x86: printk kernel version in WARN_ON and other dump_stack users
[linux-2.6/mini2440.git] / arch / x86 / kernel / traps_32.c
blob0a4c893824792bbb540946b7bf81922e9e059fa9
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * 'Traps.c' handles hardware traps and faults after we have saved some
10 * state in 'asm.s'.
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/errno.h>
16 #include <linux/timer.h>
17 #include <linux/mm.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/highmem.h>
23 #include <linux/kallsyms.h>
24 #include <linux/ptrace.h>
25 #include <linux/utsname.h>
26 #include <linux/kprobes.h>
27 #include <linux/kexec.h>
28 #include <linux/unwind.h>
29 #include <linux/uaccess.h>
30 #include <linux/nmi.h>
31 #include <linux/bug.h>
33 #ifdef CONFIG_EISA
34 #include <linux/ioport.h>
35 #include <linux/eisa.h>
36 #endif
38 #ifdef CONFIG_MCA
39 #include <linux/mca.h>
40 #endif
42 #if defined(CONFIG_EDAC)
43 #include <linux/edac.h>
44 #endif
46 #include <asm/processor.h>
47 #include <asm/system.h>
48 #include <asm/io.h>
49 #include <asm/atomic.h>
50 #include <asm/debugreg.h>
51 #include <asm/desc.h>
52 #include <asm/i387.h>
53 #include <asm/nmi.h>
54 #include <asm/unwind.h>
55 #include <asm/smp.h>
56 #include <asm/arch_hooks.h>
57 #include <linux/kdebug.h>
58 #include <asm/stacktrace.h>
60 #include <linux/module.h>
62 #include "mach_traps.h"
64 int panic_on_unrecovered_nmi;
66 DECLARE_BITMAP(used_vectors, NR_VECTORS);
67 EXPORT_SYMBOL_GPL(used_vectors);
69 asmlinkage int system_call(void);
71 /* Do we ignore FPU interrupts ? */
72 char ignore_fpu_irq = 0;
75 * The IDT has to be page-aligned to simplify the Pentium
76 * F0 0F bug workaround.. We have a special link segment
77 * for this.
79 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
81 asmlinkage void divide_error(void);
82 asmlinkage void debug(void);
83 asmlinkage void nmi(void);
84 asmlinkage void int3(void);
85 asmlinkage void overflow(void);
86 asmlinkage void bounds(void);
87 asmlinkage void invalid_op(void);
88 asmlinkage void device_not_available(void);
89 asmlinkage void coprocessor_segment_overrun(void);
90 asmlinkage void invalid_TSS(void);
91 asmlinkage void segment_not_present(void);
92 asmlinkage void stack_segment(void);
93 asmlinkage void general_protection(void);
94 asmlinkage void page_fault(void);
95 asmlinkage void coprocessor_error(void);
96 asmlinkage void simd_coprocessor_error(void);
97 asmlinkage void alignment_check(void);
98 asmlinkage void spurious_interrupt_bug(void);
99 asmlinkage void machine_check(void);
101 int kstack_depth_to_print = 24;
102 static unsigned int code_bytes = 64;
104 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
106 return p > (void *)tinfo &&
107 p <= (void *)tinfo + THREAD_SIZE - size;
110 /* The form of the top of the frame on the stack */
111 struct stack_frame {
112 struct stack_frame *next_frame;
113 unsigned long return_address;
116 static inline unsigned long print_context_stack(struct thread_info *tinfo,
117 unsigned long *stack, unsigned long ebp,
118 const struct stacktrace_ops *ops, void *data)
120 #ifdef CONFIG_FRAME_POINTER
121 struct stack_frame *frame = (struct stack_frame *)ebp;
122 while (valid_stack_ptr(tinfo, frame, sizeof(*frame))) {
123 struct stack_frame *next;
124 unsigned long addr;
126 addr = frame->return_address;
127 ops->address(data, addr);
129 * break out of recursive entries (such as
130 * end_of_stack_stop_unwind_function). Also,
131 * we can never allow a frame pointer to
132 * move downwards!
