2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/capability.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
16 #include <linux/list.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/pagemap.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 #include <linux/vfs.h>
22 #include <linux/crc32.h>
25 static int jffs2_flash_setup(struct jffs2_sb_info
*c
);
27 int jffs2_do_setattr (struct inode
*inode
, struct iattr
*iattr
)
29 struct jffs2_full_dnode
*old_metadata
, *new_metadata
;
30 struct jffs2_inode_info
*f
= JFFS2_INODE_INFO(inode
);
31 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(inode
->i_sb
);
32 struct jffs2_raw_inode
*ri
;
33 union jffs2_device_node dev
;
34 unsigned char *mdata
= NULL
;
39 int alloc_type
= ALLOC_NORMAL
;
41 D1(printk(KERN_DEBUG
"jffs2_setattr(): ino #%lu\n", inode
->i_ino
));
43 /* Special cases - we don't want more than one data node
44 for these types on the medium at any time. So setattr
45 must read the original data associated with the node
46 (i.e. the device numbers or the target name) and write
47 it out again with the appropriate data attached */
48 if (S_ISBLK(inode
->i_mode
) || S_ISCHR(inode
->i_mode
)) {
49 /* For these, we don't actually need to read the old node */
50 mdatalen
= jffs2_encode_dev(&dev
, inode
->i_rdev
);
52 D1(printk(KERN_DEBUG
"jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen
));
53 } else if (S_ISLNK(inode
->i_mode
)) {
55 mdatalen
= f
->metadata
->size
;
56 mdata
= kmalloc(f
->metadata
->size
, GFP_USER
);
58 mutex_unlock(&f
->sem
);
61 ret
= jffs2_read_dnode(c
, f
, f
->metadata
, mdata
, 0, mdatalen
);
63 mutex_unlock(&f
->sem
);
67 mutex_unlock(&f
->sem
);
68 D1(printk(KERN_DEBUG
"jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen
));
71 ri
= jffs2_alloc_raw_inode();
73 if (S_ISLNK(inode
->i_mode
))
78 ret
= jffs2_reserve_space(c
, sizeof(*ri
) + mdatalen
, &alloclen
,
79 ALLOC_NORMAL
, JFFS2_SUMMARY_INODE_SIZE
);
81 jffs2_free_raw_inode(ri
);
82 if (S_ISLNK(inode
->i_mode
& S_IFMT
))
87 ivalid
= iattr
->ia_valid
;
89 ri
->magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
90 ri
->nodetype
= cpu_to_je16(JFFS2_NODETYPE_INODE
);
91 ri
->totlen
= cpu_to_je32(sizeof(*ri
) + mdatalen
);
92 ri
->hdr_crc
= cpu_to_je32(crc32(0, ri
, sizeof(struct jffs2_unknown_node
)-4));
94 ri
->ino
= cpu_to_je32(inode
->i_ino
);
95 ri
->version
= cpu_to_je32(++f
->highest_version
);
97 ri
->uid
= cpu_to_je16((ivalid
& ATTR_UID
)?iattr
->ia_uid
:inode
->i_uid
);
98 ri
->gid
= cpu_to_je16((ivalid
& ATTR_GID
)?iattr
->ia_gid
:inode
->i_gid
);
100 if (ivalid
& ATTR_MODE
)
101 ri
->mode
= cpu_to_jemode(iattr
->ia_mode
);
103 ri
->mode
= cpu_to_jemode(inode
->i_mode
);
106 ri
->isize
= cpu_to_je32((ivalid
& ATTR_SIZE
)?iattr
->ia_size
:inode
->i_size
);
107 ri
->atime
= cpu_to_je32(I_SEC((ivalid
& ATTR_ATIME
)?iattr
->ia_atime
:inode
->i_atime
));
108 ri
->mtime
= cpu_to_je32(I_SEC((ivalid
& ATTR_MTIME
)?iattr
->ia_mtime
:inode
->i_mtime
));
109 ri
->ctime
= cpu_to_je32(I_SEC((ivalid
& ATTR_CTIME
)?iattr
->ia_ctime
:inode
->i_ctime
));
111 ri
->offset
= cpu_to_je32(0);
112 ri
->csize
= ri
->dsize
= cpu_to_je32(mdatalen
);
113 ri
->compr
= JFFS2_COMPR_NONE
;
114 if (ivalid
& ATTR_SIZE
&& inode
->i_size
< iattr
->ia_size
) {
