MN10300: Don't do misalignment handling for userspace
[linux-2.6/mini2440.git] / security / commoncap.c
blob3976613db829044ab435ee21b7a6ad2161a6441c
1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
27 #include <linux/prctl.h>
28 #include <linux/securebits.h>
30 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
32 NETLINK_CB(skb).eff_cap = current->cap_effective;
33 return 0;
36 int cap_netlink_recv(struct sk_buff *skb, int cap)
38 if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
39 return -EPERM;
40 return 0;
43 EXPORT_SYMBOL(cap_netlink_recv);
46 * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
47 * function. That is, it has the reverse semantics: cap_capable()
48 * returns 0 when a task has a capability, but the kernel's capable()
49 * returns 1 for this case.
51 int cap_capable (struct task_struct *tsk, int cap)
53 /* Derived from include/linux/sched.h:capable. */
54 if (cap_raised(tsk->cap_effective, cap))
55 return 0;
56 return -EPERM;
59 int cap_settime(struct timespec *ts, struct timezone *tz)
61 if (!capable(CAP_SYS_TIME))
62 return -EPERM;
63 return 0;
66 int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
68 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
69 if (cap_issubset(child->cap_permitted, current->cap_permitted))
70 return 0;
71 if (capable(CAP_SYS_PTRACE))
72 return 0;
73 return -EPERM;
76 int cap_ptrace_traceme(struct task_struct *parent)
78 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
79 if (cap_issubset(current->cap_permitted, parent->cap_permitted))
80 return 0;
81 if (has_capability(parent, CAP_SYS_PTRACE))
82 return 0;
83 return -EPERM;
86 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
87 kernel_cap_t *inheritable, kernel_cap_t *permitted)
89 /* Derived from kernel/capability.c:sys_capget. */
90 *effective = target->cap_effective;
91 *inheritable = target->cap_inheritable;
92 *permitted = target->cap_permitted;
93 return 0;
96 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
98 static inline int cap_block_setpcap(struct task_struct *target)
101 * No support for remote process capability manipulation with
102 * filesystem capability support.
104 return (target != current);
107 static inline int cap_inh_is_capped(void)
110 * Return 1 if changes to the inheritable set are limited
111 * to the old permitted set. That is, if the current task
112 * does *not* possess the CAP_SETPCAP capability.
114 return (cap_capable(current, CAP_SETPCAP) != 0);
117 static inline int cap_limit_ptraced_target(void) { return 1; }
119 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
121 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
122 static inline int cap_inh_is_capped(void) { return 1; }
123 static inline int cap_limit_ptraced_target(void)
125 return !capable(CAP_SETPCAP);
128 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
130 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
131 kernel_cap_t *inheritable, kernel_cap_t *permitted)
133 if (cap_block_setpcap(target)) {
134 return -EPERM;
136 if (cap_inh_is_capped()
137 && !cap_issubset(*inheritable,
138 cap_combine(target->cap_inheritable,
139 current->cap_permitted))) {
140 /* incapable of using this inheritable set */
141 return -EPERM;
143 if (!cap_issubset(*inheritable,
144 cap_combine(target->cap_inheritable,
145 current->cap_bset))) {
146 /* no new pI capabilities outside bounding set */
147 return -EPERM;
150 /* verify restrictions on target's new Permitted set */
151 if (!cap_issubset (*permitted,
152 cap_combine (target->cap_permitted,
153 current->cap_permitted))) {
154 return -EPERM;
157 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
158 if (!cap_issubset (*effective, *permitted)) {
159 return -EPERM;
162 return 0;
165 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
166 kernel_cap_t *inheritable, kernel_cap_t *permitted)