134 next = frame->next_frame;
135 if (next <= frame)
136 break;
137 frame = next;
139 #else
140 while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
141 unsigned long addr;
143 addr = *stack++;
144 if (__kernel_text_address(addr))
145 ops->address(data, addr);
147 #endif
148 return ebp;
151 #define MSG(msg) ops->warning(data, msg)
153 void dump_trace(struct task_struct *task, struct pt_regs *regs,
154 unsigned long *stack,
155 const struct stacktrace_ops *ops, void *data)
157 unsigned long ebp = 0;
159 if (!task)
160 task = current;
162 if (!stack) {
163 unsigned long dummy;
164 stack = &dummy;
165 if (task != current)
166 stack = (unsigned long *)task->thread.esp;
169 #ifdef CONFIG_FRAME_POINTER
170 if (!ebp) {
171 if (task == current) {
172 /* Grab ebp right from our regs */
173 asm ("movl %%ebp, %0" : "=r" (ebp) : );
174 } else {
175 /* ebp is the last reg pushed by switch_to */
176 ebp = *(unsigned long *) task->thread.esp;
179 #endif
181 while (1) {
182 struct thread_info *context;
183 context = (struct thread_info *)
184 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
185 ebp = print_context_stack(context, stack, ebp, ops, data);
186 /* Should be after the line below, but somewhere
187 in early boot context comes out corrupted and we
188 can't reference it -AK */
189 if (ops->stack(data, "IRQ") < 0)
190 break;
191 stack = (unsigned long*)context->previous_esp;
192 if (!stack)
193 break;
194 touch_nmi_watchdog();
197 EXPORT_SYMBOL(dump_trace);
199 static void
200 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
202 printk(data);
203 print_symbol(msg, symbol);
204 printk("\n");
207 static void print_trace_warning(void *data, char *msg)
209 printk("%s%s\n", (char *)data, msg);
212 static int print_trace_stack(void *data, char *name)
214 return 0;
218 * Print one address/symbol entries per line.
220 static void print_trace_address(void *data, unsigned long addr)
222 printk("%s [<%08lx>] ", (char *)data, addr);
223 print_symbol("%s\n", addr);
224 touch_nmi_watchdog();
227 static const struct stacktrace_ops print_trace_ops = {
228 .warning = print_trace_warning,
229 .warning_symbol = print_trace_warning_symbol,
230 .stack = print_trace_stack,
231 .address = print_trace_address,
234 static void
235 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
236 unsigned long * stack, char *log_lvl)
238 dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
239 printk("%s =======================\n", log_lvl);
242 void show_trace(struct task_struct *task, struct pt_regs *regs,
243 unsigned long * stack)
245 show_trace_log_lvl(task, regs, stack, "");
248 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
249 unsigned long *esp, char *log_lvl)
251 unsigned long *stack;
252 int i;
254 if (esp == NULL) {
255 if (task)
256 esp = (unsigned long*)task->thread.esp;
257 else
258 esp = (unsigned long *)&esp;
261 stack = esp;
262 for(i = 0; i < kstack_depth_to_print; i++) {
263 if (kstack_end(stack))
264 break;
265 if (i && ((i % 8) == 0))
266 printk("\n%s ", log_lvl);
267 printk("%08lx ", *stack++);
269 printk("\n%sCall Trace:\n", log_lvl);
270 show_trace_log_lvl(task, regs, esp, log_lvl);
273 void show_stack(struct task_struct *task, unsigned long *esp)
275 printk(" ");
276 show_stack_log_lvl(task, NULL, esp, "");
280 * The architecture-independent dump_stack generator
282 void dump_stack(void)
284 unsigned long stack;
286 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
287 current->pid, current->comm, print_tainted(),
288 init_utsname()->release,
289 (int)strcspn(init_utsname()->version, " "),
290 init_utsname()->version);
291 show_trace(current, NULL, &stack);
294 EXPORT_SYMBOL(dump_stack);
296 void show_registers(struct pt_regs *regs)
298 int i;
300 print_modules();
301 __show_registers(regs, 0);
302 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
303 TASK_COMM_LEN, current->comm, task_pid_nr(current),
304 current_thread_info(), current, task_thread_info(current));
306 * When in-kernel, we also print out the stack and code at the
307 * time of the fault..
