checkpatch: version: 0.26
[linux-2.6/mini2440.git] / kernel / cpuset.c
blob345ace5117de9ebfdd886e1a959e4b01eefb2374
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
68 int number_of_cpusets __read_mostly;
70 /* Forward declare cgroup structures */
71 struct cgroup_subsys cpuset_subsys;
72 struct cpuset;
74 /* See "Frequency meter" comments, below. */
76 struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
83 struct cpuset {
84 struct cgroup_subsys_state css;
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
90 struct cpuset *parent; /* my parent */
93 * Copy of global cpuset_mems_generation as of the most
94 * recent time this cpuset changed its mems_allowed.
96 int mems_generation;
98 struct fmeter fmeter; /* memory_pressure filter */
100 /* partition number for rebuild_sched_domains() */
101 int pn;
103 /* for custom sched domain */
104 int relax_domain_level;
106 /* used for walking a cpuset heirarchy */
107 struct list_head stack_list;
110 /* Retrieve the cpuset for a cgroup */
111 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
113 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
114 struct cpuset, css);
117 /* Retrieve the cpuset for a task */
118 static inline struct cpuset *task_cs(struct task_struct *task)
120 return container_of(task_subsys_state(task, cpuset_subsys_id),
121 struct cpuset, css);
123 struct cpuset_hotplug_scanner {
124 struct cgroup_scanner scan;
125 struct cgroup *to;
128 /* bits in struct cpuset flags field */
129 typedef enum {
130 CS_CPU_EXCLUSIVE,
131 CS_MEM_EXCLUSIVE,
132 CS_MEM_HARDWALL,
133 CS_MEMORY_MIGRATE,
134 CS_SCHED_LOAD_BALANCE,
135 CS_SPREAD_PAGE,
136 CS_SPREAD_SLAB,
137 } cpuset_flagbits_t;
139 /* convenient tests for these bits */
140 static inline int is_cpu_exclusive(const struct cpuset *cs)
142 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
145 static inline int is_mem_exclusive(const struct cpuset *cs)
147 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
150 static inline int is_mem_hardwall(const struct cpuset *cs)
152 return test_bit(CS_MEM_HARDWALL, &cs->flags);
155 static inline int is_sched_load_balance(const struct cpuset *cs)
157 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
160 static inline int is_memory_migrate(const struct cpuset *cs)
162 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
165 static inline int is_spread_page(const struct cpuset *cs)
167 return test_bit(CS_SPREAD_PAGE, &cs->flags);
170 static inline int is_spread_slab(const struct cpuset *cs)
172 return test_bit(CS_SPREAD_SLAB, &cs->flags);
176 * Increment this integer everytime any cpuset changes its
177 * mems_allowed value. Users of cpusets can track this generation
178 * number, and avoid having to lock and reload mems_allowed unless
179 * the cpuset they're using changes generation.
181 * A single, global generation is needed because cpuset_attach_task() could
182 * reattach a task to a different cpuset, which must not have its
183 * generation numbers aliased with those of that tasks previous cpuset.
185 * Generations are needed for mems_allowed because one task cannot
186 * modify another's memory placement. So we must enable every task,
187 * on every visit to __alloc_pages(), to efficiently check whether
188 * its current->cpuset->mems_allowed has changed, requiring an update
189 * of its current->mems_allowed.
191 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
192 * there is no need to mark it atomic.
194 static int cpuset_mems_generation;
196 static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
198 .cpus_allowed = CPU_MASK_ALL,
199 .mems_allowed = NODE_MASK_ALL,
203 * There are two global mutexes guarding cpuset structures. The first
204 * is the main control groups cgroup_mutex, accessed via
205 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
206 * callback_mutex, below. They can nest. It is ok to first take
207 * cgroup_mutex, then nest callback_mutex. We also require taking
208 * task_lock() when dereferencing a task's cpuset pointer. See "The
209 * task_lock() exception", at the end of this comment.
211 * A task must hold both mutexes to modify cpusets. If a task
212 * holds cgroup_mutex, then it blocks others wanting that mutex,
213 * ensuring that it is the only task able to also acquire callback_mutex
214 * and be able to modify cpusets. It can perform various checks on
215 * the cpuset structure first, knowing nothing will change. It can
216 * also allocate memory while just holding cgroup_mutex. While it is
217 * performing these checks, various callback routines can briefly
218 * acquire callback_mutex to query cpusets. Once it is ready to make
219 * the changes, it takes callback_mutex, blocking everyone else.
221 * Calls to the kernel memory allocator can not be made while holding
222 * callback_mutex, as that would risk double tripping on callback_mutex
223 * from one of the callbacks into the cpuset code from within
224 * __alloc_pages().
226 * If a task is only holding callback_mutex, then it has read-only
227 * access to cpusets.
229 * The task_struct fields mems_allowed and mems_generation may only
230 * be accessed in the context of that task, so require no locks.
232 * The cpuset_common_file_read() handlers only hold callback_mutex across
233 * small pieces of code, such as when reading out possibly multi-word
234 * cpumasks and nodemasks.
236 * Accessing a task's cpuset should be done in accordance with the
237 * guidelines for accessing subsystem state in kernel/cgroup.c
240 static DEFINE_MUTEX(callback_mutex);
243 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
244 * buffers. They are statically allocated to prevent using excess stack
245 * when calling cpuset_print_task_mems_allowed().
247 #define CPUSET_NAME_LEN (128)
248 #define CPUSET_NODELIST_LEN (256)
249 static char cpuset_name[CPUSET_NAME_LEN];
250 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
251 static DEFINE_SPINLOCK(cpuset_buffer_lock);
254 * This is ugly, but preserves the userspace API for existing cpuset
255 * users. If someone tries to mount the "cpuset" filesystem, we
256 * silently switch it to mount "cgroup" instead
258 static int cpuset_get_sb(struct file_system_type *fs_type,
259 int flags, const char *unused_dev_name,
260 void *data, struct vfsmount *mnt)
262 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
263 int ret = -ENODEV;
264 if (cgroup_fs) {
265 char mountopts[] =
266 "cpuset,noprefix,"
267 "release_agent=/sbin/cpuset_release_agent";
268 ret = cgroup_fs->get_sb(cgroup_fs, flags,
269 unused_dev_name, mountopts, mnt);
270 put_filesystem(cgroup_fs);
272 return ret;
275 static struct file_system_type cpuset_fs_type = {
276 .name = "cpuset",
277 .get_sb = cpuset_get_sb,
281 * Return in *pmask the portion of a cpusets's cpus_allowed that
282 * are online. If none are online, walk up the cpuset hierarchy
283 * until we find one that does have some online cpus. If we get
284 * all the way to the top and still haven't found any online cpus,
285 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
286 * task, return cpu_online_map.
288 * One way or another, we guarantee to return some non-empty subset
289 * of cpu_online_map.
291 * Call with callback_mutex held.
294 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
296 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
297 cs = cs->parent;
298 if (cs)
299 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
300 else
301 *pmask = cpu_online_map;
302 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
306 * Return in *pmask the portion of a cpusets's mems_allowed that
307 * are online, with memory. If none are online with memory, walk
308 * up the cpuset hierarchy until we find one that does have some
309 * online mems. If we get all the way to the top and still haven't
310 * found any online mems, return node_states[N_HIGH_MEMORY].
312 * One way or another, we guarantee to return some non-empty subset
313 * of node_states[N_HIGH_MEMORY].
315 * Call with callback_mutex held.
318 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
320 while (cs && !nodes_intersects(cs->mems_allowed,
321 node_states[N_HIGH_MEMORY]))
322 cs = cs->parent;
323 if (cs)
324 nodes_and(*pmask, cs->mems_allowed,
325 node_states[N_HIGH_MEMORY]);
326 else
327 *pmask = node_states[N_HIGH_MEMORY];
328 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
332 * cpuset_update_task_memory_state - update task memory placement
334 * If the current tasks cpusets mems_allowed changed behind our
335 * backs, update current->mems_allowed, mems_generation and task NUMA
336 * mempolicy to the new value.
338 * Task mempolicy is updated by rebinding it relative to the
339 * current->cpuset if a task has its memory placement changed.
340 * Do not call this routine if in_interrupt().
342 * Call without callback_mutex or task_lock() held. May be
343 * called with or without cgroup_mutex held. Thanks in part to
344 * 'the_top_cpuset_hack', the task's cpuset pointer will never
345 * be NULL. This routine also might acquire callback_mutex during
346 * call.
348 * Reading current->cpuset->mems_generation doesn't need task_lock
349 * to guard the current->cpuset derefence, because it is guarded
350 * from concurrent freeing of current->cpuset using RCU.
352 * The rcu_dereference() is technically probably not needed,
353 * as I don't actually mind if I see a new cpuset pointer but
354 * an old value of mems_generation. However this really only
355 * matters on alpha systems using cpusets heavily. If I dropped
356 * that rcu_dereference(), it would save them a memory barrier.