168 target->cap_effective = *effective;
169 target->cap_inheritable = *inheritable;
170 target->cap_permitted = *permitted;
173 static inline void bprm_clear_caps(struct linux_binprm *bprm)
175 cap_clear(bprm->cap_post_exec_permitted);
176 bprm->cap_effective = false;
179 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
181 int cap_inode_need_killpriv(struct dentry *dentry)
183 struct inode *inode = dentry->d_inode;
184 int error;
186 if (!inode->i_op || !inode->i_op->getxattr)
187 return 0;
189 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
190 if (error <= 0)
191 return 0;
192 return 1;
195 int cap_inode_killpriv(struct dentry *dentry)
197 struct inode *inode = dentry->d_inode;
199 if (!inode->i_op || !inode->i_op->removexattr)
200 return 0;
202 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
205 static inline int cap_from_disk(struct vfs_cap_data *caps,
206 struct linux_binprm *bprm, unsigned size)
208 __u32 magic_etc;
209 unsigned tocopy, i;
210 int ret;
212 if (size < sizeof(magic_etc))
213 return -EINVAL;
215 magic_etc = le32_to_cpu(caps->magic_etc);
217 switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
218 case VFS_CAP_REVISION_1:
219 if (size != XATTR_CAPS_SZ_1)
220 return -EINVAL;
221 tocopy = VFS_CAP_U32_1;
222 break;
223 case VFS_CAP_REVISION_2:
224 if (size != XATTR_CAPS_SZ_2)
225 return -EINVAL;
226 tocopy = VFS_CAP_U32_2;
227 break;
228 default:
229 return -EINVAL;
232 if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
233 bprm->cap_effective = true;
234 } else {
235 bprm->cap_effective = false;
238 ret = 0;
240 CAP_FOR_EACH_U32(i) {
241 __u32 value_cpu;
243 if (i >= tocopy) {
245 * Legacy capability sets have no upper bits
247 bprm->cap_post_exec_permitted.cap[i] = 0;
248 continue;
251 * pP' = (X & fP) | (pI & fI)
253 value_cpu = le32_to_cpu(caps->data[i].permitted);
254 bprm->cap_post_exec_permitted.cap[i] =
255 (current->cap_bset.cap[i] & value_cpu) |
256 (current->cap_inheritable.cap[i] &
257 le32_to_cpu(caps->data[i].inheritable));
258 if (value_cpu & ~bprm->cap_post_exec_permitted.cap[i]) {
260 * insufficient to execute correctly
262 ret = -EPERM;
267 * For legacy apps, with no internal support for recognizing they
268 * do not have enough capabilities, we return an error if they are
269 * missing some "forced" (aka file-permitted) capabilities.
271 return bprm->cap_effective ? ret : 0;
274 /* Locate any VFS capabilities: */
275 static int get_file_caps(struct linux_binprm *bprm)
277 struct dentry *dentry;
278 int rc = 0;
279 struct vfs_cap_data vcaps;
280 struct inode *inode;
282 bprm_clear_caps(bprm);
284 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
285 return 0;
287 dentry = dget(bprm->file->f_dentry);
288 inode = dentry->d_inode;
289 if (!inode->i_op || !inode->i_op->getxattr)
290 goto out;
292 rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
293 XATTR_CAPS_SZ);
294 if (rc == -ENODATA || rc == -EOPNOTSUPP) {
295 /* no data, that's ok */
296 rc = 0;
297 goto out;
299 if (rc < 0)
300 goto out;
302 rc = cap_from_disk(&vcaps, bprm, rc);
303 if (rc == -EINVAL)
304 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
305 __func__, rc, bprm->filename);
307 out:
308 dput(dentry);
309 if (rc)
310 bprm_clear_caps(bprm);
312 return rc;
315 #else
316 int cap_inode_need_killpriv(struct dentry *dentry)
318 return 0;
321 int cap_inode_killpriv(struct dentry *dentry)
323 return 0;
326 static inline int get_file_caps(struct linux_binprm *bprm)
328 bprm_clear_caps(bprm);
329 return 0;
331 #endif
333 int cap_bprm_set_security (struct linux_binprm *bprm)
335 int ret;
337 ret = get_file_caps(bprm);
339 if (!issecure(SECURE_NOROOT)) {
341 * To support inheritance of root-permissions and suid-root
342 * executables under compatibility mode, we override the
343 * capability sets for the file.
345 * If only the real uid is 0, we do not set the effective
346 * bit.