309 if (!user_mode_vm(regs)) {
310 u8 *eip;
311 unsigned int code_prologue = code_bytes * 43 / 64;
312 unsigned int code_len = code_bytes;
313 unsigned char c;
315 printk("\n" KERN_EMERG "Stack: ");
316 show_stack_log_lvl(NULL, regs, &regs->esp, KERN_EMERG);
318 printk(KERN_EMERG "Code: ");
320 eip = (u8 *)regs->eip - code_prologue;
321 if (eip < (u8 *)PAGE_OFFSET ||
322 probe_kernel_address(eip, c)) {
323 /* try starting at EIP */
324 eip = (u8 *)regs->eip;
325 code_len = code_len - code_prologue + 1;
327 for (i = 0; i < code_len; i++, eip++) {
328 if (eip < (u8 *)PAGE_OFFSET ||
329 probe_kernel_address(eip, c)) {
330 printk(" Bad EIP value.");
331 break;
333 if (eip == (u8 *)regs->eip)
334 printk("<%02x> ", c);
335 else
336 printk("%02x ", c);
339 printk("\n");
342 int is_valid_bugaddr(unsigned long eip)
344 unsigned short ud2;
346 if (eip < PAGE_OFFSET)
347 return 0;
348 if (probe_kernel_address((unsigned short *)eip, ud2))
349 return 0;
351 return ud2 == 0x0b0f;
355 * This is gone through when something in the kernel has done something bad and
356 * is about to be terminated.
358 void die(const char * str, struct pt_regs * regs, long err)
360 static struct {
361 raw_spinlock_t lock;
362 u32 lock_owner;
363 int lock_owner_depth;
364 } die = {
365 .lock = __RAW_SPIN_LOCK_UNLOCKED,
366 .lock_owner = -1,
367 .lock_owner_depth = 0
369 static int die_counter;
370 unsigned long flags;
372 oops_enter();
374 if (die.lock_owner != raw_smp_processor_id()) {
375 console_verbose();
376 __raw_spin_lock(&die.lock);
377 raw_local_save_flags(flags);
378 die.lock_owner = smp_processor_id();
379 die.lock_owner_depth = 0;
380 bust_spinlocks(1);
382 else
383 raw_local_save_flags(flags);
385 if (++die.lock_owner_depth < 3) {
386 unsigned long esp;
387 unsigned short ss;
389 report_bug(regs->eip, regs);
391 printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff,
392 ++die_counter);
393 #ifdef CONFIG_PREEMPT
394 printk("PREEMPT ");
395 #endif
396 #ifdef CONFIG_SMP
397 printk("SMP ");
398 #endif
399 #ifdef CONFIG_DEBUG_PAGEALLOC
400 printk("DEBUG_PAGEALLOC");
401 #endif
402 printk("\n");
404 if (notify_die(DIE_OOPS, str, regs, err,
405 current->thread.trap_no, SIGSEGV) !=
406 NOTIFY_STOP) {
407 show_registers(regs);
408 /* Executive summary in case the oops scrolled away */
409 esp = (unsigned long) (&regs->esp);
410 savesegment(ss, ss);
411 if (user_mode(regs)) {
412 esp = regs->esp;
413 ss = regs->xss & 0xffff;
415 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
416 print_symbol("%s", regs->eip);
417 printk(" SS:ESP %04x:%08lx\n", ss, esp);
419 else
420 regs = NULL;
421 } else
422 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
424 bust_spinlocks(0);
425 die.lock_owner = -1;
426 add_taint(TAINT_DIE);
427 __raw_spin_unlock(&die.lock);
428 raw_local_irq_restore(flags);
430 if (!regs)
431 return;
433 if (kexec_should_crash(current))
434 crash_kexec(regs);
436 if (in_interrupt())
437 panic("Fatal exception in interrupt");
439 if (panic_on_oops)
440 panic("Fatal exception");
442 oops_exit();
443 do_exit(SIGSEGV);
446 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
448 if (!user_mode_vm(regs))
449 die(str, regs, err);
452 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
453 struct pt_regs * regs, long error_code,
454 siginfo_t *info)
456 struct task_struct *tsk = current;
458 if (regs->eflags & VM_MASK) {
459 if (vm86)
460 goto vm86_trap;
461 goto trap_signal;
464 if (!user_mode(regs))
465 goto kernel_trap;
467 trap_signal: {
469 * We want error_code and trap_no set for userspace faults and
470 * kernelspace faults which result in die(), but not
471 * kernelspace faults which are fixed up. die() gives the
472 * process no chance to handle the signal and notice the
473 * kernel fault information, so that won't result in polluting
474 * the information about previously queued, but not yet
475 * delivered, faults. See also do_general_protection below.