115 /* It's an extension. Make it a hole node */
116 ri
->compr
= JFFS2_COMPR_ZERO
;
117 ri
->dsize
= cpu_to_je32(iattr
->ia_size
- inode
->i_size
);
118 ri
->offset
= cpu_to_je32(inode
->i_size
);
119 } else if (ivalid
& ATTR_SIZE
&& !iattr
->ia_size
) {
120 /* For truncate-to-zero, treat it as deletion because
121 it'll always be obsoleting all previous nodes */
122 alloc_type
= ALLOC_DELETION
;
124 ri
->node_crc
= cpu_to_je32(crc32(0, ri
, sizeof(*ri
)-8));
126 ri
->data_crc
= cpu_to_je32(crc32(0, mdata
, mdatalen
));
128 ri
->data_crc
= cpu_to_je32(0);
130 new_metadata
= jffs2_write_dnode(c
, f
, ri
, mdata
, mdatalen
, alloc_type
);
131 if (S_ISLNK(inode
->i_mode
))
134 if (IS_ERR(new_metadata
)) {
135 jffs2_complete_reservation(c
);
136 jffs2_free_raw_inode(ri
);
137 mutex_unlock(&f
->sem
);
138 return PTR_ERR(new_metadata
);
140 /* It worked. Update the inode */
141 inode
->i_atime
= ITIME(je32_to_cpu(ri
->atime
));
142 inode
->i_ctime
= ITIME(je32_to_cpu(ri
->ctime
));
143 inode
->i_mtime
= ITIME(je32_to_cpu(ri
->mtime
));
144 inode
->i_mode
= jemode_to_cpu(ri
->mode
);
145 inode
->i_uid
= je16_to_cpu(ri
->uid
);
146 inode
->i_gid
= je16_to_cpu(ri
->gid
);
149 old_metadata
= f
->metadata
;
151 if (ivalid
& ATTR_SIZE
&& inode
->i_size
> iattr
->ia_size
)
152 jffs2_truncate_fragtree (c
, &f
->fragtree
, iattr
->ia_size
);
154 if (ivalid
& ATTR_SIZE
&& inode
->i_size
< iattr
->ia_size
) {
155 jffs2_add_full_dnode_to_inode(c
, f
, new_metadata
);
156 inode
->i_size
= iattr
->ia_size
;
157 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
160 f
->metadata
= new_metadata
;
163 jffs2_mark_node_obsolete(c
, old_metadata
->raw
);
164 jffs2_free_full_dnode(old_metadata
);
166 jffs2_free_raw_inode(ri
);
168 mutex_unlock(&f
->sem
);
169 jffs2_complete_reservation(c
);
171 /* We have to do the vmtruncate() without f->sem held, since
172 some pages may be locked and waiting for it in readpage().
173 We are protected from a simultaneous write() extending i_size
174 back past iattr->ia_size, because do_truncate() holds the
175 generic inode semaphore. */
176 if (ivalid
& ATTR_SIZE
&& inode
->i_size
> iattr
->ia_size
) {
177 vmtruncate(inode
, iattr
->ia_size
);
178 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
184 int jffs2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
188 rc
= inode_change_ok(dentry
->d_inode
, iattr
);
192 rc
= jffs2_do_setattr(dentry
->d_inode
, iattr
);
193 if (!rc
&& (iattr
->ia_valid
& ATTR_MODE
))
194 rc
= jffs2_acl_chmod(dentry
->d_inode
);
199 int jffs2_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
201 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(dentry
->d_sb
);
204 buf
->f_type
= JFFS2_SUPER_MAGIC
;
205 buf
->f_bsize
= 1 << PAGE_SHIFT
;
206 buf
->f_blocks
= c
->flash_size
>> PAGE_SHIFT
;
209 buf
->f_namelen
= JFFS2_MAX_NAME_LEN
;
211 spin_lock(&c
->erase_completion_lock
);
212 avail
= c
->dirty_size
+ c
->free_size
;
213 if (avail
> c
->sector_size
* c
->resv_blocks_write
)
214 avail
-= c
->sector_size
* c
->resv_blocks_write
;
217 spin_unlock(&c
->erase_completion_lock
);
219 buf
->f_bavail
= buf
->f_bfree
= avail
>> PAGE_SHIFT
;
225 void jffs2_clear_inode (struct inode
*inode
)
227 /* We can forget about this inode for now - drop all
228 * the nodelists associated with it, etc.