348 if (bprm->e_uid == 0 || current->uid == 0) {
349 /* pP' = (cap_bset & ~0) | (pI & ~0) */
350 bprm->cap_post_exec_permitted = cap_combine(
351 current->cap_bset, current->cap_inheritable
353 bprm->cap_effective = (bprm->e_uid == 0);
354 ret = 0;
358 return ret;
361 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
363 if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
364 !cap_issubset(bprm->cap_post_exec_permitted,
365 current->cap_permitted)) {
366 set_dumpable(current->mm, suid_dumpable);
367 current->pdeath_signal = 0;
369 if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
370 if (!capable(CAP_SETUID)) {
371 bprm->e_uid = current->uid;
372 bprm->e_gid = current->gid;
374 if (cap_limit_ptraced_target()) {
375 bprm->cap_post_exec_permitted = cap_intersect(
376 bprm->cap_post_exec_permitted,
377 current->cap_permitted);
382 current->suid = current->euid = current->fsuid = bprm->e_uid;
383 current->sgid = current->egid = current->fsgid = bprm->e_gid;
385 /* For init, we want to retain the capabilities set
386 * in the init_task struct. Thus we skip the usual
387 * capability rules */
388 if (!is_global_init(current)) {
389 current->cap_permitted = bprm->cap_post_exec_permitted;
390 if (bprm->cap_effective)
391 current->cap_effective = bprm->cap_post_exec_permitted;
392 else
393 cap_clear(current->cap_effective);
396 /* AUD: Audit candidate if current->cap_effective is set */
398 current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
401 int cap_bprm_secureexec (struct linux_binprm *bprm)
403 if (current->uid != 0) {
404 if (bprm->cap_effective)
405 return 1;
406 if (!cap_isclear(bprm->cap_post_exec_permitted))
407 return 1;
410 return (current->euid != current->uid ||
411 current->egid != current->gid);
414 int cap_inode_setxattr(struct dentry *dentry, const char *name,
415 const void *value, size_t size, int flags)
417 if (!strcmp(name, XATTR_NAME_CAPS)) {
418 if (!capable(CAP_SETFCAP))
419 return -EPERM;
420 return 0;
421 } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
422 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
423 !capable(CAP_SYS_ADMIN))
424 return -EPERM;
425 return 0;
428 int cap_inode_removexattr(struct dentry *dentry, const char *name)
430 if (!strcmp(name, XATTR_NAME_CAPS)) {
431 if (!capable(CAP_SETFCAP))
432 return -EPERM;
433 return 0;
434 } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
435 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
436 !capable(CAP_SYS_ADMIN))
437 return -EPERM;
438 return 0;
441 /* moved from kernel/sys.c. */
443 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
444 * a process after a call to setuid, setreuid, or setresuid.
446 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
447 * {r,e,s}uid != 0, the permitted and effective capabilities are
448 * cleared.
450 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
451 * capabilities of the process are cleared.
453 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
454 * capabilities are set to the permitted capabilities.
456 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
457 * never happen.
459 * -astor
461 * cevans - New behaviour, Oct '99
462 * A process may, via prctl(), elect to keep its capabilities when it
463 * calls setuid() and switches away from uid==0. Both permitted and
464 * effective sets will be retained.
465 * Without this change, it was impossible for a daemon to drop only some
466 * of its privilege. The call to setuid(!=0) would drop all privileges!
467 * Keeping uid 0 is not an option because uid 0 owns too many vital
468 * files..
469 * Thanks to Olaf Kirch and Peter Benie for spotting this.
471 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
472 int old_suid)
474 if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
475 (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
476 !issecure(SECURE_KEEP_CAPS)) {
477 cap_clear (current->cap_permitted);
478 cap_clear (current->cap_effective);
480 if (old_euid == 0 && current->euid != 0) {
481 cap_clear (current->cap_effective);
483 if (old_euid != 0 && current->euid == 0) {
484 current->cap_effective = current->cap_permitted;
488 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
489 int flags)
491 switch (flags) {
492 case LSM_SETID_RE:
493 case LSM_SETID_ID:
494 case LSM_SETID_RES:
495 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
496 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
497 cap_emulate_setxuid (old_ruid, old_euid, old_suid);
499 break;
500 case LSM_SETID_FS:
502 uid_t old_fsuid = old_ruid;
504 /* Copied from kernel/sys.c:setfsuid. */
507 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
508 * if not, we might be a bit too harsh here.
511 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
512 if (old_fsuid == 0 && current->fsuid != 0) {
513 current->cap_effective =
514 cap_drop_fs_set(
515 current->cap_effective);
517 if (old_fsuid != 0 && current->fsuid == 0) {
518 current->cap_effective =
519 cap_raise_fs_set(
520 current->cap_effective,
521 current->cap_permitted);
524 break;
526 default:
527 return -EINVAL;
530 return 0;
533 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
535 * Rationale: code calling task_setscheduler, task_setioprio, and
536 * task_setnice, assumes that
537 * . if capable(cap_sys_nice), then those actions should be allowed
538 * . if not capable(cap_sys_nice), but acting on your own processes,
539 * then those actions should be allowed
540 * This is insufficient now since you can call code without suid, but
541 * yet with increased caps.
542 * So we check for increased caps on the target process.