357 * For all other arch's, rcu_dereference is a no-op anyway, and for
358 * alpha systems not using cpusets, another planned optimization,
359 * avoiding the rcu critical section for tasks in the root cpuset
360 * which is statically allocated, so can't vanish, will make this
361 * irrelevant. Better to use RCU as intended, than to engage in
362 * some cute trick to save a memory barrier that is impossible to
363 * test, for alpha systems using cpusets heavily, which might not
364 * even exist.
366 * This routine is needed to update the per-task mems_allowed data,
367 * within the tasks context, when it is trying to allocate memory
368 * (in various mm/mempolicy.c routines) and notices that some other
369 * task has been modifying its cpuset.
372 void cpuset_update_task_memory_state(void)
374 int my_cpusets_mem_gen;
375 struct task_struct *tsk = current;
376 struct cpuset *cs;
378 if (task_cs(tsk) == &top_cpuset) {
379 /* Don't need rcu for top_cpuset. It's never freed. */
380 my_cpusets_mem_gen = top_cpuset.mems_generation;
381 } else {
382 rcu_read_lock();
383 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
384 rcu_read_unlock();
387 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
388 mutex_lock(&callback_mutex);
389 task_lock(tsk);
390 cs = task_cs(tsk); /* Maybe changed when task not locked */
391 guarantee_online_mems(cs, &tsk->mems_allowed);
392 tsk->cpuset_mems_generation = cs->mems_generation;
393 if (is_spread_page(cs))
394 tsk->flags |= PF_SPREAD_PAGE;
395 else
396 tsk->flags &= ~PF_SPREAD_PAGE;
397 if (is_spread_slab(cs))
398 tsk->flags |= PF_SPREAD_SLAB;
399 else
400 tsk->flags &= ~PF_SPREAD_SLAB;
401 task_unlock(tsk);
402 mutex_unlock(&callback_mutex);
403 mpol_rebind_task(tsk, &tsk->mems_allowed);
408 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
410 * One cpuset is a subset of another if all its allowed CPUs and
411 * Memory Nodes are a subset of the other, and its exclusive flags
412 * are only set if the other's are set. Call holding cgroup_mutex.
415 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
417 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
418 nodes_subset(p->mems_allowed, q->mems_allowed) &&
419 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
420 is_mem_exclusive(p) <= is_mem_exclusive(q);
424 * validate_change() - Used to validate that any proposed cpuset change
425 * follows the structural rules for cpusets.
427 * If we replaced the flag and mask values of the current cpuset
428 * (cur) with those values in the trial cpuset (trial), would
429 * our various subset and exclusive rules still be valid? Presumes
430 * cgroup_mutex held.
432 * 'cur' is the address of an actual, in-use cpuset. Operations
433 * such as list traversal that depend on the actual address of the
434 * cpuset in the list must use cur below, not trial.
436 * 'trial' is the address of bulk structure copy of cur, with
437 * perhaps one or more of the fields cpus_allowed, mems_allowed,
438 * or flags changed to new, trial values.
440 * Return 0 if valid, -errno if not.
443 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
445 struct cgroup *cont;
446 struct cpuset *c, *par;
448 /* Each of our child cpusets must be a subset of us */
449 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
450 if (!is_cpuset_subset(cgroup_cs(cont), trial))
451 return -EBUSY;
454 /* Remaining checks don't apply to root cpuset */
455 if (cur == &top_cpuset)
456 return 0;
458 par = cur->parent;
460 /* We must be a subset of our parent cpuset */
461 if (!is_cpuset_subset(trial, par))
462 return -EACCES;
465 * If either I or some sibling (!= me) is exclusive, we can't
466 * overlap
468 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
469 c = cgroup_cs(cont);
470 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
471 c != cur &&
472 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
473 return -EINVAL;
474 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
475 c != cur &&
476 nodes_intersects(trial->mems_allowed, c->mems_allowed))
477 return -EINVAL;
480 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
481 if (cgroup_task_count(cur->css.cgroup)) {
482 if (cpus_empty(trial->cpus_allowed) ||
483 nodes_empty(trial->mems_allowed)) {
484 return -ENOSPC;
488 return 0;
492 * Helper routine for generate_sched_domains().
493 * Do cpusets a, b have overlapping cpus_allowed masks?
495 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
497 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
500 static void
501 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
503 if (dattr->relax_domain_level < c->relax_domain_level)
504 dattr->relax_domain_level = c->relax_domain_level;
505 return;
508 static void
509 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
511 LIST_HEAD(q);
513 list_add(&c->stack_list, &q);
514 while (!list_empty(&q)) {
515 struct cpuset *cp;
516 struct cgroup *cont;
517 struct cpuset *child;
519 cp = list_first_entry(&q, struct cpuset, stack_list);
520 list_del(q.next);
522 if (cpus_empty(cp->cpus_allowed))
523 continue;
525 if (is_sched_load_balance(cp))
526 update_domain_attr(dattr, cp);
528 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
529 child = cgroup_cs(cont);
530 list_add_tail(&child->stack_list, &q);
536 * generate_sched_domains()
538 * This function builds a partial partition of the systems CPUs
539 * A 'partial partition' is a set of non-overlapping subsets whose
540 * union is a subset of that set.
541 * The output of this function needs to be passed to kernel/sched.c
542 * partition_sched_domains() routine, which will rebuild the scheduler's
543 * load balancing domains (sched domains) as specified by that partial
544 * partition.
546 * See "What is sched_load_balance" in Documentation/cpusets.txt
547 * for a background explanation of this.
549 * Does not return errors, on the theory that the callers of this
550 * routine would rather not worry about failures to rebuild sched
551 * domains when operating in the severe memory shortage situations
552 * that could cause allocation failures below.
554 * Must be called with cgroup_lock held.
556 * The three key local variables below are:
557 * q - a linked-list queue of cpuset pointers, used to implement a
558 * top-down scan of all cpusets. This scan loads a pointer
559 * to each cpuset marked is_sched_load_balance into the
560 * array 'csa'. For our purposes, rebuilding the schedulers
561 * sched domains, we can ignore !is_sched_load_balance cpusets.
562 * csa - (for CpuSet Array) Array of pointers to all the cpusets
563 * that need to be load balanced, for convenient iterative
564 * access by the subsequent code that finds the best partition,
565 * i.e the set of domains (subsets) of CPUs such that the
566 * cpus_allowed of every cpuset marked is_sched_load_balance
567 * is a subset of one of these domains, while there are as
568 * many such domains as possible, each as small as possible.
569 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
570 * the kernel/sched.c routine partition_sched_domains() in a
571 * convenient format, that can be easily compared to the prior
572 * value to determine what partition elements (sched domains)
573 * were changed (added or removed.)
575 * Finding the best partition (set of domains):
576 * The triple nested loops below over i, j, k scan over the
577 * load balanced cpusets (using the array of cpuset pointers in
578 * csa[]) looking for pairs of cpusets that have overlapping
579 * cpus_allowed, but which don't have the same 'pn' partition
580 * number and gives them in the same partition number. It keeps
581 * looping on the 'restart' label until it can no longer find
582 * any such pairs.
584 * The union of the cpus_allowed masks from the set of
585 * all cpusets having the same 'pn' value then form the one
586 * element of the partition (one sched domain) to be passed to
587 * partition_sched_domains().
589 static int generate_sched_domains(cpumask_t **domains,
590 struct sched_domain_attr **attributes)
592 LIST_HEAD(q); /* queue of cpusets to be scanned */
593 struct cpuset *cp; /* scans q */
594 struct cpuset **csa; /* array of all cpuset ptrs */
595 int csn; /* how many cpuset ptrs in csa so far */
596 int i, j, k; /* indices for partition finding loops */
597 cpumask_t *doms; /* resulting partition; i.e. sched domains */
598 struct sched_domain_attr *dattr; /* attributes for custom domains */
599 int ndoms = 0; /* number of sched domains in result */
600 int nslot; /* next empty doms[] cpumask_t slot */
602 doms = NULL;
603 dattr = NULL;
604 csa = NULL;
606 /* Special case for the 99% of systems with one, full, sched domain */
607 if (is_sched_load_balance(&top_cpuset)) {
608 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
609 if (!doms)
610 goto done;
612 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
613 if (dattr) {
614 *dattr = SD_ATTR_INIT;
615 update_domain_attr_tree(dattr, &top_cpuset);
617 *doms = top_cpuset.cpus_allowed;
619 ndoms = 1;
620 goto done;
623 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
624 if (!csa)
625 goto done;
626 csn = 0;
628 list_add(&top_cpuset.stack_list, &q);
629 while (!list_empty(&q)) {
630 struct cgroup *cont;
631 struct cpuset *child; /* scans child cpusets of cp */
633 cp = list_first_entry(&q, struct cpuset, stack_list);
634 list_del(q.next);
636 if (cpus_empty(cp->cpus_allowed))
637 continue;
640 * All child cpusets contain a subset of the parent's cpus, so
641 * just skip them, and then we call update_domain_attr_tree()
642 * to calc relax_domain_level of the corresponding sched
643 * domain.
