2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
36 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
39 * Isolate one page from the LRU lists. If successful put it onto
40 * the indicated list with elevated page count.
43 * -EBUSY: page not on LRU list
44 * 0: page removed from LRU list and added to the specified list.
46 int isolate_lru_page(struct page
*page
, struct list_head
*pagelist
)
51 struct zone
*zone
= page_zone(page
);
53 spin_lock_irq(&zone
->lru_lock
);
54 if (PageLRU(page
) && get_page_unless_zero(page
)) {
58 del_page_from_active_list(zone
, page
);
60 del_page_from_inactive_list(zone
, page
);
61 list_add_tail(&page
->lru
, pagelist
);
63 spin_unlock_irq(&zone
->lru_lock
);
69 * migrate_prep() needs to be called before we start compiling a list of pages
70 * to be migrated using isolate_lru_page().
72 int migrate_prep(void)
75 * Clear the LRU lists so pages can be isolated.
76 * Note that pages may be moved off the LRU after we have
77 * drained them. Those pages will fail to migrate like other
78 * pages that may be busy.
85 static inline void move_to_lru(struct page
*page
)
87 if (PageActive(page
)) {
89 * lru_cache_add_active checks that
90 * the PG_active bit is off.
92 ClearPageActive(page
);
93 lru_cache_add_active(page
);
101 * Add isolated pages on the list back to the LRU.
103 * returns the number of pages put back.
105 int putback_lru_pages(struct list_head
*l
)
111 list_for_each_entry_safe(page
, page2
, l
, lru
) {
112 list_del(&page
->lru
);
120 * Restore a potential migration pte to a working pte entry
122 static void remove_migration_pte(struct vm_area_struct
*vma
,
123 struct page
*old
, struct page
*new)
125 struct mm_struct
*mm
= vma
->vm_mm
;
132 unsigned long addr
= page_address_in_vma(new, vma
);
137 pgd
= pgd_offset(mm
, addr
);
138 if (!pgd_present(*pgd
))
141 pud
= pud_offset(pgd
, addr
);
142 if (!pud_present(*pud
))
145 pmd
= pmd_offset(pud
, addr
);
146 if (!pmd_present(*pmd
))
149 ptep
= pte_offset_map(pmd
, addr
);
151 if (!is_swap_pte(*ptep
)) {
156 if (mem_cgroup_charge(new, mm
, GFP_KERNEL
)) {
161 ptl
= pte_lockptr(mm
, pmd
);
164 if (!is_swap_pte(pte
))
167 entry
= pte_to_swp_entry(pte
);
169 if (!is_migration_entry(entry
) || migration_entry_to_page(entry
) != old
)
173 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
174 if (is_write_migration_entry(entry
))
175 pte
= pte_mkwrite(pte
);
176 flush_cache_page(vma
, addr
, pte_pfn(pte
));
177 set_pte_at(mm
, addr
, ptep
, pte
);
180 page_add_anon_rmap(new, vma
, addr
);
182 page_add_file_rmap(new);
184 /* No need to invalidate - it was non-present before */
185 update_mmu_cache(vma
, addr
, pte
);
188 pte_unmap_unlock(ptep
, ptl
);
192 * Note that remove_file_migration_ptes will only work on regular mappings,
193 * Nonlinear mappings do not use migration entries.
195 static void remove_file_migration_ptes(struct page
*old
, struct page
*new)
197 struct vm_area_struct
*vma
;
198 struct address_space
*mapping
= page_mapping(new);
199 struct prio_tree_iter iter
;
200 pgoff_t pgoff
= new->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
205 spin_lock(&mapping
->i_mmap_lock
);
207 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
)
208 remove_migration_pte(vma
, old
, new);
210 spin_unlock(&mapping
->i_mmap_lock
);
214 * Must hold mmap_sem lock on at least one of the vmas containing
215 * the page so that the anon_vma cannot vanish.