230 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(inode
->i_sb
);
231 struct jffs2_inode_info
*f
= JFFS2_INODE_INFO(inode
);
233 D1(printk(KERN_DEBUG
"jffs2_clear_inode(): ino #%lu mode %o\n", inode
->i_ino
, inode
->i_mode
));
234 jffs2_do_clear_inode(c
, f
);
237 struct inode
*jffs2_iget(struct super_block
*sb
, unsigned long ino
)
239 struct jffs2_inode_info
*f
;
240 struct jffs2_sb_info
*c
;
241 struct jffs2_raw_inode latest_node
;
242 union jffs2_device_node jdev
;
247 D1(printk(KERN_DEBUG
"jffs2_iget(): ino == %lu\n", ino
));
249 inode
= iget_locked(sb
, ino
);
251 return ERR_PTR(-ENOMEM
);
252 if (!(inode
->i_state
& I_NEW
))
255 f
= JFFS2_INODE_INFO(inode
);
256 c
= JFFS2_SB_INFO(inode
->i_sb
);
258 jffs2_init_inode_info(f
);
261 ret
= jffs2_do_read_inode(c
, f
, inode
->i_ino
, &latest_node
);
264 mutex_unlock(&f
->sem
);
268 inode
->i_mode
= jemode_to_cpu(latest_node
.mode
);
269 inode
->i_uid
= je16_to_cpu(latest_node
.uid
);
270 inode
->i_gid
= je16_to_cpu(latest_node
.gid
);
271 inode
->i_size
= je32_to_cpu(latest_node
.isize
);
272 inode
->i_atime
= ITIME(je32_to_cpu(latest_node
.atime
));
273 inode
->i_mtime
= ITIME(je32_to_cpu(latest_node
.mtime
));
274 inode
->i_ctime
= ITIME(je32_to_cpu(latest_node
.ctime
));
276 inode
->i_nlink
= f
->inocache
->pino_nlink
;
278 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
280 switch (inode
->i_mode
& S_IFMT
) {
283 inode
->i_op
= &jffs2_symlink_inode_operations
;
288 struct jffs2_full_dirent
*fd
;
289 inode
->i_nlink
= 2; /* parent and '.' */
291 for (fd
=f
->dents
; fd
; fd
= fd
->next
) {
292 if (fd
->type
== DT_DIR
&& fd
->ino
)
295 /* Root dir gets i_nlink 3 for some reason */
296 if (inode
->i_ino
== 1)
299 inode
->i_op
= &jffs2_dir_inode_operations
;
300 inode
->i_fop
= &jffs2_dir_operations
;
304 inode
->i_op
= &jffs2_file_inode_operations
;
305 inode
->i_fop
= &jffs2_file_operations
;
306 inode
->i_mapping
->a_ops
= &jffs2_file_address_operations
;
307 inode
->i_mapping
->nrpages
= 0;
312 /* Read the device numbers from the media */
313 if (f
->metadata
->size
!= sizeof(jdev
.old
) &&
314 f
->metadata
->size
!= sizeof(jdev
.new)) {
315 printk(KERN_NOTICE
"Device node has strange size %d\n", f
->metadata
->size
);
318 D1(printk(KERN_DEBUG
"Reading device numbers from flash\n"));
319 ret
= jffs2_read_dnode(c
, f
, f
->metadata
, (char *)&jdev
, 0, f
->metadata
->size
);
322 printk(KERN_NOTICE
"Read device numbers for inode %lu failed\n", (unsigned long)inode
->i_ino
);
325 if (f
->metadata
->size
== sizeof(jdev
.old
))
326 rdev
= old_decode_dev(je16_to_cpu(jdev
.old
));
328 rdev
= new_decode_dev(je32_to_cpu(jdev
.new));
332 inode
->i_op
= &jffs2_file_inode_operations
;
333 init_special_inode(inode
, inode
->i_mode
, rdev
);
337 printk(KERN_WARNING
"jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode
->i_mode
, (unsigned long)inode
->i_ino
);
340 mutex_unlock(&f
->sem
);
342 D1(printk(KERN_DEBUG
"jffs2_read_inode() returning\n"));
343 unlock_new_inode(inode
);
349 mutex_unlock(&f
->sem
);
350 jffs2_do_clear_inode(c
, f
);
355 void jffs2_dirty_inode(struct inode
*inode
)
359 if (!(inode
->i_state
& I_DIRTY_DATASYNC
)) {
360 D2(printk(KERN_DEBUG
"jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode
->i_ino
));
364 D1(printk(KERN_DEBUG
"jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode
->i_ino
));
366 iattr
.ia_valid
= ATTR_MODE
|ATTR_UID
|ATTR_GID
|ATTR_ATIME
|ATTR_MTIME
|ATTR_CTIME
;
367 iattr
.ia_mode
= inode
->i_mode
;
368 iattr
.ia_uid
= inode
->i_uid
;
369 iattr
.ia_gid
= inode
->i_gid
;
370 iattr
.ia_atime
= inode
->i_atime
;
371 iattr
.ia_mtime
= inode
->i_mtime
;
372 iattr
.ia_ctime
= inode
->i_ctime
;
374 jffs2_do_setattr(inode
, &iattr
);
377 int jffs2_remount_fs (struct super_block
*sb
, int *flags
, char *data
)
379 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(sb
);
381 if (c
->flags
& JFFS2_SB_FLAG_RO
&& !(sb
->s_flags
& MS_RDONLY
))
384 /* We stop if it was running, then restart if it needs to.
385 This also catches the case where it was stopped and this
386 is just a remount to restart it.
387 Flush the writebuffer, if neccecary, else we loose it */
388 if (!(sb
->s_flags
& MS_RDONLY
)) {
389 jffs2_stop_garbage_collect_thread(c
);
390 mutex_lock(&c
->alloc_sem
);
391 jffs2_flush_wbuf_pad(c
);
392 mutex_unlock(&c
->alloc_sem
);
395 if (!(*flags
& MS_RDONLY
))
396 jffs2_start_garbage_collect_thread(c
);
398 *flags
|= MS_NOATIME
;
403 void jffs2_write_super (struct super_block
*sb
)
405 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(sb
);
408 if (sb
->s_flags
& MS_RDONLY
)
411 D1(printk(KERN_DEBUG
"jffs2_write_super()\n"));
412 jffs2_garbage_collect_trigger(c
);
413 jffs2_erase_pending_blocks(c
, 0);
414 jffs2_flush_wbuf_gc(c
, 0);
418 /* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
419 fill in the raw_inode while you're at it. */
420 struct inode
*jffs2_new_inode (struct inode
*dir_i
, int mode
, struct jffs2_raw_inode
*ri
)
423 struct super_block
*sb
= dir_i
->i_sb
;
424 struct jffs2_sb_info
*c
;
425 struct jffs2_inode_info
*f
;
428 D1(printk(KERN_DEBUG
"jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i
->i_ino
, mode
));
430 c
= JFFS2_SB_INFO(sb
);
432 inode
= new_inode(sb
);
435 return ERR_PTR(-ENOMEM
);
437 f
= JFFS2_INODE_INFO(inode
);
438 jffs2_init_inode_info(f
);
441 memset(ri
, 0, sizeof(*ri
));
442 /* Set OS-specific defaults for new inodes */
443 ri
->uid
= cpu_to_je16(current
->fsuid
);
445 if (dir_i
->i_mode
& S_ISGID
) {
446 ri
->gid
= cpu_to_je16(dir_i
->i_gid
);
450 ri
->gid
= cpu_to_je16(current
->fsgid
);
453 /* POSIX ACLs have to be processed now, at least partly.