645 if (is_sched_load_balance(cp)) {
646 csa[csn++] = cp;
647 continue;
650 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
651 child = cgroup_cs(cont);
652 list_add_tail(&child->stack_list, &q);
656 for (i = 0; i < csn; i++)
657 csa[i]->pn = i;
658 ndoms = csn;
660 restart:
661 /* Find the best partition (set of sched domains) */
662 for (i = 0; i < csn; i++) {
663 struct cpuset *a = csa[i];
664 int apn = a->pn;
666 for (j = 0; j < csn; j++) {
667 struct cpuset *b = csa[j];
668 int bpn = b->pn;
670 if (apn != bpn && cpusets_overlap(a, b)) {
671 for (k = 0; k < csn; k++) {
672 struct cpuset *c = csa[k];
674 if (c->pn == bpn)
675 c->pn = apn;
677 ndoms--; /* one less element */
678 goto restart;
684 * Now we know how many domains to create.
685 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
687 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
688 if (!doms)
689 goto done;
692 * The rest of the code, including the scheduler, can deal with
693 * dattr==NULL case. No need to abort if alloc fails.
695 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
697 for (nslot = 0, i = 0; i < csn; i++) {
698 struct cpuset *a = csa[i];
699 cpumask_t *dp;
700 int apn = a->pn;
702 if (apn < 0) {
703 /* Skip completed partitions */
704 continue;
707 dp = doms + nslot;
709 if (nslot == ndoms) {
710 static int warnings = 10;
711 if (warnings) {
712 printk(KERN_WARNING
713 "rebuild_sched_domains confused:"
714 " nslot %d, ndoms %d, csn %d, i %d,"
715 " apn %d\n",
716 nslot, ndoms, csn, i, apn);
717 warnings--;
719 continue;
722 cpus_clear(*dp);
723 if (dattr)
724 *(dattr + nslot) = SD_ATTR_INIT;
725 for (j = i; j < csn; j++) {
726 struct cpuset *b = csa[j];
728 if (apn == b->pn) {
729 cpus_or(*dp, *dp, b->cpus_allowed);
730 if (dattr)
731 update_domain_attr_tree(dattr + nslot, b);
733 /* Done with this partition */
734 b->pn = -1;
737 nslot++;
739 BUG_ON(nslot != ndoms);
741 done:
742 kfree(csa);
745 * Fallback to the default domain if kmalloc() failed.
746 * See comments in partition_sched_domains().
748 if (doms == NULL)
749 ndoms = 1;
751 *domains = doms;
752 *attributes = dattr;
753 return ndoms;
757 * Rebuild scheduler domains.
759 * Call with neither cgroup_mutex held nor within get_online_cpus().
760 * Takes both cgroup_mutex and get_online_cpus().
762 * Cannot be directly called from cpuset code handling changes
763 * to the cpuset pseudo-filesystem, because it cannot be called
764 * from code that already holds cgroup_mutex.
766 static void do_rebuild_sched_domains(struct work_struct *unused)
768 struct sched_domain_attr *attr;
769 cpumask_t *doms;
770 int ndoms;
772 get_online_cpus();
774 /* Generate domain masks and attrs */
775 cgroup_lock();
776 ndoms = generate_sched_domains(&doms, &attr);
777 cgroup_unlock();
779 /* Have scheduler rebuild the domains */
780 partition_sched_domains(ndoms, doms, attr);
782 put_online_cpus();
785 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
788 * Rebuild scheduler domains, asynchronously via workqueue.
790 * If the flag 'sched_load_balance' of any cpuset with non-empty
791 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
792 * which has that flag enabled, or if any cpuset with a non-empty
793 * 'cpus' is removed, then call this routine to rebuild the
794 * scheduler's dynamic sched domains.
796 * The rebuild_sched_domains() and partition_sched_domains()
797 * routines must nest cgroup_lock() inside get_online_cpus(),
798 * but such cpuset changes as these must nest that locking the
799 * other way, holding cgroup_lock() for much of the code.
801 * So in order to avoid an ABBA deadlock, the cpuset code handling
802 * these user changes delegates the actual sched domain rebuilding
803 * to a separate workqueue thread, which ends up processing the
804 * above do_rebuild_sched_domains() function.
806 static void async_rebuild_sched_domains(void)
808 schedule_work(&rebuild_sched_domains_work);
812 * Accomplishes the same scheduler domain rebuild as the above
813 * async_rebuild_sched_domains(), however it directly calls the
814 * rebuild routine synchronously rather than calling it via an
815 * asynchronous work thread.
817 * This can only be called from code that is not holding
818 * cgroup_mutex (not nested in a cgroup_lock() call.)
820 void rebuild_sched_domains(void)
822 do_rebuild_sched_domains(NULL);
826 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
827 * @tsk: task to test
828 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
830 * Call with cgroup_mutex held. May take callback_mutex during call.
831 * Called for each task in a cgroup by cgroup_scan_tasks().
832 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
833 * words, if its mask is not equal to its cpuset's mask).
835 static int cpuset_test_cpumask(struct task_struct *tsk,
836 struct cgroup_scanner *scan)
838 return !cpus_equal(tsk->cpus_allowed,
839 (cgroup_cs(scan->cg))->cpus_allowed);
843 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
844 * @tsk: task to test
845 * @scan: struct cgroup_scanner containing the cgroup of the task
847 * Called by cgroup_scan_tasks() for each task in a cgroup whose
848 * cpus_allowed mask needs to be changed.
850 * We don't need to re-check for the cgroup/cpuset membership, since we're
851 * holding cgroup_lock() at this point.
853 static void cpuset_change_cpumask(struct task_struct *tsk,
854 struct cgroup_scanner *scan)
856 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
860 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
861 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
862 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
864 * Called with cgroup_mutex held
866 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
867 * calling callback functions for each.
869 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
870 * if @heap != NULL.
872 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
874 struct cgroup_scanner scan;
876 scan.cg = cs->css.cgroup;
877 scan.test_task = cpuset_test_cpumask;
878 scan.process_task = cpuset_change_cpumask;
879 scan.heap = heap;
880 cgroup_scan_tasks(&scan);
884 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
885 * @cs: the cpuset to consider
886 * @buf: buffer of cpu numbers written to this cpuset
888 static int update_cpumask(struct cpuset *cs, const char *buf)
890 struct ptr_heap heap;
891 struct cpuset trialcs;
892 int retval;
893 int is_load_balanced;
895 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
896 if (cs == &top_cpuset)
897 return -EACCES;
899 trialcs = *cs;
902 * An empty cpus_allowed is ok only if the cpuset has no tasks.
903 * Since cpulist_parse() fails on an empty mask, we special case
904 * that parsing. The validate_change() call ensures that cpusets
905 * with tasks have cpus.
907 if (!*buf) {
908 cpus_clear(trialcs.cpus_allowed);
909 } else {
910 retval = cpulist_parse(buf, &trialcs.cpus_allowed);
911 if (retval < 0)
912 return retval;
914 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
915 return -EINVAL;
917 retval = validate_change(cs, &trialcs);
918 if (retval < 0)
919 return retval;
921 /* Nothing to do if the cpus didn't change */
922 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
923 return 0;
925 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
926 if (retval)
927 return retval;
929 is_load_balanced = is_sched_load_balance(&trialcs);
931 mutex_lock(&callback_mutex);
932 cs->cpus_allowed = trialcs.cpus_allowed;
933 mutex_unlock(&callback_mutex);
936 * Scan tasks in the cpuset, and update the cpumasks of any
937 * that need an update.
939 update_tasks_cpumask(cs, &heap);
941 heap_free(&heap);
943 if (is_load_balanced)
944 async_rebuild_sched_domains();
945 return 0;
949 * cpuset_migrate_mm
951 * Migrate memory region from one set of nodes to another.
953 * Temporarilly set tasks mems_allowed to target nodes of migration,
954 * so that the migration code can allocate pages on these nodes.
956 * Call holding cgroup_mutex, so current's cpuset won't change
957 * during this call, as manage_mutex holds off any cpuset_attach()
958 * calls. Therefore we don't need to take task_lock around the
959 * call to guarantee_online_mems(), as we know no one is changing
960 * our task's cpuset.
962 * Hold callback_mutex around the two modifications of our tasks
963 * mems_allowed to synchronize with cpuset_mems_allowed().
965 * While the mm_struct we are migrating is typically from some
966 * other task, the task_struct mems_allowed that we are hacking
967 * is for our current task, which must allocate new pages for that
968 * migrating memory region.