217 static void remove_anon_migration_ptes(struct page
*old
, struct page
*new)
219 struct anon_vma
*anon_vma
;
220 struct vm_area_struct
*vma
;
221 unsigned long mapping
;
223 mapping
= (unsigned long)new->mapping
;
225 if (!mapping
|| (mapping
& PAGE_MAPPING_ANON
) == 0)
229 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
231 anon_vma
= (struct anon_vma
*) (mapping
- PAGE_MAPPING_ANON
);
232 spin_lock(&anon_vma
->lock
);
234 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
235 remove_migration_pte(vma
, old
, new);
237 spin_unlock(&anon_vma
->lock
);
241 * Get rid of all migration entries and replace them by
242 * references to the indicated page.
244 static void remove_migration_ptes(struct page
*old
, struct page
*new)
247 remove_anon_migration_ptes(old
, new);
249 remove_file_migration_ptes(old
, new);
253 * Something used the pte of a page under migration. We need to
254 * get to the page and wait until migration is finished.
255 * When we return from this function the fault will be retried.
257 * This function is called from do_swap_page().
259 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
260 unsigned long address
)
267 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
269 if (!is_swap_pte(pte
))
272 entry
= pte_to_swp_entry(pte
);
273 if (!is_migration_entry(entry
))
276 page
= migration_entry_to_page(entry
);
279 pte_unmap_unlock(ptep
, ptl
);
280 wait_on_page_locked(page
);
284 pte_unmap_unlock(ptep
, ptl
);
288 * Replace the page in the mapping.
290 * The number of remaining references must be:
291 * 1 for anonymous pages without a mapping
292 * 2 for pages with a mapping
293 * 3 for pages with a mapping and PagePrivate set.
295 static int migrate_page_move_mapping(struct address_space
*mapping
,
296 struct page
*newpage
, struct page
*page
)
301 /* Anonymous page without mapping */
302 if (page_count(page
) != 1)
307 write_lock_irq(&mapping
->tree_lock
);
309 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
312 if (page_count(page
) != 2 + !!PagePrivate(page
) ||
313 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
314 write_unlock_irq(&mapping
->tree_lock
);
319 * Now we know that no one else is looking at the page.
321 get_page(newpage
); /* add cache reference */
323 if (PageSwapCache(page
)) {
324 SetPageSwapCache(newpage
);
325 set_page_private(newpage
, page_private(page
));
329 radix_tree_replace_slot(pslot
, newpage
);
332 * Drop cache reference from old page.
333 * We know this isn't the last reference.
338 * If moved to a different zone then also account
339 * the page for that zone. Other VM counters will be
340 * taken care of when we establish references to the
341 * new page and drop references to the old page.
343 * Note that anonymous pages are accounted for
344 * via NR_FILE_PAGES and NR_ANON_PAGES if they
345 * are mapped to swap space.
347 __dec_zone_page_state(page
, NR_FILE_PAGES
);
348 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
350 write_unlock_irq(&mapping
->tree_lock
);
356 * Copy the page to its new location
358 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
360 copy_highpage(newpage
, page
);
363 SetPageError(newpage
);
364 if (PageReferenced(page
))
365 SetPageReferenced(newpage
);
366 if (PageUptodate(page
))
367 SetPageUptodate(newpage
);
368 if (PageActive(page
))
369 SetPageActive(newpage
);
370 if (PageChecked(page
))
371 SetPageChecked(newpage
);
372 if (PageMappedToDisk(page
))
373 SetPageMappedToDisk(newpage
);
375 if (PageDirty(page
)) {
376 clear_page_dirty_for_io(page
);
377 set_page_dirty(newpage
);
381 ClearPageSwapCache(page
);
383 ClearPageActive(page
);
384 ClearPagePrivate(page
);
385 set_page_private(page
, 0);
386 page
->mapping
= NULL
;
389 * If any waiters have accumulated on the new page then
392 if (PageWriteback(newpage
))
393 end_page_writeback(newpage
);
396 /************************************************************
397 * Migration functions
398 ***********************************************************/
400 /* Always fail migration. Used for mappings that are not movable */
401 int fail_migrate_page(struct address_space
*mapping
,
402 struct page
*newpage
, struct page
*page
)
406 EXPORT_SYMBOL(fail_migrate_page
);
409 * Common logic to directly migrate a single page suitable for
410 * pages that do not use PagePrivate.
