 (void *)((unsigned long)(b
+
423 SLOB_UNITS(PAGE_SIZE
)) & PAGE_MASK
));
424 set_slob_page_free(sp
, &free_slob_small
);
429 * Otherwise the page is already partially free, so find reinsertion
435 if (b
+ units
== sp
->free
) {
436 units
+= slob_units(sp
->free
);
437 sp
->free
= slob_next(sp
->free
);
439 set_slob(b
, units
, sp
->free
);
443 next
= slob_next(prev
);
446 next
= slob_next(prev
);
449 if (!slob_last(prev
) && b
+ units
== next
) {
450 units
+= slob_units(next
);
451 set_slob(b
, units
, slob_next(next
));
453 set_slob(b
, units
, next
);
455 if (prev
+ slob_units(prev
) == b
) {
456 units
= slob_units(b
) + slob_units(prev
);
457 set_slob(prev
, units
, slob_next(b
));
459 set_slob(prev
, slob_units(prev
), b
);
462 spin_unlock_irqrestore(&slob_lock
, flags
);
466 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
469 #ifndef ARCH_KMALLOC_MINALIGN
470 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
473 #ifndef ARCH_SLAB_MINALIGN
474 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
477 void *__kmalloc_node(size_t size
, gfp_t gfp
, int node
)
480 int align
= max(ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
483 lockdep_trace_alloc(gfp
);
485 if (size
< PAGE_SIZE
- align
) {
487 return ZERO_SIZE_PTR
;
489 m
= slob_alloc(size
+ align
, gfp
, align
, node
);
494 ret
= (void *)m
+ align
;
496 trace_kmalloc_node(_RET_IP_
, ret
,
497 size
, size
+ align
, gfp
, node
);
499 unsigned int order
= get_order(size
);
501 ret
= slob_new_pages(gfp
| __GFP_COMP
, get_order(size
), node
);
504 page
= virt_to_page(ret
);
505 page
->private = size
;
508 trace_kmalloc_node(_RET_IP_
, ret
,
509 size
, PAGE_SIZE
<< order
, gfp
, node
);
514 EXPORT_SYMBOL(__kmalloc_node
);
516 void kfree(const void *block
)
518 struct slob_page
*sp
;
520 trace_kfree(_RET_IP_
, block
);
522 if (unlikely(ZERO_OR_NULL_PTR(block
)))
525 sp
= slob_page(block
);
526 if (is_slob_page(sp
)) {
527 int align
= max(ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
528 unsigned int *m
= (unsigned int *)(block
- align
);
529 slob_free(m
, *m
+ align
);
533 EXPORT_SYMBOL(kfree
);
535 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
536 size_t ksize(const void *block
)
538 struct slob_page
*sp
;
541 if (unlikely(block
== ZERO_SIZE_PTR
))
544 sp
= slob_page(block
);
545 if (is_slob_page(sp
)) {
546 int align
= max(ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
547 unsigned int *m
= (unsigned int *)(block
- align
);
548 return SLOB_UNITS(*m
) * SLOB_UNIT
;
550 return sp
->page
.private;
552 EXPORT_SYMBOL(ksize
);
555 unsigned int size
, align
;
558 void (*ctor
)(void *);
561 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
562 size_t align
, unsigned long flags
, void (*ctor
)(void *))
564 struct kmem_cache
*c
;
566 c
= slob_alloc(sizeof(struct kmem_cache
),
567 GFP_KERNEL
, ARCH_KMALLOC_MINALIGN
, -1);
572 if (flags
& SLAB_DESTROY_BY_RCU
) {
573 /* leave room for rcu footer at the end of object */
574 c
->size
+= sizeof(struct slob_rcu
);
578 /* ignore alignment unless it's forced */
579 c
->align
= (flags
& SLAB_HWCACHE_ALIGN
) ? SLOB_ALIGN
: 0;
580 if (c
->align
< ARCH_SLAB_MINALIGN
)
581 c
->align
= ARCH_SLAB_MINALIGN
;
582 if (c
->align
< align
)
584 } else if (flags
& SLAB_PANIC
)
585 panic("Cannot create slab cache %s\n", name
);
589 EXPORT_SYMBOL(kmem_cache_create
);
591 void kmem_cache_destroy(struct kmem_cache
*c
)
593 if (c
->flags
& SLAB_DESTROY_BY_RCU
)
595 slob_free(c
, sizeof(struct kmem_cache
));
597 EXPORT_SYMBOL(kmem_cache_destroy
);
599 void *kmem_cache_alloc_node(struct kmem_cache
*c
, gfp_t flags
, int node
)
603 if (c
->size
< PAGE_SIZE
) {
604 b
= slob_alloc(c
->size
, flags
, c
->align
, node
);
605 trace_kmem_cache_alloc_node(_RET_IP_
, b
, c
->size
,
606 SLOB_UNITS(c
->size
) * SLOB_UNIT
,
609 b
= slob_new_pages(flags
, get_order(c
->size
), node
);
610 trace_kmem_cache_alloc_node(_RET_IP_
, b
, c
->size
,
611 PAGE_SIZE
<< get_order(c
->size
),
620 EXPORT_SYMBOL(kmem_cache_alloc_node
);
622 static void __kmem_cache_free(void *b
, int size
)
624 if (size
< PAGE_SIZE
)
627 slob_free_pages(b
, get_order(size
));
630 static void kmem_rcu_free(struct rcu_head
*head
)
632 struct slob_rcu
*slob_rcu
= (struct slob_rcu
*)head
;
633 void *b
= (void *)slob_rcu
- (slob_rcu
->size
- sizeof(struct slob_rcu
));
635 __kmem_cache_free(b
, slob_rcu
->size
);
638 void kmem_cache_free(struct kmem_cache
*c
, void *b
)
640 if (unlikely(c
->flags
& SLAB_DESTROY_BY_RCU
)) {
641 struct slob_rcu
*slob_rcu
;
642 slob_rcu
= b
+ (c
->size
- sizeof(struct slob_rcu
));
643 INIT_RCU_HEAD(&slob_rcu
->head
);
644 slob_rcu
->size
= c
->size
;
645 call_rcu(&slob_rcu
->head
, kmem_rcu_free
);
647 __kmem_cache_free(b
, c
->size
);
650 trace_kmem_cache_free(_RET_IP_
, b
);
652 EXPORT_SYMBOL(kmem_cache_free
);
654 unsigned int kmem_cache_size(struct kmem_cache
*c
)
658 EXPORT_SYMBOL(kmem_cache_size
);
660 const char *kmem_cache_name(struct kmem_cache
*c
)
664 EXPORT_SYMBOL(kmem_cache_name
);
666 int kmem_cache_shrink(struct kmem_cache
*d
)
670 EXPORT_SYMBOL(kmem_cache_shrink
);
672 int kmem_ptr_validate(struct kmem_cache
*a
, const void *b
)
677 static unsigned int slob_ready __read_mostly
;
679 int slab_is_available(void)
684 void __init
kmem_cache_init(void)