970 * We call cpuset_update_task_memory_state() before hacking
971 * our tasks mems_allowed, so that we are assured of being in
972 * sync with our tasks cpuset, and in particular, callbacks to
973 * cpuset_update_task_memory_state() from nested page allocations
974 * won't see any mismatch of our cpuset and task mems_generation
975 * values, so won't overwrite our hacked tasks mems_allowed
976 * nodemask.
979 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
980 const nodemask_t *to)
982 struct task_struct *tsk = current;
984 cpuset_update_task_memory_state();
986 mutex_lock(&callback_mutex);
987 tsk->mems_allowed = *to;
988 mutex_unlock(&callback_mutex);
990 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
992 mutex_lock(&callback_mutex);
993 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
994 mutex_unlock(&callback_mutex);
997 static void *cpuset_being_rebound;
1000 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1001 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1002 * @oldmem: old mems_allowed of cpuset cs
1004 * Called with cgroup_mutex held
1005 * Return 0 if successful, -errno if not.
1007 static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1009 struct task_struct *p;
1010 struct mm_struct **mmarray;
1011 int i, n, ntasks;
1012 int migrate;
1013 int fudge;
1014 struct cgroup_iter it;
1015 int retval;
1017 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1019 fudge = 10; /* spare mmarray[] slots */
1020 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
1021 retval = -ENOMEM;
1024 * Allocate mmarray[] to hold mm reference for each task
1025 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1026 * tasklist_lock. We could use GFP_ATOMIC, but with a
1027 * few more lines of code, we can retry until we get a big
1028 * enough mmarray[] w/o using GFP_ATOMIC.
1030 while (1) {
1031 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
1032 ntasks += fudge;
1033 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1034 if (!mmarray)
1035 goto done;
1036 read_lock(&tasklist_lock); /* block fork */
1037 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
1038 break; /* got enough */
1039 read_unlock(&tasklist_lock); /* try again */
1040 kfree(mmarray);
1043 n = 0;
1045 /* Load up mmarray[] with mm reference for each task in cpuset. */
1046 cgroup_iter_start(cs->css.cgroup, &it);
1047 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
1048 struct mm_struct *mm;
1050 if (n >= ntasks) {
1051 printk(KERN_WARNING
1052 "Cpuset mempolicy rebind incomplete.\n");
1053 break;
1055 mm = get_task_mm(p);
1056 if (!mm)
1057 continue;
1058 mmarray[n++] = mm;
1060 cgroup_iter_end(cs->css.cgroup, &it);
1061 read_unlock(&tasklist_lock);
1064 * Now that we've dropped the tasklist spinlock, we can
1065 * rebind the vma mempolicies of each mm in mmarray[] to their
1066 * new cpuset, and release that mm. The mpol_rebind_mm()
1067 * call takes mmap_sem, which we couldn't take while holding
1068 * tasklist_lock. Forks can happen again now - the mpol_dup()
1069 * cpuset_being_rebound check will catch such forks, and rebind
1070 * their vma mempolicies too. Because we still hold the global
1071 * cgroup_mutex, we know that no other rebind effort will
1072 * be contending for the global variable cpuset_being_rebound.
1073 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1074 * is idempotent. Also migrate pages in each mm to new nodes.
1076 migrate = is_memory_migrate(cs);
1077 for (i = 0; i < n; i++) {
1078 struct mm_struct *mm = mmarray[i];
1080 mpol_rebind_mm(mm, &cs->mems_allowed);
1081 if (migrate)
1082 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1083 mmput(mm);
1086 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1087 kfree(mmarray);
1088 cpuset_being_rebound = NULL;
1089 retval = 0;
1090 done:
1091 return retval;
1095 * Handle user request to change the 'mems' memory placement
1096 * of a cpuset. Needs to validate the request, update the
1097 * cpusets mems_allowed and mems_generation, and for each
1098 * task in the cpuset, rebind any vma mempolicies and if
1099 * the cpuset is marked 'memory_migrate', migrate the tasks
1100 * pages to the new memory.
1102 * Call with cgroup_mutex held. May take callback_mutex during call.
1103 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1104 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1105 * their mempolicies to the cpusets new mems_allowed.
1107 static int update_nodemask(struct cpuset *cs, const char *buf)
1109 struct cpuset trialcs;
1110 nodemask_t oldmem;
1111 int retval;
1114 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1115 * it's read-only
1117 if (cs == &top_cpuset)
1118 return -EACCES;
1120 trialcs = *cs;
1123 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1124 * Since nodelist_parse() fails on an empty mask, we special case
1125 * that parsing. The validate_change() call ensures that cpusets
1126 * with tasks have memory.
1128 if (!*buf) {
1129 nodes_clear(trialcs.mems_allowed);
1130 } else {
1131 retval = nodelist_parse(buf, trialcs.mems_allowed);
1132 if (retval < 0)
1133 goto done;
1135 if (!nodes_subset(trialcs.mems_allowed,
1136 node_states[N_HIGH_MEMORY]))
1137 return -EINVAL;
1139 oldmem = cs->mems_allowed;
1140 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1141 retval = 0; /* Too easy - nothing to do */
1142 goto done;
1144 retval = validate_change(cs, &trialcs);
1145 if (retval < 0)
1146 goto done;
1148 mutex_lock(&callback_mutex);
1149 cs->mems_allowed = trialcs.mems_allowed;
1150 cs->mems_generation = cpuset_mems_generation++;
1151 mutex_unlock(&callback_mutex);
1153 retval = update_tasks_nodemask(cs, &oldmem);
1154 done:
1155 return retval;
1158 int current_cpuset_is_being_rebound(void)
1160 return task_cs(current) == cpuset_being_rebound;
1163 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1165 if (val < -1 || val >= SD_LV_MAX)
1166 return -EINVAL;
1168 if (val != cs->relax_domain_level) {
1169 cs->relax_domain_level = val;
1170 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
1171 async_rebuild_sched_domains();
1174 return 0;
1178 * update_flag - read a 0 or a 1 in a file and update associated flag
1179 * bit: the bit to update (see cpuset_flagbits_t)
1180 * cs: the cpuset to update
1181 * turning_on: whether the flag is being set or cleared
1183 * Call with cgroup_mutex held.
1186 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1187 int turning_on)
1189 struct cpuset trialcs;
1190 int err;
1191 int balance_flag_changed;
1193 trialcs = *cs;
1194 if (turning_on)
1195 set_bit(bit, &trialcs.flags);
1196 else
1197 clear_bit(bit, &trialcs.flags);
1199 err = validate_change(cs, &trialcs);
1200 if (err < 0)
1201 return err;
1203 balance_flag_changed = (is_sched_load_balance(cs) !=
1204 is_sched_load_balance(&trialcs));
1206 mutex_lock(&callback_mutex);
1207 cs->flags = trialcs.flags;
1208 mutex_unlock(&callback_mutex);
1210 if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
1211 async_rebuild_sched_domains();
1213 return 0;
1217 * Frequency meter - How fast is some event occurring?
1219 * These routines manage a digitally filtered, constant time based,
1220 * event frequency meter. There are four routines:
1221 * fmeter_init() - initialize a frequency meter.
1222 * fmeter_markevent() - called each time the event happens.
1223 * fmeter_getrate() - returns the recent rate of such events.
1224 * fmeter_update() - internal routine used to update fmeter.
1226 * A common data structure is passed to each of these routines,
1227 * which is used to keep track of the state required to manage the
1228 * frequency meter and its digital filter.
1230 * The filter works on the number of events marked per unit time.
1231 * The filter is single-pole low-pass recursive (IIR). The time unit
1232 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1233 * simulate 3 decimal digits of precision (multiplied by 1000).
1235 * With an FM_COEF of 933, and a time base of 1 second, the filter
1236 * has a half-life of 10 seconds, meaning that if the events quit
1237 * happening, then the rate returned from the fmeter_getrate()
1238 * will be cut in half each 10 seconds, until it converges to zero.
1240 * It is not worth doing a real infinitely recursive filter. If more
1241 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1242 * just compute FM_MAXTICKS ticks worth, by which point the level
1243 * will be stable.
1245 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1246 * arithmetic overflow in the fmeter_update() routine.
1248 * Given the simple 32 bit integer arithmetic used, this meter works
1249 * best for reporting rates between one per millisecond (msec) and
1250 * one per 32 (approx) seconds. At constant rates faster than one
1251 * per msec it maxes out at values just under 1,000,000. At constant
1252 * rates between one per msec, and one per second it will stabilize
1253 * to a value N*1000, where N is the rate of events per second.
1254 * At constant rates between one per second and one per 32 seconds,
1255 * it will be choppy, moving up on the seconds that have an event,
1256 * and then decaying until the next event. At rates slower than
1257 * about one in 32 seconds, it decays all the way back to zero between
1258 * each event.