477 tsk->thread.error_code = error_code;
478 tsk->thread.trap_no = trapnr;
480 if (info)
481 force_sig_info(signr, info, tsk);
482 else
483 force_sig(signr, tsk);
484 return;
487 kernel_trap: {
488 if (!fixup_exception(regs)) {
489 tsk->thread.error_code = error_code;
490 tsk->thread.trap_no = trapnr;
491 die(str, regs, error_code);
493 return;
496 vm86_trap: {
497 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
498 if (ret) goto trap_signal;
499 return;
503 #define DO_ERROR(trapnr, signr, str, name) \
504 fastcall void do_##name(struct pt_regs * regs, long error_code) \
506 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
507 == NOTIFY_STOP) \
508 return; \
509 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
512 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
513 fastcall void do_##name(struct pt_regs * regs, long error_code) \
515 siginfo_t info; \
516 if (irq) \
517 local_irq_enable(); \
518 info.si_signo = signr; \
519 info.si_errno = 0; \
520 info.si_code = sicode; \
521 info.si_addr = (void __user *)siaddr; \
522 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
523 == NOTIFY_STOP) \
524 return; \
525 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
528 #define DO_VM86_ERROR(trapnr, signr, str, name) \
529 fastcall void do_##name(struct pt_regs * regs, long error_code) \
531 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
532 == NOTIFY_STOP) \
533 return; \
534 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
537 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
538 fastcall void do_##name(struct pt_regs * regs, long error_code) \
540 siginfo_t info; \
541 info.si_signo = signr; \
542 info.si_errno = 0; \
543 info.si_code = sicode; \
544 info.si_addr = (void __user *)siaddr; \
545 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
546 == NOTIFY_STOP) \
547 return; \
548 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
551 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
552 #ifndef CONFIG_KPROBES
553 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
554 #endif
555 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
556 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
557 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip, 0)
558 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
559 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
560 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
561 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
562 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
563 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1)
565 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
566 long error_code)
568 int cpu = get_cpu();
569 struct tss_struct *tss = &per_cpu(init_tss, cpu);
570 struct thread_struct *thread = &current->thread;
573 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
574 * invalid offset set (the LAZY one) and the faulting thread has
575 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
576 * and we set the offset field correctly. Then we let the CPU to
577 * restart the faulting instruction.
579 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
580 thread->io_bitmap_ptr) {
581 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
582 thread->io_bitmap_max);
584 * If the previously set map was extending to higher ports
585 * than the current one, pad extra space with 0xff (no access).