454 The umask is only applied if there's no default ACL */
455 ret
= jffs2_init_acl_pre(dir_i
, inode
, &mode
);
457 make_bad_inode(inode
);
461 ret
= jffs2_do_new_inode (c
, f
, mode
, ri
);
463 make_bad_inode(inode
);
468 inode
->i_ino
= je32_to_cpu(ri
->ino
);
469 inode
->i_mode
= jemode_to_cpu(ri
->mode
);
470 inode
->i_gid
= je16_to_cpu(ri
->gid
);
471 inode
->i_uid
= je16_to_cpu(ri
->uid
);
472 inode
->i_atime
= inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME_SEC
;
473 ri
->atime
= ri
->mtime
= ri
->ctime
= cpu_to_je32(I_SEC(inode
->i_mtime
));
478 insert_inode_hash(inode
);
484 int jffs2_do_fill_super(struct super_block
*sb
, void *data
, int silent
)
486 struct jffs2_sb_info
*c
;
487 struct inode
*root_i
;
491 c
= JFFS2_SB_INFO(sb
);
493 #ifndef CONFIG_JFFS2_FS_WRITEBUFFER
494 if (c
->mtd
->type
== MTD_NANDFLASH
) {
495 printk(KERN_ERR
"jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
498 if (c
->mtd
->type
== MTD_DATAFLASH
) {
499 printk(KERN_ERR
"jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n");
504 c
->flash_size
= c
->mtd
->size
;
505 c
->sector_size
= c
->mtd
->erasesize
;
506 blocks
= c
->flash_size
/ c
->sector_size
;
509 * Size alignment check
511 if ((c
->sector_size
* blocks
) != c
->flash_size
) {
512 c
->flash_size
= c
->sector_size
* blocks
;
513 printk(KERN_INFO
"jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n",
514 c
->flash_size
/ 1024);
517 if (c
->flash_size
< 5*c
->sector_size
) {
518 printk(KERN_ERR
"jffs2: Too few erase blocks (%d)\n", c
->flash_size
/ c
->sector_size
);
522 c
->cleanmarker_size
= sizeof(struct jffs2_unknown_node
);
524 /* NAND (or other bizarre) flash... do setup accordingly */
525 ret
= jffs2_flash_setup(c
);
529 c
->inocache_list
= kcalloc(INOCACHE_HASHSIZE
, sizeof(struct jffs2_inode_cache
*), GFP_KERNEL
);
530 if (!c
->inocache_list
) {
535 jffs2_init_xattr_subsystem(c
);
537 if ((ret
= jffs2_do_mount_fs(c
)))
540 D1(printk(KERN_DEBUG
"jffs2_do_fill_super(): Getting root inode\n"));
541 root_i
= jffs2_iget(sb
, 1);
542 if (IS_ERR(root_i
)) {
543 D1(printk(KERN_WARNING
"get root inode failed\n"));
544 ret
= PTR_ERR(root_i
);
550 D1(printk(KERN_DEBUG
"jffs2_do_fill_super(): d_alloc_root()\n"));
551 sb
->s_root
= d_alloc_root(root_i
);
555 sb
->s_maxbytes
= 0xFFFFFFFF;
556 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
557 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
558 sb
->s_magic
= JFFS2_SUPER_MAGIC
;
559 if (!(sb
->s_flags
& MS_RDONLY
))
560 jffs2_start_garbage_collect_thread(c
);
566 jffs2_free_ino_caches(c
);
567 jffs2_free_raw_node_refs(c
);
568 if (jffs2_blocks_use_vmalloc(c
))
573 jffs2_clear_xattr_subsystem(c
);
574 kfree(c
->inocache_list
);
576 jffs2_flash_cleanup(c
);
581 void jffs2_gc_release_inode(struct jffs2_sb_info
*c
,
582 struct jffs2_inode_info
*f
)
584 iput(OFNI_EDONI_2SFFJ(f
));
587 struct jffs2_inode_info
*jffs2_gc_fetch_inode(struct jffs2_sb_info
*c
,
588 int inum
, int unlinked
)
591 struct jffs2_inode_cache
*ic
;
594 /* The inode has zero nlink but its nodes weren't yet marked
595 obsolete. This has to be because we're still waiting for
596 the final (close() and) iput() to happen.