1261 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1262 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1263 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1264 #define FM_SCALE 1000 /* faux fixed point scale */
1266 /* Initialize a frequency meter */
1267 static void fmeter_init(struct fmeter *fmp)
1269 fmp->cnt = 0;
1270 fmp->val = 0;
1271 fmp->time = 0;
1272 spin_lock_init(&fmp->lock);
1275 /* Internal meter update - process cnt events and update value */
1276 static void fmeter_update(struct fmeter *fmp)
1278 time_t now = get_seconds();
1279 time_t ticks = now - fmp->time;
1281 if (ticks == 0)
1282 return;
1284 ticks = min(FM_MAXTICKS, ticks);
1285 while (ticks-- > 0)
1286 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1287 fmp->time = now;
1289 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1290 fmp->cnt = 0;
1293 /* Process any previous ticks, then bump cnt by one (times scale). */
1294 static void fmeter_markevent(struct fmeter *fmp)
1296 spin_lock(&fmp->lock);
1297 fmeter_update(fmp);
1298 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1299 spin_unlock(&fmp->lock);
1302 /* Process any previous ticks, then return current value. */
1303 static int fmeter_getrate(struct fmeter *fmp)
1305 int val;
1307 spin_lock(&fmp->lock);
1308 fmeter_update(fmp);
1309 val = fmp->val;
1310 spin_unlock(&fmp->lock);
1311 return val;
1314 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1315 static int cpuset_can_attach(struct cgroup_subsys *ss,
1316 struct cgroup *cont, struct task_struct *tsk)
1318 struct cpuset *cs = cgroup_cs(cont);
1320 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1321 return -ENOSPC;
1322 if (tsk->flags & PF_THREAD_BOUND) {
1323 cpumask_t mask;
1325 mutex_lock(&callback_mutex);
1326 mask = cs->cpus_allowed;
1327 mutex_unlock(&callback_mutex);
1328 if (!cpus_equal(tsk->cpus_allowed, mask))
1329 return -EINVAL;
1332 return security_task_setscheduler(tsk, 0, NULL);
1335 static void cpuset_attach(struct cgroup_subsys *ss,
1336 struct cgroup *cont, struct cgroup *oldcont,
1337 struct task_struct *tsk)
1339 cpumask_t cpus;
1340 nodemask_t from, to;
1341 struct mm_struct *mm;
1342 struct cpuset *cs = cgroup_cs(cont);
1343 struct cpuset *oldcs = cgroup_cs(oldcont);
1344 int err;
1346 mutex_lock(&callback_mutex);
1347 guarantee_online_cpus(cs, &cpus);
1348 err = set_cpus_allowed_ptr(tsk, &cpus);
1349 mutex_unlock(&callback_mutex);
1350 if (err)
1351 return;
1353 from = oldcs->mems_allowed;
1354 to = cs->mems_allowed;
1355 mm = get_task_mm(tsk);
1356 if (mm) {
1357 mpol_rebind_mm(mm, &to);
1358 if (is_memory_migrate(cs))
1359 cpuset_migrate_mm(mm, &from, &to);
1360 mmput(mm);
1365 /* The various types of files and directories in a cpuset file system */
1367 typedef enum {
1368 FILE_MEMORY_MIGRATE,
1369 FILE_CPULIST,
1370 FILE_MEMLIST,
1371 FILE_CPU_EXCLUSIVE,
1372 FILE_MEM_EXCLUSIVE,
1373 FILE_MEM_HARDWALL,
1374 FILE_SCHED_LOAD_BALANCE,
1375 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1376 FILE_MEMORY_PRESSURE_ENABLED,
1377 FILE_MEMORY_PRESSURE,
1378 FILE_SPREAD_PAGE,
1379 FILE_SPREAD_SLAB,
1380 } cpuset_filetype_t;
1382 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1384 int retval = 0;
1385 struct cpuset *cs = cgroup_cs(cgrp);
1386 cpuset_filetype_t type = cft->private;
1388 if (!cgroup_lock_live_group(cgrp))
1389 return -ENODEV;
1391 switch (type) {
1392 case FILE_CPU_EXCLUSIVE:
1393 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1394 break;
1395 case FILE_MEM_EXCLUSIVE:
1396 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1397 break;
1398 case FILE_MEM_HARDWALL:
1399 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1400 break;
1401 case FILE_SCHED_LOAD_BALANCE:
1402 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1403 break;
1404 case FILE_MEMORY_MIGRATE:
1405 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1406 break;
1407 case FILE_MEMORY_PRESSURE_ENABLED:
1408 cpuset_memory_pressure_enabled = !!val;
1409 break;
1410 case FILE_MEMORY_PRESSURE:
1411 retval = -EACCES;
1412 break;
1413 case FILE_SPREAD_PAGE:
1414 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1415 cs->mems_generation = cpuset_mems_generation++;
1416 break;
1417 case FILE_SPREAD_SLAB:
1418 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1419 cs->mems_generation = cpuset_mems_generation++;
1420 break;
1421 default:
1422 retval = -EINVAL;
1423 break;
1425 cgroup_unlock();
1426 return retval;
1429 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1431 int retval = 0;
1432 struct cpuset *cs = cgroup_cs(cgrp);
1433 cpuset_filetype_t type = cft->private;
1435 if (!cgroup_lock_live_group(cgrp))
1436 return -ENODEV;
1438 switch (type) {
1439 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1440 retval = update_relax_domain_level(cs, val);
1441 break;
1442 default:
1443 retval = -EINVAL;
1444 break;
1446 cgroup_unlock();
1447 return retval;
1451 * Common handling for a write to a "cpus" or "mems" file.
1453 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1454 const char *buf)
1456 int retval = 0;
1458 if (!cgroup_lock_live_group(cgrp))
1459 return -ENODEV;
1461 switch (cft->private) {
1462 case FILE_CPULIST:
1463 retval = update_cpumask(cgroup_cs(cgrp), buf);
1464 break;
1465 case FILE_MEMLIST:
1466 retval = update_nodemask(cgroup_cs(cgrp), buf);
1467 break;
1468 default:
1469 retval = -EINVAL;
1470 break;
1472 cgroup_unlock();
1473 return retval;
1477 * These ascii lists should be read in a single call, by using a user
1478 * buffer large enough to hold the entire map. If read in smaller
1479 * chunks, there is no guarantee of atomicity. Since the display format
1480 * used, list of ranges of sequential numbers, is variable length,
1481 * and since these maps can change value dynamically, one could read
1482 * gibberish by doing partial reads while a list was changing.
1483 * A single large read to a buffer that crosses a page boundary is
1484 * ok, because the result being copied to user land is not recomputed
1485 * across a page fault.