587 if (thread->io_bitmap_max < tss->io_bitmap_max)
588 memset((char *) tss->io_bitmap +
589 thread->io_bitmap_max, 0xff,
590 tss->io_bitmap_max - thread->io_bitmap_max);
591 tss->io_bitmap_max = thread->io_bitmap_max;
592 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
593 tss->io_bitmap_owner = thread;
594 put_cpu();
595 return;
597 put_cpu();
599 if (regs->eflags & VM_MASK)
600 goto gp_in_vm86;
602 if (!user_mode(regs))
603 goto gp_in_kernel;
605 current->thread.error_code = error_code;
606 current->thread.trap_no = 13;
607 if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
608 printk_ratelimit())
609 printk(KERN_INFO
610 "%s[%d] general protection eip:%lx esp:%lx error:%lx\n",
611 current->comm, task_pid_nr(current),
612 regs->eip, regs->esp, error_code);
614 force_sig(SIGSEGV, current);
615 return;
617 gp_in_vm86:
618 local_irq_enable();
619 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
620 return;
622 gp_in_kernel:
623 if (!fixup_exception(regs)) {
624 current->thread.error_code = error_code;
625 current->thread.trap_no = 13;
626 if (notify_die(DIE_GPF, "general protection fault", regs,
627 error_code, 13, SIGSEGV) == NOTIFY_STOP)
628 return;
629 die("general protection fault", regs, error_code);
633 static __kprobes void
634 mem_parity_error(unsigned char reason, struct pt_regs * regs)
636 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
637 "CPU %d.\n", reason, smp_processor_id());
638 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
640 #if defined(CONFIG_EDAC)
641 if(edac_handler_set()) {
642 edac_atomic_assert_error();
643 return;
645 #endif
647 if (panic_on_unrecovered_nmi)
648 panic("NMI: Not continuing");
650 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
652 /* Clear and disable the memory parity error line. */
653 clear_mem_error(reason);
656 static __kprobes void
657 io_check_error(unsigned char reason, struct pt_regs * regs)
659 unsigned long i;
661 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
662 show_registers(regs);
664 /* Re-enable the IOCK line, wait for a few seconds */
665 reason = (reason & 0xf) | 8;
666 outb(reason, 0x61);
667 i = 2000;
668 while (--i) udelay(1000);
669 reason &= ~8;
670 outb(reason, 0x61);
673 static __kprobes void
674 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
676 #ifdef CONFIG_MCA
677 /* Might actually be able to figure out what the guilty party
678 * is. */
679 if( MCA_bus ) {
680 mca_handle_nmi();
681 return;
683 #endif
684 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
685 "CPU %d.\n", reason, smp_processor_id());
686 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
687 if (panic_on_unrecovered_nmi)
688 panic("NMI: Not continuing");
690 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
693 static DEFINE_SPINLOCK(nmi_print_lock);
695 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
697 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
698 NOTIFY_STOP)
699 return;
701 spin_lock(&nmi_print_lock);
703 * We are in trouble anyway, lets at least try
704 * to get a message out.
706 bust_spinlocks(1);
707 printk(KERN_EMERG "%s", msg);
708 printk(" on CPU%d, eip %08lx, registers:\n",
709 smp_processor_id(), regs->eip);
710 show_registers(regs);
711 console_silent();
712 spin_unlock(&nmi_print_lock);
713 bust_spinlocks(0);
715 /* If we are in kernel we are probably nested up pretty bad
716 * and might aswell get out now while we still can.
718 if (!user_mode_vm(regs)) {
719 current->thread.trap_no = 2;
720 crash_kexec(regs);
723 do_exit(SIGSEGV);
726 static __kprobes void default_do_nmi(struct pt_regs * regs)
728 unsigned char reason = 0;
730 /* Only the BSP gets external NMIs from the system. */
731 if (!smp_processor_id())
732 reason = get_nmi_reason();
734 if (!(reason & 0xc0)) {
735 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
736 == NOTIFY_STOP)
737 return;
738 #ifdef CONFIG_X86_LOCAL_APIC
740 * Ok, so this is none of the documented NMI sources,
741 * so it must be the NMI watchdog.
743 if (nmi_watchdog_tick(regs, reason))
744 return;
745 if (!do_nmi_callback(regs, smp_processor_id()))
746 #endif
747 unknown_nmi_error(reason, regs);
749 return;
751 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
752 return;
753 if (reason & 0x80)
754 mem_parity_error(reason, regs);
755 if (reason & 0x40)
756 io_check_error(reason, regs);
758 * Reassert NMI in case it became active meanwhile
759 * as it's edge-triggered.