598 There's a possibility that the final iput() could have
599 happened while we were contemplating. In order to ensure
600 that we don't cause a new read_inode() (which would fail)
601 for the inode in question, we use ilookup() in this case
604 The nlink can't _become_ zero at this point because we're
605 holding the alloc_sem, and jffs2_do_unlink() would also
606 need that while decrementing nlink on any inode.
608 inode
= ilookup(OFNI_BS_2SFFJ(c
), inum
);
610 D1(printk(KERN_DEBUG
"ilookup() failed for ino #%u; inode is probably deleted.\n",
613 spin_lock(&c
->inocache_lock
);
614 ic
= jffs2_get_ino_cache(c
, inum
);
616 D1(printk(KERN_DEBUG
"Inode cache for ino #%u is gone.\n", inum
));
617 spin_unlock(&c
->inocache_lock
);
620 if (ic
->state
!= INO_STATE_CHECKEDABSENT
) {
621 /* Wait for progress. Don't just loop */
622 D1(printk(KERN_DEBUG
"Waiting for ino #%u in state %d\n",
623 ic
->ino
, ic
->state
));
624 sleep_on_spinunlock(&c
->inocache_wq
, &c
->inocache_lock
);
626 spin_unlock(&c
->inocache_lock
);
632 /* Inode has links to it still; they're not going away because
633 jffs2_do_unlink() would need the alloc_sem and we have it.
634 Just iget() it, and if read_inode() is necessary that's OK.
636 inode
= jffs2_iget(OFNI_BS_2SFFJ(c
), inum
);
638 return ERR_CAST(inode
);
640 if (is_bad_inode(inode
)) {
641 printk(KERN_NOTICE
"Eep. read_inode() failed for ino #%u. unlinked %d\n",
643 /* NB. This will happen again. We need to do something appropriate here. */
645 return ERR_PTR(-EIO
);
648 return JFFS2_INODE_INFO(inode
);
651 unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info
*c
,
652 struct jffs2_inode_info
*f
,
653 unsigned long offset
,
656 struct inode
*inode
= OFNI_EDONI_2SFFJ(f
);
659 pg
= read_cache_page_async(inode
->i_mapping
, offset
>> PAGE_CACHE_SHIFT
,
660 (void *)jffs2_do_readpage_unlock
, inode
);
664 *priv
= (unsigned long)pg
;
668 void jffs2_gc_release_page(struct jffs2_sb_info
*c
,
672 struct page
*pg
= (void *)*priv
;
675 page_cache_release(pg
);
678 static int jffs2_flash_setup(struct jffs2_sb_info
*c
) {
681 if (jffs2_cleanmarker_oob(c
)) {
682 /* NAND flash... do setup accordingly */
683 ret
= jffs2_nand_flash_setup(c
);
689 if (jffs2_dataflash(c
)) {
690 ret
= jffs2_dataflash_setup(c
);
695 /* and Intel "Sibley" flash */
696 if (jffs2_nor_wbuf_flash(c
)) {
697 ret
= jffs2_nor_wbuf_flash_setup(c
);
702 /* and an UBI volume */
703 if (jffs2_ubivol(c
)) {
704 ret
= jffs2_ubivol_setup(c
);
712 void jffs2_flash_cleanup(struct jffs2_sb_info
*c
) {
714 if (jffs2_cleanmarker_oob(c
)) {
715 jffs2_nand_flash_cleanup(c
);
719 if (jffs2_dataflash(c
)) {
720 jffs2_dataflash_cleanup(c
);
723 /* and Intel "Sibley" flash */
724 if (jffs2_nor_wbuf_flash(c
)) {
725 jffs2_nor_wbuf_flash_cleanup(c
);
728 /* and an UBI volume */
729 if (jffs2_ubivol(c
)) {
730 jffs2_ubivol_cleanup(c
);