1488 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1490 cpumask_t mask;
1492 mutex_lock(&callback_mutex);
1493 mask = cs->cpus_allowed;
1494 mutex_unlock(&callback_mutex);
1496 return cpulist_scnprintf(page, PAGE_SIZE, &mask);
1499 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1501 nodemask_t mask;
1503 mutex_lock(&callback_mutex);
1504 mask = cs->mems_allowed;
1505 mutex_unlock(&callback_mutex);
1507 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1510 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1511 struct cftype *cft,
1512 struct file *file,
1513 char __user *buf,
1514 size_t nbytes, loff_t *ppos)
1516 struct cpuset *cs = cgroup_cs(cont);
1517 cpuset_filetype_t type = cft->private;
1518 char *page;
1519 ssize_t retval = 0;
1520 char *s;
1522 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1523 return -ENOMEM;
1525 s = page;
1527 switch (type) {
1528 case FILE_CPULIST:
1529 s += cpuset_sprintf_cpulist(s, cs);
1530 break;
1531 case FILE_MEMLIST:
1532 s += cpuset_sprintf_memlist(s, cs);
1533 break;
1534 default:
1535 retval = -EINVAL;
1536 goto out;
1538 *s++ = '\n';
1540 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1541 out:
1542 free_page((unsigned long)page);
1543 return retval;
1546 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1548 struct cpuset *cs = cgroup_cs(cont);
1549 cpuset_filetype_t type = cft->private;
1550 switch (type) {
1551 case FILE_CPU_EXCLUSIVE:
1552 return is_cpu_exclusive(cs);
1553 case FILE_MEM_EXCLUSIVE:
1554 return is_mem_exclusive(cs);
1555 case FILE_MEM_HARDWALL:
1556 return is_mem_hardwall(cs);
1557 case FILE_SCHED_LOAD_BALANCE:
1558 return is_sched_load_balance(cs);
1559 case FILE_MEMORY_MIGRATE:
1560 return is_memory_migrate(cs);
1561 case FILE_MEMORY_PRESSURE_ENABLED:
1562 return cpuset_memory_pressure_enabled;
1563 case FILE_MEMORY_PRESSURE:
1564 return fmeter_getrate(&cs->fmeter);
1565 case FILE_SPREAD_PAGE:
1566 return is_spread_page(cs);
1567 case FILE_SPREAD_SLAB:
1568 return is_spread_slab(cs);
1569 default:
1570 BUG();
1573 /* Unreachable but makes gcc happy */
1574 return 0;
1577 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1579 struct cpuset *cs = cgroup_cs(cont);
1580 cpuset_filetype_t type = cft->private;
1581 switch (type) {
1582 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1583 return cs->relax_domain_level;
1584 default:
1585 BUG();
1588 /* Unrechable but makes gcc happy */
1589 return 0;
1594 * for the common functions, 'private' gives the type of file
1597 static struct cftype files[] = {
1599 .name = "cpus",
1600 .read = cpuset_common_file_read,
1601 .write_string = cpuset_write_resmask,
1602 .max_write_len = (100U + 6 * NR_CPUS),
1603 .private = FILE_CPULIST,
1607 .name = "mems",
1608 .read = cpuset_common_file_read,
1609 .write_string = cpuset_write_resmask,
1610 .max_write_len = (100U + 6 * MAX_NUMNODES),
1611 .private = FILE_MEMLIST,
1615 .name = "cpu_exclusive",
1616 .read_u64 = cpuset_read_u64,
1617 .write_u64 = cpuset_write_u64,
1618 .private = FILE_CPU_EXCLUSIVE,
1622 .name = "mem_exclusive",
1623 .read_u64 = cpuset_read_u64,
1624 .write_u64 = cpuset_write_u64,
1625 .private = FILE_MEM_EXCLUSIVE,
1629 .name = "mem_hardwall",
1630 .read_u64 = cpuset_read_u64,
1631 .write_u64 = cpuset_write_u64,
1632 .private = FILE_MEM_HARDWALL,
1636 .name = "sched_load_balance",
1637 .read_u64 = cpuset_read_u64,
1638 .write_u64 = cpuset_write_u64,
1639 .private = FILE_SCHED_LOAD_BALANCE,
1643 .name = "sched_relax_domain_level",
1644 .read_s64 = cpuset_read_s64,
1645 .write_s64 = cpuset_write_s64,
1646 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1650 .name = "memory_migrate",
1651 .read_u64 = cpuset_read_u64,
1652 .write_u64 = cpuset_write_u64,
1653 .private = FILE_MEMORY_MIGRATE,
1657 .name = "memory_pressure",
1658 .read_u64 = cpuset_read_u64,
1659 .write_u64 = cpuset_write_u64,
1660 .private = FILE_MEMORY_PRESSURE,
1664 .name = "memory_spread_page",
1665 .read_u64 = cpuset_read_u64,
1666 .write_u64 = cpuset_write_u64,
1667 .private = FILE_SPREAD_PAGE,
1671 .name = "memory_spread_slab",
1672 .read_u64 = cpuset_read_u64,
1673 .write_u64 = cpuset_write_u64,
1674 .private = FILE_SPREAD_SLAB,
1678 static struct cftype cft_memory_pressure_enabled = {
1679 .name = "memory_pressure_enabled",
1680 .read_u64 = cpuset_read_u64,
1681 .write_u64 = cpuset_write_u64,
1682 .private = FILE_MEMORY_PRESSURE_ENABLED,
1685 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1687 int err;
1689 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1690 if (err)
1691 return err;
1692 /* memory_pressure_enabled is in root cpuset only */
1693 if (!cont->parent)
1694 err = cgroup_add_file(cont, ss,
1695 &cft_memory_pressure_enabled);
1696 return err;
1700 * post_clone() is called at the end of cgroup_clone().
1701 * 'cgroup' was just created automatically as a result of
1702 * a cgroup_clone(), and the current task is about to
1703 * be moved into 'cgroup'.
1705 * Currently we refuse to set up the cgroup - thereby
1706 * refusing the task to be entered, and as a result refusing
1707 * the sys_unshare() or clone() which initiated it - if any
1708 * sibling cpusets have exclusive cpus or mem.
1710 * If this becomes a problem for some users who wish to
1711 * allow that scenario, then cpuset_post_clone() could be
1712 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1713 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1714 * held.
1716 static void cpuset_post_clone(struct cgroup_subsys *ss,
1717 struct cgroup *cgroup)
1719 struct cgroup *parent, *child;
1720 struct cpuset *cs, *parent_cs;
1722 parent = cgroup->parent;
1723 list_for_each_entry(child, &parent->children, sibling) {
1724 cs = cgroup_cs(child);
1725 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1726 return;
1728 cs = cgroup_cs(cgroup);
1729 parent_cs = cgroup_cs(parent);
1731 cs->mems_allowed = parent_cs->mems_allowed;
1732 cs->cpus_allowed = parent_cs->cpus_allowed;
1733 return;
1737 * cpuset_create - create a cpuset
1738 * ss: cpuset cgroup subsystem
1739 * cont: control group that the new cpuset will be part of
1742 static struct cgroup_subsys_state *cpuset_create(
1743 struct cgroup_subsys *ss,
1744 struct cgroup *cont)
1746 struct cpuset *cs;
1747 struct cpuset *parent;
1749 if (!cont->parent) {
1750 /* This is early initialization for the top cgroup */
1751 top_cpuset.mems_generation = cpuset_mems_generation++;
1752 return &top_cpuset.css;
1754 parent = cgroup_cs(cont->parent);
1755 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1756 if (!cs)
1757 return ERR_PTR(-ENOMEM);
1759 cpuset_update_task_memory_state();
1760 cs->flags = 0;
1761 if (is_spread_page(parent))
1762 set_bit(CS_SPREAD_PAGE, &cs->flags);
1763 if (is_spread_slab(parent))
1764 set_bit(CS_SPREAD_SLAB, &cs->flags);
1765 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1766 cpus_clear(cs->cpus_allowed);
1767 nodes_clear(cs->mems_allowed);
1768 cs->mems_generation = cpuset_mems_generation++;
1769 fmeter_init(&cs->fmeter);
1770 cs->relax_domain_level = -1;
1772 cs->parent = parent;
1773 number_of_cpusets++;
1774 return &cs->css ;
1778 * If the cpuset being removed has its flag 'sched_load_balance'
1779 * enabled, then simulate turning sched_load_balance off, which
1780 * will call async_rebuild_sched_domains().
1783 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1785 struct cpuset *cs = cgroup_cs(cont);
1787 cpuset_update_task_memory_state();
1789 if (is_sched_load_balance(cs))
1790 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1792 number_of_cpusets--;
1793 kfree(cs);
1796 struct cgroup_subsys cpuset_subsys = {
1797 .name = "cpuset",
1798 .create = cpuset_create,
1799 .destroy = cpuset_destroy,
1800 .can_attach = cpuset_can_attach,
1801 .attach = cpuset_attach,
1802 .populate = cpuset_populate,
1803 .post_clone = cpuset_post_clone,
1804 .subsys_id = cpuset_subsys_id,
1805 .early_init = 1,
1809 * cpuset_init_early - just enough so that the calls to
1810 * cpuset_update_task_memory_state() in early init code
1811 * are harmless.
1814 int __init cpuset_init_early(void)
1816 top_cpuset.mems_generation = cpuset_mems_generation++;
1817 return 0;
1822 * cpuset_init - initialize cpusets at system boot
1824 * Description: Initialize top_cpuset and the cpuset internal file system,
1827 int __init cpuset_init(void)
1829 int err = 0;
1831 cpus_setall(top_cpuset.cpus_allowed);
1832 nodes_setall(top_cpuset.mems_allowed);
1834 fmeter_init(&top_cpuset.fmeter);
1835 top_cpuset.mems_generation = cpuset_mems_generation++;
1836 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1837 top_cpuset.relax_domain_level = -1;
1839 err = register_filesystem(&cpuset_fs_type);
1840 if (err < 0)
1841 return err;
1843 number_of_cpusets = 1;
1844 return 0;
1848 * cpuset_do_move_task - move a given task to another cpuset
1849 * @tsk: pointer to task_struct the task to move
1850 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1852 * Called by cgroup_scan_tasks() for each task in a cgroup.
1853 * Return nonzero to stop the walk through the tasks.
1855 static void cpuset_do_move_task(struct task_struct *tsk,
1856 struct cgroup_scanner *scan)
1858 struct cpuset_hotplug_scanner *chsp;
1860 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1861 cgroup_attach_task(chsp->to, tsk);
1865 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1866 * @from: cpuset in which the tasks currently reside
1867 * @to: cpuset to which the tasks will be moved
1869 * Called with cgroup_mutex held
1870 * callback_mutex must not be held, as cpuset_attach() will take it.
1872 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1873 * calling callback functions for each.