544 static int cap_safe_nice(struct task_struct *p)
546 if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
547 !capable(CAP_SYS_NICE))
548 return -EPERM;
549 return 0;
552 int cap_task_setscheduler (struct task_struct *p, int policy,
553 struct sched_param *lp)
555 return cap_safe_nice(p);
558 int cap_task_setioprio (struct task_struct *p, int ioprio)
560 return cap_safe_nice(p);
563 int cap_task_setnice (struct task_struct *p, int nice)
565 return cap_safe_nice(p);
569 * called from kernel/sys.c for prctl(PR_CABSET_DROP)
570 * done without task_capability_lock() because it introduces
571 * no new races - i.e. only another task doing capget() on
572 * this task could get inconsistent info. There can be no
573 * racing writer bc a task can only change its own caps.
575 static long cap_prctl_drop(unsigned long cap)
577 if (!capable(CAP_SETPCAP))
578 return -EPERM;
579 if (!cap_valid(cap))
580 return -EINVAL;
581 cap_lower(current->cap_bset, cap);
582 return 0;
585 #else
586 int cap_task_setscheduler (struct task_struct *p, int policy,
587 struct sched_param *lp)
589 return 0;
591 int cap_task_setioprio (struct task_struct *p, int ioprio)
593 return 0;
595 int cap_task_setnice (struct task_struct *p, int nice)
597 return 0;
599 #endif
601 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
602 unsigned long arg4, unsigned long arg5, long *rc_p)
604 long error = 0;
606 switch (option) {
607 case PR_CAPBSET_READ:
608 if (!cap_valid(arg2))
609 error = -EINVAL;
610 else
611 error = !!cap_raised(current->cap_bset, arg2);
612 break;
613 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
614 case PR_CAPBSET_DROP:
615 error = cap_prctl_drop(arg2);
616 break;
619 * The next four prctl's remain to assist with transitioning a
620 * system from legacy UID=0 based privilege (when filesystem
621 * capabilities are not in use) to a system using filesystem
622 * capabilities only - as the POSIX.1e draft intended.
624 * Note:
626 * PR_SET_SECUREBITS =
627 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
628 * | issecure_mask(SECURE_NOROOT)
629 * | issecure_mask(SECURE_NOROOT_LOCKED)
630 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
631 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
633 * will ensure that the current process and all of its
634 * children will be locked into a pure
635 * capability-based-privilege environment.
637 case PR_SET_SECUREBITS:
638 if ((((current->securebits & SECURE_ALL_LOCKS) >> 1)
639 & (current->securebits ^ arg2)) /*[1]*/
640 || ((current->securebits & SECURE_ALL_LOCKS
641 & ~arg2)) /*[2]*/
642 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
643 || (cap_capable(current, CAP_SETPCAP) != 0)) { /*[4]*/
645 * [1] no changing of bits that are locked
646 * [2] no unlocking of locks
647 * [3] no setting of unsupported bits
648 * [4] doing anything requires privilege (go read about
649 * the "sendmail capabilities bug")
651 error = -EPERM; /* cannot change a locked bit */
652 } else {
653 current->securebits = arg2;
655 break;
656 case PR_GET_SECUREBITS:
657 error = current->securebits;
658 break;
660 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
662 case PR_GET_KEEPCAPS:
663 if (issecure(SECURE_KEEP_CAPS))
664 error = 1;
665 break;
666 case PR_SET_KEEPCAPS:
667 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
668 error = -EINVAL;
669 else if (issecure(SECURE_KEEP_CAPS_LOCKED))
670 error = -EPERM;
671 else if (arg2)
672 current->securebits |= issecure_mask(SECURE_KEEP_CAPS);
673 else
674 current->securebits &=
675 ~issecure_mask(SECURE_KEEP_CAPS);
676 break;
678 default:
679 /* No functionality available - continue with default */
680 return 0;
683 /* Functionality provided */
684 *rc_p = error;
685 return 1;
688 void cap_task_reparent_to_init (struct task_struct *p)
690 cap_set_init_eff(p->cap_effective);
691 cap_clear(p->cap_inheritable);
692 cap_set_full(p->cap_permitted);
693 p->securebits = SECUREBITS_DEFAULT;
694 return;
697 int cap_syslog (int type)
699 if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
700 return -EPERM;
701 return 0;
704 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
706 int cap_sys_admin = 0;
708 if (cap_capable(current, CAP_SYS_ADMIN) == 0)
709 cap_sys_admin = 1;
710 return __vm_enough_memory(mm, pages, cap_sys_admin);