1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
5 * Copyright 1992, Linus Torvalds.
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
26 #define ADDR "=m" (*(volatile long *)addr)
27 #define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
29 #define ADDR "+m" (*(volatile long *) addr)
30 #define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
32 #define BASE_ADDR "m" (*(volatile int *)addr)
35 * set_bit - Atomically set a bit in memory
37 * @addr: the address to start counting from
39 * This function is atomic and may not be reordered. See __set_bit()
40 * if you do not require the atomic guarantees.
42 * Note: there are no guarantees that this function will not be reordered
43 * on non x86 architectures, so if you are writing portable code,
44 * make sure not to rely on its reordering guarantees.
46 * Note that @nr may be almost arbitrarily large; this function is not
47 * restricted to acting on a single-word quantity.
49 static inline void set_bit(int nr
, volatile void *addr
)
51 asm volatile(LOCK_PREFIX
"bts %1,%0" : ADDR
: "Ir" (nr
) : "memory");
55 * __set_bit - Set a bit in memory
57 * @addr: the address to start counting from
59 * Unlike set_bit(), this function is non-atomic and may be reordered.
60 * If it's called on the same region of memory simultaneously, the effect
61 * may be that only one operation succeeds.
63 static inline void __set_bit(int nr
, volatile void *addr
)
65 asm volatile("bts %1,%0"
67 : "Ir" (nr
) : "memory");
72 * clear_bit - Clears a bit in memory
74 * @addr: Address to start counting from
76 * clear_bit() is atomic and may not be reordered. However, it does
77 * not contain a memory barrier, so if it is used for locking purposes,
78 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
79 * in order to ensure changes are visible on other processors.
81 static inline void clear_bit(int nr
, volatile void *addr
)
83 asm volatile(LOCK_PREFIX
"btr %1,%2" : BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
87 * clear_bit_unlock - Clears a bit in memory
89 * @addr: Address to start counting from
91 * clear_bit() is atomic and implies release semantics before the memory
92 * operation. It can be used for an unlock.
94 static inline void clear_bit_unlock(unsigned nr
, volatile void *addr
)
100 static inline void __clear_bit(int nr
, volatile void *addr
)
102 asm volatile("btr %1,%2" : BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
106 * __clear_bit_unlock - Clears a bit in memory
108 * @addr: Address to start counting from
110 * __clear_bit() is non-atomic and implies release semantics before the memory
111 * operation. It can be used for an unlock if no other CPUs can concurrently
112 * modify other bits in the word.
114 * No memory barrier is required here, because x86 cannot reorder stores past
115 * older loads. Same principle as spin_unlock.
117 static inline void __clear_bit_unlock(unsigned nr
, volatile void *addr
)
120 __clear_bit(nr
, addr
);
123 #define smp_mb__before_clear_bit() barrier()
124 #define smp_mb__after_clear_bit() barrier()
127 * __change_bit - Toggle a bit in memory
128 * @nr: the bit to change
129 * @addr: the address to start counting from
131 * Unlike change_bit(), this function is non-atomic and may be reordered.
132 * If it's called on the same region of memory simultaneously, the effect
133 * may be that only one operation succeeds.
135 static inline void __change_bit(int nr
, volatile void *addr
)
137 asm volatile("btc %1,%2" : BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
141 * change_bit - Toggle a bit in memory
143 * @addr: Address to start counting from
145 * change_bit() is atomic and may not be reordered.
146 * Note that @nr may be almost arbitrarily large; this function is not
147 * restricted to acting on a single-word quantity.
149 static inline void change_bit(int nr
, volatile void *addr
)
151 asm volatile(LOCK_PREFIX
"btc %1,%2" : BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
155 * test_and_set_bit - Set a bit and return its old value
157 * @addr: Address to count from
159 * This operation is atomic and cannot be reordered.
160 * It also implies a memory barrier.
162 static inline int test_and_set_bit(int nr
, volatile void *addr
)
166 asm volatile(LOCK_PREFIX
"bts %2,%1\n\t"
167 "sbb %0,%0" : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
173 * test_and_set_bit_lock - Set a bit and return its old value for lock
175 * @addr: Address to count from
177 * This is the same as test_and_set_bit on x86.
179 static inline int test_and_set_bit_lock(int nr
, volatile void *addr
)
181 return test_and_set_bit(nr
, addr
);
185 * __test_and_set_bit - Set a bit and return its old value
187 * @addr: Address to count from
189 * This operation is non-atomic and can be reordered.
190 * If two examples of this operation race, one can appear to succeed
191 * but actually fail. You must protect multiple accesses with a lock.
193 static inline int __test_and_set_bit(int nr
, volatile void *addr
)
197 asm volatile("bts %2,%3\n\t"
199 : "=r" (oldbit
), BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
204 * test_and_clear_bit - Clear a bit and return its old value
206 * @addr: Address to count from
208 * This operation is atomic and cannot be reordered.
209 * It also implies a memory barrier.
211 static inline int test_and_clear_bit(int nr
, volatile void *addr
)
215 asm volatile(LOCK_PREFIX
"btr %2,%1\n\t"
217 : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
223 * __test_and_clear_bit - Clear a bit and return its old value
225 * @addr: Address to count from
227 * This operation is non-atomic and can be reordered.
228 * If two examples of this operation race, one can appear to succeed
229 * but actually fail. You must protect multiple accesses with a lock.
231 static inline int __test_and_clear_bit(int nr
, volatile void *addr
)
235 asm volatile("btr %2,%3\n\t"
237 : "=r" (oldbit
), BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
241 /* WARNING: non atomic and it can be reordered! */
242 static inline int __test_and_change_bit(int nr
, volatile void *addr
)
246 asm volatile("btc %2,%3\n\t"
248 : "=r" (oldbit
), BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
254 * test_and_change_bit - Change a bit and return its old value
256 * @addr: Address to count from
258 * This operation is atomic and cannot be reordered.
259 * It also implies a memory barrier.
261 static inline int test_and_change_bit(int nr
, volatile void *addr
)
265 asm volatile(LOCK_PREFIX
"btc %2,%1\n\t"
267 : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
272 static inline int constant_test_bit(int nr
, const volatile void *addr
)
274 return ((1UL << (nr
% BITS_PER_LONG
)) &
275 (((unsigned long *)addr
)[nr
/ BITS_PER_LONG
])) != 0;
278 static inline int variable_test_bit(int nr
, volatile const void *addr
)
282 asm volatile("bt %2,%3\n\t"
285 : "m" (((volatile const int *)addr
)[nr
>> 5]),
286 "Ir" (nr
), BASE_ADDR
);
291 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
293 * test_bit - Determine whether a bit is set
294 * @nr: bit number to test
295 * @addr: Address to start counting from
297 static int test_bit(int nr
, const volatile unsigned long *addr
);
300 #define test_bit(nr,addr) \
301 (__builtin_constant_p(nr) ? \
302 constant_test_bit((nr),(addr)) : \
303 variable_test_bit((nr),(addr)))
310 # include "bitops_32.h"
312 # include "bitops_64.h"
315 #endif /* _ASM_X86_BITOPS_H */