1875 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1877 struct cpuset_hotplug_scanner scan;
1879 scan.scan.cg = from->css.cgroup;
1880 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1881 scan.scan.process_task = cpuset_do_move_task;
1882 scan.scan.heap = NULL;
1883 scan.to = to->css.cgroup;
1885 if (cgroup_scan_tasks(&scan.scan))
1886 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1887 "cgroup_scan_tasks failed\n");
1891 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1892 * or memory nodes, we need to walk over the cpuset hierarchy,
1893 * removing that CPU or node from all cpusets. If this removes the
1894 * last CPU or node from a cpuset, then move the tasks in the empty
1895 * cpuset to its next-highest non-empty parent.
1897 * Called with cgroup_mutex held
1898 * callback_mutex must not be held, as cpuset_attach() will take it.
1900 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1902 struct cpuset *parent;
1905 * The cgroup's css_sets list is in use if there are tasks
1906 * in the cpuset; the list is empty if there are none;
1907 * the cs->css.refcnt seems always 0.
1909 if (list_empty(&cs->css.cgroup->css_sets))
1910 return;
1913 * Find its next-highest non-empty parent, (top cpuset
1914 * has online cpus, so can't be empty).
1916 parent = cs->parent;
1917 while (cpus_empty(parent->cpus_allowed) ||
1918 nodes_empty(parent->mems_allowed))
1919 parent = parent->parent;
1921 move_member_tasks_to_cpuset(cs, parent);
1925 * Walk the specified cpuset subtree and look for empty cpusets.
1926 * The tasks of such cpuset must be moved to a parent cpuset.
1928 * Called with cgroup_mutex held. We take callback_mutex to modify
1929 * cpus_allowed and mems_allowed.
1931 * This walk processes the tree from top to bottom, completing one layer
1932 * before dropping down to the next. It always processes a node before
1933 * any of its children.
1935 * For now, since we lack memory hot unplug, we'll never see a cpuset
1936 * that has tasks along with an empty 'mems'. But if we did see such
1937 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1939 static void scan_for_empty_cpusets(struct cpuset *root)
1941 LIST_HEAD(queue);
1942 struct cpuset *cp; /* scans cpusets being updated */
1943 struct cpuset *child; /* scans child cpusets of cp */
1944 struct cgroup *cont;
1945 nodemask_t oldmems;
1947 list_add_tail((struct list_head *)&root->stack_list, &queue);
1949 while (!list_empty(&queue)) {
1950 cp = list_first_entry(&queue, struct cpuset, stack_list);
1951 list_del(queue.next);
1952 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1953 child = cgroup_cs(cont);
1954 list_add_tail(&child->stack_list, &queue);
1957 /* Continue past cpusets with all cpus, mems online */
1958 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1959 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1960 continue;
1962 oldmems = cp->mems_allowed;
1964 /* Remove offline cpus and mems from this cpuset. */
1965 mutex_lock(&callback_mutex);
1966 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1967 nodes_and(cp->mems_allowed, cp->mems_allowed,
1968 node_states[N_HIGH_MEMORY]);
1969 mutex_unlock(&callback_mutex);
1971 /* Move tasks from the empty cpuset to a parent */
1972 if (cpus_empty(cp->cpus_allowed) ||
1973 nodes_empty(cp->mems_allowed))
1974 remove_tasks_in_empty_cpuset(cp);
1975 else {
1976 update_tasks_cpumask(cp, NULL);
1977 update_tasks_nodemask(cp, &oldmems);
1983 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1984 * period. This is necessary in order to make cpusets transparent
1985 * (of no affect) on systems that are actively using CPU hotplug
1986 * but making no active use of cpusets.
1988 * This routine ensures that top_cpuset.cpus_allowed tracks
1989 * cpu_online_map on each CPU hotplug (cpuhp) event.
1991 * Called within get_online_cpus(). Needs to call cgroup_lock()
1992 * before calling generate_sched_domains().
1994 static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
1995 unsigned long phase, void *unused_cpu)
1997 struct sched_domain_attr *attr;
1998 cpumask_t *doms;
1999 int ndoms;
2001 switch (phase) {
2002 case CPU_ONLINE:
2003 case CPU_ONLINE_FROZEN:
2004 case CPU_DEAD:
2005 case CPU_DEAD_FROZEN:
2006 break;
2008 default:
2009 return NOTIFY_DONE;
2012 cgroup_lock();
2013 top_cpuset.cpus_allowed = cpu_online_map;
2014 scan_for_empty_cpusets(&top_cpuset);
2015 ndoms = generate_sched_domains(&doms, &attr);
2016 cgroup_unlock();
2018 /* Have scheduler rebuild the domains */
2019 partition_sched_domains(ndoms, doms, attr);
2021 return NOTIFY_OK;
2024 #ifdef CONFIG_MEMORY_HOTPLUG
2026 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2027 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2028 * See also the previous routine cpuset_track_online_cpus().
2030 static int cpuset_track_online_nodes(struct notifier_block *self,
2031 unsigned long action, void *arg)
2033 cgroup_lock();
2034 switch (action) {
2035 case MEM_ONLINE:
2036 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2037 break;
2038 case MEM_OFFLINE:
2039 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2040 scan_for_empty_cpusets(&top_cpuset);
2041 break;
2042 default:
2043 break;
2045 cgroup_unlock();
2046 return NOTIFY_OK;
2048 #endif
2051 * cpuset_init_smp - initialize cpus_allowed
2053 * Description: Finish top cpuset after cpu, node maps are initialized
2056 void __init cpuset_init_smp(void)
2058 top_cpuset.cpus_allowed = cpu_online_map;
2059 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2061 hotcpu_notifier(cpuset_track_online_cpus, 0);
2062 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2066 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2067 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2068 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
2070 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2071 * attached to the specified @tsk. Guaranteed to return some non-empty
2072 * subset of cpu_online_map, even if this means going outside the
2073 * tasks cpuset.
2076 void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
2078 mutex_lock(&callback_mutex);
2079 cpuset_cpus_allowed_locked(tsk, pmask);
2080 mutex_unlock(&callback_mutex);
2084 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2085 * Must be called with callback_mutex held.
2087 void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
2089 task_lock(tsk);
2090 guarantee_online_cpus(task_cs(tsk), pmask);
2091 task_unlock(tsk);
2094 void cpuset_init_current_mems_allowed(void)
2096 nodes_setall(current->mems_allowed);
2100 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2101 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2103 * Description: Returns the nodemask_t mems_allowed of the cpuset
2104 * attached to the specified @tsk. Guaranteed to return some non-empty
2105 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2106 * tasks cpuset.
2109 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2111 nodemask_t mask;
2113 mutex_lock(&callback_mutex);
2114 task_lock(tsk);
2115 guarantee_online_mems(task_cs(tsk), &mask);
2116 task_unlock(tsk);
2117 mutex_unlock(&callback_mutex);
2119 return mask;
2123 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2124 * @nodemask: the nodemask to be checked
2126 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2128 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2130 return nodes_intersects(*nodemask, current->mems_allowed);
2134 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2135 * mem_hardwall ancestor to the specified cpuset. Call holding
2136 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2137 * (an unusual configuration), then returns the root cpuset.
2139 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2141 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2142 cs = cs->parent;
2143 return cs;
2147 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2148 * @z: is this zone on an allowed node?
2149 * @gfp_mask: memory allocation flags
2151 * If we're in interrupt, yes, we can always allocate. If
2152 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2153 * z's node is in our tasks mems_allowed, yes. If it's not a
2154 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2155 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2156 * If the task has been OOM killed and has access to memory reserves
2157 * as specified by the TIF_MEMDIE flag, yes.
2158 * Otherwise, no.
2160 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2161 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2162 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2163 * from an enclosing cpuset.
2165 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2166 * hardwall cpusets, and never sleeps.
2168 * The __GFP_THISNODE placement logic is really handled elsewhere,
2169 * by forcibly using a zonelist starting at a specified node, and by
2170 * (in get_page_from_freelist()) refusing to consider the zones for
2171 * any node on the zonelist except the first. By the time any such
2172 * calls get to this routine, we should just shut up and say 'yes'.
2174 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2175 * and do not allow allocations outside the current tasks cpuset
2176 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2177 * GFP_KERNEL allocations are not so marked, so can escape to the
2178 * nearest enclosing hardwalled ancestor cpuset.
2180 * Scanning up parent cpusets requires callback_mutex. The
2181 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2182 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2183 * current tasks mems_allowed came up empty on the first pass over
2184 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2185 * cpuset are short of memory, might require taking the callback_mutex
2186 * mutex.
2188 * The first call here from mm/page_alloc:get_page_from_freelist()
2189 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2190 * so no allocation on a node outside the cpuset is allowed (unless
2191 * in interrupt, of course).
2193 * The second pass through get_page_from_freelist() doesn't even call
2194 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2195 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2196 * in alloc_flags. That logic and the checks below have the combined
2197 * affect that:
2198 * in_interrupt - any node ok (current task context irrelevant)
2199 * GFP_ATOMIC - any node ok
2200 * TIF_MEMDIE - any node ok
2201 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2202 * GFP_USER - only nodes in current tasks mems allowed ok.