412 * Pages are locked upon entry and exit.
414 int migrate_page(struct address_space
*mapping
,
415 struct page
*newpage
, struct page
*page
)
419 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
421 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
426 migrate_page_copy(newpage
, page
);
429 EXPORT_SYMBOL(migrate_page
);
433 * Migration function for pages with buffers. This function can only be used
434 * if the underlying filesystem guarantees that no other references to "page"
437 int buffer_migrate_page(struct address_space
*mapping
,
438 struct page
*newpage
, struct page
*page
)
440 struct buffer_head
*bh
, *head
;
443 if (!page_has_buffers(page
))
444 return migrate_page(mapping
, newpage
, page
);
446 head
= page_buffers(page
);
448 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
457 bh
= bh
->b_this_page
;
459 } while (bh
!= head
);
461 ClearPagePrivate(page
);
462 set_page_private(newpage
, page_private(page
));
463 set_page_private(page
, 0);
469 set_bh_page(bh
, newpage
, bh_offset(bh
));
470 bh
= bh
->b_this_page
;
472 } while (bh
!= head
);
474 SetPagePrivate(newpage
);
476 migrate_page_copy(newpage
, page
);
482 bh
= bh
->b_this_page
;
484 } while (bh
!= head
);
488 EXPORT_SYMBOL(buffer_migrate_page
);
492 * Writeback a page to clean the dirty state
494 static int writeout(struct address_space
*mapping
, struct page
*page
)
496 struct writeback_control wbc
= {
497 .sync_mode
= WB_SYNC_NONE
,
500 .range_end
= LLONG_MAX
,
506 if (!mapping
->a_ops
->writepage
)
507 /* No write method for the address space */
510 if (!clear_page_dirty_for_io(page
))
511 /* Someone else already triggered a write */
515 * A dirty page may imply that the underlying filesystem has
516 * the page on some queue. So the page must be clean for
517 * migration. Writeout may mean we loose the lock and the
518 * page state is no longer what we checked for earlier.
519 * At this point we know that the migration attempt cannot
522 remove_migration_ptes(page
, page
);
524 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
526 /* I/O Error writing */
529 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
530 /* unlocked. Relock */
537 * Default handling if a filesystem does not provide a migration function.
539 static int fallback_migrate_page(struct address_space
*mapping
,
540 struct page
*newpage
, struct page
*page
)
543 return writeout(mapping
, page
);
546 * Buffers may be managed in a filesystem specific way.
547 * We must have no buffers or drop them.
549 if (PagePrivate(page
) &&
550 !try_to_release_page(page
, GFP_KERNEL
))
553 return migrate_page(mapping
, newpage
, page
);
557 * Move a page to a newly allocated page
558 * The page is locked and all ptes have been successfully removed.
560 * The new page will have replaced the old page if this function
563 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
565 struct address_space
*mapping
;
569 * Block others from accessing the page when we get around to
570 * establishing additional references. We are the only one
571 * holding a reference to the new page at this point.
573 if (TestSetPageLocked(newpage
))
576 /* Prepare mapping for the new page.*/
577 newpage
->index
= page
->index
;
578 newpage
->mapping
= page
->mapping
;
580 mapping
= page_mapping(page
);
582 rc
= migrate_page(mapping
, newpage
, page
);
583 else if (mapping
->a_ops
->migratepage
)
585 * Most pages have a mapping and most filesystems
586 * should provide a migration function. Anonymous
587 * pages are part of swap space which also has its
588 * own migration function. This is the most common
589 * path for page migration.
591 rc
= mapping
->a_ops
->migratepage(mapping
,
594 rc
= fallback_migrate_page(mapping
, newpage
, page
);
597 mem_cgroup_page_migration(page
, newpage
);
598 remove_migration_ptes(page
, newpage
);
600 newpage
->mapping
= NULL
;
602 unlock_page(newpage
);
608 * Obtain the lock on page, remove all ptes and migrate the page
609 * to the newly allocated page in newpage.