761 reassert_nmi();
764 static int ignore_nmis;
766 fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
768 int cpu;
770 nmi_enter();
772 cpu = smp_processor_id();
774 ++nmi_count(cpu);
776 if (!ignore_nmis)
777 default_do_nmi(regs);
779 nmi_exit();
782 void stop_nmi(void)
784 acpi_nmi_disable();
785 ignore_nmis++;
788 void restart_nmi(void)
790 ignore_nmis--;
791 acpi_nmi_enable();
794 #ifdef CONFIG_KPROBES
795 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
797 trace_hardirqs_fixup();
799 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
800 == NOTIFY_STOP)
801 return;
802 /* This is an interrupt gate, because kprobes wants interrupts
803 disabled. Normal trap handlers don't. */
804 restore_interrupts(regs);
805 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
807 #endif
810 * Our handling of the processor debug registers is non-trivial.
811 * We do not clear them on entry and exit from the kernel. Therefore
812 * it is possible to get a watchpoint trap here from inside the kernel.
813 * However, the code in ./ptrace.c has ensured that the user can
814 * only set watchpoints on userspace addresses. Therefore the in-kernel
815 * watchpoint trap can only occur in code which is reading/writing
816 * from user space. Such code must not hold kernel locks (since it
817 * can equally take a page fault), therefore it is safe to call
818 * force_sig_info even though that claims and releases locks.
820 * Code in ./signal.c ensures that the debug control register
821 * is restored before we deliver any signal, and therefore that
822 * user code runs with the correct debug control register even though
823 * we clear it here.
825 * Being careful here means that we don't have to be as careful in a
826 * lot of more complicated places (task switching can be a bit lazy
827 * about restoring all the debug state, and ptrace doesn't have to
828 * find every occurrence of the TF bit that could be saved away even
829 * by user code)
831 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
833 unsigned int condition;
834 struct task_struct *tsk = current;
836 get_debugreg(condition, 6);
838 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
839 SIGTRAP) == NOTIFY_STOP)
840 return;
841 /* It's safe to allow irq's after DR6 has been saved */
842 if (regs->eflags & X86_EFLAGS_IF)
843 local_irq_enable();
845 /* Mask out spurious debug traps due to lazy DR7 setting */
846 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
847 if (!tsk->thread.debugreg[7])
848 goto clear_dr7;
851 if (regs->eflags & VM_MASK)
852 goto debug_vm86;
854 /* Save debug status register where ptrace can see it */
855 tsk->thread.debugreg[6] = condition;
858 * Single-stepping through TF: make sure we ignore any events in
859 * kernel space (but re-enable TF when returning to user mode).
861 if (condition & DR_STEP) {
863 * We already checked v86 mode above, so we can
864 * check for kernel mode by just checking the CPL
865 * of CS.
867 if (!user_mode(regs))
868 goto clear_TF_reenable;
871 /* Ok, finally something we can handle */
872 send_sigtrap(tsk, regs, error_code);
874 /* Disable additional traps. They'll be re-enabled when
875 * the signal is delivered.
877 clear_dr7:
878 set_debugreg(0, 7);
879 return;
881 debug_vm86:
882 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
883 return;
885 clear_TF_reenable:
886 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
887 regs->eflags &= ~TF_MASK;
888 return;
892 * Note that we play around with the 'TS' bit in an attempt to get
893 * the correct behaviour even in the presence of the asynchronous
894 * IRQ13 behaviour
896 void math_error(void __user *eip)
898 struct task_struct * task;
899 siginfo_t info;
900 unsigned short cwd, swd;
903 * Save the info for the exception handler and clear the error.