2204 * Rule:
2205 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2206 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2207 * the code that might scan up ancestor cpusets and sleep.
2210 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2212 int node; /* node that zone z is on */
2213 const struct cpuset *cs; /* current cpuset ancestors */
2214 int allowed; /* is allocation in zone z allowed? */
2216 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2217 return 1;
2218 node = zone_to_nid(z);
2219 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2220 if (node_isset(node, current->mems_allowed))
2221 return 1;
2223 * Allow tasks that have access to memory reserves because they have
2224 * been OOM killed to get memory anywhere.
2226 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2227 return 1;
2228 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2229 return 0;
2231 if (current->flags & PF_EXITING) /* Let dying task have memory */
2232 return 1;
2234 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2235 mutex_lock(&callback_mutex);
2237 task_lock(current);
2238 cs = nearest_hardwall_ancestor(task_cs(current));
2239 task_unlock(current);
2241 allowed = node_isset(node, cs->mems_allowed);
2242 mutex_unlock(&callback_mutex);
2243 return allowed;
2247 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2248 * @z: is this zone on an allowed node?
2249 * @gfp_mask: memory allocation flags
2251 * If we're in interrupt, yes, we can always allocate.
2252 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2253 * z's node is in our tasks mems_allowed, yes. If the task has been
2254 * OOM killed and has access to memory reserves as specified by the
2255 * TIF_MEMDIE flag, yes. Otherwise, no.
2257 * The __GFP_THISNODE placement logic is really handled elsewhere,
2258 * by forcibly using a zonelist starting at a specified node, and by
2259 * (in get_page_from_freelist()) refusing to consider the zones for
2260 * any node on the zonelist except the first. By the time any such
2261 * calls get to this routine, we should just shut up and say 'yes'.
2263 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2264 * this variant requires that the zone be in the current tasks
2265 * mems_allowed or that we're in interrupt. It does not scan up the
2266 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2267 * It never sleeps.
2270 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2272 int node; /* node that zone z is on */
2274 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2275 return 1;
2276 node = zone_to_nid(z);
2277 if (node_isset(node, current->mems_allowed))
2278 return 1;
2280 * Allow tasks that have access to memory reserves because they have
2281 * been OOM killed to get memory anywhere.
2283 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2284 return 1;
2285 return 0;
2289 * cpuset_lock - lock out any changes to cpuset structures
2291 * The out of memory (oom) code needs to mutex_lock cpusets
2292 * from being changed while it scans the tasklist looking for a
2293 * task in an overlapping cpuset. Expose callback_mutex via this
2294 * cpuset_lock() routine, so the oom code can lock it, before
2295 * locking the task list. The tasklist_lock is a spinlock, so
2296 * must be taken inside callback_mutex.
2299 void cpuset_lock(void)
2301 mutex_lock(&callback_mutex);
2305 * cpuset_unlock - release lock on cpuset changes
2307 * Undo the lock taken in a previous cpuset_lock() call.
2310 void cpuset_unlock(void)
2312 mutex_unlock(&callback_mutex);
2316 * cpuset_mem_spread_node() - On which node to begin search for a page
2318 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2319 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2320 * and if the memory allocation used cpuset_mem_spread_node()
2321 * to determine on which node to start looking, as it will for
2322 * certain page cache or slab cache pages such as used for file
2323 * system buffers and inode caches, then instead of starting on the
2324 * local node to look for a free page, rather spread the starting
2325 * node around the tasks mems_allowed nodes.
2327 * We don't have to worry about the returned node being offline
2328 * because "it can't happen", and even if it did, it would be ok.
2330 * The routines calling guarantee_online_mems() are careful to
2331 * only set nodes in task->mems_allowed that are online. So it
2332 * should not be possible for the following code to return an
2333 * offline node. But if it did, that would be ok, as this routine
2334 * is not returning the node where the allocation must be, only
2335 * the node where the search should start. The zonelist passed to
2336 * __alloc_pages() will include all nodes. If the slab allocator
2337 * is passed an offline node, it will fall back to the local node.
2338 * See kmem_cache_alloc_node().
2341 int cpuset_mem_spread_node(void)
2343 int node;
2345 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2346 if (node == MAX_NUMNODES)
2347 node = first_node(current->mems_allowed);
2348 current->cpuset_mem_spread_rotor = node;
2349 return node;
2351 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2354 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2355 * @tsk1: pointer to task_struct of some task.
2356 * @tsk2: pointer to task_struct of some other task.
2358 * Description: Return true if @tsk1's mems_allowed intersects the
2359 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2360 * one of the task's memory usage might impact the memory available
2361 * to the other.
2364 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2365 const struct task_struct *tsk2)
2367 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2371 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2372 * @task: pointer to task_struct of some task.
2374 * Description: Prints @task's name, cpuset name, and cached copy of its
2375 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2376 * dereferencing task_cs(task).
2378 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2380 struct dentry *dentry;
2382 dentry = task_cs(tsk)->css.cgroup->dentry;
2383 spin_lock(&cpuset_buffer_lock);
2384 snprintf(cpuset_name, CPUSET_NAME_LEN,
2385 dentry ? (const char *)dentry->d_name.name : "/");
2386 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2387 tsk->mems_allowed);
2388 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2389 tsk->comm, cpuset_name, cpuset_nodelist);
2390 spin_unlock(&cpuset_buffer_lock);
2394 * Collection of memory_pressure is suppressed unless
2395 * this flag is enabled by writing "1" to the special
2396 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2399 int cpuset_memory_pressure_enabled __read_mostly;
2402 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2404 * Keep a running average of the rate of synchronous (direct)
2405 * page reclaim efforts initiated by tasks in each cpuset.
2407 * This represents the rate at which some task in the cpuset
2408 * ran low on memory on all nodes it was allowed to use, and
2409 * had to enter the kernels page reclaim code in an effort to
2410 * create more free memory by tossing clean pages or swapping
2411 * or writing dirty pages.
2413 * Display to user space in the per-cpuset read-only file
2414 * "memory_pressure". Value displayed is an integer
2415 * representing the recent rate of entry into the synchronous
2416 * (direct) page reclaim by any task attached to the cpuset.
2419 void __cpuset_memory_pressure_bump(void)
2421 task_lock(current);
2422 fmeter_markevent(&task_cs(current)->fmeter);
2423 task_unlock(current);
2426 #ifdef CONFIG_PROC_PID_CPUSET
2428 * proc_cpuset_show()
2429 * - Print tasks cpuset path into seq_file.
2430 * - Used for /proc/<pid>/cpuset.
2431 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2432 * doesn't really matter if tsk->cpuset changes after we read it,
2433 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2434 * anyway.
2436 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2438 struct pid *pid;
2439 struct task_struct *tsk;
2440 char *buf;
2441 struct cgroup_subsys_state *css;
2442 int retval;
2444 retval = -ENOMEM;
2445 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2446 if (!buf)
2447 goto out;
2449 retval = -ESRCH;
2450 pid = m->private;
2451 tsk = get_pid_task(pid, PIDTYPE_PID);
2452 if (!tsk)
2453 goto out_free;
2455 retval = -EINVAL;
2456 cgroup_lock();
2457 css = task_subsys_state(tsk, cpuset_subsys_id);
2458 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2459 if (retval < 0)
2460 goto out_unlock;
2461 seq_puts(m, buf);
2462 seq_putc(m, '\n');
2463 out_unlock:
2464 cgroup_unlock();
2465 put_task_struct(tsk);
2466 out_free:
2467 kfree(buf);
2468 out:
2469 return retval;
2472 static int cpuset_open(struct inode *inode, struct file *file)
2474 struct pid *pid = PROC_I(inode)->pid;
2475 return single_open(file, proc_cpuset_show, pid);
2478 const struct file_operations proc_cpuset_operations = {
2479 .open = cpuset_open,
2480 .read = seq_read,
2481 .llseek = seq_lseek,
2482 .release = single_release,
2484 #endif /* CONFIG_PROC_PID_CPUSET */
2486 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2487 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2489 seq_printf(m, "Cpus_allowed:\t");
2490 seq_cpumask(m, &task->cpus_allowed);
2491 seq_printf(m, "\n");
2492 seq_printf(m, "Cpus_allowed_list:\t");
2493 seq_cpumask_list(m, &task->cpus_allowed);
2494 seq_printf(m, "\n");
2495 seq_printf(m, "Mems_allowed:\t");
2496 seq_nodemask(m, &task->mems_allowed);
2497 seq_printf(m, "\n");
2498 seq_printf(m, "Mems_allowed_list:\t");
2499 seq_nodemask_list(m, &task->mems_allowed);
2500 seq_printf(m, "\n");