611 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
612 struct page
*page
, int force
)
616 struct page
*newpage
= get_new_page(page
, private, &result
);
623 if (page_count(page
) == 1)
624 /* page was freed from under us. So we are done. */
628 if (TestSetPageLocked(page
)) {
634 if (PageWriteback(page
)) {
637 wait_on_page_writeback(page
);
640 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
641 * we cannot notice that anon_vma is freed while we migrates a page.
642 * This rcu_read_lock() delays freeing anon_vma pointer until the end
643 * of migration. File cache pages are no problem because of page_lock()
644 * File Caches may use write_page() or lock_page() in migration, then,
645 * just care Anon page here.
647 if (PageAnon(page
)) {
653 * Corner case handling:
654 * 1. When a new swap-cache page is read into, it is added to the LRU
655 * and treated as swapcache but it has no rmap yet.
656 * Calling try_to_unmap() against a page->mapping==NULL page will
657 * trigger a BUG. So handle it here.
658 * 2. An orphaned page (see truncate_complete_page) might have
659 * fs-private metadata. The page can be picked up due to memory
660 * offlining. Everywhere else except page reclaim, the page is
661 * invisible to the vm, so the page can not be migrated. So try to
662 * free the metadata, so the page can be freed.
664 if (!page
->mapping
) {
665 if (!PageAnon(page
) && PagePrivate(page
)) {
667 * Go direct to try_to_free_buffers() here because
668 * a) that's what try_to_release_page() would do anyway
669 * b) we may be under rcu_read_lock() here, so we can't
670 * use GFP_KERNEL which is what try_to_release_page()
671 * needs to be effective.
673 try_to_free_buffers(page
);
678 charge
= mem_cgroup_prepare_migration(page
);
679 /* Establish migration ptes or remove ptes */
680 try_to_unmap(page
, 1);
682 if (!page_mapped(page
))
683 rc
= move_to_new_page(newpage
, page
);
686 remove_migration_ptes(page
, page
);
688 mem_cgroup_end_migration(page
);
690 mem_cgroup_end_migration(newpage
);
701 * A page that has been migrated has all references
702 * removed and will be freed. A page that has not been
703 * migrated will have kepts its references and be
706 list_del(&page
->lru
);
712 * Move the new page to the LRU. If migration was not successful
713 * then this will free the page.
715 move_to_lru(newpage
);
720 *result
= page_to_nid(newpage
);
728 * The function takes one list of pages to migrate and a function
729 * that determines from the page to be migrated and the private data
730 * the target of the move and allocates the page.
732 * The function returns after 10 attempts or if no pages
733 * are movable anymore because to has become empty
734 * or no retryable pages exist anymore. All pages will be
735 * returned to the LRU or freed.
737 * Return: Number of pages not migrated or error code.
739 int migrate_pages(struct list_head
*from
,
740 new_page_t get_new_page
, unsigned long private)
747 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
751 current
->flags
|= PF_SWAPWRITE
;
753 for(pass
= 0; pass
< 10 && retry
; pass
++) {
756 list_for_each_entry_safe(page
, page2
, from
, lru
) {
759 rc
= unmap_and_move(get_new_page
, private,
771 /* Permanent failure */
780 current
->flags
&= ~PF_SWAPWRITE
;
782 putback_lru_pages(from
);
787 return nr_failed
+ retry
;
792 * Move a list of individual pages
794 struct page_to_node
{
801 static struct page
*new_page_node(struct page
*p
, unsigned long private,
804 struct page_to_node
*pm
= (struct page_to_node
*)private;
806 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
809 if (pm
->node
== MAX_NUMNODES
)
812 *result
= &pm
->status
;
814 return alloc_pages_node(pm
->node
,
815 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
819 * Move a set of pages as indicated in the pm array. The addr
820 * field must be set to the virtual address of the page to be moved
821 * and the node number must contain a valid target node.
823 static int do_move_pages(struct mm_struct
*mm
, struct page_to_node
*pm
,
827 struct page_to_node
*pp
;
830 down_read(&mm
->mmap_sem
);
833 * Build a list of pages to migrate
836 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
837 struct vm_area_struct
*vma
;
841 * A valid page pointer that will not match any of the
842 * pages that will be moved.