905 task = current;
906 save_init_fpu(task);
907 task->thread.trap_no = 16;
908 task->thread.error_code = 0;
909 info.si_signo = SIGFPE;
910 info.si_errno = 0;
911 info.si_code = __SI_FAULT;
912 info.si_addr = eip;
914 * (~cwd & swd) will mask out exceptions that are not set to unmasked
915 * status. 0x3f is the exception bits in these regs, 0x200 is the
916 * C1 reg you need in case of a stack fault, 0x040 is the stack
917 * fault bit. We should only be taking one exception at a time,
918 * so if this combination doesn't produce any single exception,
919 * then we have a bad program that isn't syncronizing its FPU usage
920 * and it will suffer the consequences since we won't be able to
921 * fully reproduce the context of the exception
923 cwd = get_fpu_cwd(task);
924 swd = get_fpu_swd(task);
925 switch (swd & ~cwd & 0x3f) {
926 case 0x000: /* No unmasked exception */
927 return;
928 default: /* Multiple exceptions */
929 break;
930 case 0x001: /* Invalid Op */
932 * swd & 0x240 == 0x040: Stack Underflow
933 * swd & 0x240 == 0x240: Stack Overflow
934 * User must clear the SF bit (0x40) if set
936 info.si_code = FPE_FLTINV;
937 break;
938 case 0x002: /* Denormalize */
939 case 0x010: /* Underflow */
940 info.si_code = FPE_FLTUND;
941 break;
942 case 0x004: /* Zero Divide */
943 info.si_code = FPE_FLTDIV;
944 break;
945 case 0x008: /* Overflow */
946 info.si_code = FPE_FLTOVF;
947 break;
948 case 0x020: /* Precision */
949 info.si_code = FPE_FLTRES;
950 break;
952 force_sig_info(SIGFPE, &info, task);
955 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
957 ignore_fpu_irq = 1;
958 math_error((void __user *)regs->eip);
961 static void simd_math_error(void __user *eip)
963 struct task_struct * task;
964 siginfo_t info;
965 unsigned short mxcsr;
968 * Save the info for the exception handler and clear the error.
970 task = current;
971 save_init_fpu(task);
972 task->thread.trap_no = 19;
973 task->thread.error_code = 0;
974 info.si_signo = SIGFPE;
975 info.si_errno = 0;
976 info.si_code = __SI_FAULT;
977 info.si_addr = eip;
979 * The SIMD FPU exceptions are handled a little differently, as there
980 * is only a single status/control register. Thus, to determine which
981 * unmasked exception was caught we must mask the exception mask bits
982 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
984 mxcsr = get_fpu_mxcsr(task);
985 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
986 case 0x000:
987 default:
988 break;
989 case 0x001: /* Invalid Op */
990 info.si_code = FPE_FLTINV;
991 break;
992 case 0x002: /* Denormalize */
993 case 0x010: /* Underflow */
994 info.si_code = FPE_FLTUND;
995 break;
996 case 0x004: /* Zero Divide */
997 info.si_code = FPE_FLTDIV;
998 break;
999 case 0x008: /* Overflow */
1000 info.si_code = FPE_FLTOVF;
1001 break;
1002 case 0x020: /* Precision */
1003 info.si_code = FPE_FLTRES;
1004 break;
1006 force_sig_info(SIGFPE, &info, task);
1009 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
1010 long error_code)
1012 if (cpu_has_xmm) {
1013 /* Handle SIMD FPU exceptions on PIII+ processors. */
1014 ignore_fpu_irq = 1;
1015 simd_math_error((void __user *)regs->eip);
1016 } else {
1018 * Handle strange cache flush from user space exception
1019 * in all other cases. This is undocumented behaviour.
1021 if (regs->eflags & VM_MASK) {
1022 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1023 error_code);
1024 return;
1026 current->thread.trap_no = 19;
1027 current->thread.error_code = error_code;
1028 die_if_kernel("cache flush denied", regs, error_code);
1029 force_sig(SIGSEGV, current);
1033 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1034 long error_code)
1036 #if 0
1037 /* No need to warn about this any longer. */
1038 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1039 #endif
1042 fastcall unsigned long patch_espfix_desc(unsigned long uesp,
1043 unsigned long kesp)
1045 struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
1046 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1047 unsigned long new_kesp = kesp - base;
1048 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1049 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1050 /* Set up base for espfix segment */
1051 desc &= 0x00f0ff0000000000ULL;
1052 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1053 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1054 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1055 (lim_pages & 0xffff);
1056 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1057 return new_kesp;
1061 * 'math_state_restore()' saves the current math information in the
1062 * old math state array, and gets the new ones from the current task
1064 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1065 * Don't touch unless you *really* know how it works.
1067 * Must be called with kernel preemption disabled (in this case,
1068 * local interrupts are disabled at the call-site in entry.S).
1070 asmlinkage void math_state_restore(void)
1072 struct thread_info *thread = current_thread_info();
1073 struct task_struct *tsk = thread->task;
1075 clts(); /* Allow maths ops (or we recurse) */
1076 if (!tsk_used_math(tsk))
1077 init_fpu(tsk);
1078 restore_fpu(tsk);
1079 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1080 tsk->fpu_counter++;
1082 EXPORT_SYMBOL_GPL(math_state_restore);
1084 #ifndef CONFIG_MATH_EMULATION
1086 asmlinkage void math_emulate(long arg)
1088 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1089 printk(KERN_EMERG "killing %s.\n",current->comm);
1090 force_sig(SIGFPE,current);
1091 schedule();
1094 #endif /* CONFIG_MATH_EMULATION */
1097 * This needs to use 'idt_table' rather than 'idt', and
1098 * thus use the _nonmapped_ version of the IDT, as the
1099 * Pentium F0 0F bugfix can have resulted in the mapped
1100 * IDT being write-protected.
1102 void set_intr_gate(unsigned int n, void *addr)
1104 _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
1108 * This routine sets up an interrupt gate at directory privilege level 3.
1110 static inline void set_system_intr_gate(unsigned int n, void *addr)
1112 _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
1115 static void __init set_trap_gate(unsigned int n, void *addr)
1117 _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
1120 static void __init set_system_gate(unsigned int n, void *addr)
1122 _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
1125 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1127 _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
1131 void __init trap_init(void)
1133 int i;
1135 #ifdef CONFIG_EISA
1136 void __iomem *p = ioremap(0x0FFFD9, 4);
1137 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1138 EISA_bus = 1;
1140 iounmap(p);
1141 #endif
1143 #ifdef CONFIG_X86_LOCAL_APIC
1144 init_apic_mappings();
1145 #endif
1147 set_trap_gate(0,&divide_error);
1148 set_intr_gate(1,&debug);
1149 set_intr_gate(2,&nmi);
1150 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1151 set_system_gate(4,&overflow);
1152 set_trap_gate(5,&bounds);
1153 set_trap_gate(6,&invalid_op);
1154 set_trap_gate(7,&device_not_available);
1155 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1156 set_trap_gate(9,&coprocessor_segment_overrun);
1157 set_trap_gate(10,&invalid_TSS);
1158 set_trap_gate(11,&segment_not_present);
1159 set_trap_gate(12,&stack_segment);
1160 set_trap_gate(13,&general_protection);
1161 set_intr_gate(14,&page_fault);
1162 set_trap_gate(15,&spurious_interrupt_bug);
1163 set_trap_gate(16,&coprocessor_error);
1164 set_trap_gate(17,&alignment_check);
1165 #ifdef CONFIG_X86_MCE
1166 set_trap_gate(18,&machine_check);
1167 #endif
1168 set_trap_gate(19,&simd_coprocessor_error);
1170 if (cpu_has_fxsr) {
1172 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1173 * Generates a compile-time "error: zero width for bit-field" if
1174 * the alignment is wrong.
1176 struct fxsrAlignAssert {
1177 int _:!(offsetof(struct task_struct,
1178 thread.i387.fxsave) & 15);
1181 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1182 set_in_cr4(X86_CR4_OSFXSR);
1183 printk("done.\n");
1185 if (cpu_has_xmm) {
1186 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1187 "support... ");
1188 set_in_cr4(X86_CR4_OSXMMEXCPT);
1189 printk("done.\n");
1192 set_system_gate(SYSCALL_VECTOR,&system_call);
1194 /* Reserve all the builtin and the syscall vector. */
1195 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1196 set_bit(i, used_vectors);
1197 set_bit(SYSCALL_VECTOR, used_vectors);
1200 * Should be a barrier for any external CPU state.
1202 cpu_init();
1204 trap_init_hook();
1207 static int __init kstack_setup(char *s)
1209 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1210 return 1;
1212 __setup("kstack=", kstack_setup);
1214 static int __init code_bytes_setup(char *s)
1216 code_bytes = simple_strtoul(s, NULL, 0);
1217 if (code_bytes > 8192)
1218 code_bytes = 8192;
1220 return 1;
1222 __setup("code_bytes=", code_bytes_setup);