844 pp
->page
= ZERO_PAGE(0);
847 vma
= find_vma(mm
, pp
->addr
);
848 if (!vma
|| !vma_migratable(vma
))
851 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
856 if (PageReserved(page
)) /* Check for zero page */
860 err
= page_to_nid(page
);
864 * Node already in the right place
869 if (page_mapcount(page
) > 1 &&
873 err
= isolate_lru_page(page
, &pagelist
);
876 * Either remove the duplicate refcount from
877 * isolate_lru_page() or drop the page ref if it was
885 if (!list_empty(&pagelist
))
886 err
= migrate_pages(&pagelist
, new_page_node
,
891 up_read(&mm
->mmap_sem
);
896 * Determine the nodes of a list of pages. The addr in the pm array
897 * must have been set to the virtual address of which we want to determine
900 static int do_pages_stat(struct mm_struct
*mm
, struct page_to_node
*pm
)
902 down_read(&mm
->mmap_sem
);
904 for ( ; pm
->node
!= MAX_NUMNODES
; pm
++) {
905 struct vm_area_struct
*vma
;
910 vma
= find_vma(mm
, pm
->addr
);
914 page
= follow_page(vma
, pm
->addr
, 0);
916 /* Use PageReserved to check for zero page */
917 if (!page
|| PageReserved(page
))
920 err
= page_to_nid(page
);
925 up_read(&mm
->mmap_sem
);
930 * Move a list of pages in the address space of the currently executing
933 asmlinkage
long sys_move_pages(pid_t pid
, unsigned long nr_pages
,
934 const void __user
* __user
*pages
,
935 const int __user
*nodes
,
936 int __user
*status
, int flags
)
940 struct task_struct
*task
;
941 nodemask_t task_nodes
;
942 struct mm_struct
*mm
;
943 struct page_to_node
*pm
= NULL
;
946 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
949 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
952 /* Find the mm_struct */
953 read_lock(&tasklist_lock
);
954 task
= pid
? find_task_by_vpid(pid
) : current
;
956 read_unlock(&tasklist_lock
);
959 mm
= get_task_mm(task
);
960 read_unlock(&tasklist_lock
);
966 * Check if this process has the right to modify the specified
967 * process. The right exists if the process has administrative
968 * capabilities, superuser privileges or the same
969 * userid as the target process.
971 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
972 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
973 !capable(CAP_SYS_NICE
)) {
978 err
= security_task_movememory(task
);
983 task_nodes
= cpuset_mems_allowed(task
);
985 /* Limit nr_pages so that the multiplication may not overflow */
986 if (nr_pages
>= ULONG_MAX
/ sizeof(struct page_to_node
) - 1) {
991 pm
= vmalloc((nr_pages
+ 1) * sizeof(struct page_to_node
));
998 * Get parameters from user space and initialize the pm
999 * array. Return various errors if the user did something wrong.
1001 for (i
= 0; i
< nr_pages
; i
++) {
1002 const void __user
*p
;
1005 if (get_user(p
, pages
+ i
))
1008 pm
[i
].addr
= (unsigned long)p
;
1012 if (get_user(node
, nodes
+ i
))
1016 if (!node_state(node
, N_HIGH_MEMORY
))
1020 if (!node_isset(node
, task_nodes
))
1025 pm
[i
].node
= 0; /* anything to not match MAX_NUMNODES */
1028 pm
[nr_pages
].node
= MAX_NUMNODES
;
1031 err
= do_move_pages(mm
, pm
, flags
& MPOL_MF_MOVE_ALL
);
1033 err
= do_pages_stat(mm
, pm
);
1036 /* Return status information */
1037 for (i
= 0; i
< nr_pages
; i
++)
1038 if (put_user(pm
[i
].status
, status
+ i
))
1050 * Call migration functions in the vma_ops that may prepare
1051 * memory in a vm for migration. migration functions may perform
1052 * the migration for vmas that do not have an underlying page struct.
1054 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1055 const nodemask_t
*from
, unsigned long flags
)
1057 struct vm_area_struct
*vma
;
1060 for(vma
= mm
->mmap
; vma
->vm_next
&& !err
; vma
= vma
->vm_next
) {
1061 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1062 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);